Forensic Science International: Digital Investigation 40 (2022) 301343

journal homepage: www.elsevier.com/locate/fsidi

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

I
Investigati,Ow

DFRWS 2022 EU - Selected Papers of the Ninth Annual DFRWS Europe Conference

Quantifying data volatility for IoT forensics with examples from N

Contiki OS

Jens-Petter Sandvik ™ ", Katrin Franke ¢, Habtamu Abie ¢, André Arnes

2 Norwegian University of Science and Technology (NTNU), Norway
b National Criminal Investigation Service (Kripos), Norway

€ Norwegian Computing Centre, Norway

9 Telenor Group, Norway

Check for
updates

d, a

ARTICLE INFO ABSTRACT

Article history:

Keywords:

Digital forensics
IoT forensics
Contiki

Coffee file system
Evidence volatility
Triage

Forensic investigations are often conducted under limited resource availability such as time, equipment,
and people. As data acquisition is resource-demanding already, a higher emphasis needs to be put on
prioritizing the investigative steps to optimize the probability of collecting the relevant evidence. Data
volatility measures how quickly data disappears from a system and is an essential part of assessing the
likelihood of collecting the most valuable evidence. An investigator can use a model for the volatility to
estimate the probability of the existence of evidence. This work motivates and details a model for data
volatility and exemplifies it for the Coffee File System used in Contiki OS, an operating system for [oT
devices. We conducted experiments to test how well the model corresponds to the collected simulated
data and cross-validate the model with observations from file system operations. The results revealed
that an approximated model based on the known workings of the file system underestimated the
volatility. While there are many sources describing volatility qualitatively, there is little research on
quantitative volatility, and this paper is a stepping stone to understanding a quantitative approach to

evidence volatility.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Internet of Things (IoT) concepts have existed for more than two
decades, and it is now becoming more and more applicable in all
areas of our lives. The technology can be found in many different
systems, from smart agriculture, environmental monitoring, in-
dustrial systems, and smart infrastructures to smart home systems
and personal devices. As IoT systems are more readily found
everywhere, the probability of IoT systems being used for crimes or
containing evidence from crimes is also increasing.

The devices' capabilities in an IoT system vary from vast clusters
of servers running virtual machines and offering cloud solutions to
small resource-constrained devices, running on low-capacity bat-
teries, saving as much energy as possible. The dependency on
network communication, the variance in the devices’ capabilities,
and the sheer number of devices increase the number of locations

* Corresponding author. Norwegian University of Science and Technology
(NTNU), Norway.
E-mail address: jens.p.sandvik@ntnu.no (J.-P. Sandvik).

https://doi.org/10.1016/.fsidi.2022.301343

holding potential evidence. At the same time, the number of po-
tential locations containing evidence increases, and the lack of
standardized interfaces combined with protection mechanisms in
devices, makes it more resource-demanding to collect evidence.
Unfortunately, the resources available for most investigations are
also constrained regarding time, equipment, and people.

To collect evidence from an IoT system that consists of both
known and unfamiliar devices, the need for prioritizing the
collection of evidence is prevalent. This prioritization is often called
a triage. A triage in an evidence collection phase must assess the
devices' likelihood to contain evidence, the accessibility of the data
from the devices, and the evidence's volatility. From these three
elements necessary for triage, we focus on the volatility of the
devices' evidence in this paper and exemplify this with the Contiki
Operating System (0S) and its Coffee File System.

Atheoretical model for analyzing the volatility was applied and fed
with numerical examples. The Cooja emulator was used to generate
data on hardware emulated devices and to extract information about
writing and erasure during the devices’ operation. The write and erase
operations were recorded to establish the lifetime of the data written,
and these results were compared to the empirical results.

2666-2817/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jens.p.sandvik@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301343&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301343
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301343

J.-P. Sandvik, K. Franke, H. Abie et al.

The objectives of this work are to answer the following research
questions:

1. How can the data volatility in IoT devices be analytically
calculated?

2. How can the data volatility in IoT devices be measured?

3. How well do the analytical results and measurements
correspond?

This work focuses on the flash storage component of [oT devices,
and in this study, the Contiki OS with the Coffee File System is used
as an example case. Even though the size of flash memory is often
tiny in IoT systems, the data volatility is usually lower! than in RAM.
Other factors can affect the volatility but are not considered parts of
this analysis, such as the physical destruction of the flash memory
cells or controller; bad block management; bugs in hardware,
software, or firmware; and bit flips caused by heavy ion irradiation.

The rest of the paper is organized as follows: Related work is
background material of other research related to volatility. For a
better understanding, we describe the Coffee File System function-
ality, and we continue to define Data volatility. Then we describe the
Experiments and round off with a Discussion. In the Conclusion we
summarize and suggest a way forward.

2. Related work

The concept of volatility is not new. The Internet Engineering
Task Force (IETF) released a Request for Comments (RFC) on
guidelines for evidence collection and archiving (Brezinski and
Killalea, 2002). This document described the Order of Volatility
(OoV) and how more volatile evidence should be collected before
less volatile evidence to reduce the risk of overwriting the more
volatile data locations.

The influencing factors for the volatility in a system can be
many. Some of the factors are designed and documented; others are
environmental events that can cause data to change or disappear. A
study by Sandvik and Arnes (2018) showed and quantified how
power outages in mobile phones affected registers holding the
value of the real-time clock of the device.

Data in memory can change during acquisition while the system
is running, which makes the resulting memory dump inconsistent,
leading to a need for recording not only the spatial location of the
pages but also the time of acquisition for each memory page
(Pagani et al., 2019). Data inconsistency is one of the reasons for the
data volatility, as memory pages might be overwritten during the
acquisition process, making the memory structures inconsistent in
the acquired data.

Even though the term evidence volatility has been used for a long
time, it is not a well-studied field. However, in addition to the order
of volatility, the term has been used to describe methods for
acquiring evidence from volatile memory. Volatile data is often
used to describe data stored in volatile memory, where the data
disappears when the power is removed from the system
(Sutherland et al., 2008). Data volatility is a description of the data's
lifetime, as can be seen in the assessment of the order of volatility,
found in many textbooks on digital forensics (Arnes et al., 2017).

The increasing complexity of volatile data in IoT systems was
described as a challenge by Hegarty et al. (2014), where the author
researches IoT systems that have several data locations with highly
variable volatility for different locations. The transfer of data be-
tween devices in the network and the aggregation and processing
of the data make it challenging to determine the data's origin.

