
Research proposal: Explainability methods for machine learning
systems for multimodal medical datasets

Andrea M. Storås∗
andrea@simula.no

SimulaMet
Oslo, Norway

Inga Strümke†
SimulaMet

Oslo, Norway

Michael A. Riegler‡
SimulaMet

Oslo, Norway

Pål Halvorsen∗
SimulaMet

Oslo, Norway

ABSTRACT
This paper contains the research proposal of Andrea M. Storås that
was presented at the MMSys 2022 doctoral symposium. Machine
learning models have the ability to solve medical tasks with a high
level of performance, e.g., classifying medical videos and detecting
anomalies using different sources of data. However, many of these
models are highly complex and difficult to understand. Lack of
interpretability can limit the use of machine learning systems in
the medical domain. Explainable artificial intelligence provides
explanations regarding themodels and their predictions. In this PhD
project, we develop machine learning models for automatic analysis
of medical data and explain the results using established techniques
from the field of explainable artificial intelligence. Current research
indicate that there are still open issues to be solved in order for
end users to understand multimedia systems powered by machine
learning. Consequently, new explanation techniques will also be
developed. Different types of medical data are applied in order to
investigate the generalizability of the methods.
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1 INTRODUCTION
The use of machine learning (ML) for solving medical tasks has
increased significantly over the past years, and multimedia and
medicine have been regarded teammates for some time already for
ML-powered systems [24]. Some examples of medical multimedia
datasets include the KVASIR series [3, 10, 12, 22] from gastroin-
testinal examinations and VISEM [9] from the area of human re-
production. Increasing amounts of health data, including images,
videos and sensor data, that are available for analysis, development
of efficient algorithms and powerful hardware are some important
reasons that explain why ML has gained popularity in the medical
field [23]. ML has among other things been applied for detection
of polyps in the gastrointestinal tract [11, 25], classification of skin
cancer [7] and prediction of hypoxemia during surgery [17]. The
manual examination and interpretation of medical data can be time
consuming and must typically be performed by an experienced
medical expert. The interpretations might also be subjective and
dependent on the specific operator. Consequently, ML could be use-
ful, as it opens up for automatic, consistent and efficient analysis
of medical data.

When the amount of medical data is large, deep learning can be
a powerful tool [23]. Convolutional neural networks (CNNs) have
for example been successful for analysis of images and videos [8],
also within the medical field. Unfortunately, these algorithms are
highly complex and not easily interpreted by humans. Lack of inter-
pretability can be a barrier when it comes to generating trustworthy
systems. Indeed, this has been identified as a challenge when it
comes to implement and apply ML models in medicine and health-
care [6, 32]. Explainable artificial intelligence (XAI) aims to solve
this challenge by providing explanations of the ML models and
their predictions [1]. In order for healthcare providers to trust and
decide to use ML models in their clinical practice, XAI methods
should be applied [1].

In this PhD project, which lies at the intersection of artificial
intelligence (AI), multimedia systems and health, we want to ex-
plore whether and how efficient XAI methods can be developed
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and applied to increase the understanding and acceptance of AI
systems in clinical practice or not. Established XAI methods will be
applied for explaining ML models that are used for the analysis of
medical multimedia data including tabular data, images and videos.
Because current research indicate that existing XAI methods do
not always meet the needs of the end users [13, 21], new explana-
tion techniques will also be developed. To see how well the XAI
methods generalize across the medical field, they will be applied
on multimedia data from the medical domain, namely tabular data,
images and videos, arriving from different sources. XAI methods
are also usually only applied to one modality at the time and one
question we also plan to explore is how XAI can be used to tackle
multimodal data applications. Because the experiments are based
on multimedia datasets, we believe the PhD project is a good fit for
MMSys.

2 RELATEDWORK
For our purposes, it is useful to divide XAI methods into intrin-
sic and extrinsic methods. Intrinsic explanations aim to explain
the inner workings of the model. Extrinsic explanation methods
treat the model as a ‘black box’ and present its behaviour [18]. Fur-
ther on, global explanations aim to describe the model as a whole,
while local explanations focus on explaining single predictions [18].
Shapley additive explanations (SHAP) [16] is an example of an
established extrinsic XAI method. The method is model agnostic,
meaning that it can be applied to any ML model. SHAP provides
local model explanations and can be applied to any type of data [14].
When it comes to deep learning models for image analysis, intrinsic
gradient-based methods such as GradCAM [26] are dominating [14].
However, the field of XAI is still in its beginning, and there are room
for improving the explanation methods.

