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Abstract

Transport phenomena are based on the conservation of mass, momentum,
and energy, and provide equations that give insight into the motion of fluids,
the driving force behind this motion, and the dissipation of such driving
forces. The rigorous governing transport equations are functions of space
and time. On the other hand, thermodynamics is another field of science
that focuses mainly on equilibrium states, which are neither functions of
space nor time. Thermodynamics can be used to describe the behavior of
pressure, density, and chemical potential. Moreover, chemical and phase
equilibrium are central topics within thermodynamics.

The focus of this dissertation is placed on the intersection between trans-
port phenomena and thermodynamics. This intersection is here seen as i)
the pressure field, ii) the density field, iii) the transport equation for en-
ergy, iv) chemical reaction in the transport equation for species mass, and
v) mass transfer in multifluid flow in the transport equation for total and
species mass. The work is twofold, in which the first part focuses primarily
on point iv), while the second part focuses mainly on point v). Both parts
require points i), ii), and iii) to be considered.

The first part of this work employs transport equations for mass, species
mass, momentum, and energy for a reactive gas in a fixed bed of porous
catalysts. In the transport equation for species mass, the source/sink term
originating from the chemical reaction is computed from chemical equilib-
rium rather than reaction kinetics. The chemical equilibrium is computed
by minimizing Gibbs or Helmholtz energy at every numerical discretization
point. For the Gibbs energy approach, the minimization is performed while
holding the temperature and pressure constant at the numerical discretiza-
tion points. For the Helmholtz energy, the minimization is performed while
holding the temperature and volume constant at the numerical discretiza-
tion points. The volume to be utilized has two alternatives: i) the volume
may be obtained from the iteration of the equation of state (EoS), and ii) by
discretizing in space with the finite volume method where the volume may
be obtained from the numerical grid. For the Helmholtz energy approach,
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the numerical solution obtained by utilizing the volume from alternatives i)
and ii) were compared and revealed identical result. Moreover, the Gibbs
and the Helmholtz energy minimization methods also gave identical results.
On the other hand, the Gibbs energy method spent less computational time
than the Helmholtz energy method to converge the set of equations. In
the transport equation for energy, the heat capacity and the molar heat of
reaction were computed from the EoS with residual functions denoting the
departure from the ideal gas state.

The procedure above was performed for the Soave–Redlich–Kwong EoS,
and the virial expansion truncated after the second term. Furthermore, two
different chemical processes were investigated: the steam–methane reform-
ing (SMR) and the methanol (MeOH) process. It is emphasized that the
reactor concept investigated in the first part of this dissertation is not in-
tended to replace reaction kinetics. The reaction rate expressions developed
through rigorous catalytic kinetics experiments should be used when they
are available, and if no reaction rate expression is available, the equilibrium-
based reactor investigated here could serve as an alternative in process design
studies.

The second part of this work derives a set of mass transfer equations
that have their basis in the continuity of mass fluxes through the interphase
separating two adjoining phases. Contrary to the common practice, which
employs Henry’s law, the mass transfer equations developed here feature a
complete phase equilibrium description that incorporates all components,
including the component that is commonly referred to as the solvent (the
component in excess). The phase equilibrium description at the surface
allows for a flexible framework, where the thermodynamic model can be
chosen to best fit the components in the process investigated. It has been
shown that the new framework is a generic case of the commonly employed
Henry’s law, and it is illustrated for three different EoSs and two different
processes. The Soave–Redlich–Kwong EoS was employed for the single-cell
protein process, and the Peng–Robinson and the perturbed-chain statistical
association fluid theory (PC-SAFT) EoSs were employed for the Fischer–
Tropsch synthesis. For the complex Fischer–Tropsch synthesis process, the
novel phase equilibrium based mass transfer equations were preferable due
to Henry’s law coefficients being unavailable for many species in the Fischer–
Tropsch synthesis process. On the other hand, Henry’s law coefficients were
available for all species for the SCP process.

The mass transfer expressions based on the Henry’s law and the complete
phase equilibrium were qualitatively and quantitatively different for both
processes. The mass transfer of the solvent was not modeled with Henry’s
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law in either of the processes, and the differences in mass fractions were
seen to vary by, at most, 150% (relatively) in the SCP process. In the
Fischer–Tropsch synthesis process, several weaknesses were described for the
method based on Henry’s law, e.g., i) mass transfer being a function of the
chosen solvent, ii) the solvent as a concept being imprecise and ambiguous,
and iii) the mass transfer of the solvent is implicitly computed since the
Henry’s law coefficient does not exist for this component. These weaknesses
were not present for the phase equilibrium based method. However, the
increase in computational cost accompanied by solving a complete phase
equilibrium problem is not to be disregarded. For instance, the mass transfer
expression based on the PC-SAFT EoS was found to be 260 times slower
than the equivalent mass transfer expression based on Henry’s law. On
the other hand, the mass transfer expression based on the Peng–Robinson
EoS was only 5 times slower than the equivalent mass transfer expression
based on Henry’s law. Hence, there are large variations in the computational
requirements of the new mass transfer expression based on the complexity
of the EoS employed.
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Chapter 1

Introduction

1.1 Background

Transport phenomena is a major field of science with a vast application area.
Examples include but are not limited to fire simulations, metallurgy, pipeline
transportation, reactor technology, and multiphase fluid flow. Moreover,
the application area is increasing as the available computational power has
increased over the recent decades.

Transport phenomena have a solid mathematical foundation where con-
servation equations for mass, momentum, and energy are formulated for an
arbitrary control volume. The physical phenomena are accounted for by
their interaction with the control volume, and where necessary, constitutive
equations are employed to close the set of equations.

Although transport phenomena base on a solid framework for determin-
ing the spatial and transient changes of the chemical composition, it relies
heavily on thermodynamics. Particularly important quantities include the
enthalpy, the heat capacity, and the internal energy, as they are vital for the
energy equation. Furthermore, for compressible fluids, a thermodynamic
relation is required to compute the density or pressure of the fluid flow.
Moreover, for reactions of reversible character, the reaction rate expression
usually incorporates the chemical equilibrium to describe how the net reac-
tion rate ultimately vanishes and approaches zero. On the other hand, the
driving force for mass transfer between two fluid phases is believed to be
related to thermodynamic phase equilibrium.

Combining transport phenomena and thermodynamics is non-trivial. In
thermodynamics, the species composition resulting from chemical reactions
are computed from chemical equilibrium. The chemical equilibrium con-
cept is constrained to time-independent systems. Furthermore, the com-
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putation is performed by minimizing an energy potential, typically Gibbs
or Helmholtz energy. For Gibbs energy, the temperature and pressure are
held constant under the minimization. For Helmholtz energy, the temper-
ature and volume are held constant under the minimization. Regardless of
which thermodynamic potential is chosen for the idealized equilibrium cal-
culation, it is difficult to realize constant temperature or pressure profiles in
real fluid flow problems. On the other hand, in transport phenomena, the
reactions are typically computed through kinetic reaction rate expressions
that are fitted to experiments [Fogler, 2016]. Whenever kinetic reaction rate
expressions are unavailable, chemical equilibrium provides different means
of computing the change in composition in a chemical reactor. This may be
helpful for chemical reactors that operate close to chemical equilibrium and
process design studies, albeit not for accurately representing the change in
composition.

In mass transfer phenomena, two fluid phases share a common interface
over which mass transfer occurs. It is commonly assumed that phase equi-
librium prevails at the interface. In the literature, the phase equilibrium
is (to the author’s knowledge) computed using the Henry’s law exclusively,
where the Henry’s law has several inherent limitations that are impractical
to mend. First, the relation is valid for poorly soluble solutes in a specific
solvent, and computing the mass transfer of the solvent is thus impossi-
ble. Second, an infinite dilution limit is employed, meaning that Henry’s
law is valid when a solute is practically insoluble in the specified solvent.
For solutes that are not poorly soluble, Henry’s law is impractical. Third,
Henry’s law requires the identification of a single solvent. Henry’s law can
provide different results based on which solvent is chosen in systems where
no compound is clearly in excess and easily identified as the solvent. The
Fischer–Tropsch synthesis represents this situation, where hydrocarbons are
present in various chain lengths and concentrations.

In thermodynamics, phase equilibrium is an overarching principle that is
generic and independent of the models chosen. The phase equilibrium pre-
vailing at the phase boundary could thus be represented by any thermody-
namic model. Therefore, it is crucial to choose a thermodynamic model that
represents the phase equilibrium satisfactorily. For some systems, Henry’s
law provides an adequate representation of the phase equilibrium. For other
systems, the theoretical foundation of Henry’s law is violated, and Henry’s
law is unwarranted. Regardless, Henry’s law remains the common practice,
and a vast number of thermodynamic models remain unexplored in mass
transfer modeling.

2



1.2 Research Objectives

The main goal of this dissertation is to unify thermodynamic equilibrium and
transport phenomena. This work is twofold: first, chemical equilibrium is
treated in a packed bed reactor operated at steady state with non-uniform
temperature and pressure fields. Thus, the minimization of the Gibbs or
Helmholtz energy is performed at all discrete points in space, yielding local
instantaneous chemical equilibrium. Furthermore, transport equations for
mass, momentum, and energy are employed to compute the spatial vari-
ations of velocity, temperature, and pressure. This approach attempts to
improve classical equilibrium reactors where the temperature and pressure
fields are fixed and spatial variations are not considered. Ideal and non-ideal
gases are considered, and the models are implemented thermodynamically
consistent. The reactor concept is to be used in the absence of kinetic reac-
tion rate expressions and for processes that are believed to operate close to
equilibrium.

Second, the phase equilibrium at the phase boundary of two adjoining
fluid phases is treated in a bubble column reactor. Rather than using Henry’s
law to close the mass transfer problem, a rigorous phase equilibrium-based
approach is attempted. The novel driving force for mass transfer is generic,
and in contrast to Henry’s law, the novel concept i) allows the mass transfer
of all components (including the solvent), ii) is not limited to the infinite
dilution limit, and iii) does not require the identification of a single solvent.
Emphasis is placed on solution strategy, numerical properties, convergence,
and quantitative differences in the converged composition profiles. Further-
more, the choice of solvent and its implications are highlighted for mass
transfer based on Henry’s law.

1.3 Dissertation Outline

An introduction to classical thermodynamics is given in Chapter 2, and
also mathematical prerequisites and optimization algorithms are described
therein. In Chapter 3, the different attempts to formulate a novel mass
transfer expression are described, and some remarks on heat and momentum
transfer induced by mass transfer are given. The published papers, and
hence the results of this dissertation, are given in Chapter 4. Concluding
remarks and suggestions for further work are given in Chapter 5.
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Chapter 2

Thermodynamics

2.1 Mathematical Prerequisites

2.1.1 Optimization

Optimization is a central topic within thermodynamics due to how equilib-
rium problems are formulated. Hence, a brief introduction to optimization
problems, their formulations, solution strategies, and the conditions to be
satisfied at a located trial solution is given here.

Optimization is the minimization of an objective function subject to a set
of constraints. Let f(x) denote the objective function and let x denote the
decision variables. Assume that there are only linear equality constraints and
non-negative inequality constraints. The equality constraints are represented
by the matrix A and the vector b. The problem may then be formulated as
the following optimization problem:

min
x

f(x)

s.t. Ax = b

x ≥ 0.

(2.1)

The problem may be solved by the method of Lagrange multipliers. The
Lagrangian function is formulated as (see e.g. Nocedal and Wright [2006],
Taylor [2010])

L(x,λ) = f(x)− λ⊤(Ax− b), (2.2)

where λ are the Lagrange multipliers. At the optimum these multipliers
reflect the decrease of the objective function as a result of perturbing the
right-hand side of the equality constraints by one unit. That is, if bi is
decreased by 1, then the objective function value is decreased by λi. The
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Lagrange multipliers are therefore referred to as shadow prices in operational
analysis.

The stationary point of the Lagrangian function will have the desirable
property of both minimizing (or maximizing) f and satisfying all equality
constraints. To iterate the feasible set towards a stationary point, a search
direction is to be specified. Among these, the Newton step is frequently
used in optimization, primarily due to its quadratic convergence rate. By a
Taylor expansion around x,λ gives:

L(x+ px,λ+ pλ) ≈ L(x,λ) +∇L(x,λ)⊤p

+
1

2
p⊤∇∇⊤L(x,λ)p+O(∥p3∥),

(2.3)

where p = (px,pλ) is the search direction vector. As a result of truncat-
ing the Taylor expansion after the second term, an error of third order is
introduced. This error is denoted O(∥p3∥).

Setting the derivative of eq. (2.3) with respect to p equal to 0 yields the
Newton step

O(∥p2∥) +HL(xν ,λν)pν+1 = −JL(xν ,λν). (2.4)

In the above notation, HL(xν ,λν) is the Hessian matrix and JL(xν ,λν) is
the Jacobi vector of the Lagrangian function at iteration ν. By differentiat-
ing eq. (2.2) twice, inserting into eq. (2.4), and omitting the error notation

(
Hf −A⊤

−A 0

)ν (
px

pλ

)ν+1

= −
(
∇xf(x)−A⊤λ

b−Ax

)ν

. (2.5)

Here ∇x is used to denote the gradient with respect to the decision variables.
The first line in the matrix equation above is highlighted to show cancelling
terms. By noting that px = xν+1 − xν and pλ = λν+1 − λν , the equation
reads

Hν
f (x

ν+1 − xν)−A⊤(λν+1 −��λ
ν) = −∇xf(x) +���

A⊤λν

Hν
f (x

ν+1 − xν)−A⊤λν+1 = −∇xf(x) | (−I)

−Hν
f p

ν+1
x +A⊤λν+1 = ∇xf(x)

Hν
f (−pν+1

x ) +A⊤λν+1 = ∇xf(x). (2.6)

In the second line, the whole equation was multiplied by the negative 1.
This is done by left multiplication by the negative identity matrix. It is easy
to show that the last line in the matrix equation eq. (2.5) can be written
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A(−pν+1
x ) = Axν − b. As such, eq. (2.5) is identical to

(
Hf A⊤

A 0

)ν (−px

λ

)ν+1

=

(
∇xf(x)
Ax− b

)ν

. (2.7)

The decision variables in the next step are extracted as xν+1 = xν+pν+1
x .

To ensure that the step pν+1
x stays feasible (does not violate any inequality

constraints), the step is shortened appropriately. If the current iterate xν

is feasible and pν+1
x ≥ 0, then xν+1 = xν + pν+1

x ≥ 0, since both terms
are positive. However, if the current iterate xν is feasible and pν+1

xi
< 0 for

some variable xi, then xν+1
i is not necessarily feasible, since |pν+1

xi
| might

be greater than xνi . Therefore, whenever pν+1
xi

< 0 for some i, necessary
actions must be taken. This is implemented as xν+1

i = xνi + ανpν+1
xi

≥ 0, ∀i.
This equation is rearranged so that αν ≤ − xν

i

pν+1
xi

,∀i (inequality flipped since

pν+1
xi

< 0). Hence,

αν = min

(
1,min

−xνi
pν+1
xi

, ∀pxi < 0

)
. (2.8)

In eq. (2.8) either the full step is taken by α = 1 or it is shortened. The
latter is done by going through all negative steps in pν+1

x and shortening the
“most violating” step. That is, the pν+1

xi
that results in an xν+1

i that is most
negative. The step in λ must be shortened accordingly, so that eq. (2.7) is
satisfied. Consequently, λν+1 = λν + ανpν+1

λ as well.
At the optimal solution, the first order necessary conditions known as

the Karush–Kuhn–Tucker (KKT) conditions have to be satisfied

∇xL(x∗,λ∗) = 0 (2.9a)
ci(x

∗) = 0, for all i ∈ E (2.9b)
ci(x

∗) ≥ 0, for all i ∈ I (2.9c)
λ∗i ≥ 0, for all i ∈ I (2.9d)

λ∗i ci(x
∗) = 0, for all i ∈ E ∪ I. (2.9e)

Here ci is constraint i, ∗ indicates the trial solution (which is optimal when
eq. (2.9) is satisfied) and E and I are the set of equality and inequality
constraints, respectively.

2.1.2 The Internal Energy and Entropy

Considerable time has been spent in the last centuries on the conservation of
energy. A somewhat confusing result is the existence of kinetic and potential

7



energy at both the macroscopic and microscopic level. The former refers to
energies in Newtonian mechanics, and thus the kinetic energy relates to
the center of mass of the system and the potential energy relates to the
gravitational potential energy. The microscopic kinetic and internal energy,
on the other hand, is collectively referred to as the internal energy (see
Elliott and Lira [2012], Helbæk and Kjelstrup [2006]).

It was shown by Joule in one of his experiments that when a non-reacting
substance is enclosed by adiabatic walls, then it is possible to measure the
energy of the system by measuring the mechanical work done. If the energy
can be measured adiabatically, then the heat can be measured diabatically.
The heat is then the difference between the energy and the mechanical work.

Since the amount of work and heat depend on the path taken, their
differentials will be assigned the symbol d̄ instead of the symbol d normally
used for differentials. The former are referred to as inexact differentials and
the latter are referred to as exact differentials. From the previous discussion
the differential heat transferred is

d̄Q = (dU)n − d̄W, (2.10)

where (dU)n is the exact differential of the internal energy at constant mole
number vector n = (n1, n2, . . . , nC), and d̄W is the inexact differential of
the mechanical work. Going from state A to state B through process P , the
integrated form of eq. (2.10) is

UB − UA = Q+W. (2.11)

This is commonly referred to as the first law of thermodynamics, however
there is no mathematical proof that eq. (2.11) is generally valid. It is merely
based on empirical results. There is no evidence that disputes eq. (2.11),
and it is therefore generally accepted.