1 A lower data volatility means longer life of data.

Forensic Science International: Digital Investigation 40 (2022) 301343

The short lifetime of data in devices, together with the data
being spread over a wide variety of locations in complex systems,
are two forensic challenges that have not yet been fully solved.
Montasari and Hill (2019) describe the forensic collection of volatile
and processed user data from IoT devices as a future research
direction.

The literature on evidence volatility is limited, and for the most
part, it assesses the volatility on a qualitative basis. Apart from the
qualitative assessment of the lifetime of data, there is little research
on the quantitative assessment. Minnaard (2014) reported a
notable exception to the above statement, where the author
quantified the volatility of WiFi beacons sensed by the various
wireless devices.

There has been done research on maximizing the volatility of
data to protect privacy. Research into secure deallocation aims at
increasing the data volatility in memory by nulling deallocated
pages (Chow et al., 2005). A similar method can be used for nulling
deallocated flash pages but is not considered in this paper.

The Contiki OS and the Cooja emulator/simulator was created by
Dunkels et al. (2004) and have been the focus of several forensic
research papers. Kumar et al. (2014) used Contiki devices for the
network forensics research of Wireless Sensor Networks (WSN)
running an IPv6 network with IPv6 over Low Power Wireless Per-
sonal Area Networks (6LOWPAN) encapsulation. However, as the
focus was on routing information, the devices’ flash memory was
not considered.

Other authors have used the Contiki OS to make proof-of-
concept implementation of forensic readiness systems. Hossain
et al. (2018) implemented a system for automatically using a
blockchain for evidence storage while the system is in regular
operation. The nodes in the described system were running Contiki,
and the nodes’ data were collected and published to a blockchain by
a Raspberry Pi in the same network. The focus was on the network
and memory of the devices and did not consider the flash storage in
the devices.

YAFFS2 is another flash file system studied from a forensic point
of view. YAFFS2 is a file system designed for flash memories and
does page reordering as a part of the garbage collection, and an in-
depth view of the forensic artifacts has been reported (Quick and
Alzaabi, 2011; Zimmermann et al., 2012). In addition, a method
has been proposed for recovering the version history of files in the
YAFFS2 file system, using the embedded system information in the
file headers (Li et al., 2016).

3. Coffee File System functionality

The Contiki OS is an open-source operating system designed for
resource-constrained devices, such as sensors in a WSN. It has an
integrated 6LoOWPAN network stack for communication where the
physical network layer and the link layer do not support data
frames big enough to accommodate IPv6 packets without
compression and fragmentation. The OS footprint is about 100 kB,
and it needs at least 10 kB of RAM to run.”> The codebase is
approximately 112 000 lines of C code, including headers.> Contiki-
NG is the descendant of the Contiki operating system, and in this
paper, the name Contiki is used for Contiki-NG unless otherwise
specified. The forensic artifacts of the Coffee file system have been
described in detail by Sandvik et al. (2021a), but we will give a short
description of the most relevant findings here.

Contiki includes a flash-based file system called the Coffee File
System, designed to minimize the resources used and spread the

2 https://github.com/contiki-ng/contiki-ng/wiki, visited 2020—08—25.
3 Counted using the program “cloc” on the os/directory of the source tree.

https://github.com/contiki-ng/contiki-ng/wiki

J.-P. Sandvik, K. Franke, H. Abie et al.

writing not to wear out individual flash pages. The wear leveling is
managed by letting all writes happen at the end of the file system,
marking obsolete pages ready for Garbage Collection (GC). Wear
leveling is important in Flash memory, as each cell only can be
programmed a given number of times before it starts failing, and it
will spread the writing such that all cells have about the same
number of writes over the lifetime of the file system. A page is the
smallest addressable unit for writing and is dependent on the
memory chip. A memory cell can be programmed by flipping the
value it holds from one to zero, but a whole sector has to be erased
at once to reset the value. A sector contains several pages,* and is
the smallest addressable unit for a reset or erase.

Writing files will initially allocate 17 pages for the file, and if the
file is modified, an additional log file of five pages is allocated to
accommodate four modifications. When the file is modified four
times, a new file and logfile compound is allocated, and the content
of the last version is copied to a new base file. The old version is
then marked as obsolete, and when the writing reaches the end of
the file system, the GC is called to erase all sectors containing only
obsolete pages. The file system does not copy active pages to free up
more sectors, which means that if there is one active page in each
sector, the file system cannot erase any sectors.

Contiki comes with a simulator called Cooja. This simulator can
compile the firmware for the native architecture of the computer
running Cooja and run simulated devices very fast and efficiently.
Another option is to compile the firmware for the target architec-
ture and run the code in an emulator within Cooja. The advantage
of the former approach is efficiency, while the latter's advantage is
the resemblance to the physical implementation. In our work, a
hardware architecture in Cooja with an accessible flash memory
that can be exported to a file is used.

4. Data volatility

Data stored in a system will eventually disappear, and the time
from the data appears until it disappears is the lifetime of the
specific data. The probability distribution of the lifetime of a class of
data can therefore express the volatility of the data. The expected
mean of this probability distribution is a measure that gives us
some information about the lifetime of the data and can be used as
a measure of the data's volatility (Sandvik et al.,, 2021b). As the
expected value does not convey information about the spread or
shape of the distribution, the measure is not perfect but gives
enough information for an investigator to get an understanding of
the likelihood of finding existing evidence.

This study is based on the volatility model introduced by
Sandvik et al. (2021b). The authors did not go into specific file
system details, so this study extends the defined model by showing
the application of the theoretic model. This study focuses on the
non-volatile parts of the memory in devices, but it can also be
extended to cover volatile memory and distributed systems. Other
storage media such as Random Access Memory (RAM) or cloud
storage systems all share the same functionality: loading data into
the memory, processing the data, moving data, and keeping track of
the active storage locations. The same general model can be used
for these types of storage, but each type of storage system needs to
be assessed and analyzed individually.

By knowing or estimating the volatility in the devices and data
locations, the investigator can better understand where evidence
might be found and prioritize the acquisition and examination
phase of the forensic process. One method for using the volatility
can be to list all known devices in the system under investigation,

4 default for Coffee File System is 0x100 (256) pages per sector.

Forensic Science International: Digital Investigation 40 (2022) 301343

order them by the volatility and probability for the device to have
contained evidence, given the investigation hypothesis. A high
probability for the evidence to have been on the device combined
with high volatility means that the device should be acquired
before any potential data is lost.