Because decisions made byMLmodels in a healthcare setting can
affect treatments and thus patient outcomes, healthcare providers
must have a high level of confidence in the models. If the models
are too complex to understand, healthcare providers might refuse
to use them. In our research, we will apply established XAI methods
and develop new techniques to enable increased understanding of
ML models in the medical field. Ideally, the use of ML can lead to
faster and more accurate diagnoses and improve the outcome and
quality of life for the patients.

3 DATA
Typical challenges associated with medical data are, besides privacy,
data acquisition and labeling. It can be difficult to obtain medical
data from a large population for several reasons. Firstly, regula-
tory aspects and privacy protection might restrict the access to the
data. In the biomedical field, studies have shown that more than
one third of research articles do not share the raw data [15, 34].
Secondly, if the disease or treatment is rare, the number of patients
will be relatively low. This means that the dataset will be small
or skewed towards healthy controls. Different regulations across
countries and/or continents further complicates the sharing of med-
ical data [4]. Labeling of medical data must usually be done by
medical experts. Because the labeling tends to be time consuming
and medical experts are busy, it can be challenging to obtain a large
number of labeled medical data [23]. When the target variable is not

available, it becomes difficult to train ML models using supervised
learning.

In this PhD project, different types of medical data will be taken
into account. Available medical datasets include images from gas-
trointestinal examinations [3, 12], videos of in vitro fertilization
procedures, tabular data from transplanted patients and images, pro-
teomics and tabular data from patients with dry eye disease, respec-
tively. The datasets are diverse and come with different challenges.
Regarding the data from gastrointestinal examinations, a large num-
ber of the images are unlabeled. Consequently, self-supervised or
unsupervised learning techniques must be applied in order to ex-
ploit the entire dataset. This is also true regarding the videos of
fertilization procedures. The datasets from transplanted patients
and patients with dry eye disease are not publicly available. This
limits the ability to share the code and data, which again leads
to less transparency regarding data analysis and model develop-
ment. Moreover, the number of patients in these two datasets is
relatively small and the patients come from a limited geographical
area (Norway). This presents a potential challenge for developing
ML models that can generalize well to new data. Because several
of the datasets contain images or videos, they must typically be an-
alyzed using complex ML models embedded in even more complex
systems in order to get adequate results. In general, these models
are not transparent and are difficult to explain to the end users.

4 PROPOSED APPROACH
The first part of the PhD project is to develop ML models based
on the available medical data. The results will then be explained
using existing XAI methods. Finally, we will try to improve the
explanations by creating and testing new approaches. Below follows
a description of the plans for each of the datasets:

• Images from endoscopy and coloscopy: Develop a transpar-
ent method to detect and segment polyps in images from
gastrointestinal examinations. Investigate semi-supervised
ML methods to label unlabeled images based on a small
amount of labeled images.

• Videos from in vitro fertilization procedures: Cluster video
frames from the intracytoplasmic sperm injection (ICSI) pro-
cedure into groups that represent different stages of the
procedure. This can make the examination of the videos
more effective, and the medical personnel will save time.

• Tabular data from kidney transplanted patients: Develop ML
models to predict the drug exposure based on patient charac-
teristics and explain the results. Such systems can potentially
assist clinicians to design personalized drug regimens.

• Images and tabular data from patients with dry eye disease:
Develop ML methods for efficient analysis of meibography
images, which can be used for diagnostic purposes. Feedback
from eye doctors will be used to improve the system. We will
also apply ML and XAI to explore the relationship between
dry eye disease and the proteins and lipids that are present
in the tears. This can increase the understanding of dry eye
disease.
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Figure 1: Polyp segmentation experiments. (a, e, i) Original
images, (b,f, j) ground truth segmentation masks, (c, g, k)
heat maps and (d, h, l) generated segmentation masks.

5 PROJECTS
This section describes the planned projects, including the results
that have been obtained so far in the PhD work.

5.1 Polyp segmentation
Automatic detection and segmentation of polyps in images from
endoscopies and colonoscopies can be useful for faster evaluation of
the examination. However, it is often difficult to obtain a large num-
ber of labeled images. We therefore developed a ML pipeline that
combines semi-supervised labeling of the gastrointestinal images
with unsupervised segmentation [29]. Global features are extracted
from the images, and clustering is used to label unlabeled data
according to their proximity to the labeled data points. A deep
neural network is then trained on all the labeled images to classify
them as ’polyps’ or ’non-polyps’. GradCAM [26] is used to extract
heat maps from the resulting model, and segmentation masks are
generated based on the heat maps. The resulting models and source
code can be found publicly online1. Some examples of original im-
ages, ground truth segmentation masks, heatmaps extracted with
GradCAM and the corresponding segmentation masks using the
proposed method are provided in Figure 1. Despite sub-optimal
performance on the segmentation task, the method has a high level
of transparency. There are several possible directions of future work
to improve the system.