It was mentioned in the context of eq. (2.10) that the differential of
the internal energy is exact without any further comments. Consider con-
versely that the differential is not exact, and that internal energy depends
on the path taken. If the system is taken from state A to B through path
P1, and then back from B to A through path P2, then ∆Utotal =

∮
dU =∫ B

A dUP1 +
∫ A
B dUP2 = ∆UP1

A→B +∆UP2
B→A ̸= 0. This means that whenever

the two changes in internal energy are unequal, the energy conservation is
violated. Consider for instance the same circular process where the subpro-
cesses ∆UP1

A→B = 1J and ∆UP2
B→A = −2 J. By going from A to B through

path P1, 1 J is consumed. Going back to A through P2 releases 2 J. Hence,
there is a net release of 1 J. This creates the idea of a perpetual motion ma-
chine which has not yet been (and probably will not ever be) invented. This
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is not a proof that the internal energy is a state function (path independent),
but rather a comment on its likeliness.

Before further remarks can be given about the internal energy, three
postulates are given. If V denotes the volume, then the postulates read (see
Callen [1985])

1. There exists a function S(U, V,n) (called entropy) defined for all equi-
librium states. The values of U, V,n are those that maximize S, given
the set of constraints imposed on the system.

2. The entropy of a composite system is additive over constituent sub-
systems. The entropy is continuous and differentiable and is a mono-
tonically increasing function of the energy.

3. The entropy is zero when
(
∂U
∂S

)
V,n

= 0.

From the second postulate, the entropy can be inverted for the internal
energy. The result is a single-valued, continuous and differentiable function
of S, V,n. By writing the total differential of U(S, V,n)

dU =

(
∂U

∂S

)

V,n

dS +

(
∂U

∂V

)

S,n

dV +
C∑

i=1

(
∂U

∂ni

)

S,V,nj ̸=i

dni, (2.12)

where C denotes the number of components present. The partial derivatives
at the right-hand side will be defined as T , −p and µi, respectively. These
quantities are called temperature, negative pressure and chemical potential.
For a reversible process d̄W rev = −p dV . By comparing eq. (2.10) and
eq. (2.12) at constant composition, it is concluded that T dS = d̄Qrev.

2.1.3 Euler Homogeneous Functions

Euler homogeneous functions put strict conditions on the relations between
different energy surface functions, on their partial derivatives, and even on
the relations between those partial derivatives. In the following, a generic
foundation is formulated, which is shown to be valid for all relevant energy
surface functions within thermodynamics.

A function f(x, ξ), where x and ξ are vectors, is homogeneous of degree
k if

F := f(X, ξ) = λkf(x, ξ) (2.13)
X := λx. (2.14)

9



That is, f(x, ξ) is homogeneous if f(λx, ξ) is proportional to λk. The vari-
ables X and ξ are in thermodynamic applications often referred to as exten-
sive and intensive variables, respectively. That is, X scales with the size of
the system denoted by λ, whereas ξ does not. For instance, let F = mv be
the momentum, with units kgm s−1. Here, X = m is the mass transplaced
at velocity ξ = v. By taking λ = V as the volume, then f = ρv is the
volumetric momentum, and x = X/λ = m/V = ρ is the mass density.

By taking the total differential of eq. (2.13) and making use of dX =
λ dx+ x dλ

dF =

(
∂F

∂X

)⊤

ξ

x dλ+ λ

(
∂F

∂X

)⊤

ξ

dx+

(
∂F

∂ξ

)⊤

X

dξ. (2.15)

Another form of the total differential is obtained by utilizing the definition
of F = λkf to get

dF = kλk−1f dλ+ λkdf = kλk−1f dλ+ λk
(
∂f

∂x

)⊤

ξ

dx+ λk
(
∂f

∂ξ

)⊤

x

dξ.

(2.16)
The two differentials for dF in eq. (2.15) and eq. (2.16) are equivalent.
Comparing the coefficients for the differentials dλ, dx and dξ lead to three
relations

(
∂F

∂X

)⊤

ξ

X = kF (2.17a)
(
∂F

∂X

)

ξ

= λk−1

(
∂f

∂x

)

ξ

(2.17b)
(
∂F

∂ξ

)

X

= λk
(
∂f

∂ξ

)

x

. (2.17c)

Equation (2.17a) is referred to as Euler’s theorem for homogeneous functions
(see Euler [2000] for the same result but with different notation). This result
has great importance and is frequently used in thermodynamics. Given the
total differential of F , the function F itself can be found through eq. (2.17a).
This process is referred to as Euler integration.

As seen in eq. (2.17b), the derivative of an Euler homogeneous function
of degree 1 with respect to an extensive variable is Euler homogeneous of
degree 0. In eq. (2.17c) it is seen that the derivative of the same function,
but with respect to an intensive variable is Euler homogeneous of degree 1.

Differentiating eq. (2.17a) yields

X⊤ d

(
∂F

∂X

)

ξ

+

(
∂F

∂X

)⊤

ξ

dX = k

(
∂F

∂X

)⊤

ξ

dX + k

(
∂F

∂ξ

)⊤

X

dξ, (2.18)
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and by noting that the differential in the first term in eq. (2.18)

d

(
∂F

∂X

)

ξ

=

(
∂2F

∂X∂X⊤

)

ξ

dX +

(
∂2F

∂X∂ξ⊤

)
dξ, (2.19)

we obtain (with k = 1)

X⊤
(

∂2F

∂X∂X⊤

)

ξ

dX +X⊤
(

∂2F

∂X∂ξ⊤

)
dξ =

(
∂F

∂ξ

)

X

dξ. (2.20)

By first setting dξ = 0 and then setting dX = 0, it can be concluded that
(

∂2F

∂X∂X⊤

)

ξ

X = 0 (2.21a)

(
∂2F

∂ξ∂X⊤

)
X =

(
∂F

∂ξ

)

X

, (2.21b)

respectively.
The relations in eq. (2.21) provide both means of calculating some of the

first derivatives given the mixed second derivatives (see eq. (2.21b)), but it
also offers useful tests for internal consistency within thermodynamics, see
Section 2.3.

As an example of the use of Euler’s theorem for homogeneous functions,
consider the internal energy F = U(S, V,n), X = (S, V,n) and ξ = ∅. This
is an Euler homogeneous function of degree one. Using Euler’s theorem on
eq. (2.12) yields:

U =

(
∂U

∂S

)

V,n

S +

(
∂U

∂V

)

S,n

V +

(
∂U

∂n

)⊤

S,V

n

= TS − pV + µ⊤n,

(2.22)

where the earlier definitions were inserted for T , −p and µi. By using
eq. (2.21a)

(
∂2U

∂S2

)

V,n

S +

(
∂2U

∂S∂V

)

n

V +

(
∂2U

∂S∂n

)⊤

V

n = 0 (2.23a)

(
∂2U

∂V ∂S

)

n

S +

(
∂2U

∂V 2

)

S,n

V +

(
∂2U

∂V ∂n

)⊤

S

n = 0 (2.23b)

(
∂2U

∂n∂S

)

V

S +

(
∂2U

∂n∂V

)

S

V +

(
∂2U

∂n∂n⊤

)

S,V

n = 0. (2.23c)
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The C + 2 equations given by eq. (2.23) put strict conditions on the
thermodynamic energy function U . If eqs. (2.22) and (2.23) hold, it is likely
to develop a thermodynamically consistent internal energy function. Fur-
thermore, when a thermodynamically consistent internal energy function is
implemented, eqs. (2.22) and (2.23) should be checked to minimize the risk
of implementation errors.

2.1.4 Relations Between Partial Derivatives

In order to derive relations for an energy surface function in practical co-
ordinate sets, it is essential to be able to handle transitions between these
different coordinate sets. For instance, the internal energy function is writ-
ten in S, V,n; however this coordinate set has proven impractical due to the
entropy not being measurable. Typically, the entropy is replaced by tem-
perature to have a fully measurable coordinate set. Handling transitions of
this kind is not trivial and requires attention given in the following. Further
usages of the manipulations given in the following include relations between
partial derivatives of the equation of state.

If m variables x, y, z,w are interrelated by f(x, y, z,w) = 0, m − 1 of
them may be chosen as independent such that, e.g., z = g(x, y,w). The
total differential of z is

dz =

(
∂z

∂x

)

y,w

dx+

(
∂z

∂y

)

x,w

dy +

m−3∑

i=1

(
∂z

∂wi

)

x,y,wj ̸=i

dwi. (2.24)

Setting dz = 0 and dw = 0 results in the two relations
(
∂z

∂x

)

y,w

(
dx

dy

)

z,w

+

(
∂z

∂y

)

x,w

= 0 (2.25a)
(
∂z

∂x

)

y,w

+

(
∂z

∂y

)

x,w

(
dy

dx

)

z,w

= 0. (2.25b)

Since all variables but x and y are kept constant in dx/ dy, it is identical to
its partial derivative. Replacing the differentials by their partial derivatives
yields

(
∂z

∂x

)

y,w

(
∂x

∂y

)

z,w

+

(
∂z

∂y

)

x,w

= 0 (2.26a)
(
∂z

∂x

)

y,w

+

(
∂z

∂y

)

x,w

(
∂y

∂x

)

z,w

= 0. (2.26b)
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Using either of the above, rearranging and dividing by the derivatives, the
following triple rule is obtained

(
∂z

∂x

)

y,w

(
∂x

∂y

)

z,w

(
∂y

∂z

)

x,w

= −1. (2.27)

As an example of the usage of the triple rule, consider f(T, p, V,n) = 0. At
dV = 0 and dn = 0, the following holds

(
∂V

∂T

)

p,n

(
∂T

∂p

)

V,n

(
∂p

∂V

)

T,n

= −1. (2.28)

Thus, by rearranging, the useful relation

(
∂V

∂T

)

p,n

= −

(
∂p
∂T

)
V,n(

∂p
∂V

)
T,n

(2.29)

is obtained.
Consider now a function g(x, y,w), where y = h(x,w, z), then

dg =

(
∂g

∂x

)

y,w

dx+

(
∂g

∂y

)

x,w

dy +
∑

i

(
∂g

∂wi

)

x,y,wj ̸=i

dwi. (2.30)

The total differential of y

dy =

(
∂y

∂x

)

z,w

dx+

(
∂y

∂z

)

x,w

dz +
∑

i

(
∂y

∂wi

)

x,z,wj ̸=i

dwi (2.31)

is then substituted into eq. (2.30) to yield

dg =

((
∂g

∂x

)

y,w

+

(
∂g

∂y

)

x,w

(
∂y

∂x

)

z,w

)
dx

+

((
∂g

∂y

)

x,w

(
∂y

∂z

)

x,w

)
dz

+
∑

i

((
∂g

∂wi

)

x,y,wj ̸=i

+

(
∂g

∂y

)

x,w

(
∂y

∂wi

)

x,z,wj ̸=i

)
dwi.

(2.32)

A particularly useful result is obtained at dz = 0, dw = 0 and dividing by
dx (

∂g

∂x

)

z,w

=

(
∂g

∂x

)

y,w

+

(
∂g

∂y

)

x,w

(
∂y

∂x

)

z,w

. (2.33)
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A demonstration of the use of eq. (2.33) is in its place. Consider again
the internal energy U = g(S, V,n), where its derivative with respect to the
volume at constant T,n is required. Then x = V , w = n, z = T and
y = S(T, V,n). Inserted into eq. (2.33)

(
∂U

∂V

)

T,n

=

(
∂U

∂V

)

S,n

+

(
∂U

∂S

)

V,n

(
∂S

∂V

)

T,n

= −p+ T

(
∂S

∂V

)

T,n

.

(2.34)

2.1.5 Legendre Transformations

An important mathematical concept is the Legendre transformation. For a
function f(x1, x2, . . . , xN ), one of its independent variables may be replaced
by its derivative with respect to that variable, i.e., xi can be replaced by(

∂f
∂xi

)
xj ̸=i

. The new function, fi has the same independent variables as f

except for xi which is replaced by the derivative. In terms of equations, a
Legendre transformation is defined as

fi(ξi, xj , xk, . . . , xN ) := f(xi, xj , xk, . . . , xN )− ξixi

ξi :=

(
∂f

∂xi

)

xm ̸=i

.
(2.35)

Utilizing the defined Legendre transformation on the thermodynamic func-
tion U results in the thermodynamic functions H (enthalpy), A (Helmholtz
energy), and G (Gibbs energy) in their canonical (natural) variable sets.
This means that by specifying a state in the respective coordinate set,
U,H,A and G contain all thermodynamic information that can be acquired
about the system. Such a relation is called a fundamental relation. The
Legendre transformations are shown in Table 2.1.

2.1.6 Maxwell Relations

For a function f : Rn → R with continuous second partial derivatives
Schwartz’ theorem states that (see Schwarz [1890])

(
∂2f

∂xi∂xj

)

xk ̸=i,j

=

(
∂2f

∂xj∂xi

)

xk ̸=i,j

. (2.36)

This may seem obvious, but it has important consequences in both math-
ematics and thermodynamics. First, it ensures that a Hessian matrix is
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Table 2.1: Legendre transformations for the internal energy.

Function Integral form Differential form

U(S, V,n) TS − pV + µ⊤n T dS − p dV + µ⊤ dn

H(S,−p,n) U + pV T dS + V dp+ µ⊤ dn

A(T, V,n) U − TS −S dT − p dV + µ⊤ dn

G(T,−p,n) U − TS + pV −S dT + V dp+ µ⊤ dn

always symmetric. Second, it leads to the Maxwell relations. For the ther-
modynamic functions U,H,A,G the Maxwell relations can be deduced by
utilizing eq. (2.36) on the differential forms given in Table 2.1. The results
are listed in Table 2.2. In the case of a compositional derivative, i.e., a
derivative with respect to ni, all nj ̸=i are to be held constant. However, for
brevity of notation, this is omitted.

Table 2.2: Maxwell relations for the internal energy, enthalpy, Helmholtz
energy, and Gibbs energy.

Function #1 #2 #3

U
(
∂T
∂V

)
S,n

= −
(

∂p
∂S

)
V,n

(
∂µi

∂S

)
V,n

=
(

∂T
∂ni

)
S,V

(
∂µi

∂V

)
S,n

= −
(

∂p
∂ni

)
S,V

H
(
∂T
∂p

)
S,n

=
(
∂V
∂S

)
p,n

(
∂T
∂ni

)
S,p

=
(
∂µi

∂S

)
p,n

(
∂V
∂ni

)
S,p

=
(
∂µi

∂p

)
S,n

A
(
∂S
∂V

)
T,n

=
(

∂p
∂T

)
V,n

(
∂µi

∂T

)
V,n

= −
(

∂S
∂ni

)
T,V

(
∂µi

∂V

)
T,n

= −
(

∂p
∂ni

)
T,V

G
(
∂V
∂T

)
p,n

= −
(
∂S
∂p

)
T,n

(
∂µi

∂T

)
p,n

= −
(

∂S
∂ni

)
T,p

(
∂V
∂ni

)
T,p

=
(
∂µi

∂p

)
T,n

2.2 Thermodynamic Descriptions and Derivations

2.2.1 Equations of State

A relationship that expresses an intensive variable in terms of independent
extensive variables is called an equation of state (EoS), see Callen [1985]. For
instance, the internal energy is a function of the extensive variables S, V,n.
An equation of state may then express the temperature as a function of these
variables, i.e., T = f(S, V,n). When all EoSs are specified, they define the
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right-hand side of eq. (2.17a) for a thermodynamic function. The ideal gas
law is one such EoS, and it states that

pV = nRT, (2.37)

where p is the pressure, V is the volume, n is the total number of moles, R
is the gas constant and T is the temperature. There are many equations of
state, but in chemical engineering most of them have the form p = f(T, V,n).

The Virial Equation of State

The virial expansion is an EoS generalizing the ideal gas law. It is formulated
as a power series in molar density, however it can also be formulated as a
similar power series in pressure. The two expansions read (see Elliott and
Lira [2012] for the former)

pV

nRT
= 1 +

∞∑

i=1

Bi+1(T )ρ
i (2.38a)

pV

nRT
= 1 +

∞∑

i=1

B′
i+1(T )p

i, (2.38b)

respectively, where B, ρ and B′ are virial coefficient, molar density, and
virial coefficient in pressure expansion, respectively. The virial coefficients
are related to each other, see Epstein [1952] for the first five.

The virial expansion in pressure for pure components (truncated after
the second term) reads

pV

nRT
= 1 +

b2(T )

RT
p, (2.39)

where b2 (from now on called b) is the same temperature-dependent virial
coefficient as that for the density expansion. For charge-symmetric parti-
cles, this (pure component) coefficient is related to the pair-potential, ϕ(r),
through (see Hirschfelder et al. [1964])

b(T ) = 2πNA

∫ ∞

0

(
1− exp

(
−ϕ(r)
kBT

))
r2dr, (2.40)

and has the units of cm3mol−1 (or another volumetric unit per mole). Here
Avogadro’s number and Boltzmann’s constant are denoted NA and kB, re-
spectively.

The pair-potential used to model the behavior of the second virial co-
efficient could be hard sphere, square well, or the Lennard–Jones (12-6)

16



potential among others. The simplest potential is the hard sphere potential
which only consists of repulsive forces. This repulsion occurs when the in-
elastic hard spheres touch, more specifically when their separation is equal
to their hard sphere diameter, σ. The potential has the following form

ϕhs(r) =

{
∞, r ≤ σ

0, r > σ,
(2.41)

where “hs” denotes hard sphere. If eq. (2.41) is inserted into eq. (2.40), it
gives the hard sphere virial coefficient

bhs =
2

3
πNAσ

3. (2.42)

Please note that this virial coefficient is temperature independent.
The square well potential is one of the simplest potentials with the form

ϕ(r) =





∞, r ≤ σ

− ε, σ <r ≤ λσ

0, λσ <r.