The volatility depends on the method used for collecting evi-
dence: the abstraction level it uses and the amount and type of data
it changes during its operation. A logical data collection sees the
active data and will not extract any deleted data. On the other hand,
a physical collection can see both the active and the deleted data if
the data has not been erased. We need to know which collection
method the volatility describes to express the volatility adequately.
In this study, we assume a low-level collection method that makes
a bit-by-bit copy of the contents of the flash memory, either a
physical acquisition method or a pseudo-physical method (Klaver,
2010).

4.1. Data lifetime

The unit for measuring the data’s lifetime can be selected from
at least three types of units: The number of clock cycles can give us
the time independent of the CPU's speed, with the drawback that
the wall clock time needs to be computed for the average number of
clock cycles per time unit. Another measure that can be used is the
number of operations affecting the data, which is easier to analyze,
but the drawback with this approach is that the investigator still
has to assess the number of file operations per time unit. The third
measure, which we use for this paper, is the wall-clock time passed
before the data is unavailable. This third option is the available
measure for an investigator, as all assessments about triage or
available time depend on this.

The data's lifetime depends on two phases: the period the data
is alive in the system, and the period the data exists in the memory
before it is overwritten. The former phase can be considered when
the data is being held by purpose, the latter is when the data is
being held by chance, where purpose signifies that the application
keeps the data active for a purpose, and chance refers to that the
data still exists in a location that is not yet reclaimed by the GC
because at least one other page in the same sector is still active. A
basic equation for the lifetime of the data in a specific medium can
be formulated as:

TData = TDelete + TErase (1)

where T is a probability distribution over a period of time, and the
relation between these term are shown in Fig. 1.

The first part of Equation (1), Tpelete, is the time from the creation
of the file to the deletion of the file or the modification of the file
contents. The time before deletion often has a high variance be-
tween applications and depends on how the running application
modifies the file. As the timescale in question is from microseconds
to years, it is impossible to give a generic model for the expected
time without knowing the running program's behavior. A config-
uration file will typically have a high expected time before being
modified or deleted. The expected lifetime for data in a sensor

Garbage
Data written Data unlinked collection

l TDelete J TErase J/

TData

time

Fig. 1. Expected lifetime of data as a sum of the expected lifetime of the file and the
expected lifetime of deleted data.

J.-P. Sandvik, K. Franke, H. Abie et al.

depends on the sampling rate, the amount of memory, and how
often the data is sent to a central server, and the data can exist on
the device from a few seconds to several hours. As long as the
content remains in an active file, there will be at least one instance
of the data in the file system.

The second part of Equation (1), Tgrase, is the lifetime of inactive
data in the file system. This data is available until the sector” is
erased, which typically happens when the GC erases used sectors so
that they can be reused. The time from a page is deleted until the
garbage collection erases the data in that page is isolated and
studied in this research.

Some file systems will aggregate and copy active data from
sectors containing mostly deleted pages to new sectors. By
combining live pages into one sector, the other sectors can be
erased by a garbage collection and reused. Other file storage
functions can include remote storage of data or data encryption. As
described in the model by Sandvik et al., the storage management
functions can copy, erase, encode, or encrypt data as a part of the
operation of the file system or flash management (Sandvik et al.,
2021b). The term delete in Equation (1) can therefore be thought
of as rather the term unlinked, as data can continuously be copied
and the old copy unlinked from the file system.

As an example, data can be moved within the system, which
creates two locations of the data: one that is active in its new
location and the original data location that is unlinked and will be
erased after some time, when it is overwritten or the GC frees up
the sector containing the data. The live data copy is still accessible
for the file system and will not be erased before the file is deleted,
the hardware fails, or the data is moved to a new location.

The added complexities of management functionalities like this
depend on the method used for collecting the data. The number of
deleted copies of some data is irrelevant for a logical file copy from
a running system, as the collection method cannot access this
information.

This simple model does not take into account the probability of
physical failures. As these, in general, are relatively low probability
events, they have a very small, albeit non-zero, impact on the
lifetime of the data.

4.2. Volatility model

The knowledge about the volatility of the Coffee file system can
be implemented in the volatility model as described by Sandvik
et al. (2021a). The model considers differences between how
memory devices handle data and the acquisition method used to
collect the evidence. In the model, an application uses the data with
its probability distribution of the data volatility. The storage system
will have its view of the data, both in terms of internal copying as
part of the regular operation of the file system and the time it takes
before the file system will overwrite the data. The physical devices
and the failure rate are at the bottom of the storage stack, which
describes the probability of the data disappearing due to physical
failures.

The model by Sandvik et al. (2021b) defines the volatility model
as a six-tuple: V_{D} = (L,E,A,M,D,S). L is the storage abstraction
layers, E is the events that trigger data to be stored, A is the appli-
cation's write and deletion functions, M is the set of functions that
manage the storage, copying and moving data in volatile or non-
volatile memory, D is the device's physical reliability, and S is the
environmental aspects affecting the volatility of the data.

The abstraction layers in L can be described as the three writing
applications at the top layer, followed by the Coffee File System and

5 Often called an erase block in flash memory terms.

Forensic Science International: Digital Investigation 40 (2022) 301343

the physical flash memory. In this paper, we do not consider the
contents of the RAM, but for completeness of the discussion, the
abstraction layers include the memory management functions in
the Contiki operating system.

In this work, the application activity function, A, is three pro-
cesses writing, each with a randomly selected, constant writing rate
between 1 s/w and 1200 s/w. The events, E, are just the internal
clock triggering the writing process in our experiments.

The set of storage management functions, M, write the modified
data to new locations every writing operation, and for every fourth
operation, the current content of the whole file is copied to a new
location. When the writing reaches the end of the file system, the
garbage collection is invoked, erasing all sectors that do not contain
any active pages.

In this paper, we do not experimentally test the device reli-
ability, as emulated devices effectively isolate the system from
physical failures. The simulated system also removes most of the
environmental effects from the system, as the physical and opera-
tional environment do not affect the data writing or storage, and
only the system's configuration has an impact. The impact from the
configuration is due mainly to differences between the emulated
devices and the physical ones, such as the speed of the memory
operations due to other physical properties.

As long as the application keeps the data alive, it should be
available in the flash memory unless a physical failure or bug
prevents it from retrieving the data. The data can, during its life-
time, be copied to new locations in the flash memory, which in-
creases the probability for at least one copy to survive for a longer
time. In the worst case, the probability is the same if all copies are
erased simultaneously, and the failure rate for individual memory
addresses is negligible.