5.2 Clustering videos from in vitro fertilization
procedures

Examinations of the in vitro fertilization procedure called ICSI [20]
are performed to evaluate technical aspects of the procedure. Videos
1https://github.com/kelkalot/Medico-2021-Team-Medical-XAI

of the ICSI procedure can be applied for training purposes, internal
quality control and refinement of internal procedures at the fertility
clinic. We propose a method that automatically cluster video frames
from the ICSI procedure. First, deep features are extracted from the
video frames. The dimensionality of the features are then reduced
before the data points are clustered. By reducing the dimensionality,
it is possible to visualize the video frames in a scatter plot and
inspect how they are located in relation to each other. The resulting
clusters are shown in Figure 2. Our method is able to separate the
video frames into different stages of the procedure. This could be
useful in the fertility clinic in order to analyze ICSI videos more
efficiently. The source code for the proposed method is publicly
available2

Figure 2: Results from clustering of video frames from the
ICSI procedure. The frames are colored after which video
they belong to, and the clusters are indicated with red circles.

5.3 Predicting drug exposure in kidney
transplanted patients

Following organ transplantation, the patient needs life-long im-
munosuppression to avoid rejection of the transplanted organ.
Tacrolimus is among the most commonly used immunosuppres-
sive drugs following kidney transplantation at centers around the
world [5]. In order to decide the drug regimen for a given patient,
therapeutic drug monitoring is applied, where clinicians estimate
the systemic drug exposure based on drug concentration measure-
ments [5]. If the drug exposure is too high, the dose is reduced,
while an exposure that is too low suggests an increased dose. The
systemic drug exposure is highly variable both between patients
and within the same patient over time [27, 33]. This makes it chal-
lenging to decide the optimal drug regimens, even for experienced
doctors. Consequently, an efficient way of predicting the exposure
would be valuable in the clinic. We are currently developing ML
models that predict the drug exposure based on patient character-
istics. The XAI library SHAP [16] is applied to investigate which
features that are important for the model predictions. The results
2https://github.com/AndreaStoraas/UnsupervisedClustering_ICSI
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Figure 3: Ameibography of the upper eye lid. Themeibomian
glands are observed as light vertical lines on the eye lid. The
image is from a figure published in [2].

following internal model evaluation and prospective testing on new
data are promising. In the future, more work is needed to see how
well the ML models perform compared to today’s standard of care
and other existing methods that do not apply ML.

5.4 Dry eye disease
Dry eye disease is a common, yet underdiagnosed and undertreated
condition. The prevalence ranges between 5 and 50%, depending on
the population studied and diagnostic criteria applied [28]. To get
an overview of existing methods using AI related to dry eye disease,
we performed a systematic literature review [30]. We found that the
overall results are promising, but that more work is needed when
it comes to the model development process, prospective testing in
the clinic and standardisation.

One of our datasets include images of meibomian glands from
patients with dry eye disease. Meibomian gland dysfunction can
give rise to evaporative dry eye disease [31]. Lack of protective
meibum makes the tear film evaporate quickly from the surface of
the eye, leading to dry eyes. Examination of meibographies can be
used to identify meibomian gland dysfunction [31] and target the
treatment. Figure 3 provides an example of a meibography and is
a modification of a figure originally published in [2]. Results from
manual examination of meibographies can vary between different
observers [19], and the procedure is time consuming. Hence, an
automatic method could lead to more consistent results, as well as
alleviate the eye doctors. We will develop a computer vision tool to
automatically analyze meibography images. In collaboration with
eye doctors, the system will be evaluated prospectively in the clinic.
Moreover, feedback from the doctors will be used to improve the
system using reinforcement learning.

Further on, we plan to examine the relationship between patient
characteristics, tear proteomics and the severity of dry eye disease.
Analyses using ML and XAI techniques might improve our under-
standing of the process of the disease and identify potential risk
factors. The analyses will be performed on tabular data and poten-
tially on multi-modal data by also including the meibographies.

6 CONCLUSION
This PhD project aims to explore the use of XAI techniques for
medical applications in order to increase transparency and trust

of medical multimedia systems powered by ML. Different types
of multimodal medical data from various medical domains will be
applied. The development of transparent multimedia systems for
automatic analysis of medical data can potentially be extended to
other domains.
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