(2.43)

The name of the potential as well as its mathematical form reveal the shape
of the function. When the particles cannot get closer due to their hard sphere
volumes the potential rises to infinite, just as for the hard sphere potential.
This separation is denoted σ. On the other hand, when particles are far
from each other, they do not affect each other. In between these extremes,
the particles attract each other. At some separation, there is a maximum
attraction. This is the bottom of the potential “well”, and the minimum has
the value −ε. From the name of the potential, the well is square and λ > 1 is
used to select the width of the bottom of the well, and hence select at what
separations the particles interact. By inserting eq. (2.43) into eq. (2.40) the
result is

b(T ) =
2

3
πNAσ

3

[
1 +

(
1− λ3

)(
exp

(
ε

kBT

)
− 1

)]

= bhs
[
1 +

(
1− λ3

)(
exp

(
ε

kBT

)
− 1

)]
.

(2.44)

For a mixture, b needs mixing rules. A theoretical mixing rule derived
from statistical mechanics is

nB(T,n) = n2bmix(T,n) =
C∑

i=1

ni

C∑

j=1

njbij(T ), (2.45)
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where bij(T ) is the cross coefficient found from integrating the pair-potential
for components i and j. Whenever i = j, the pair-potential is the pure com-
ponent pair-potential as first discussed. When i ̸= j, the pair-potential is
that for unlike components. This potential is denoted ϕij(r;σij , εij , λij), and
it is a function of the separation distance and the square well parameters.
Different combining rules can be employed to find the unlike pair-potentials.
Lorentz [1881] proposed for hard spheres that the pair diameter is the arith-
metic mean

σij =
1

2
(σii + σjj). (2.46)

The width, λij , and the depth, εij , of the potential well for the unlike param-
eters can either be correlated to experiments or derived from theory. Only
the theoretical approach is discussed here.

By solely integrating the attractive part of the pair-potential and equat-
ing it to the London dispersion forces, the depth of the potential is obtained
(see Haslam et al. [2008] for derivation and London [1937] for theoretical
background)

εij = 2
σ3iiσ

3
jj

σ6ij

(
(λ3ii − 1)1/2(λ3jj − 1)1/2

λ3ij − 1

)(
(IiIj)

1/2

Ii + Ij

)
(εiiεjj)

1/2. (2.47)

Here Ii is the ionization energy of molecule i. At this point, assumptions
must be made about the combining rules for the width of the potential. For
instance, the weighted arithmetic mean

λij =
σiiλii + σjjλjj
σii + σjj

(2.48)

can be used to close the set of equations.
The combining rules for the width and the depth of the potential well

can subsequently be fitted to experiments by introducing a (1 − kij) and
(1−lij), respectively. This will capture deviations in the theoretically derived
combining rules. This procedure is not to be confused with the method of
correlating the parameters to experiments. Further remarks on the topic are
not given here.

The EoS for the mixture now reads

p(T, V,n) =
nRT

V −B(T,n)
, (2.49)

where B is determined from the previous discussion.
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Cubic Equations of State

The most known among the cubic EoSs is the van der Waals EoS

p =
nRT

V −B
− D

V 2
, (2.50)

where B and D represent excluded volume and attraction, respectively. This
EoS has poor accuracy and has mostly historical value. A class of cubic EoSs
can be captured by introducing two parameters, δ1 and δ2, and extending
the van der Waals expression:

p =
nRT

V −B
− D

(V + δ1B)(V + δ2B)
. (2.51)

By choosing δ1 = 1 and δ2 = 0 the Soave–Redlich–Kwong (see Soave [1972])
EoS is retrieved and by choosing δ1 = 1 +

√
2 and δ2 = 1 −

√
2 the Peng–

Robinson (see Peng and Robinson [1976]) EoS is obtained. For pure compo-
nents B = b and D = a(T ). The a and b parameters were by van der Waals
[2010] thought of as constants determined to fit experimental measurements.
This is also the case for b for the Soave–Redlich–Kwong and Peng–Robinson,
however, a is made temperature dependent. The two are calculated by

a = ac

(
1 +m

(
1−

√
T/Tc

))2
(2.52a)

b = bc, (2.52b)

where

ac = Ωa
(RTc)

2

pc
(2.53a)

bc = Ωb
RTc
pc

(2.53b)

m = α+ βω + γω2, (2.53c)

with ω being the acentric factor, and Ωa,Ωb, α, β, γ being parameters fitted
to experimental vapor pressures.

For mixtures, however, B = f(n) and D = g(T,n). The classical mixing
rules are

D = n2amix =
C∑

i=1

ni

C∑

j=1

njaij (2.54a)

nB = n2bmix =

C∑

i=1

ni

C∑

j=1

njbij (2.54b)
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with

aij = aji =
√
aiiajj(1− kij) (2.55a)

bij = bji =
1

2
(bii + bjj)(1− lij). (2.55b)

Above, kij and lij are normally referred to as binary interaction parameters,
and it is often assumed that lij = 0. In that case, the mixing rules for B
reduce to

B =
C∑

i=1

nibii. (2.56)

The PC-SAFT Equation of State

The perturbed-chain statistical association fluid theory (PC-SAFT) is an
EoS that is based on statistical mechanics, similar to the virial expan-
sion. It was formulated by Gross and Sadowski [2001] as a SAFT model
that accounts for hard-chain and attractive (dispersive) contributions. The
molecules are viewed as hard, interacting spheres. Initially, m̄ hard spheres
are assigned a reduced hard sphere Helmholtz energy. This energy is denoted
ãhs. Subsequently, the hard spheres move closer together, and the attraction
(dispersion) energy is denoted ãdisp. The hard spheres are assumed to form
chains when they are sufficiently close, and the hard chains are assigned a
hard chain contribution to the Helmholtz energy, denoted by ãchain. Then,
the hard chains are given interaction sites where two or more hard chains
may associate (e.g., through hydrogen bonding). The energy associated with
this is denoted ãassoc.

The PC-SAFT EoS is given on Helmholtz energy form by summing all
residual molar Helmholtz energy contributions (see Section 2.2.3 for more
information on residual thermodynamic functions):

ãr,v(T, v,x) =
Ar,v(T, V,N)

NkBT
= m̄ãhs + ãchain + ãdisp + ãassoc. (2.57)

Here, N =
∑C

i=1Ni denotes the total number of molecules, v = V/N denotes
the molecular volume, and xi = Ni/N denotes the mole fraction. Moreover,
A denotes the extensive Helmholtz energy. Also note that the associative
contribution to the Helmholtz energy potential was not considered here, as
it was not part of the original formulation of the PC-SAFT EoS [Gross and
Sadowski, 2001], but was rather introduced in a later revision of the EoS
(see [Gross and Sadowski, 2002]).
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In the original work of Gross and Sadowski [2001], the EoS was given
on dimensionless form. However, the EoS was rewritten in this dissertation
into the canonical variable set T, V,N . The EoS is then given as

Ar,v = m̄Ahs +Achain +Adisp +Aassoc, (2.58)

Ahs(T, V,N) =
NkBT

ξ0

[
3ξ1ξ2
1− ξ3

+
ξ32

ξ3(1− ξ3)2
+

(
ξ32
ξ23

− ξ0

)
ln(1− ξ3)

]
,

(2.59)
where ξi is an auxiliary variable. Furthermore,

Achain(T, V,N) = −kBT
C∑

i=1

Ni(mi − 1) ln ghs
ii , (2.60)

where ghs
ij is the radial distribution function between components. The dis-

persive terms are given as:

Adisp(T, V,N) = A1 +A2, (2.61)

A1(T, V,N) = −2πkBT

V
I1

C∑

i=1

C∑

j=1

NiNjmimj

(
εij
kBT

)
σ3ij , (2.62)

A2(T, V,N) = −πkBT
V

m̄C1I2

C∑

i=1

C∑

j=1

NiNjmimj

(
εij
kBT

)2

σ3ij . (2.63)

Here, I1 and I2 are integral approximations, and C1 denotes a compressibility
expression.

The molecular model is a modified square well potential similar (but not
identical) to eq. (2.43). The modified square well potential is given by

ϕ(r) =





∞, r < (σ − s1)

3ε, (σ − s1) ≤r < σ

− ε, σ ≤r < λσ

0, λσ ≤r,

(2.64)

where s1/σ = 0.12 was assumed. The temperature dependent segment di-
ameter is thus given as:

di(T ) =

∫ ∞

0

[
1− exp

(
− ϕ(r)

kBT

)]
dr

= σi

[
1− 0.12 exp

(
−3

εi
kBT

)] (2.65)
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The other additional relations required for the PC-SAFT EoS are given
by

m̄(N) =
C∑

i=1

ximi (2.66)

ξn(T, V,N) =
π

6V

C∑

i=1

Nimid
n
i , (2.67)

ghs
ij (T, V,N) =

1

1− ξ3
+

didj
di + dj

3ξ2
(1− ξ3)2

+

(
didj
di + dj

)2 2ξ22
(1− ξ3)3

(2.68)

C1(T, V,N) =

[
1 + m̄

8ξ3 − 2ξ23
(1− ξ3)4

+ (1− m̄)
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)2(2− ξ3)2

]−1

(2.69)

I1(T, V,N) =

6∑

i=0

aiξ
i
3 (2.70)

I2(T, V,N) =
6∑

i=0

biξ
i
3 (2.71)

ai(N) = a0i +
m̄− 1

m̄
a1i +

m̄− 1

m̄

m̄− 2

m̄
a2i (2.72)

bi(N) = b0i +
m̄− 1

m̄
b1i +

m̄− 1

m̄

m̄− 2

m̄
b2i. (2.73)

Here, ai and bi are model constants for the EoS. The combining rule for the
segment diameter is given by the Lorentz [1881] combining rule

σij =
1

2
(σi + σj) (2.74)

and the combining rule for the well depth is given by the Berthelot [1898]
combining rule:

εij =
√
εiεj(1− kij). (2.75)

2.2.2 Changes of State at Constant Composition

In many chemical processes a change of state at constant composition proves
useful. The discussion is also a prerequisite for the discussion to follow in
Section 2.2.3. The canonical variable sets of internal energy and enthalpy
involve the entropy, S. However, for this to be useful, it is required to have
knowledge of the other state variables as a function of entropy. The entropy
is not measurable or easily manipulable and for experimental studies this
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quantity has not been much used. Hence, EoSs are rarely developed in the
form x(S, y1, y2, . . . , yN ), where x and y are other quantities of interest.

One solution to the above is to move away from the canonical variable
sets and work in other more practical variable sets. The most common
involve T, V and T, p. Since (dU)n = T dS − p dV and (dH)n = T dS +
V dp in canonical coordinates, a total differential for the entropy must be
formulated in terms of T, V or T, p, depending on which coordinate set the
user sees fit. The total differentials of the entropy in these coordinates read

(dS(T, V,n))n =

(
∂S

∂T

)

V,n

dT +

(
∂S

∂V

)

T,n

dV

:=
CV

T
dT +

(
∂p

∂T

)

V,n

dV (2.76a)

(dS(T, p,n))n =

(
∂S

∂T

)

p,n

dT +

(
∂S

∂p

)

T,n

dp

:=
Cp

T
dT −

(
∂V

∂T

)

p,n

dp. (2.76b)

In the above, heat capacity definitions were used and Maxwell relations
(see Table 2.2) for Helmholtz and Gibbs energy were utilized to convert the
volume and pressure derivatives, respectively.

As a result of the discussion above, the total differential for entropy in
T, V -coordinates can be substituted to yield the total differential of inter-
nal energy in T, V -coordinates. If both dS and dV is formulated in T, p-
coordinates, then dU can be formulated in T, p-coordinates as well. Thus,
the differential of U in T, V is obtained by utilizing eq. (2.76a), and the
differential of U in T, p is obtained by combining

(dV )n =

(
∂V

∂T

)

p,n

dT +

(
∂V

∂p

)

T,n

dp (2.77)

with eq. (2.76b). The two differentials read

(dU(T, V,n))n = T (dS(T, V,n))n − p dV

= CV dT +

(
T

(
∂p

∂T

)

V,n

− p

)
dV (2.78a)
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(dU(T, p,n))n = T (dS(T, p,n))n − p(dV (T, p,n))n

=

(
Cp − p

(
∂V

∂T

)

p,n

)
dT

−
(
T

(
∂V

∂T

)

p,n

+ p

(
∂V

∂p

)

T,n

)
dp. (2.78b)

The canonical enthalpy differential is (dH)n = T dS + V dp. Hence,
the pressure differential must be substituted to get dH(T, V,n) whereas the
differential dH(T, p,n) does not need any further modifications apart from
inserting the total differential for entropy in T, p-coordinates. The pressure
differential is

(dp)n =

(
∂p

∂T

)

V,n

dT +

(
∂p

∂V

)

T,n

dV, (2.79)

and therefore

(dH(T, V,n))n = T (dS(T, V,n))n + V (dp(T, V,n))n

=

(
CV + V

(
∂p

∂T

)

V,n

)
dT

+

(
T

(
∂p

∂T

)

V,n

+ V

(
∂p

∂V

)

T,n

)
dV (2.80a)

(dH(T, p,n))n = T (dS(T, p,n))n + V dp

= Cp dT +

(
V − T

(
∂V

∂T

)

p,n

)
dp. (2.80b)

The non-canonical representation of the energy potentials U and H is
not completely unproblematic. The canonical representation of the energy
potentials contains a complete thermodynamic description of the system.
They are therefore fundamental relations, meaning that all thermodynamic
information that can be acquired about the system rests in the canonical
description. Alternatively, if all equations of state are known, they may be
substituted into the Euler relation eq. (2.17a) to recover the fundamental
relation. This major strength of the canonical coordinate set is lost when the
energy potentials are formulated in another, non-canonical coordinate set.
As a result, additional descriptions are required, such as entropy in the same
non-canonical coordinates. The chemical potential is also more troublesome
to obtain in the non-canonical world.
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2.2.3 Residual Functions

Residual or departure functions are defined as the deviation of some quantity
M from ideal gas at the same T, V,n or T, p,n, hence, M r,v =M(T, V,n)−
M ig(T, V,n) or M r,p =M(T, p,n)−M ig(T, p,n). The notation r,v and r,p
denotes that the state is specified in T, V,n or T, p,n, respectively. The
ideal gas limit is either seen as V → ∞ or p → 0. Both of these provide
important starting points for this discussion, since the residuals vanish at
these limits. This is due to the transition between a real fluid and ideal gas,
which happens at the mentioned limits.

Assume M(T, V,n) has an EoS defined by
(
∂M
∂V

)
T,n

. The corresponding

EoS for an ideal gas is given by
(
∂M ig

∂V

)
T,n

. When V → ∞ the EoS specifies

the same value as the ideal gas EoS. Therefore, the argument is zero-valued
at V → ∞. Assuming that the integrated difference vanish at V → ∞, the
residual function of M is defined by integrating along an isotherm from ∞
to the volume of interest V

M r,v(T, V,n) =

∫ V

∞

((∂M(T, ν,n)

∂ν

)

T,n

−
(
∂M ig(T, ν,n)

∂ν

)

T,n

)
dν,

(2.81)
which, by the discussion above, is finite.

The discussion for M r,p is similar to the one for M r,v: the integrand is
zero-valued at the p → 0. Assuming the integrated difference between the
EoSs vanish at p→ 0, the integral along an isotherm from 0 to the pressure
of interest defines the residual at T, p,n:

M r,p(T, p,n) =

∫ p

0

((∂M(T, π,n)

∂π

)

T,n

−
(
∂M ig(T, π,n)

∂π

)

T,n

)
dπ.

(2.82)
It is stressed that whether the system is specified in T, p,n or T, V,n,

the value of M should be the same (given the pressure, p, corresponds to
the volume, V ). Thus, M(T, p,n) = M(T, V,n), and a difference in the
residuals above must therefore come from a different ideal gas state. For
an ideal gas, the temperature is T = p0V0

NR , where p0 and V0 is the pressure
and volume where the gas becomes ideal. At this state the thermodynamic
function assumes the value of M ig(p0, V0,n). Any of the two first arguments
may be replaced by the corresponding temperature to give M ig(T, V0,n) =
M ig(T, p0,n). Hence, the function value is the same irrespective of whether
p0 or V0 is specified.

Whenever the pressure (or volume) assumes some other value than the
ideal gas limit, there is a difference in the function value. This difference
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comes from the integral from V0 to V and p0 to p. Inserting for ideal gas in
eq. (2.80a) and eq. (2.80b) results in the coefficients for dV and dp canceling.
Therefore, the enthalpy is only a function of temperature and composition
for ideal gas. When holding these quantities constant, i.e., dT = 0 and
dn = 0, the differentials (dH ig(T, V,n))T,n = (dH ig(T, p,n))T,n = 0. The
same argument holds for internal energy. Consequently,

∫ V

V0

(
∂H ig(T, ν,n)

∂ν

)

T,n

dν = 0 (2.83a)

∫ p

p0

(
∂H ig(T, π,n)

∂π

)

T,n

dπ = 0, (2.83b)

and whether the residual is given at T, V,n or T, p,n, they are equal, i.e.