To simplify the initial analysis, we assume that the data only
exist for one writing operation and is modified in the next opera-
tion, which means that the application only keeps data active for a
period similar to the writing rate of the application.

4.3. Volatility in the Coffee File System

The Coffee file system used in Contiki OS is designed for flash
memory in resource-constrained IoT devices; it balances simplicity
in design and run-time complexity with usability. The advantage of
using a relatively simple file system in the initial analysis is that all
elements that affect the volatility can be controlled.

The time between two consecutive garbage collections is
dependent on two factors. One factor is the combined writing rate
of the files and the number of records in the log files, as the garbage
collection will start when the writing reaches the end of the file
system. This can be expressed as:

1
- @
il
SsS
Toc s = (Il +1) 3)

where r is the combined write rate, given as time units per write, F;,
is the number of files in the file system, r; is each files write rate, Tgc
is the time between garbage collection runs, Ss and Sy, is the size of a
sector and the number of sectors in the file system, respectively, Fs
is the average file size, and L; is the number of log records written
before a new file is created, obsoleting the previous base and log file
pair.

The other factor is how many sectors that are available for
allocation. Equation (3) uses the total number of sectors, but this

J.-P. Sandvik, K. Franke, H. Abie et al.

gives the time from writing starts in an empty file system until it
reaches the end. Unfortunately, this is only a valid assumption
between the first time writing starts in the file system until the first
garbage collection. After this, there is at least one sector containing
active pages in the file system.

The minimum and the maximum number of sectors containing
active pages in the file system are dependent on the number of files
in the file system and the file sizes. For one file, the number of
sectors containing active sectors is given by the file size. If it is less
than half of the sector size, only one sector contains active pages
when the GC starts, and if it is bigger than half of the sector size, the
number of sectors with active pages is given by the file size.

More generally, the minimum and the maximum number of
sectors containing active pages when the garbage collection runs is
given by the tightest packing of files in the last sector for the
minimum amount of sectors surviving garbage collection. For the
maximum number of surviving pages, each file has to extend into
another sector with at least one page, and each sector can only
contain the pages belonging to one active file. The above descrip-
tion can be described mathematically as:

o Fsi—1

Nmax = Fn + Z[
= S

| (5)

where Fs; is the size of the ith file.

Unfortunately, the average number of remaining pages is more
difficult to calculate, as it depends on the number and location of
remaining pages from the previous garbage collection. Therefore,
we use the outer limits given by the maximum and minimum
described in equations (4) and (5) here.

The time between two consecutive GC runs is dependent on the
number of remaining sectors, and given the limits to the number of
remaining sectors in Equations (4) and (5), the minimum and
maximum time between GC can be calculated as:

SS (Sn — Nmax)

Tac, min = T(l 2 L +1) (6)

SS(STI — Nmin)
F.

TGC, max — r([
S

1) ™)

As files are written to the file system, the newest version is al-
ways written at the end. If the modified file is in a sector where it
was the only active file, that sector will be erased during the
following garbage collection. The longest time a file will survive in
the file system is therefore given by the file with the lowest write
rate, where the write rate is given by the time between write
operations.

The survival time of the pages in a sector is given by the time
between garbage collections multiplied by the number of garbage
collections the sector will survive. The number of garbage collec-
tions a sector survives is dependent on the file with the slowest
write rate. The maximum survival time can be summarized in the
equation:

Forensic Science International: Digital Investigation 40 (2022) 301343

r
Tsect, max = TGC[-}nax] (8)
GC

where Tsect, max iS the time a sector would survive, Tgc is the time
between GC, and ry,x is the longest writing rate.

The lifetime of unlinked data in the file system is therefore
correlated with the writing rates of the individual files in the file
system. The lifetime of the data is dependent on the time between
the garbage collection runs. A fast total write rate will also reach the
end of the file system faster and trigger the GC earlier. Given the
time between GC and the write rate of the individual files, the
average time a sector containing a file is retained is given by the
write rate of the file in the sector divided by the time between
garbage collections. The number of garbage collections each file

contributes is thus given by %

A numerical example is where three files are written with a rate
of 1 s/w, 50 s/w, and 1000 s/w, respectively, which will give a
combined writing rate of r = 0.979 s/w. Given a sector size of
Ss = 256 pages, S;, = 15 sectors in the file system, a file size for all
files of Fs = 22 pages, and L, = 4 records in the log file, the time
between GC is given by equations (3), (6) and (7) to be approxi-
mately 682 s for the first GC (Tgc, first), and between 635 s and 408 s
for the other GC intervals (Tgc, min and Tcc, max, respectively). With a
write rate of 1000 s/w, this means that there is a high probability for
at least two sectors to survive a GC: the sector containing the file
with the highest write rate and the sector containing the file with
the lowest write rate. There is also a high probability for a sector
surviving two garbage collections, as 1000 s/w gives a number of

survived garbage collections per write between 1000s/w _ 1 57 GC/

6355/GC —
1000 s/w
w and 0 s/éC = 2.45GC/w.

4.4. Approximation of volatility

The analysis of the lifetime of unlinked data is non-linear
because of the floor and ceiling functions and can become quite
complex, even for relatively simple file systems such as the Coffee
File System.

The volatility of a single device is dependent on how fast the
writing reaches the end of the file system and the number of
garbage collection cycles some pages survive. For the Coffee File
System, a simplified model can summarize a uniform distribution
of the lifetime of the deleted pages after one garbage collection
routine, the average number of pages surviving one garbage
collection, and the number of pages surviving the calculated max
number of garbage collections.

The sector containing the writing pointer in the file system is
retained when a garbage collection is started, and this retained
sector does not impact the volatility. The retention of this last sector
does not impact the volatility, as the sector retained means one
fewer sector for the next inter-GC time. This is also true for more
than one sector, as long as the retained sectors are consecutively
written sectors: the two last sectors written will lead to two fewer
sectors that are writeable in the next period, but the difference in
time between the last write and first write, S(s,_5) — S_», is the
same as the difference in time between the last sector and first
sector in case of no retained sectors, S,y — So-

If, on the other hand, another non-consecutive sector is
retained, the lifetime of the data will be affected as sectors older
than the time between garbage collections will be retained. This

J.-P. Sandvik, K. Franke, H. Abie et al.

happens regularly in the Coffee File System, as the garbage collec-
tion process seems to skip a sector if it is the only sector that can be
retained. Since the last written sector is retained, the first GC re-
tains the last sector, but during the next GC both the last written
sector (the next to last sector in the file system) and the last sector
in the file system (retained from last GC) are both retained. This
behavior has been observed in all tests so far.