Hr,v = Hr,p, and (2.84)
U r,v = U r,p. (2.85)

These are special cases that appear from canceling terms in the total differ-
entials when inserted for ideal gas.

The Helmholtz Approach

The equalities in eq. (2.84) and eq. (2.85) do not apply for all thermodynamic
functions. For instance, Helmholtz energy has two different residuals. The
most natural choice is to evaluate the residual at the canonical variable set
(T, V,n). However, most discussions in literature happen in T, p,n and as
such, Ar,p has gained more attention than Ar,v, even though both notations
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are equally uncommon. The differences come from

Aig(T, V,n)−Aig(T, V (p),n)

=

∫ V

V0

(
∂Aig

∂ν

)

T,n

dν −
∫ p

p0

(
∂Aig

∂π

)

T,n

dπ

= −
∫ V

V0

p(ν) dν +

∫ p

p0

π

(
∂V

∂π

)

T,n

dπ

= −NRT ln
V

V0
−
∫ p

p0

NRT

π
dπ

= −NRT ln
V

V0
−NRT ln

p

p0

= −NRT ln
pV

p0V0

= −NRT ln
ZNRT

NRT
= −NRT lnZ,

(2.86)

where Z = pV
NRT is the compressibility factor. Here the actual pressure and

volume of the fluid are denoted p and V and the ideal gas pressure and
volume are denoted p0 and V0.

From

A = Ar,v(T, V,n) +Aig(T, V,n)

= Ar,p(T, V (p),n) +Aig(T, V ig(p),n),
(2.87)

the differences between the residual Helmholtz energy at T, p,n and T, V,n
are

Ar,p = Ar,v +Aig(T, V,n)−Aig(T, V ig(p),n)

= Ar,v −NRT lnZ.
(2.88)

This is a result that is frequently encountered. A similar procedure may be
applied for entropy to obtain

Sr,p = Sr,v +NR lnZ. (2.89)

The important results of eq. (2.84) and eq. (2.89) along with the two Leg-
endre transformations

H = A+ TS + pV (2.90)
G = H − TS (2.91)
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yield

Gr,p = Hr,p − TSr,p

= Hr,v − TSr,p

= Ar,v + TSr,v + pr,vV − T (Sr,v +NR lnZ)

= Ar,v + pV −NRT −NRT lnZ.

(2.92)

All thermodynamic energy functions and their possible forms have relations
as defined originally. For instance,

(
∂G
∂p

)
T,n

= V and
(
∂Gig

∂p

)
T,n

= V ig.

Therefore,
(
∂Gr,p

∂p

)
T,n

=
(
∂G
∂p

)
T,n

−
(
∂Gig

∂p

)
T,n

= V −V ig = V r,p. Similarly,

Sr,v = −
(
∂Ar,v

∂T

)

V,n

(2.93a)

Cr,v
V = −T

(
∂2Ar,v

∂T 2

)

V,n

(2.93b)

for the Helmholtz function.
The residual isobaric heat capacity can be found by first applying eq. (2.33)

to the entropy S(T, V,n), and then removing the ideal gas contribution:

Cp = T

(
∂S

∂T

)

p,n

= T

((
∂S

∂T

)

V,n

+

(
∂S

∂V

)

T,n

(
∂V

∂T

)

p,n

)

= CV + T

(
∂p

∂T

)

V,n

(
∂V

∂T

)

p,n

= CV − T

(
∂p
∂T

)2
V,n(

∂p
∂V

)
T,n

.

(2.94)

Here a Maxwell’s relation was utilized for the entropy derivative, and the
triple rule was used to transform the volume derivative. By inserting ideal
gas in the pressure derivatives, eq. (2.94) yields C ig

p − C ig
V = NR. By sub-

tracting this result from the original equation eq. (2.94)

Cr,p
p − Cr,v

V = −T

(
∂p
∂T

)2
V,n(

∂p
∂V

)
T,n

−NR. (2.95)
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The Fugacity Coefficient

An important concept in chemical engineering is the fugacity coefficient,
which is a shorthand notation for the residual chemical potential at specified
T, p,n, i.e.

lnφi :=
1

RT
µr,p
i =

1

RT

(
∂Gr,p

∂ni

)

T,p

. (2.96)

Please note that all nj ̸=i are also held constant under the derivation but are
omitted for brevity, as will be the case further into this discussion as well.
Equation (2.96) requires the usage of temperature and pressure and does
not simplify calculations in any way. However, it is common practice and
hence it is also introduced here.

If the Helmholtz energy potential is to be used to obtain lnφi, caution
must be exercised. Since one of the variables held constant under the differ-
entiation is pressure, this implicitly defines the volume of the fluid and the
volume of the corresponding ideal gas. This means that Z = V

V ig is in turn
also held constant under the differentiation, and eq. (2.96) is expressed as

lnφi =
1

RT

(
∂Ar,p

∂ni

)

T,V (p),V ig(p)

=
1

RT

(
∂Ar,v

∂ni

)

T,V

− lnZ.

(2.97)

This argument also provides an alternative way of arriving at eq. (2.89).
The derivatives of the fugacity coefficient are derived by utilizing the

triple rule (see eq. (2.27)), eq. (2.33), and eq. (2.97). Hence,

(
∂ lnφi

∂T

)

p,n

=

∂

∂T

(
1

RT

(
∂Ar,v

∂ni

)

T,V

− lnZ

)

p,n

=
∂

∂T

(
1

RT

(
∂Ar,v

∂ni

)

T,V

− lnZ

)

V,n

+
∂

∂V

(
1

RT

(
∂Ar,v

∂ni

)

T,V

− lnZ

)

T,n

(
∂V

∂T

)

p,n
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=
1

RT 2

(
T

(
∂2Ar,v

∂T∂ni

)

V

−
(
∂Ar,v

∂ni

)

T,V

)
− T

p

T
(

∂p
∂T

)
V,n

− p

T 2

+

(
1

RT

(
∂2Ar,v

∂V ∂ni

)

T

− 1

pV

(
V

(
∂p

∂V

)

T,n

+ p

))(
∂V

∂T

)

p,n

. (2.98)

At this point, the triple rule eq. (2.27) is employed to replace
(

∂p
∂T

)
V,n

. Two

further uses of the triple rule are also shown, because they are utilized in
the subsequent derivation

(
∂p

∂T

)

V,n

= −
(
∂p

∂V

)

T,n

(
∂V

∂T

)

p,n

, constant n (2.99a)
(
∂p

∂ni

)

T,V

= −
(
∂p

∂T

)

V,n

(
∂T

∂ni

)

p,V

, constant V (2.99b)
(
∂V

∂T

)

T,n

= −
(
∂V

∂ni

)

T,p

(
∂ni
∂T

)

p,V

, constant p. (2.99c)

When eq. (2.99a) is inserted into eq. (2.98), the result is
(
∂ lnφi

∂T

)

p,n

=

1

RT 2

(
T

(
∂2Ar,v

∂T∂ni

)

V

−
(
∂Ar,v

∂ni

)

T,V

)

+
�����������1

p

(
∂p

∂V

)

T,n

(
∂V

∂T

)

p,n

+
1

T

−
(

1

RT

(
∂pr,v

∂ni

)

T,V

+
��

���
��1

p

(
∂p

∂V

)

T,n

+
1

RT

(
∂pig

∂ni

)

T,V

)(
∂V

∂T

)

p,n

=
1

RT 2

(
T

(
∂2Ar,v

∂T∂ni

)

V

−
(
∂Ar,v

∂ni

)

T,V

)
+

1

T

− 1

RT

(
∂p

∂ni

)

T,V

(
∂V

∂T

)

p,n

=
1

RT 2

(
T

(
∂2Ar,v

∂T∂ni

)

V

−
(
∂Ar,v

∂ni

)

T,V

)
+

1

T
− V i

RT

(
∂p

∂T

)

V,n

.

(2.100)

The triple rule in eq. (2.99) was used on line three and six: at line three,
eq. (2.99a) was used, and at line six, eq. (2.99b) and eq. (2.99c) were used.
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Also, a new notation is introduced: M i =
(
∂M
∂ni

)
T,p

which is the partial

molar property of M . Hence, V i is the partial molar volume of the mixture.
The pressure derivative is found by using the fundamental theorem of

calculus on eq. (2.82). The fundamental theorem of calculus is given as
[Adams and Essex, 2013]:

f(x) =
d
dx

∫ x

a
f(t)dt. (2.101)

By inserting M = G into eq. (2.82) and employing eq. (2.101) with x = p,
we obtain

(
∂Gr,p

∂p

)

T,n

=

(
∂G

∂p

)

T,n

−
(
∂Gig

∂p

)

T,n

= V − nRT

p
. (2.102)

Taking the compositional derivative of eq. (2.102) and dividing through by
RT yields:

(
∂ lnφi

∂p

)

T,n

=
V i

RT
− 1

p
. (2.103)

Finally, the same procedure as for the temperature derivative is employed
for composition, which yields:

(
∂ lnφi

∂nj

)

T,p

=
1

RT

(
∂2Ar,v

∂ni∂nj

)

T,V

+
1

N
+

1

RT

(
∂p
∂ni

)
T,V

(
∂p
∂nj

)
T,V(

∂p
∂V

)
T,n

. (2.104)

Partial Molar Quantities

It was previously mentioned that partial molar quantities are defined as
M i =

(
∂M
∂ni

)
T,p

. This is also a concept that requires the usage of T, p,n, but

it has for historical reasons received its own notation. Specifically important
are the partial molar enthalpy, entropy and Gibbs energy. The partial molar
enthalpy indicates how much heat is absorbed or released when a small
amount of a component is added to a mixture at constant temperature
and pressure. The partial molar Gibbs energy is by definition the chemical
potential and this is highly relevant for equilibrium calculations. The partial
molar entropy can at least be used as a consistency check, since Gi = H i −
TSi.
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The partial molar enthalpy can be derived from its definition H i =(
∂H
∂ni

)
T,p

. The residual of this quantity is found by using eq. (2.33)

Hr,p
i =

∂

∂ni
(Ar,v + TSr,v + pV −NRT )T,p

=
∂

∂ni
(Ar,v + TSr,v + pV −NRT )T,V

+
∂

∂V
(Ar,v + TSr,v + pV −NRT )T,n

(
∂V

∂ni

)

T,p

=

(
∂Ar,v

∂ni

)

T,V

− T

(
∂2Ar,v

∂T∂ni

)

V

+

��
���

��
V

(
∂p

∂ni

)

T,V

−RT

+

((
∂Ar,v

∂V

)

T,n

− T

(
∂2Ar,v

∂T∂V

)

n

+ p+
���

����
V

(
∂p

∂V

)

T,n

)(
∂V

∂ni

)

T,p

=

(
∂Ar,v

∂ni

)

T,V

− T

(
∂2Ar,v

∂T∂ni

)

V

−RT

+

(
−pr,v − T

(
∂2Ar,v

∂T∂V

)

n

+ p

)(
∂V

∂ni

)

T,p

=

(
∂Ar,v

∂ni

)

T,V

− T

(
∂2Ar,v

∂T∂ni

)

V

−RT

+ T

(
pig

T
+

(
∂pr,v

∂T

)

V,n

)(
∂V

∂ni

)

T,p

=

(
∂Ar,v

∂ni

)

T,V

− T

(
∂2Ar,v

∂T∂ni

)

V

−RT + TV i

(
∂p

∂T

)

V,n

= −
(
T

(
∂2Ar,v

∂T∂ni

)

V

−
(
∂Ar,v

∂ni

)

T,V

+RT − TV i

(
∂p

∂T

)

V,n

)
.

(2.105)

By dividing eq. (2.105) through by RT 2 it is seen that

Hr,p
i

RT 2
= −

(
∂ lnφi

∂T

)

p,n

. (2.106)

By definition
Gr,p

i

RT
= lnφi, (2.107)

and

Sr,p
i =

Hr,p
i −Gr,p

i

T
. (2.108)
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The Gibbs Approach

If the equation of state can be written as V = g(T, p,n), then the residual
Gibbs energy may be evaluated by inserting M = G in eq. (2.82)

Gr,p(T, p,n) =

∫ p

0

((∂G
∂π

)

T,n

−
(
∂G

∂π

)ig

T,n

)
dπ

=

∫ p

0
(V − V ig) dπ.

(2.109)

As discussed in the Helmholtz approach, normal relations for thermodynam-
ics apply to the residual Gibbs energy as well. Thus,

Sr,p(T, p,n) = −
(
∂Gr,p

∂T

)

p,n

(2.110a)

Cr,p
p (T, p,n) = −T

(
∂2Gr,p

∂T 2

)

p,n

(2.110b)

Cr,p
V − Cr,p

p = T

(
∂V
∂T

)2
p,n(

∂V
∂p

)
T,n

+NR (2.110c)

Hr,p(T, p,n) = Gr,p + TSr,p. (2.110d)

Since partial molar quantities are defined as compositional derivatives at
constant T, p, their derivations are readily in terms of Gibbs energy

Gr,p
i =

(
∂Gr,p

∂ni

)

T,p

:= µr,p
i := RT lnφi (2.111a)

Sr,p
i = −

(
∂2Gr,p

∂T∂ni

)

p

(2.111b)

Hr,p
i = Gr,p

i + TSr,p
i . (2.111c)

2.2.4 Residual Derivatives for Selected Equations of State

So far, all considerations of residual properties are especially concerned with
the Helmholtz and Gibbs energies. The discussion did not consider a speci-
fied EoS, and the relations are therefore general and valid for any EoS that
can be written in the form V (T, p,n) or p(T, V,n). In this subsection, some
selected EoSs are chosen and their first and second derivatives are shown.
The chosen EoSs were presented in Section 2.2.1 and are the virial EoS
truncated after the second term, a class of cubic EoSs, and the PC-SAFT
EoS.
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The Virial Equation of State

The virial equation of state is, if truncated after the second term, one of
the very few EoSs that lets itself rewrite from a pressure-explicit form to
a volume-explicit form. For this reason, two explicit implementations can
be made: one T, V,n-implementation in Helmholtz energy, and one T, p,n-
implementation in Gibbs energy. Both eq. (2.81) and eq. (2.82) may be used
for the corresponding canonical energy surface, that is Helmholtz and Gibbs
energy, respectively.

T, V,n
By utilizing eq. (2.81), residual Helmholtz energy may be calculated. Noting
that p is given by the virial EoS

Ar,v(T, V,n) =

∫ V

∞

((∂A
∂ν

)
T,n

−
(∂Aig

∂ν

)
T,n

)
dν

=

∫ V

∞
(pig − p) dν

=

∫ V

∞

(
NRT

ν
− NRT

ν −B(T,n)

)
dν

= −NRT ln
V −B(T,n)

V
.

(2.112)

The first order derivatives are

(
∂Ar,v

∂T

)

V,n

= −NR
(
ln
V −B

V
− T

V −B

(
∂B

∂T

)

n

)
(2.113a)

(
∂Ar,v

∂V

)

T,n

= −NRT B

V (V −B)
(2.113b)

(
∂Ar,v

∂ni

)

T,V

= −RT
(
ln
V −B

V
− N

V −B

(
∂B

∂ni

)

T

)
(2.113c)

where

(
∂B

∂T

)

n

=
1

N

C∑

i=1

ni

C∑

j=1

nj
dbij
dT

(2.114a)

(
∂B

∂ni

)

T

=
2
∑C

j=1 njbij −B

N
, (2.114b)
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and the second order derivatives are
(
∂2Ar,v

∂T 2

)

V,n

=
NR

V −B

(
2

(
∂B

∂T

)

n

+
T

V −B

(
∂B

∂T

)2

n

+ T

(
∂2B

∂T 2

)

n

)
(2.115a)

(
∂2Ar,v

∂V 2

)

T,n

=
NRTB

V (V −B)

( 1

V
+

1

V −B

)
(2.115b)

(
∂2Ar,v

∂ni∂nj

)

T,V

=
RT

V −B

(( ∂B
∂ni

)

T

+

(
∂B

∂nj

)

T

+
N

V −B

(
∂B

∂ni

)

T

(
∂B

∂nj

)

T

+N

(
∂2B

∂ni∂nj

)

T

)
(2.115c)

(
∂2Ar,v

∂T∂V

)

n

= − NR

V −B

(B
V

+
T

V −B

(
∂B

∂T

)

n

)
(2.115d)

(
∂2Ar,v

∂T∂ni

)

V

= −R
(
ln
V −B

V
− N

V −B

(
∂B

∂ni

)

T

− T

V −B

((∂B
∂T

)

n

+N
(( ∂2B

∂T∂ni

)

+

(
∂B
∂ni

)
T

(
∂B
∂T

)
n

V −B

)))
(2.115e)

(
∂2Ar,v

∂V ∂ni

)

T

= − RT

V −B

(B
V

+
N

V −B

(
∂B

∂ni

)

T

)
(2.115f)

where

(
∂2B

∂T 2

)

n

=
1

N

C∑

i=1

ni

C∑

j=1

nj
d2bij
dT 2

(2.116a)

(
∂2B

∂ni∂nj

)

T

=
2bij −

(
∂B
∂ni

)
T
−
(

∂B
∂nj

)
T

N
(2.116b)

(
∂2B

∂T∂ni

)
=

2
∑C

j=1 nj
dbij
dT −

(
∂B
∂T

)
n

N
. (2.116c)

The integrated pair-potential of components i and j results in the virial
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coefficients bij(T ). The temperature derivatives of these are

dbij
dT

= −bhs
ij εij

(1− λ3ij)

kT 2
exp

( εij
kT

)
(2.117a)

d2bij
dT 2

= −bhs
ij εij(1− λ3ij)



− εij

kT 2 exp
(
εij
kT

)
kT 2 − 2kT exp

(
εij
kT

)

(kT 2)2




= −dbij
dT

εij + 2kT

kT 2
.