The writing behavior would give an approximately uniform
distribution with a small burst of lifetimes around the lifetime of
the sectors surviving several garbage collections. The approximated
distribution of page lifetimes can thus be described as:

L (15”55 L+ 1) (9)

2\ F

where k is a scaling factor to account for the non-consecutively
written sectors that are retained. The last part of the equation is
the average number of retained divided by 2, as this is a uniform
distribution and the average for an uniform distribution is given by
(max-min)/2.

5. Experiments

The experiments were performed using the Cooja simulator
with emulated devices. The functions erase_sector and pro-
gram_page from the file arch/platform/sky/dev/xmem.c in
the Contiki sources were patched to log writes and erasures of
canary tokens. As canary tokens, 32-bit values were used for
detecting the file writes and erasures, and each file modification
wrote a canary token to the first page of the file. The patched
functions scanned the pages written and erased for the canary to-
ken values. When the canary token was found during a file system
operation, the page offset was logged to the simulator output, and a
Python script was designed to analyze the results.® Each writing
operation contained the canary, and each file had a unique canary
token, which the patched file system reported.

5.1. Setup

The experiment tested the lifetime of data after the application
had written to the file, unlinking the old version of the data. The
experiment was done by modifying three files in each device,
where each file had a different modification rate. The log from the
simulator contained all write and erase events for the canary tokens
associated with the files, and a Python program for analyzing this
file was written. It should be noted that the canary token samples
the lifetime of pages in the system, and thus, when using the term
lifetime of pages, it is the same as lifetime of the canary tokens
throughout this paper.

Each simulation consisted of 16 devices, each with three files
being written. The write rate of the files is hard-coded at compile-
time, and each file had a write rate chosen at random between 1
and 1200 s per write, picked from a uniform distribution. The
simulation was done with a new set of devices ten times, and each
simulation was run for 864.000 s (simulation time) which equals
ten days. In total, the simulated devices were run for a total of 10
days x 10 simulations x 16 devices, or 1600 days.

One of the devices failed/crashed during the experiments and
was subsequently removed from the rest of the analyses. The
writing rates of the files in the removed device were 273, 646, and

6 The script is published at https://github.com/jenspets/contiki-ng_motes, under
the volatility folder under a GPLv3 license, and the dataset is shared under a CC-BY-
SA license.

Forensic Science International: Digital Investigation 40 (2022) 301343

1046 s/write, and the error encountered was an interrupt from the
watchdog timer after 78 h of simulation time.

5.2. Observed write rates

Each device's actual combined writing rates were recorded and
compared with the programmed writing rates. The combined
writing rate is the total writing rate of all processes' write opera-
tions in a device combined and seen as one process. The observed
writing rate was found by dividing the simulation time by the count
of all write operations logged for a device during the simulation.

Fig. 2 contains a plot showing the relation between the pro-
grammed writing rate for each device and the observed writing
rate. Table 1 shows the average ratio rrp_l;g together with the max/min

values and quartiles. The expected result was that the observed
result should be approximately close to the programmed rate.

The observations are at approximately 80% of the programmed
write rate. This difference is stable for almost all devices regardless
of writing rate, with one exception where the programmed writing
rate was 4.741418 writes second, and the observed rate was
2.509 141 writes/second, a ratio of 0.529196. This device had the
fastest writing rate among the simulated devices.

The reason for this discrepancy in programmed and observed
writing rates is unknown. The log data from the experiments
revealed a burst of writes after garbage collection, possibly to make
up for the lost writes during the garbage collection. If the burst lasts
longer than necessary, it might help explain at least a part of the
discrepancy between the programmed and observed writing rate.
Another possibility for the discrepancy is that the emulated real-
time clock runs faster than the simulation time, thus writing
consistently with a higher rate.

5.3. Garbage collection

The time between each GC can be named the GC-to-GC time, or
the inter-GC time. The inter-GC times are calculated in Equations
(6) and (7). This analysis of the simulations will show how well they
correspond with the observed inter-GC times.

The GC also uses time on running, and this time is in this work
referred to as the GC running time or GC time. The median GC time
was 56.8 s for all motes in all simulations, with a minimum of 13 s

3504 + Expected results +
® Observed results ++

300 4 +

A Y
*,
\
°
°

Measured rate (s/write)
[
w
o

=

o

o
L

w
o
L

0 50 100 150 200 250 300 350
Programmed rate (s/write)

Fig. 2. The programmed writing rates for each device plotted together with the
observed writing rate. The plot marked with “+” shows the ideal rate if the observed
and programmed rate is identical.

https://github.com/jenspets/contiki-ng_motes

J.-P. Sandvik, K. Franke, H. Abie et al.

Table 1
The quartiles and average of the ratio between the
observed and programmed volatility.

Average 0.798277
Std.dev 0.021475
Min 0.529196
25% 0.799935
Median 0.799 986
75% 0.800021
Max 0.800331

Distribution of retained sectors per GC

103 4

102 4

Count (log scale)

101 4

100 4

2 4 6 8 10 12
Number of sectors

Fig. 3. The histogram of retained sectors after each garbage collection in all devices.

and a maximum of 1 min and 13 s. The quartiles were 56.7 and
61.1 s, which indicates that the GC time was stable.

The theoretical number or retained sector is found in Equations
(4) and (5). Fig. 3 shows the histogram of the number of retained
sectors after garbage collection for all devices in all simulations. The
average was 2.11 sectors retained per GC, the minimum and the
maximum number of retained sectors were 1 and 12, respectively,
and the upper and lower quartiles were 1 and 2 retained sectors,
respectively. The highest observed number of retained sectors, 12,
was higher than the calculated maximum, 6. There is only one mote
out of the 160 that retains more than five sectors during a GC, and
the write rates of the files in this device were 5 s/w, 104 s/w, and
774 s/w. This might indicate either that the garbage collection
started before the file system was filled or that the garbage
collection was interrupted before it finished.

A closer examination of the GC run that left 12 sectors showed
that it only used 13 s on the garbage collection and that it collected
the first two and the last sector. The reason for the short garbage
collection run is not apparent from the logged data or the source
code of the operating system. The sectors collected during this run
were sectors number 1, 2, and 15. As the garbage collection source
code shows that it iterates over all sectors, erasing them if there are
no active pages in the sector, there seems to be a function in the file
system code that mislabels some sectors under certain conditions,
skipping them during garbage collection. There does not seem to be
any processes that cancel the GC, as a cancellation would not pro-
ceed to erase the last sector in the system, so misclassification of
deleted pages by the garbage collection system initially seems
plausible. The sectors are eventually erased during later garbage
collection runs, which does not support the misclassification hy-
pothesis, as something needs to be changed for the classification to
change.