(2.117b)

T, p,n
The residual Gibbs energy is written

Gr,p(T, p,n) =

∫ p

0

((∂G
∂π

)

T,n

−
(
∂G

∂π

)ig

T,n

)
dπ

=

∫ p

0
(V − V ig) dπ

=

∫ p

0

(
NRT

π
+B − NRT

π

)
dπ

= Bp.

(2.118)

The first order derivatives are

(
∂Gr,p

∂T

)

p,n

= p

(
∂B

∂T

)

n

(2.119a)
(
∂Gr,p

∂p

)

T,n

= B (2.119b)
(
∂Gr,p

∂ni

)

T,p

= p

(
∂B

∂ni

)

T

, (2.119c)
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and the second derivatives are
(
∂2Gr,p

∂T 2

)

p,n

= p

(
∂2B

∂T 2

)

n

(2.120a)

(
∂2Gr,p

∂p2

)

T,n

= 0 (2.120b)

(
∂2Gr,p

∂ni∂nj

)

T,p

= p

(
∂2B

∂ni∂nj

)

T

(2.120c)

(
∂2Gr,p

∂T∂p

)

n

=

(
∂B

∂T

)

n

(2.120d)
(
∂2Gr,p

∂T∂ni

)

p

= p

(
∂2B

∂T∂ni

)
(2.120e)

(
∂2Gr,p

∂p∂ni

)

T

=

(
∂B

∂ni

)

T

. (2.120f)

The first and second derivatives of the virial coefficient of the mixture,
B(T,n), are given by eq. (2.114) and eq. (2.116), and the derivatives of
the cross virial coefficients, bij(T ), are given by eq. (2.117).

Cubic Equations of State

T, V,n
Let p(T, V,n) be given by eq. (2.51). Then

Ar,v(T, V,n) =

∫ V

∞

((∂A
∂ν

)
T,n

−
(∂Aig

∂ν

)
T,n

)
dν

=

∫ V

∞
(pig − p) dν

=

∫ V

∞

(
NRT

ν
−
(
NRT

V −B
− D

(V + δ1B)(V + δ2B)

))
dν

= −NRT ln
V −B

V
− D(T )

B(δ1 − δ2)
ln
V + δ1B

V + δ2B
.

(2.121)

The following implementation is based on Michelsen and Mollerup [2007].
Let the reduced residual Helmholtz energy be given as

F = F (T, V,N,B,D) =
Ar,v

RT
= −Ng(V,B)− D(T,n)

T
f(V,B), (2.122)
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where

g(V,B) = ln
V −B

V
(2.123a)

f(V,B) =
1

RB(δ1 − δ2)
ln
V + δ1B

V + δ2B
. (2.123b)

The first order derivatives are

(
∂F

∂T

)

V,n

= FT + FDDT (2.124a)
(
∂F

∂V

)

T,n

= FV (2.124b)
(
∂F

∂ni

)

T,V

= FN + FBBi + FDDi, (2.124c)

where

FT =
D

T 2
(2.125a)

FV = −NgV − D

T
fV (2.125b)

FN = −g (2.125c)

FB = −NgB − D

T
fB (2.125d)

FD = − f

T
(2.125e)

gV =
B

V (V −B)
(2.125f)

gB = − 1

V −B
(2.125g)

fV = − 1

R(V + δ1B)(V + δ2B)
(2.125h)

fB = −f + V fV
B

. (2.125i)
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The second order derivatives are given as
(
∂2F

∂T 2

)

V,n

= FTT + 2FTD + FDDTT (2.126a)

(
∂2F

∂V 2

)

T,n

− = FV V (2.126b)

(
∂2F

∂ni∂nj

)

T,V

= FNB(Bi +Bj) + FBD(BiDj +BjDi)

+ FBBij + FBBBiBj + FDDij (2.126c)
(
∂2F

∂T∂V

)

n

= FTV + FV DDT (2.126d)
(

∂2F

∂T∂ni

)

V

= (FTB + FBDDT )Bi + FTDDi + FDDT i (2.126e)
(

∂2F

∂V ∂ni

)

T

= FV N + FV BBi + FV DDi, (2.126f)

where

FTT = −2
FT

T
(2.127a)

FV V = −NgV V − D

T
fV V (2.127b)

FBB = −NgBB − D

T
fBB (2.127c)

FTV =
D

T 2
fV (2.127d)

FTB =
DfB
T 2

(2.127e)

FTD =
f

T 2
(2.127f)

FV N = −gV (2.127g)

FV B = −NgV B − D

T
fV B (2.127h)

FV D = −fV
T

(2.127i)

FNB = −gB (2.127j)

FBD = −fB
T

(2.127k)

gV V = − 1

(V −B)2
+

1

V 2
(2.127l)
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gBB = − 1

(V −B)2
(2.127m)

gV B =
1

(V −B)2
(2.127n)

fV V =
1

RB(δ1 − δ2)

(
− 1

(V + δ1B)2
+

1

(V + δ2B)2

)
(2.127o)

fBB = −2fB + V fV B

B
(2.127p)

fV B = −2fV + V fV V

B
. (2.127q)

In this modular implementation components can be exchanged with relative
ease without having to do a new implementation.

T, p,n
The cubic EoS is explicit in T, V,n and hence, a single value for pressure is
obtained by specifying the coordinate set T, V,n. The resulting implemen-
tation of Ar,v given above is thus explicit. An alternative to the approach
with T, V,n as independent variables is to choose T, p,n. This means that
the T, V,n relation must be inverted. Due to the cubic nature of the EoS,
three values exist for V when specifying the coordinate set T, p,n.

For a given temperature, pressure and composition, the volume can be
calculated. Cubic EoSs can be solved analytically, however, a general ap-
proach is to find the volume by Newton–Raphson iteration on the pressure
equation. This volume can be used to initialize the T, V,n-implementation,
and the residuals at T, p,n are then available from the previous discussion in
Section 2.2.3. In other words, M r,p can be computed when M r,v is known.

The volume, V , ranges from B to ∞, however, β := B/V ∈ (0, 1]. The
Newton–Raphson iteration scheme can therefore be applied on β, and V can
be retrieved from B/β. The pressure equation on residual form reads

h(T, p, V,n) =
NRT

V
−RT

(
∂F

∂V

)

T,n

− p = 0. (2.128)

This is expressed in terms of β by multiplying by B/NRT

h(T, p, β,n) = β +B

(
gV +

D

NT
fV

)
− pB

NRT
= 0, (2.129)

where its derivative with respect to β is
(
∂h

∂β

)

T,p,n

= 1−
(
B

β

)2(
gV V +

D

NT
fV V

)
. (2.130)
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The expression for a Newton–Raphson iteration

βν+1 = βν − h(T, p, β,n)(
∂h
∂β

)
T,p,n

(2.131)

along with eq. (2.129) and eq. (2.130) will find the volume, given a reasonable
initial volume is provided, see e.g., eq. (16) from Paper I in Chapter 4.
Assuming the mixture is a gas phase, a good initial estimate is ideal gas,
hence β0 = pB/(NRT ).

The PC-SAFT Equation of State

T, V,n
For the PC-SAFT EoS, Ar,v(T, V,N) is given rather than p(T, V,N). The
expressions were given previously in Section 2.2.1, and consists of eqs. (2.58)
to (2.60), (2.62), (2.63) and (2.65) to (2.73). Since the expression for Ar,v is
involved, the derivatives also became lengthy. For readability, the derivatives
are split into sections for each of its independent variables.

It is noted that there are a few similarities with the derivations in this
work and those of Gross and Sadowski [2001]. This only applies to the
first derivatives, since no higher order derivatives were given in the original
work. The similarities are related to those of the auxiliary variables given
in eqs. (2.65) to (2.73). Since Gross and Sadowski [2001] differentiated with
respect to mole fractions without respecting

∑C
i=1 xi = 1, their mole frac-

tion derivatives take a similar form as the compositional derivatives given
here. On the other hand, the Helmholtz energy function derivatives with
respect to temperature and composition given here are different from the
ones given by Gross and Sadowski [2001] due to containing the term NkBT .
Furthermore, an additional auxiliary variable was introduced by Gross and
Sadowski [2001], namely C2. This variable has not been utilized in this work.

Derivatives with respect to T :

Ar,v
T = m̄Ahs

T +Achain
T +A1T +A2T , (2.132)

Ahs
T =

Ahs

T
+
NkBT

ξ0

[3ξ1T ξ2
1− ξ3

+
3ξ1ξ2T
1− ξ3

+
3ξ1ξ2ξ3T
(1− ξ3)2

+
3ξ22ξ2T

ξ3(1− ξ3)2
− ξ32ξ3T
ξ23(1− ξ3)2

+
2ξ32ξ3T

ξ3(1− ξ3)3

+
(3ξ22ξ2T

ξ23
− 2ξ32ξ3T

ξ33

)
ln(1− ξ3)−

(ξ32
ξ23

− ξ0

) ξ3T
1− ξ3

]
(2.133)
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Achain
T =

Achain

T
− kBT

C∑

i=1

Ni(mi − 1)
ghs
iiT

ghs
ii

(2.134)

A1T =
I1T
I1
A1 (2.135)

A2T = −A2

T
+
C1T

C1
A2 +

I2T
I2
A2 (2.136)

Furthermore, the derivatives concerning T of the additional relations are:

diT =
3εi
kBT 2

(di − σi), (2.137)

ξnT =
π

6V

C∑

i=1

Nimind
n−1
i diT (2.138)

ghs
ijT =

ξ3T
(1− ξ3)2

+
[ diTdj
di + dj

+
didjT
di + dj

− didjdiT
(di + dj)2

− didjdjT
(di + dj)2

] 3ξ2
(1− ξ3)2

+
didj
di + dj

[ 3ξ2T
(1− ξ3)2

+
6ξ2ξ3T

(1− ξ3)3

]

+
didj
di + dj

[ diTdj
di + dj

+
didjT
di + dj

− didjdiT
(di + dj)2

− didjdjT
(di + dj)2

] 4ξ22
(1− ξ3)3

+
( didj
di + dj

)2[ 4ξ2ξ2T
(1− ξ3)3

+
6ξ22ξ3T
(1− ξ3)4

]

(2.139)

C1T = −C2
1

[
4m̄ξ3T

( 2− ξ3
(1− ξ3)4

+
8ξ3 − 2ξ23
(1− ξ3)5

)

+ 2ξ3T (1− m̄)
(10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)2(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)2
+

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)]
(2.140)

I1T =
6∑

i=0

iaiξ
i−1
3 ξ3T (2.141)

I2T =
6∑

i=0

ibiξ
i−1
3 ξ3T (2.142)
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Derivatives with respect to V :

Ar,v
V = m̄Ahs

V +Achain
V +A1V +A2V , (2.143)

Ahs
V = −ξ0V

ξ0
Ahs +

NkBT

ξ0

[3ξ1V ξ2
1− ξ3

+
3ξ1ξ2V
1− ξ3

+
3ξ1ξ2ξ3V
(1− ξ3)2

+
3ξ22ξ2V

ξ3(1− ξ3)2
− ξ32ξ3V
ξ23(1− ξ3)2

+
2ξ32ξ3V

ξ3(1− ξ3)3

+
(3ξ22ξ2V

ξ23
− 2ξ32ξ3V

ξ33
− ξ0V

)
ln(1− ξ3)−

(ξ32
ξ23

− ξ0

) ξ3V
1− ξ3

]
,

(2.144)

Achain
V = −kBT

C∑

i=1

Ni(mi − 1)
ghs
iiV

ghs
ii

, (2.145)

A1V = −A1

V
+
I1V
I1
A1, (2.146)

A2V = −A2

V
+
C1V

C1
A2 +

I2V
I2
A2. (2.147)

Furthermore, the derivatives concerning V of the additional relations are:

ξnV = −ξn
V

(2.148)

ghs
ijV =

ξ3V
(1− ξ3)2

+
didj
di + dj

[ 3ξ2V
(1− ξ3)2

+
6ξ2ξ3V
(1− ξ3)3

]

+
( didj
di + dj

)2[ 4ξ2ξ2V
(1− ξ3)3

+
6ξ22ξ3V
(1− ξ3)4

] (2.149)

C1V = −C2
1

[
4m̄ξ3V

( 2− ξ3
(1− ξ3)4

+
8ξ3 − 2ξ23
(1− ξ3)5

)

+ 2ξ3V (1− m̄)
(10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)2(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)2
+

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)]
(2.150)

I1V =
6∑

i=0

iaiξ
i−1
3 ξ3V (2.151)

I2V =
6∑

i=0

ibiξ
i−1
3 ξ3V (2.152)
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Derivatives with respect to Nk:

Ar,v
k = m̄Ahs

k +Ahsm̄k +Achain
k +A1k +A2k, (2.153)

Ahs
k =

Ahs

N
− ξ0k

ξ0
Ahs +

NkBT

ξ0

[3ξ1kξ2
1− ξ3

+
3ξ1ξ2k
1− ξ3

+
3ξ1ξ2ξ3k
(1− ξ3)2

+
3ξ22ξ2k

ξ3(1− ξ3)2
− ξ32ξ3k
ξ23(1− ξ3)2

+
2ξ32ξ3k

ξ3(1− ξ3)3

+
(3ξ22ξ2k

ξ23
− 2ξ32ξ3k

ξ33
− ξ0k

)
ln(1− ξ3)−

(ξ32
ξ23

− ξ0

) ξ3k
1− ξ3

]
,

(2.154)

Achain
k = −kBT (mk − 1) ln ghs

kk − kBT
C∑

i=1

Ni(mi − 1)
ghs
iik

ghs
ii

, (2.155)

A1k =
I1k
I1
A1 −

4πkBT

V
I1

C∑

i=1

Nimimk

(
εik
kBT

)
σ3ik, (2.156)

A2k =
m̄k

m̄
A2 +

C1k

C1
A2 +

I2k
I2
A2

− 2πkBT

V
m̄C1I2

C∑

i=1

Nimimk

(
εik
kBT

)2

σ3ik,

(2.157)

Furthermore, the derivatives concerning Nk of the additional relations are:

m̄k =
mk − m̄

N
(2.158)

ξnk =
π

6V
mkd

n
k (2.159)

ghs
ijk =

ξ3k
(1− ξ3)2

+
didj
di + dj

[ 3ξ2k
(1− ξ3)2

+
6ξ2ξ3k

(1− ξ3)3

]

+
( didj
di + dj

)2[ 4ξ2ξ2k
(1− ξ3)3

+
6ξ22ξ3k

(1− ξ3)4

] (2.160)

C1k = −C2
1

[
4m̄ξ3k

( 2− ξ3
(1− ξ3)4

+
8ξ3 − 2ξ23
(1− ξ3)5

)

+ 2ξ3k(1− m̄)
(10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)2(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)2
+

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)

+ 2m̄k
4ξ3 − ξ23
(1− ξ3)4

− m̄k
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)2(2− ξ3)2

]

(2.161)
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I1k =
6∑

i=0

[aikξ
i
3 + iaiξ

i−1
3 ξ3k] (2.162)

I2k =
6∑

i=0

[bikξ
i
3 + ibiξ

i−1
3 ξ3k] (2.163)

aik =
m̄k

m̄2
a1i +

(3m̄k

m̄2
− 4m̄k

m̄3

)
a2i (2.164)

bik =
m̄k

m̄2
b1i +

(3m̄k

m̄2
− 4m̄k

m̄3

)
b2i (2.165)

Derivatives with respect to V, V :

Ar,v
V V = m̄Ahs

V V +Achain
V V +A1V V +A2V V , (2.166)

Ahs
V V = −ξ0V V

ξ0
Ahs − 2

ξ0V
ξ0
Ahs

V +
NkBT

ξ0

[3ξ1V V ξ2
1− ξ3

+
6ξ1V ξ2V
1− ξ3

+
6ξ1V ξ2ξ3V
(1− ξ3)2

+
3ξ1ξ2V V

1− ξ3
+

6ξ1ξ2V ξ3V
(1− ξ3)2

+
3ξ1ξ2ξ3V V

(1− ξ3)2
+

6ξ1ξ2ξ
2
3V

(1− ξ3)3

+
6ξ2ξ

2
2V

ξ3(1− ξ3)2
+

3ξ22ξ2V V

ξ3(1− ξ3)2
− 6ξ22ξ2V ξ3V
ξ23(1− ξ3)2

+
12ξ22ξ2V ξ3V
ξ3(1− ξ3)3

− ξ32ξ3V V

ξ23(1− ξ3)2
+

2ξ32ξ
2
3V

ξ33(1− ξ3)2
− 4ξ32ξ

2
3V

ξ23(1− ξ3)3
+

2ξ32ξ3V V

ξ3(1− ξ3)3

+
6ξ32ξ

2
3V

ξ3(1− ξ3)4
+
(6ξ2ξ22V

ξ23
+

3ξ22ξ2V V

ξ23
− 12ξ22ξ2V ξ3V

ξ33
− 2ξ32ξ3V V

ξ33

+
6ξ32ξ

2
3V

ξ43
− ξ0V V

)
ln(1− ξ3)− 2

(3ξ22ξ2V
ξ23

− 2ξ32ξ3V
ξ33

− ξ0V

) ξ3V
1− ξ3

−
(ξ32
ξ23

− ξ0

)( ξ3V V

1− ξ3
+

ξ23V
(1− ξ3)2

)]
,

(2.167)

Achain
V V = −kBT

C∑

i=1

Ni(mi − 1)