Forensic Science International: Digital Investigation 40 (2022) 301343

The inter-GC time for this mote was calculated to be between
1484.1 s for six retained sectors and 2309.1 s for one retained sector,
and the experimental results for the mote showed an inter-GC time
of between 1263.4 s and 3306.0 s. The more retained sectors from
one GC, the fewer free pages there will be in the file system after-
ward, which explains the shorter time between garbage collections.
The longer retention time is still unexplained but might be caused
by the operating system using longer time on finding allocatable
areas due to fragmentation or retaining sectors for more GC cycles
than expected.

The values Tge, min and Tgc, max in Equations (6) and (7),
respectively, are the shortest and longest time between garbage
collection runs calculated from the write rate. Table 2 shows the
quartiles for the shortest observed inter-GC time minus Ty, and
Tmax minus the observed maximum time for all 159 nodes together
with the theoretical minimum and maximum time, given the
observed write rates. The differences between the model and the
programmed/observed extreme values are denoted by AT and
ATyps, for the programmed and observed values, respectively. The
terms Min and Max are used for the calculated model values, where
ATmin = Min — Tpip and ATmax = Tmax — Max. A negative value thus
indicates an observed value outside the theoretical limits from
equations (6) and (7).

The observed minimum time is higher than the calculated, with
a median of 3.5 h longer than the minimum calculated. The
calculated maximum time is also shorter than the observed time,
with a median of 2 h, and here all nodes were longer than the
theoretical maximum, with the longest observed time 4.5 h longer
than the theoretical maximum. This means that the model devel-
oped for the time between GC runs are predicting too short values,
both for minimum and maximum values.

It is interesting to note that using the observed writing rates
rather than the programmed writing rates predicts the maximum
retention time even worse, with a median error of approximately
7 h shorter than the actual maximum retention time (25123 s). The
minimum time between garbage collections was much higher than
the predicted time, except one about 20 s shorter than the pre-
dicted minimum.

Using the programmed rate, the time to the first GC is close to
the observed time. The Mean Squared Error (MSE) between the
calculated time to the first GC and the observed time to the first GC
was 182 162.5. Using the observed writing rate, the MSE was
538 053 648.0, three orders of magnitude greater than the result
using the programmed writing rate. Table 3 shows the error when
calculating the predicted time to the first garbage collection minus
the observed time to the first garbage collection for each mote.

5.4. Page lifetimes

The average retention time for the pages, or more precisely the
average lifetime of the canary tokens in all the simulated devices,
was 7 h, 32 min, and 27 s and the maximum retention time of all the
simulated devices was 5 days, 8 h, 58 min, and 41 s. Fig. 4 is the

Table 2
The difference between the observed min/max times between garbage collections
and the calculated times.

Percentile ATnmin ATmax ATobs, min ATobs, max
Min -1168.9 -16054.2 -214 —61687.9
25% 6576.7 —9608.7 142833 -36401.7
50% 12692.5 —6379.5 27347.0 -25123.1
75% 18836.0 —34235 39934.4 -13252.6
Max 324154 —228.8 69082.8 -1677.5

J.-P. Sandvik, K. Franke, H. Abie et al.

Table 3
Statistics of the difference between the observed time to first GC and the calculated
time for all simulated devices. MSE is the Mean Squared Error.

Statistics Programmed rate Observed rate
MSE 182162.5 538053 648.0
Median (s) 171.533 -19580.139
Min (s) —381.987 —47983.583
25% (s) 46.137 —28480.915
75% (s) 373.093 -10357.329
Max (s) 1835.551 —1557.100
Total retention times, all devices
105 4

_10%4

o

[=]

o

-

1l

N 10 4

wn

£

L

w

8 10?4

c

£

3

o

1%

O 1014

100 4

0 100000

200000 300000
Page lifetime (s)

400000

Fig. 4. Histogram of page lifetimes in all devices during the simulations. Please note
the logarithmic scale.

Table 4
The difference between calculated and observed average lifetime of pages in the
devices.

Statistics P [0} PR OR

k 1.065 1.331 1 1

Mean -51.150 —66.700 —3351.295 —13509.640
Std.dev. 406.690 409.645 1920.197 7771.355
Min -1627.143 —1658.172 —9254.061 —33780.764
25% —217.455 —229.048 —4503.557 —18900.933
Median —3.147 -6.504 —3096.179 —-13158.907
75% 135.829 112.541 —1834.612 —6964.147
Max 961.772 951.798 —254.447 —1032.396

histogram of the canary lifetimes for all devices for all simulations,
and we can see a distribution of lifetimes that follows a distribution
resembling a negative exponential distribution with a fat tail.

The expected lifetime of the pages can be calculated using Eq.
(9). Table 4 shows the difference between the calculated and
observed average lifetime of pages in the devices. The columns
show the differences between the calculated and observed lifetime
of the pages, using the programmed (P) and observed (O) writing
rates, together with the results where the scaling factor, k, is 1. An
average of 0 in the table means that the calculated and observed
rate is the same. As the programmed and observed writing rates
differed, the scaling factor, k, in Eq. (9) was found for both rates by
minimizing the median differences between the observed and
calculated values and rounding the value to three decimals.

The results show a variance in the difference between the
calculated and the observed lifetime. The variability is similar be-
tween the calculated lifetimes, and even though half of the devices

Forensic Science International: Digital Investigation 40 (2022) 301343

were within 6 min of the calculated lifetime, the standard deviation
of over 6 min shows that some lifetimes are closer to the extreme
values. Still, a worst-case misprediction of less than half an hour is
where the experimentally observed lifetime of the data was
126591 s, which gives a misprediction rate of approximately 1.3%
for this device.

5.5. Distribution of lifetimes

The average and quartiles of the pages’ lifetime indicate the
spread of the data, but we also should test whether our assumption
of a uniform distribution holds. Eq. (9) assumes a uniform distri-
bution when calculating the average, and a deviation from this can
affect the result.

Even though the distribution of total page lifetimes in all devices
has a negative exponential tendency, a Kolmogorov—Smirnov test
of the combined lifetime did not show that the lifetimes were from
a negative exponential distribution. A p-value of close to zero
shows that the hypothesis that the distribution is a negative
exponential distribution is highly improbable.

The lifetimes of each simulated device were then tested. All but
three continuous distributions in the SciPy library were fitted to the
closest matching parameters.” A Kolmogorov—Smirnov test is a
statistical test for continuous distributions that tests whether the
observed data is drawn from a particular distribution. The
Kolmogorov—Smirnov test was then used on each set of distribu-
tions and its fitted parameters. All p-values were zero, meaning the
probability almost certainly was not drawn from any of the distri-
butions in the SciPy package.

The lifetime of the pages carrying the canary token depends on
non-linear functions, where the majority of pages follow a uniform
distribution over the inter-GC time. Thus, the probability for the
observed values for each device to be drawn from any of the
continuous distributions from the SciPy package was low, and the
hypothesis that the observations were drawn from any of these
distributions was not supported.

Fig. 5 shows the histogram from two of the devices, with marked
areas in gray signifying the expected range of lifetimes. A typical
result is shown in Fig. 5a and 5b shows the device with the most
page lifetimes outside the marked areas, where 8.2% of the obser-
vations were outside. The first gray area is from zero to the calcu-
lated time to the first GC, using the programmed writing rate. The
second gray area is thinner and is given by the time to the first GC
divided by the number of sectors and transposed to the slot given
by the number of sectors minus three. The third to last sector is
based on the observation that the measured average number of
retained sectors after a GC is 2.97.

Table 5 shows the statistics of the number of measured page
lifetimes inside and outside the previously defined range. For each
device in each simulation run, the number of observed lifetimes
matching the expected ranges and the number of observations
outside the expected range were collected. The percentage of ob-
servations outside the expected range was counted for each device,
and the statistics were calculated.

The results show that none of the built-in distributions in SciPy
could describe the data with a significant p-value, and the reason
for this is probably the observed near-uniformity in most lifetimes
but with an extra burst of lifetimes close to two times the inter-GC
times. As the burst contain relatively few lifetimes, the average
should be close to the one predicted by a uniform distribution.

7 Some distribution fitting timed out after 5 h and were excluded. These distri-
butions were: kstwo, levy_stable, and studentized_range

J.-P. Sandvik, K. Franke, H. Abie et al.

=500)

10* A

Occurences (Bin size

10° A

0 50000 150000 200000

100000
Page lifetime (s)

250000

(a) A typical node.

Forensic Science International: Digital Investigation 40 (2022) 301343

105 4

104 4

=500)

103 4

102 4

Occurences (Bin size

101 4

1 0 J
0 Wl 1 , , ‘ , ,
0 50000 100000 150000 200000 250000 300000 350000 400000

Page lifetime (s)

(b) The least fitting node. The two gray areas are barely visible at the
peak to the left side.

Fig. 5. The histogram of page lifetimes from two nodes.

6. Discussion

Volatility is a term that is often used but seldom quantified. This
paper's definition and model are only valid for the Coffee file sys-
tem and need to be adapted for other file systems and more com-
plex file operations. As nodes are resource-constrained and file
system operations are costly in terms of the available resources, the
amount of data written to a file system is generally low. However,
with the introduction of intermittent computing, data needed for
operation needs to be stored in non-volatile memory. More com-
plex file operations and a more generic model should be developed
for future work.

For the volatility model to be helpful for an investigator or first
responder during the busy start of an investigation, the model
described here has to be developed further and simplified such that
the investigator does not need specific domain knowledge about all
0Ss, memory layouts, and file systems in order to quickly assess the
volatility in the various parts of system. A model that is hard to use
and needs a high degree of specialized expert knowledge will
seldom be used, but a model that is easy to understand and needs
little resources to use will give an investigator a better under-
standing of the probabilities of finding evidence in the case.

There is a discrepancy between the programmed and the
measured writing rate, but this did not show up in the distribution
analysis, where the programmed rate fit the data better than the
observed rate. This was a surprising result, and the observed
writing rate was calculated with a Python script and verified with
an AWK script to count the number of writes during the ten-day

Table 5
The aggregated statistics over percentage of
observations outside the expected range from

each device.

Count 159

Mean 0.4328
Std.dev. 1.1207
Min 0.0415
25% 0.1115
Median 0.1451
75% 0.1830
Max 8.2014

period the nodes were running. This is a finding that should be
studied further.

The focus of this research was how a volatility model could be
used for analyzing the Coffee File System. The model can be more
beneficial for practitioners to assess systems for probable data lo-
cations and prioritize collecting and analyzing evidence by
analyzing more systems to find their lifetime distributions.

7. Conclusion

We examined the volatility of files in the Coffee File System and
created a model of the volatility that can be used to analyze the
lifetime of the data between deletion and erasure of the file con-
tents. The volatility can thus be analytically calculated by either
calculating the volatility based on the file system implementation
or by approximating it using simplifications to the system model.
The findings show that even a relatively simple file system and
deterministic processes writing to the file system generate non-
linear and complex distributions of data lifetimes. These ques-
tions cover the first research question.

The lifetime of the data used to measure the volatility was
collected by patching the memory writing and erasing functions in
the Contiki operating system. The patched functions logged the
writes and reads of predefined canary tokens to a log file with a
timestamp and the location in the flash disk. This file was further
analyzed to find the lifetimes of each page in the file system,
addressing the second research question.

We have also shown how the data lifetime can be approximated
using knowledge about the file system and the data writing pro-
cesses. The analytically found lifetimes were compared with the
measured lifetimes, but the upper bounds of the lifetimes were, for
the most part, underestimated, as the measured maximum lifetime
was much higher than the analytically calculated. To conclude the
third research question, the observed lifetimes were greater than
the expected lifetime, and there were some huge outliers that could
not be explained by the analytical model.

This study represents one stepping stone to understand the
concept of volatility in systems and for the investigator to estimate
the probability of finding evidence in a complex system. Future
work needs to set this into a bigger perspective and consider even
more evidence locations and data dependencies in the system.

J.-P. Sandvik, K. Franke, H. Abie et al.

Acknowledgement

Thanks to Arvind Sharma at NTNU for valuable feedback on the
paper manuscript.

The research leading to these results has received funding from
the Research Council of Norway program IKTPLUSS, under the R&D
project “Ars Forensica — Computational Forensics for Large-scale
Fraud Detection, Crime Investigation & Prevention”, grant agree-
ment 248 094/070.

References

Arnes, A., Flaglien, A., Sunde, .M., Dilijonaite, A., Hamm, J., Sandvik, J.-P., Bjelland, P.,
Franke, K., Axelsson, S., 2017. Digital Forensics. John Wiley & Sons, Ltd.