[
ghs
iiV V

ghs
ii

−
(
ghs
iiV

ghs
ii

)2]
(2.168)

A1V V = 2
A1

V 2
− 2

I1V
I1V

A1 +
I1V V

I1
A1, (2.169)

A2V V = 2
A2

V 2
− 2

C1V

C1V
A2 − 2

I2V
I2V

A2 + 2
C1V

C1

I2V
I2
A2 +

C1V V

C1
A2 +

I2V V

I2
A2

(2.170)
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Furthermore, the derivatives concerning V, V of the additional relations are:

ξnV V = 2
ξn
V 2

(2.171)

ghs
ijV V =

ξ3V V

(1− ξ3)2
+

2ξ23V
(1− ξ3)3

+
didj
di + dj

[ 3ξ2V V

(1− ξ3)2
+

12ξ2V ξ3V
(1− ξ3)3

+
6ξ2ξ3V V

(1− ξ3)3
+

18ξ2ξ
2
3V

(1− ξ3)4

]

+
( didj
di + dj

)2[ 4ξ22V
(1− ξ3)3

+
4ξ2ξ2V V

(1− ξ3)3
+

24ξ2ξ2V ξ3V
(1− ξ3)4

+
6ξ22ξ3V V

(1− ξ3)4
+

24ξ22ξ
2
3V

(1− ξ3)5

]

(2.172)

C1V V =
2C2

1V

C1
− C2

1

[
4m̄ξ3V V

( 2− ξ3
(1− ξ3)4

+
8ξ3 − 2ξ23
(1− ξ3)5

)

+ 4m̄ξ23V

(
− 1

(1− ξ3)4
+ 8

2− ξ3
(1− ξ3)5

+ 5
8ξ3 − 2ξ23
(1− ξ3)6

)

+ 2ξ3V V (1− m̄)
(10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)2(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)2
+

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)

+ 2ξ23V (1− m̄)
(−27 + 36ξ3 − 12ξ23
(1− ξ3)2(2− ξ3)2

+ 2
20− 54ξ3 + 36ξ23 − 8ξ33

(1− ξ3)3(2− ξ3)2
+ 2

20− 54ξ3 + 36ξ23 − 8ξ33
(1− ξ3)2(2− ξ3)3

+ 3
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)4(2− ξ3)2
+ 3

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)4

+ 4
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)3

)]

(2.173)

I1V V =

6∑

i=0

iai[(i− 1)ξi−2
3 ξ23V + ξi−1

3 ξ3V V ] (2.174)

I2V V =
6∑

i=0

ibi[(i− 1)ξi−2
3 ξ23V + ξi−1

3 ξ3V V ] (2.175)

Derivatives with respect to V,Nk:

Ar,v
V k = m̄Ahs

V k +Ahs
V m̄k +Achain

V k +A1V k +A2V k, (2.176)
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Ahs
V k =

( 1

N
− ξ0k

ξ0

)
Ahs

V − ξ0V

ξ0
Ahs

k +
( ξ0V
Ntξ0

− ξ0V k

ξ0

)
Ahs

+
NkBT

ξ0

[ 6ξ32ξ3V ξ3k
ξ3(1− ξ3)4

+
6ξ22ξ2V ξ3k
ξ3(1− ξ3)3

+
2ξ32ξ3V ξ3k
ξ33(1− ξ3)2

− 4ξ32ξ3V ξ3k
ξ23(1− ξ3)3

− 3ξ22ξ2kξ3V
ξ23(1− ξ3)2

+
6ξ22ξ2kξ3V
ξ3(1− ξ3)3

− 3ξ22ξ2V ξ3k
ξ23(1− ξ3)2

+
6ξ1ξ2ξ3V ξ3k
(1− ξ3)3

+
6ξ2ξ2V ξ2k
ξ3(1− ξ3)2

+
(6ξ2ξ2V ξ2k

ξ23
+

3ξ22ξ2V k

ξ23
− 6ξ22ξ2kξ3V

ξ33

− 6ξ22ξ2V ξ3k
ξ33

− 2ξ32ξ3V k

ξ33
+

6ξ32ξ3V ξ3k
ξ43

− ξ0V k

)
ln(1− ξ3)

−
(3ξ22ξ2V

ξ23
− 2ξ32ξ3V

ξ33
− ξ0V

) ξ3k
1− ξ3

+
3ξ1kξ2V
1− ξ3

+
3ξ1V kξ2
1− ξ3

+
3ξ1ξ2V k

1− ξ3
+

3ξ1V ξ2k
1− ξ3

−
(ξ32
ξ23

− ξ0

)( ξ3V k

1− ξ3
+

ξ3V ξ3k
(1− ξ3)2

)

+
2ξ32ξ3V k

ξ3(1− ξ3)3
− ξ32ξ3V k

ξ23(1− ξ3)2
+

3ξ1ξ2ξ3V k

(1− ξ3)2
+

3ξ22ξ2V k

ξ3(1− ξ3)2

+
3ξ1kξ2ξ3V
(1− ξ3)2

+
3ξ1ξ2kξ3V
(1− ξ3)2

+
3ξ1V ξ2ξ3k
(1− ξ3)2

+
3ξ1ξ2V ξ3k
(1− ξ3)2

−
(3ξ22ξ2k

ξ23
− 2ξ32ξ3k

ξ33
− ξ0k

) ξ3V
1− ξ3

]
,

(2.177)

Achain
V k = −kBT (mk − 1)

ghs
kkV

ghs
kk

− kBT

C∑

i=1

Ni(mi − 1)
(ghs

iiV k

ghs
ii

− ghs
iiV g

hs
iik

(ghs
ii )

2

)

(2.178)

A1V k =
I1k
I1
A1V +

(I1V
I1

− 1

V

)
A1k +

(I1V k

I1
− 2

I1V I1k
I21

+
I1k
V I1

)
A1 (2.179)

A2V k =
(m̄k

m̄
+
C1k

C1
+
I2k
I2

)
A2V +

(C1V

C1
+
I2V
I2

− 1

V

)
A2k

+
[C1V k

C1
− C1V C1k

C2
1

+
I2V k

I2
− I2V I2k

I22

−
(m̄k

m̄
+
C1k

C1
+
I2k
I2

)(C1V

C1
+
I2V
I2

− 1

V

)]
A2

(2.180)

Furthermore, the derivatives concerning V,Nk of the additional relations are:

ξnV k = − π

6V 2
mkd

n
k (2.181)
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ghs
ijV k = 2

ξ3k
1− ξ3

ghs
ijV + 2

ξ3V
1− ξ3

ghs
ijk − 2

ξ3V ξ3k
(1− ξ3)2

ghs
ij +

ξ3V k

(1− ξ3)2

+
didj
di + dj

[
3

ξ2V k

(1− ξ3)2
+ 6

ξ2ξ3V k

(1− ξ3)3

]

+
( didj
di + dj

)2[
4
ξ2V ξ2k

(1− ξ3)3
+ 4

ξ2ξ2V k

(1− ξ3)3
+ 4

ξ2ξ2kξ3V
(1− ξ3)4

+ 4
ξ2ξ2V ξ3k
(1− ξ3)4

+ 6
ξ22ξ3V k

(1− ξ3)4
+ 4

ξ22ξ3V ξ3k
(1− ξ3)5

]

(2.182)

C1V k =
2C1V C1k

C1
− C2

1

[
4m̄ξ3V k

( 2− ξ3
(1− ξ3)4

+
8ξ3 − 2ξ23
(1− ξ3)5

)

+ 4m̄ξ3V ξ3k

(
− 1

(1− ξ3)4
+ 8

2− ξ3
(1− ξ3)5

+ 5
8ξ3 − 2ξ23
(1− ξ3)6

)

+ 2ξ3V k(−m̄+ 1)
(10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)2(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)2
+

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)

+ 2ξ3V ξ3k(−m̄+ 1)
(−27 + 36ξ3 − 12ξ23
(1− ξ3)2(2− ξ3)2

+ 4
10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)3(2− ξ3)2
+ 4

10− 27ξ3 + 18ξ23 − 4ξ33
(1− ξ3)2(2− ξ3)3

+ 3
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)4(2− ξ3)2
+ 4

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)3(2− ξ3)3

+ 3
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)2(2− ξ3)4

)
+ 2m̄kξ3V

( 4− 2ξ3
(1− ξ3)4

+ 4
4ξ3 − ξ23
(1− ξ3)5

− 10− 27ξ3 + 18ξ23 − 4ξ33
(1− ξ3)2(2− ξ3)2

− 20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)3(2− ξ3)2

− 20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)]

(2.183)

I1V k =

6∑

i=0

[iaikξ
i−1
3 ξ3V + iai[(i− 1)ξi−2

3 ξ3V ξ3k + ξi−1
3 ξ3V k]] (2.184)

I2V k =
6∑

i=0

[ibikξ
i−1
3 ξ3V + ibi[(i− 1)ξi−2

3 ξ3V ξ3k + ξi−1
3 ξ3V k]] (2.185)

Derivatives with respect to Nk,Nl:

Ar,v
kl = m̄Ahs

kl + m̄lA
hs
k + m̄kA

hs
l + m̄klA

hs +Achain
kl +A1kl +A2kl (2.186)
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Ahs
kl =

( 1

N
− ξ0l
ξ0

)
Ahs

k +
( 1

N
− ξ0k

ξ0

)
Ahs

l +
( ξ0k
ξ0N

+
ξ0l
ξ0N

− 2

N2

)
Ahs

+
NkBT

ξ0

[3ξ1kξ2l
1− ξ3

+
3ξ1kξ2ξ3l
(1− ξ3)2

+
3ξ1lξ2k
1− ξ3

+
3ξ1ξ2kξ3l
(1− ξ3)2

+
3ξ1lξ2ξ3k
(1− ξ3)2

+
3ξ1ξ2lξ3k
(1− ξ3)2

+
6ξ1ξ2ξ3kξ3l
(1− ξ3)3

+
6ξ2ξ2kξ2l
ξ3(1− ξ3)2

− 3ξ22ξ2kξ3l
ξ23(1− ξ3)2

+
6ξ22ξ2kξ3l
ξ3(1− ξ3)3

− 3ξ22ξ3kξ2l
ξ23(1− ξ3)2

+
2ξ32ξ3kξ3l
ξ33(1− ξ3)2

− 4ξ32ξ3kξ3l
ξ23(1− ξ3)3

+
6ξ22ξ3kξ2l
ξ3(1− ξ3)3

+
6ξ32ξ3kξ3l
ξ3(1− ξ3)4

+
(6ξ2ξ2kξ2l

ξ23
− 6ξ22ξ2kξ3l

ξ33
− 6ξ22ξ3kξ2l

ξ33
+

6ξ32ξ3kξ3l
ξ43

)
ln(1− ξ3)

−
(3ξ22ξ2k

ξ23
− 2ξ32ξ3k

ξ33
− ξ0k

) ξ3l
1− ξ3

−
(3ξ22ξ2l

ξ23
− 2ξ32ξ3l

ξ33
− ξ0l

) ξ3k
1− ξ3

−
(ξ32
ξ23

− ξ0

) ξ3kξ3l
(1− ξ3)2

]

(2.187)

Achain
kl = −kBT

[
(mk − 1)

ghs
kkl

ghs
kk

+ (ml − 1)
ghs
llk

ghs
ll

−
C∑

i=1

[
Ni(mi − 1)

ghs
iikg

hs
iil

(ghs
ii )

2
−Ni(mi − 1)

ghs
iikl

ghs
ii

]] (2.188)

A1kl =
(I1kl
I1

− I1kI1l
I21

)
A1 +

I1k
I1
A1l

− 4πkBT

V

[
I1mkml

( εkl
kBT

)
σ3kl + I1l

C∑

i=1

Nimimk

( εik
kBT

)
σ3ik

] (2.189)

A2kl =
[m̄kl

m̄
− m̄km̄l

m̄2
+
C1kl

C1
− C1kC1l

C2
1

+
I2kl
I2

− I2kI2l
I22

−
(m̄k

m̄
+
C1k

C1
+
I2k
I2

)(m̄l

m̄
+
C1l

C1
+
I2l
I2

)]
A2

+
(m̄l

m̄
+
C1l

C1
+
I2l
I2

)
A2k +

(m̄k

m̄
+
C1k

C1
+
I2k
I2

)
A2l

− 2πkBT

V
m̄C1I2mkml

( εkl
kBT

)2
σ3kl

(2.190)

Furthermore, the derivatives concerning Nk, Nl of the additional relations
are:

m̄kl = −m̄k + m̄l

N
(2.191)
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ξnkl = 0 (2.192)

ghs
ijkl =

2ξ3l
1− ξ3

ghs
ijk +

2ξ3k
1− ξ3

ghs
ijl −

2ξ3kξ3l
(1− ξ3)2

ghs
ij

+
( didj
di + dj

)2[ 4ξ2kξ2l
(1− ξ3)3

+
4ξ2ξ2kξ3l
(1− ξ3)4

+
4ξ2ξ2lξ3k
(1− ξ3)4

+
4ξ22ξ3kξ3l
(1− ξ3)5

] (2.193)

C1kl =
2C1kC1l

C1
− C2

1

[
4ξ3km̄l

( 2− ξ3
(1− ξ3)4

+
8ξ3 − 2ξ23
(1− ξ3)5

)

+ 4ξ3kξ3lm̄
(
− 1

(1− ξ3)4
+ 8

2− ξ3
(1− ξ3)5

+ 5
8ξ3 − 2ξ23
(1− ξ3)6

)

− 2ξ3km̄l

(10− 27ξ3 + 18ξ23 − 4ξ33
(1− ξ3)2(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)3(2− ξ3)2

+
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)2(2− ξ3)3

)

+ 2ξ3kξ3l(1− m̄)
(−27 + 36ξ3 − 12ξ23
(1− ξ3)2(2− ξ3)2

+ 4
10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)3(2− ξ3)2

+ 4
10− 27ξ3 + 18ξ23 − 4ξ33

(1− ξ3)2(2− ξ3)3
+ 3

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)4(2− ξ3)2

+ 3
20ξ3 − 27ξ23 + 12ξ33 − 2ξ43

(1− ξ3)2(2− ξ3)4
+ 4

20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)3(2− ξ3)3

)

+ 2m̄kξ3l

( 4− 2ξ3
(1− ξ3)4

+ 4
4ξ3 − ξ23
(1− ξ3)5

− 10− 27ξ3 + 18ξ23 − 4ξ33
(1− ξ3)2(2− ξ3)2

− 20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)3(2− ξ3)2

− 20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)3

)

+ m̄kl

(8ξ3 − 2ξ23
(1− ξ3)4

− 20ξ3 − 27ξ23 + 12ξ33 − 2ξ43
(1− ξ3)2(2− ξ3)2

)]

(2.194)

I1kl =

6∑

i=0

[aiklξ
i
3 + iaikξ

i−1
3 ξ3l + iξ3k[(i− 1)aiξ

i−2
3 ξ3l + ailξ

i−1
3 ]] (2.195)

I2kl =
6∑

i=0

[biklξ
i
3 + ibikξ

i−1
3 ξ3l + iξ3k[(i− 1)biξ

i−2
3 ξ3l + bilξ

i−1
3 ]] (2.196)

aikl =
m̄kl

m̄2
a1i +

(3m̄kl

m̄2
− 4m̄kl

m̄3
+

4m̄km̄l

m̄4

)
a2i −

2m̄l

m̄
aik (2.197)

bikl =
m̄kl

m̄2
b1i +

(3m̄kl

m̄2
− 4m̄kl

m̄3
+

4m̄km̄l

m̄4

)
b2i −

2m̄l

m̄
bik (2.198)
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T, p,n
The PC-SAFT EoS is also explicit in T, V,N , which yields a single value for a
specified coordinate set T, V,N . Thus, the implementation above for Ar,v is
explicit. Alternatively, the coordinate set T, p,N may be employed. In that
coordinate set, the T, V,N relation must be inverted. For the PC-SAFT
EoS, five values for V exist when the coordinate set T, p,N is employed
[Privat et al., 2010]. Similar to the cubic EoS implementation, Newton–
Raphson iteration can be performed for the PC-SAFT EoS to obtain the
volume. A discussion on initializing the iteration procedure to find the
appropriate volume roots and further recommendations on the PC-SAFT
EoS were given by Gross and Sadowski [2001].

2.3 Thermodynamic Consistency and Testing

Thermodynamics is a highly consistent field within science. There are mul-
tiple relations that must hold at all times, and therefore there are strict rules
for what can and what cannot be valid within thermodynamics. For instance,
Euler’s theorem for homogeneous functions must always hold. Therefore,
the chemical potential, for instance, cannot have an arbitrary definition,
but must satisfy the relations in eqs. (2.17a) and (2.21).