Brezinski, D., Killalea, T., 2002. RFC 3227: Guidelines for Evidence Collection and
Archiving. RFC 3227. URL. https://rfc-editor.org/rfc/rfc3227.txt.

Chow, J., Pfaff, B., Garfinkel, T., Rosenblum, M., 2005. Shredding your garbage:
reducing data lifetime through secure deallocation. 14th USENIX Security
Symposium 331—346.

Dunkels, A., Gronvall, B., Voigt, T., 2004. Contiki - a lightweight and flexible oper-
ating system for tiny networked sensors. In: Proceedings - Conference on Local
Computer Networks. LCN, pp. 455—462.

Hegarty, R.C., Lamb, D.J., Attwood, A., Attwood, A., Attwood, A., 2014. Digital evi-
dence challenges in the internet of Things. In: Dowland, P.S., Furnell, S.M.,
Ghita, B.V. (Eds.), Proceedings of the Tenth International Network Conference.
INC 2014, Plymouth, pp. 163—172.

Hossain, M., Karim, Y.K., Hasan, R.H., 2018. FIF-IoT: a forensic investigation frame-
work for IoT using a public digital ledger. In: Proceedings - 2018 IEEE Inter-
national Congress on Internet of Things, ICIOT 2018 - Part of the 2018 IEEE
World Congress on Services, pp. 33—40.

Klaver, C., 2010. Windows Mobile advanced forensics. Digit. Invest. 6 (3—4),
147-167. https://doi.org/10.1016/j.diin.2010.02.001. URL.

Kumar, V., Oikonomou, G., Tryfonas, T, Page, D., Phillips, I, 2014. Digital in-
vestigations for [Pv6-based wireless sensor networks. Digit. Invest. 11 (Suppl. 2),

10

Forensic Science International: Digital Investigation 40 (2022) 301343

S66—S75. https://doi.org/10.1016/j.diin.2014.05.005. URL.

Li, Y., He, J., Huang, N., Chang, C., 2016. On the recoverability of data in android
YAFFS2. In: Proceedings - 12th International Conference on Computational In-
telligence and Security. CIS, pp. 665—668, 2016.

Minnaard, W., 2014. Out of sight, but not out of mind: traces of nearby devices'
wireless transmissions in volatile memory. In: Proceedings of the Digital
Forensic Research Conference, DFRWS 2014 EU 11, pp. S104—S111. https://
doi.org/10.1016/j.diin.2014.03.013.

Montasari, R., Hill, R., 2019. Next-generation digital forensics: challenges and future
paradigms. In: Proceedings of 12th International Conference on Global Security,
Safety and Sustainability, ICGS3, 2019.

Pagani, F.,, Fedorov, O., Balzarotti, D., apr 2019. Introducing the temporal dimension
to memory forensics. ACM Transactions on Privacy and Security 22 (2), 1-21.
URL. https://dl.acm.org/doi/10.1145/3310355.

Quick, D., Alzaabi, M., 2011. Forensic analysis of the Android file system Yaffs2. In:
Proceedings of the 9th Australian Digital Forensics Conference (December),
pp. 100—109.

Sandvik, J.-P., Arnes, A., mar 2018. The reliability of clocks as digital evidence under
low voltage conditions. Digit. Invest. 24, S10—S17. https://linkinghub.elsevier.
com/retrieve/pii/S1742287618300355.

Sandvik, J.-P.,, Franke, K., Abie, H., Arnes, A., 2021a. Coffee forensics — reconstructing
data in IoT devices running Contiki OS. Forensic Sci. Int.: Digit. Invest. 37.
Sandvik, J.-P., Franke, K., Arnes, A., 2021b. Towards a generic approach of quanti-
fying evidence volatility in resource constrained devices. In: Montasari, R.,
Jahankhani, H., Hill, R., Parkinson, S. (Eds.), Digital Forensic Investigation of
Internet of Things (IoT) Devices, Advanced Sciences and Technologies for Se-
curity Applications. Advanced Sciences and Technologies for Security Applica-
tions. Springer International Publishing, Cham, pp. 21—45. https://doi.org/
10.1007/978-3-030-60425-7_2. Ch. 2, link.springer.com/10.1007/978-3-030-

60425-7_2.

Sutherland, I, Evans, J., Tryfonas, T., Blyth, A., apr 2008. Acquiring volatile operating
system data tools and techniques. ACM SIGOPS - Oper. Syst. Rev. 42 (3), 65—73.
URL. https://dl.acm.org/doi/10.1145/1368506.1368516.

Zimmermann, C., Spreitzenbarth, M., Schmitt, S., Freiling, F.C., 2012. Forensic
analysis of YAFFS2. In: SICHERHEIT 2012 — Sicherheit, Schutz und Zuverlas-
sigkeit, pp. 59—609.

http://refhub.elsevier.com/S2666-2817(22)00012-9/sref1
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref1
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref1
https://rfc-editor.org/rfc/rfc3227.txt
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref3
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref3
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref3
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref3
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref4
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref4
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref4
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref4
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref4
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref6
https://doi.org/10.1016/j.diin.2010.02.001
https://doi.org/10.1016/j.diin.2014.05.005
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref9
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref9
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref9
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref9
https://doi.org/10.1016/j.diin.2014.03.013
https://doi.org/10.1016/j.diin.2014.03.013
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref11
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref11
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref11
https://dl.acm.org/doi/10.1145/3310355
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref13
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref13
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref13
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref13
https://linkinghub.elsevier.com/retrieve/pii/S1742287618300355
https://linkinghub.elsevier.com/retrieve/pii/S1742287618300355
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref15
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref15
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref15
https://doi.org/10.1007/978-3-030-60425-7_2
https://doi.org/10.1007/978-3-030-60425-7_2
https://dl.acm.org/doi/10.1145/1368506.1368516
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00012-9/sref18

	Quantifying data volatility for IoT forensics with examples from Contiki OS
	1. Introduction
	2. Related work
	3. Coffee File System functionality
	4. Data volatility
	4.1. Data lifetime
	4.2. Volatility model
	4.3. Volatility in the Coffee File System
	4.4. Approximation of volatility

	5. Experiments
	5.1. Setup
	5.2. Observed write rates
	5.3. Garbage collection
	5.4. Page lifetimes
	5.5. Distribution of lifetimes

	6. Discussion
	7. Conclusion
	Acknowledgement
	References