As previously mentioned, Euler’s theorem for homogeneous functions and
its derivative (see eq. (2.17a) and eq. (2.21), respectively) provide consistency
checks for Helmholtz and Gibbs energy. For Helmholtz energy, X = (V,n)
and ξ = T . By inserting this into eq. (2.17a) and eq. (2.21a) the result is

(
∂Ar,v

∂V

)

T,n

V +

(
∂Ar,v

∂n

)⊤

T,V

n = Ar,v (2.199a)

(
∂2A

∂V 2

)

T,n

V +

(
∂2A

∂V ∂n

)⊤

T

n = 0 (2.199b)

(
∂2A

∂n∂V

)

T

V +

(
∂2A

∂n∂n⊤

)

T,V

n = 0. (2.199c)

For Gibbs energy, X = n and ξ = (T, p). This results in two equalities:

(
∂Gr,p

∂n

)⊤

T,p

n = Gr,p (2.200a)

(
∂2Gr,p

∂n∂n⊤

)

T,p

n = 0. (2.200b)
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Taking the compositional derivative of eq. (2.200a) yields

∂

∂n

(
RTn⊤ lnφ

)
T,p

= RT

(
∂ lnφ

∂n

)

T,p

n+RT lnφ = RT lnφ. (2.201)

Equally important is the symmetry check. This involves checking the second
derivative with respect to composition

(
∂2Ar,v

∂n∂n⊤

)

T,V

=

(
∂2Ar,v

∂n∂n⊤

)⊤

T,V

(2.202a)

(
∂2Gr,p

∂n∂n⊤

)

T,p

=

(
∂2Gr,p

∂n∂n⊤

)⊤

T,p

, (2.202b)

or as commonly written
(
∂µr,v

i

∂nj

)

T,V

=

(
∂µr,v

j

∂ni

)

T,V

, ∀i, j ∈ {1, . . . , C} (2.203a)

(
∂µr,p

i

∂nj

)

T,p

=

(
∂µr,p

j

∂ni

)

T,p

, ∀i, j ∈ {1, . . . , C}. (2.203b)

Furthermore, an analytical test can be done with respect to the temperature
derivative of the fugacity coefficient. By using eq. (2.21b):



(

∂2Gr,p

∂T∂n⊤

)
p(

∂2Gr,p

∂p∂n⊤

)
T


n =




(
∂µr,p

∂T

)
p,n(

∂µr,p

∂p

)
T,n



⊤

n =



(
∂Gr,p

∂T

)
p,n(

∂Gr,p

∂p

)
T,n


 =

[
−Sr,p

V r,p

]
. (2.204)

The upper equation along with the temperature derivative of the fugacity
coefficient yields

(
∂ lnφ

∂T

)⊤

p,n

n =
1

RT 2

(
T

(
∂µr,p

∂T

)⊤

p,n

n− (µr,p)⊤n

)

=
1

RT 2
(−TSr,p −Gr,p)

= −H
r,p

RT 2
.

(2.205)

Other tests include numerical tests. That is, the tests are done with
numerical derivatives, typically finite, central differences. Thus,

∣∣∣∣∣
f(x0 + θ)− f(x0 − θ)

2θ
− df(x)

dx

∣∣∣∣
x0

∣∣∣∣∣ < ϵ, (2.206)
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where θ is a small perturbation, and ϵ is the numerical error introduced
from inaccuracies in the central differencing scheme. The order of the error
of central differences is O(θ2).

From the differential form of Gibbs energy in Table 2.1, the pressure
derivative of Gibbs energy is

(
∂Gr,p

∂p

)

T,n

= V r,p = V − V ig. (2.207)

Thus, (
∂ lnφ

∂p

)⊤

T,n

n =
Z − 1

p
N. (2.208)

In a Helmholtz implementation, a numerical derivative (denoted by a δ)

δ

δp

(
n⊤ lnφ

)
T,n

=
Z − 1

p
N (2.209)

will rule out any pressure dependent binary interaction parameters, kij and
lij . The expression for the fugacity coefficient in eq. (2.97) is based on
the integration of a pressure-explicit EoS. Pressure dependent forms of the
binary interaction parameters will disturb the form of the EoS and therefore
also invalidate eq. (2.97). When the numerical derivative above is calculated,
the invalid expression for the fugacity coefficient is used, and the result will
not equate to the right-hand side.
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Chapter 3

Mass Transfer Phenomena

Mass transfer is a phenomenon in which a component i is transferred from
one phase and into another over a shared phase boundary called the interface.
For instance, a gas phase in contact with a liquid phase is visualized in
Figure 3.1. Here, the driving force for component i is given by the difference
in an appropriate quantity ψ (discussed in detail in Sections 3.1.1 to 3.1.4):

di := ∆ψi = ψG,i − ψL,i. (3.1)

The driving force in eq. (3.1) governs the qualitative and quantitative nature
of the mass transfer of component i. In Figure 3.1, ψG,i > ψL,i, and mass
is transferred out of the gas phase and into the liquid phase with the mass
transfer flux Ni.

Gas

Liquid

ψG,i ψL,i

Ni

Figure 3.1: A visual representation of the nature of the mass transfer phe-
nomenon.

In general, mass transfer can be broken down into two principal com-
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ponents. The first discussion revolves around the transport phenomena in-
volved in carrying the components to the interface and quantifying these
phenomena. This discussion bases on the foundation for the mass trans-
fer coefficient, ki, where i denotes the considered component. The second
discussion revolves around determining which physical properties are respon-
sible for mass transfer. This discussion makes the foundation for the driving
force, di. Together, ki and di determine the mass transfer flux of component
i as:

Ni = kiρdi ≈ kiρ(ψi − ψi,I), (3.2)

where ρ denotes a measure of the density of the fluid phase and I denotes
the interface. It is common to use the species mass fraction of species i as
the driving force, and in such case, di = ∆ωi is the difference in the species
mass fractions and ρ is the mass density.

The complexity of determining proper expressions to evaluate ki is stressed
in the following. Suggestions in the literature are primarily based on the one
and two-film models [Brunner, 1903, 2017, Whitman and Keats, 1922], the
penetration theory [Higbie, 1935], the surface renewal theory [Danckwerts,
1951], and the laminar and turbulent boundary layer theories (see e.g. Bird
et al. [2002] for the boundary layer theories). These theories are based on
different hydrodynamical phenomena and vary in complexity. For instance,
in the film models, it is assumed that a thin film of thickness δ forms next
to the interface, and that this film represents a resistance to mass transfer.
Furthermore, in the two-film model, one film forms on each side of the in-
terface, and two mass transfer resistances exist. The resistance originating
from the gas film with thickness δG is commonly termed kG,i, and the resis-
tance originating from the liquid film with thickness δL is commonly termed
kL,i. The two-film model is illustrated visually in Figure 3.2. As seen, the
driving force does not need to be continuous over the interface. Examples
of driving forces that are discontinuous through the interface include the
concentration, the mole fraction, and the mass fraction.

The penetration theory was developed by Higbie [1935] to improve the
film models by incorporating the turbulent nature of the fluids on each side
of the interface. Here, mass is considered to be transported to the interface
by turbulent fluid elements referred to as vortices or eddies (see e.g. Versteeg
and Malalasekera [2007], Ferziger and Perić [2002]). The fluid elements reach
the interface, and for a fixed exposure time, the fluid elements exchange mass
with the neighboring phase. Subsequently, the fluid elements are replaced
by new fluid elements and return to the bulk fluid, which is considered well
mixed. The mass transfer is considered time-dependent, and the total mass
transfer in each cycle is obtained by integrating over the exposure time.
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Figure 3.2: A visual representation of the two-film model.

Further improvements were made to the penetration theory by Danck-
werts [1951] by replacing the constant exposure time with a mean exposure
time obtained from an exposure time distribution model. The improved
model was termed the Danckwerts surface renewal theory. Other rigorous
attempts to improve on the hydrodynamic characteristics of the mass trans-
fer phenomena were formulated with the laminar and turbulent boundary
layer theories.

The previous modeling approaches allow for investigations related to the
mass transfer coefficient ki. For instance, for purely diffusive mass transfer,
the mass based governing equation for species mass is:

0 = −dji
dz
, (3.3)

where ji is the mass transplaced due to diffusion. Fick’s first law [Fick, 1855]
for binary diffusion (with mass fraction as the driving force) is given by

ji = −ρDi
dωi

dz
, (3.4)

where Di is the diffusion coefficient of species i. Equations (3.3) and (3.4)
can be combined to obtain

0 = ρDi
d2ωi

dz2
. (3.5)

The boundary conditions are given by

ωi = ωi,b, z = 0 (3.6)

ωi = ωi,I , z = δ, (3.7)
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where b denotes the bulk phase. Integration of eq. (3.5) with the boundary
conditions in eqs. (3.6) and (3.7) leads to

ωi = ωi,b +
1

δ
(ωi,I − ωi,b)z. (3.8)

Furthermore, by inserting the solution in eq. (3.8) into eq. (3.4), we obtain

ji =
Di

δ
ρ(ωi,b − ωi,I). (3.9)

The result in eq. (3.9) can be compared with eq. (3.2) to get a proper ex-
pression for the mass transfer coefficient. By employing ψi = ωi in eq. (3.2),
the expression in the parenthesis is cancelled, and we obtain

ki =
Di

δ
. (3.10)

The result in eq. (3.10) is highly significant, and through its rearrangement,
the Sherwood number is defined as:

Sh =
kiδ

Di
. (3.11)

By comparing eq. (3.11) with eq. (3.10), it is evident that Sh = 1 for purely
diffusive mass transfer. Any other contributions than diffusion will influence
the Sherwood number, possibly perturbing it so that Sh ̸= 1.

There is largely consensus in the scientific community that both diffusive
and convective phenomena contribute to the transportation of components
to the interface. This generally means that Sh ̸= 1, and eq. (3.10) cannot
be used to find the mass transfer coefficient. On the other hand, experi-
mental data and parametrizations of Sh, either directly or in terms of other
dimensionless numbers such as the Reynolds number, Re, and the Schmidt
number, Sc, are readily available in the literature. See e.g., Vik et al. [2018]
for a selection of direct parametrizations of ki and indirect parametrizations
of ki through Sh.

The discussion of ki is relevant on both the liquid side and the gas side
of the interface, as resistance to mass transfer exists on both sides of the
phase boundary. However, the diffusion coefficient is typically several orders
of magnitude larger in gas than in liquid (commonly on the order of 10−2

cm2 s−1 for gases, and on the order of 10−5 cm2 s−1 for liquids, see e.g., Reid
et al. [1987]). Thus, to obtain a closed expression for the mass transfer flux,
some assumptions are usually made in combination with some arithmetic
operations to eliminate one of them. The manipulations typically result
in the elimination of the gas side resistance, due to the relatively small
diffusivity on the liquid side compared to the diffusivity on the gas side of
the interface. This topic is explored further in Section 3.1.
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3.1 Deriving Expressions for Mass Transfer

The driving force for mass transfer is less discussed in the literature. For a
two-film modeling approach, mass transfer flux equations are formulated on
both sides of the interface. With reference to Figure 3.2, the gas side mass
transfer flux equation is formulated as

NG−I
i = kG,iρGdG,i ≈ kG,iρG(ψG,i − ψG,i,I). (3.12)

Similarly, the liquid phase mass transfer flux is

N I−L
i = kL,iρLdL,i ≈ kL,iρL(ψL,i,I − ψL,i). (3.13)

Equations (3.12) and (3.13) represent two equations with six unknowns;
NG−I

i , N I−L
i , kG,i, kL,i, ψG,i,I , and ψL,i,I . The film is assumed not to

accumulate mass, and hence, the mass transferred out of the gas phase is
subsequently received in the liquid phase:

Ni = NG−I
i = N I−L

i . (3.14)

To close the mass transfer problem, relations for ψG,i,I and ψL,i,I are re-
quired. An assumption is that there is no net mass transfer when the phases
are in phase equilibrium. Therefore, it is natural to assume ψi,I = ψ∗

i , i.e.,
phase equilibrium is assumed to prevail at the interface. This assumption
implies that Ni = 0 when ψi = ψ∗

i .
The difference in the concentration, the mole fraction, or the mass frac-

tion is usually employed as the driving force. In this work, four different
driving forces were formulated, all of which were based on the assumption
that phase equilibrium prevails at the interface. After careful evaluation,
only one of them was deemed appropriate, while the remaining formulations
were discarded for various reasons. The four formulations are presented in
the following sections 3.1.1 to 3.1.4.

The mass transfer expression in eq. (3.46) to be derived in Section 3.1.3
was the only expression employed in Paper II and Paper III of Chapter 4
due to several limitations with the other derived expressions. A rigorous
comparison was made between eq. (3.46) and similar mass transfer expres-
sions based on Henry’s law. Furthermore, the strengths and weaknesses of
both eq. (3.46) and similar mass transfer expressions based on Henry’s law
were discussed.

3.1.1 Chemical Potential as the Driving Force

Commonly, phase equilibrium is assumed to prevail at the phase boundary
separating the two adjoining phases. The criteria for phase equilibrium are

TG = TL, (3.15)
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pG = pL, (3.16)

µ∗G,i = µ∗L,i, (3.17)

where T is the temperature, p is the pressure, µi(T, p,n) is the chemical
potential, and n is the vector of mole numbers in the mixture. As seen in
eq. (3.17), the chemical potential emerges as a natural variable of interest.
The chemical potential was therefore suggested in this work as an interesting
driving force for mass transfer.

By inserting ψi = µi into eqs. (3.12) and (3.13), we obtain respectively

Ni = kG,iρG(µG,i − µ∗G,i), (3.18)

Ni = kL,iρL(µ
∗
L,i − µL,i). (3.19)

Furthermore, from eq. (3.17), the chemical potential is the same on both
sides of the interface, and a condensed form of eqs. (3.18) and (3.19) is
written as:

Ni = kG,iρG(µG,i − µ∗i ), (3.20)

Ni = kL,iρL(µ
∗
i − µL,i). (3.21)

For a qualitative visual representation of the profiles with chemical potential
as the driving force, see Figure 3.3. As seen, the driving force profile is
continuous through the interface, which is considered a conceptual strength
due to its close resemblance to the driving force profile in heat transfer
phenomena.
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Figure 3.3: Mass transfer from a gas phase to a liquid phase. Here, the
chemical potential is used as the driving force, and the profile is continuous
through the interface.

An expression for mass transfer can be obtained by combining eqs. (3.20)
and (3.21) by first dividing eq. (3.20) by kG,iρG, and dividing eq. (3.21) by
kL,iρL:

Ni

kG,iρG
= µG,i − µ∗i (3.22)
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Ni

kL,iρL
= µ∗i − µL,i. (3.23)

Subsequently, eqs. (3.22) and (3.23) are added to obtain

Ni

( 1

kG,iρG
+

1

kL,iρL

)
= µG,i − µL,i, (3.24)

in which the chemical potential at the phase boundary has been eliminated.
Hence, knowledge about the temperature, pressure, and composition at the
interface is no longer required. The expression for the mass transfer flux
becomes

Ni =
1

1
kG,iρG

+ 1
kL,iρL

(µG,i − µL,i). (3.25)

The diffusion coefficient on the gas side is typically many orders of mag-
nitude larger than the diffusion coefficient on the liquid side. Since the mass
transfer coefficient is proportional to the diffusion coefficient, see eq. (3.11),
then kG,i ≫ kL,i. However, at the same time, ρG ≪ ρL; typically, ρL is two
to three orders of magnitude larger than ρG. Thus, each contribution to the
prefactor in eq. (3.25) consists of one large and one small number. As a re-
sult, it is impossible to a priori determine whether 1/(kG,iρG) > 1/(kL,iρL)
or 1/(kG,iρG) < 1/(kL,iρL), and hence, both contributions must be included
in the final expression for the mass transfer flux.

The major benefits of eq. (3.25) are that i) the driving force only requires
knowledge about quantities in the bulk of each of the phases, ii) the driving
force is continuous through the interface, which is conceptually appealing,
iii) the phase equilibrium assumption is respected and incorporated without
computing the phase equilibrium state, and iv) the net mass transfer is zero
when phase equilibrium is established, that is when µG,i = µL,i.

On the other hand, the downsides of eq. (3.25) are notable. The primary
issue is concerned with how the mass transfer coefficient is found experi-
mentally. In the literature, the liquid side mass transfer coefficient, kL,i, is
fitted to experimental data. In eq. (3.25), the overall mass transfer coeffi-
cient consists of kL,i, kG,i, ρL, and ρG. This yields a complicated function
of the mixture, which is undesirable.

Furthermore, the overall mass transfer coefficient must cancel the unit
in the driving force so that the unit of the mass transfer flux remains
kgm−2 s−1. Hence, the overall mass transfer coefficient in eq. (3.25) must
have unit m2 kg s−1 J−1, which does not agree well with the definition of
the Sherwood number in eq. (3.11), where the mass transfer coefficient is
required to have unit m2 s−1.

Additionally, the fitting process of the mass transfer coefficient is depen-
dent on the driving force. Using a driving force that is typically larger than
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105 would inevitably yield different results from using a driving force on the
order of magnitude of 10−1, which is the case for ψi = ωi. Thus, using the
chemical potential as the driving force, the mass transfer coefficients would
have to be re-parametrized for different systems or new experiments would
have to be conducted.

Moreover, by using ψi = µi, the driving force cannot be measured, but
instead, the mass transfer flux becomes dependent on the thermodynamic
modeling of µi. Mixtures can be classified as ideal or non-ideal, in which
mixtures can be modeled with EoSs or activity coefficient-based models.
Hence, µi can be classified through a wide variety of models.

Some problems were eliminated through reducing the driving force by
RT , that is, ψi = µi/(RT ). This makes the driving force dimensionless, and
it reduces its magnitude by more than a factor of 1,000. Still, the overall
mass transfer coefficient cannot be reduced so that it is only a function of
kL,i, and hence, the model requires experimental fits for a mass transfer co-
efficient that is a complicated function of both phases and their densities. In
conclusion, the drawbacks were considered to outweigh the benefits of using
the chemical potential as the driving force for mass transfer. Hence, this ap-
proach was not implemented nor quantitatively validated or verified in this
work. Further development was therefore discontinued, and the approach
was abandoned.

3.1.2 Mass Fraction as the Driving Force – Direct Use of the
Liquid Side Flux Equation

Taylor and Krishna [1993] defined the driving force for diffusion as

di :=
xi
RT

∇T,pµi, (3.26)

where xi is the species mole fraction and ∇T,p is interpreted as the spatial
gradient while holding T and p fixed. Ignoring T and p in the spatial gradient
prevents diffusion due to local temperature and pressure variations. Diffu-
sion due to temperature variations is denoted thermal diffusion, or the Soret
effect, and is generally much smaller than the contribution from ∇p,nµi.
Hence, the contribution from ∇p,nµi is omitted from the driving force. Fur-
thermore, the local pressure variations yield convective flow, and its inclu-
sion is inappropriate for an expression used for computing diffusion fluxes.
Hence, the contribution from ∇T,nµi is also omitted from the driving force.
For ideal mixtures, eq. (3.26) reduces to (see Taylor and Krishna [1993] for
the derivation):

di = ∇xi (3.27)
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In an endeavor to obtain a simple expression for mass transfer, the (mass
based) results of Taylor and Krishna [1993] in eq. (3.27) were employed here;
that is ψi = ωi. Inserting mass fraction as the driving force into eq. (3.13)
yields

N I−L
i = kL,iρL(ω

∗
L,i − ωL,i), (3.28)

where ω∗
L,i is used to denote the mass fraction in the liquid at phase equi-

librium.
The phase equilibrium criteria in eqs. (3.15) to (3.17) yield C + 2 equa-

tions with 2C + 2 unknowns, where C denotes the number of components.
A mass balance on the two phases yields an additional C equations, and by
specifying (or with knowledge of) the temperature and pressure, we have
2C + 2 equations for 2C + 2 unknowns. The mass balances are given as

nG,i + nL,i = βi, (3.29)

where βi is the total amount of moles of component i present. With this
knowledge, ω∗

L,i can be computed; however, it is emphasized that ω∗
L,i is a

function of the temperature, pressure, and the composition of both phases,
that is ω∗

L,i = f(T, p,nG,nL). Nevertheless, the composition dependency
is only partially true due to the constraints placed by Gibbs’ phase rule for
equilibrium systems:

F = C − P + 2. (3.30)

Here, F is the degree of freedom, and P is the number of phases. For a
binary system consisting of a gas and a liquid phase, C = P = 2, meaning
there are two degrees of freedom. The equilibrium state is unambiguously
determined by specifying the temperature and pressure as the last two de-
grees of freedom, and eq. (3.29) is obsolete. In that case, ω∗

L,i = f(T, p) is
only a function of temperature and pressure, and knowledge of ωG,i or ωL,i is
not required to solve the equilibrium problem. Thus, with C = P = 2, mass
transfer computed with eq. (3.28) is solely a function of T , p, ωL,i(T, p),
and ρL(T, p,ωL). The mass transfer flux expression in eq. (3.28) thus al-
lows mass to be transferred out of the gas phase without considering any of
the conditions in the gas phase. Hence, eq. (3.28) may predict a non-zero
mass transfer of a component that is absent in the gas phase. As a result,
ωG,i decreases, and potentially becomes negative, while ωL,i approaches its
equilibrium value, ω∗

L,i. This property is undesirable.
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Table 3.1: Governing equations describing the bubble column.1

Transport of total mass

d
dz

(αLρLvL) =
C∑

j=1

Nja (3.31)

d
dz

(αGρGvG) = −
C∑

j=1

Nja (3.32)

Transport of species mass

d
dz

(αLρLvLωL,i) =
d
dz

(
αLρLDL,eff,z

dωL,i

dz

)
+Nia (3.33)

d
dz

(αGρGvGωG,i) =
d
dz

(
αGρGDG,eff,z

dωG,i

dz

)
−Nia (3.34)

Transport of momentum

d
dz

(αLρLvLvL) =
d
dz

(
αLµL,eff,z

dvL
dz

)
− αL

dp
dz

− αLρLg

+ fG−L
drag + fW−L

fric

(3.35)

d
dz

(αGρGvGvG) =
d
dz

(
αGµG,eff,z

dvG
dz

)
− αG

dp
dz

− αGρGg − fG−L
drag (3.36)

Transport of energy

αLρLvLcp,L
dTL
dz

=
d
dz

(
αLλL,eff,z

dTL
dz

)
+
SI
A
U(Ta − TL)

+ hLa(TG − TL)

(3.37)
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αGρGvGcp,G
dTG
dz

=
d
dz

(
αGλG,eff,z

dTG
dz

)
− hLa(TG − TL) (3.38)

An initial test was performed to verify the hypothesis above. Hence, a
bubble column consisting of a binary mixture of N2 and H2O was simulated.
The governing equations employed are listed in Table 3.1. The mass trans-
fer terms Nj in eqs. (3.33) and (3.34) can be computed from eq. (3.28) in
combination with eq. (3.14).

The numerical solution of the mass fraction is shown for both the gas and
the liquid phases in Figure 3.4. As seen, both phases are initially in their
stable phase region, that is ωG,N2 > ω∗

G,N2
, and ωL,H2O > ω∗

L,H2O
at z = 0.

As the reactor height increases, N2 is transferred out of the bubbles and
into the liquid without considering the gas phase conditions. Consequently,
Ni > 0 until ωL,N2 = ω∗

L,N2
. At this point, N2 has reached its equilibrium

value in the liquid; however, simultaneously, the gas phase is well within the
two-phase unstable region due to N2 being transferred without being limited
by ω∗

G,N2
. This experiment verifies the hypothesis above, and eq. (3.28) is

unsuitable for mass transfer computations.

3.1.3 Mass Fraction as the Driving Force – The Equilibrium
Ratio Method

The approach proposed here is inspired by a combination of the classical
approach using Henry’s law, and the discarded approach in Section 3.1.2.
The mass fraction is used as driving force, that is ψi = ωi, resulting in
an interface-to-liquid equation similar to eq. (3.28). Additionally, a gas-to-
interface equation is given. The two flux equations are given as

NG−I
i = kG,iρG(ωG,i − ω∗

G,i), (3.39)

N I−L
i = kL,iρL(ω

∗
L,i − ωL,i), (3.40)

and the phase equilibrium ratio is introduced as

Ki :=
ω∗
G,i

ω∗
L,i

. (3.41)

1In Table 3.1, z is the axial direction, α is the area fraction, v is the axial velocity, a
is the interfacial area of the adjoining phases, eff denotes effective, g is the gravitational
acceleration, f denotes a frictional or drag force, µ is the dynamic viscosity, λ is the
thermal conductivity, SI and A is the perimeter and the area of the surface shared with
the heat exchanging medium, U is the overall heat transfer coefficient indicating the
resistance of heat transfer from bulk liquid to heating/cooling medium, and hL is the
heat transfer coefficient.
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Figure 3.4: Mass fraction profiles in the bubble column. The mass transfer
flux was computed with eq. (3.28). Full lines denote ωi, and dashed lines
denote the corresponding equilibrium mass fraction, ω∗

i . Moreover, N2 is
shown in the first row, ( ), and H2O is shown in the second row ( ).

Equation (3.39) is divided by kG,iρGKi, and eq. (3.40) is divided by kL,iρL:

NG−I
i

kG,iρGKi
=
ωG,i

Ki
−
ω∗
G,i

Ki
, (3.42)

N I−L
i

kL,iρL
= ω∗

L,i − ωL,i. (3.43)

Rearranging eq. (3.41), and inserting into eq. (3.42) yields:

NG−I
i

kG,iρGKi
=
ωG,i

Ki
− ω∗

L,i. (3.44)

The mass transfer flux is continuous through the interface, see eq. (3.14).
Thus, NG−I

i = N I−L
i , and we may therefore add eqs. (3.43) and (3.44) to

obtain
Ni

( 1

kG,iρGKi
+

1

kL,iρL

)
=
ωG,i

Ki
− ωL,i. (3.45)

Previously with the approach based on the chemical potential, see e.g.,
eq. (3.25), no conclusions could be drawn on whether 1/(kG,iρG) > 1/(kL,iρL)
or 1/(kG,iρG) < 1/(kL,iρL). Here, however, there is also an equilibrium ratio
on the gas side resistance. Typically, for volatile gases, Ki ≫ 1, meaning a
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relatively large quantity is in the denominator. Thus, the gas side contribu-
tion to the overall mass transfer resistance becomes small in comparison to
the liquid side resistance, and we may conclude that 1

kG,iρGKi
≪ 1

kL,iρL
. As

a result, eq. (3.45) becomes

Ni = kL,iρL

(ωG,i

Ki
− ωL,i

)
. (3.46)

The proposed expression for the mass transfer flux in eq. (3.46) possesses
the advantage of i) simplicity, ii) only employs the liquid side mass transfer
coefficient, kL,i, iii) the driving force is measurable (disregarding Ki which
is model dependent), and iv) the driving force is dimensionless yielding the
proper units for kL,i. Furthermore, while common approaches based on
Henry’s law cannot predict mass transfer of the solvent, eq. (3.46) does not
suffer from this weakness.

On the other hand, the most notable drawback of eq. (3.46) is the com-
putation of Ki, which relies on converging a complete phase equilibrium
problem. Moreover, the equilibrium ratio is in the denominator, and volatile
components typically have large values (102–103), whereas non-volatile com-
pounds typically have small values (< 1). Hence, the non-volatile com-
pounds are quickly taken to equilibrium due to division by a small number,
while volatile compounds take longer to approach equilibrium.

The same initial test as in Section 3.1.2 was performed to evaluate the
qualitative performance of eq. (3.46). The results are shown in Figure 3.5,
and as seen, all components in both phases are forced to their equilibrium
value as the bubbles rise through the bubble column. This indicates that
the mass transfer computed with eq. (3.46) terminates when the component
of interest reaches its equilibrium value in both phases. Hence, eq. (3.46)
is appropriate for computing mass transfer fluxes, and the terminal state is
the equilibrium state that is assumed to prevail at the phase boundary.

The mass transfer expression in eq. (3.46) is subject to the constraints
imposed by the phase equilibrium criteria. From eqs. (3.15) and (3.16), this
means that both phases share the same temperature and pressure at the
interface. Commonly in transport phenomena, the computation of temper-
ature and pressure at the interface is avoided, as this computation is quite
expensive. When the temperature and the pressure in the bulk of both
phases coincide, then the bulk temperature and pressure can be used for the
phase equilibrium computation, and Ki is extracted from the equilibrium
composition.

When the temperature and pressure in the bulk of the two phases differ
significantly, it is not straightforward to determine which temperature and
pressure to use for the phase equilibrium computation. One alternative
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Figure 3.5: Mass fraction profiles in the bubble column. The mass transfer
flux was computed with eq. (3.46). Full lines denote ωi, and dashed lines
denote the corresponding equilibrium mass fraction, ω∗

i . Moreover, N2 is
shown in the first row, ( ), and H2O is shown in the second row ( ).

is to formulate an energy and momentum balance around the interface to
determine the common interface temperature and pressure to use for the
phase equilibrium computation.

A second alternative is to combine the hypothetical equilibrium lines in
Figure 3.6. Here, the horizontal lines indicate the tie line if both phases
should have the same temperature. For instance, if both phases should have
the temperature TG, then the equilibrium mass fraction in the liquid would
be ω∗

G,2, and the equilibrium mass fraction in the gas would be ω∗
G,1. Con-

versely, if both phases should have the temperature TL, then the equilibrium
mass fraction in the liquid would be ω∗

L,2, and the equilibrium mass fraction
in the gas would be ω∗

L,1.
Since the interface temperature is somewhere in between TL and TG,

that is TL ≤ TI ≤ TG, then at TI , the equilibrium mass fraction of the liquid
would be somewhere along the bubble point line between ω∗

L,2 and ω∗
G,2

(blue line fragment), and the true equilibrium mass fraction of the vapor
would be somewhere along the dew point line between ω∗

L,1 and ω∗
G,1 (red

line fragment).
A third alternative is to make the rough assumption that the liquid phase

temperature largely governs the interface temperature and that TI ≈ TL.
This assumption is based on the fact that the density and heat capacity
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Figure 3.6: Binary phase diagram at a fixed pressure. A gas and a liquid
phase in contact have different temperatures, and the two horizontal dashed
lines indicate the equilibrium line if both phases were to have the temper-
ature indicated. For the two phase equilibria shown at the temperatures
TL and TG, the equilibrium vapor compositions are denoted ω∗

L,1 and ω∗
G,1,

respectively, whereas the equilibrium liquid compositions are denoted ω∗
L,2

and ω∗
G,2, respectively.

of the liquid phase is generally much higher than those for the gas phase.
Therefore, more energy is required to perturb TL than what is required
to perturb TG. In turn, the temperature profile from the liquid phase to
the interface is expected to exhibit smaller gradients than the temperature
profile from the gas phase to the interface. This is visually displayed in
Figure 3.7. As a result, TI ≈ TL.
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Figure 3.7: The temperature profiles from the bulk phases to the interface.
Here, the interface temperature is largely governed by the bulk liquid phase
temperature.
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3.1.4 Mass Fraction as the Driving Force – Manipulating the
Mass Transfer Coefficients

Previously in Section 3.1.3, comments were made regarding the use of the
equilibrium ratio in the denominator since this creates large driving forces for
non-volatile compounds and smaller driving forces for volatile compounds.
While this is expected for a 1/x functional, it can be challenging numerically,
as it may produce a stiff system of equations.

Here, a straight-forward approach is suggested with ψi = ωi. Similar to
the approach in Section 3.1.3, the outset is eqs. (3.39) and (3.40). Then, the
two equations are divided by their respective mass transfer coefficient. That
is, eq. (3.39) is divided by kG,i and eq. (3.40) is divided by kL,i. Hence,

NG−I
i

kG,i
= ρG(ωG,i − ω∗

G,i), (3.47)

N I−L
i

kL,i
= ρL(ωL,i − ω∗

L,i). (3.48)

The two equations are subsequently added to obtain

Ni

( 1

kG,i
+

1

kL,i

)
= ρG(ωG,i − ω∗

G,i) + ρL(ωL,i − ω∗
L,i). (3.49)

Since kG,i is typically many orders of magnitude larger than kL,i, then
1/kG,i ≪ 1/kL,i. As a result, the terms in the parenthesis on the left-
hand side of the equality can be approximated as 1/kL,i, and the resulting
expression for the mass transfer flux reads

Ni = kL,iρL(ωL,i − ω∗
L,i +

ρG
ρL

(ωG,i − ω∗
G,i)). (3.50)

The results of eq. (3.50) have no rough approximations, and we expect no
large variations in the driving force since there are no species-specific vari-
ables in the denominator that could vary by multiple orders of magnitude,
as is the case for the K-value in eq. (3.46). Although it is appealing to utilize
eq. (3.50) for computing the mass transfer, the prefactor ρG/ρL, which is
typically in the order of 10−2–10−3, make the gas phase variables contribute
far less to the mass transfer flux than the liquid phase variables. For in-
stance, ωG,i−ω∗

G,i is weighted 100–1,000 times less than ωL,i−ω∗
L,i, making

the offset from equilibrium on the liquid side far more contributing to the
overall mass transfer flux. If the gas phase contribution at any point becomes
negligible compared to the liquid phase contribution, eq. (3.50) reduces to
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eq. (3.28), which was discarded for the reasons discussed in Section 3.1.2. In
those cases, eq. (3.50) is also inappropriate.

The mass transfer flux expression in eq. (3.50) was subjected to the same
test as the one performed for the mass transfer flux expressions in eqs. (3.28)
and (3.46) of Sections 3.1.2 and 3.1.3, respectively. The results are shown
in Figure 3.8. As seen, the mass transfer flux computed with eq. (3.50)
terminates before the one obtained with eq. (3.28) in Figure 3.4. However,
also here, the gas phase enters the unstable two-phase region. Hence, the
mass transfer expression in eq. (3.50) was also deemed inappropriate for
computing the mass transfer flux.
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Figure 3.8: Mass fraction profiles in the bubble column. The mass transfer
flux was computed with eq. (3.50). Full lines denote ωi, and dashed lines
denote the corresponding equilibrium mass fraction, ω∗

i . Moreover, N2 is
shown in the first row, ( ), and H2O is shown in the second row ( ).

3.2 Remarks on Heat and Momentum Transfer
Induced by Mass Transfer

When mass is transferred from one phase to another, that mass carries
a certain amount of heat and momentum. The momentum transfer was
beyond the scope of this study, and it was thus neglected throughout the
entirety of this work. The interphase heat transfer can be in terms of i)
heat of vaporization/condensation (due to latent heat), ∆vaph, ii) heat of
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mixing (due to differences in composition), ∆mixh, and iii) sensible heat due
to temperature differences between the two phases.

The heat of vaporization in i) is subject to debate. While the enthalpy,
h, for single component systems only varies with temperature and pressure,
h additionally varies with composition for multicomponent systems. This
is not trivial, as this means that when mass is transferred, h changes, and
the amount of heat transferred is a function of the mass transferred. For
instance, ∆vaph is defined as

∆vaph := hG − hL. (3.51)

The enthalpy is a function of T , p, and ω, and inserting the respective
variables for each phase yields

hG = f1(TG, pG,ωG), (3.52)

hL = f2(TL, pL,ωL), (3.53)

∆vaph = f3(TG, TL, pG, pL,ωG,ωL). (3.54)

Since ω in both phases change with mass transfer, it is clear from eq. (3.54)
that ∆vaph also changes with mass transfer. However, ∆vaph also changes
as the temperatures of the two phases change, e.g., due to heat transfer in
the form of vaporization/condensation, mixing, heat exchange between the
two phases, or heat exchange between one or both of the phases with an
external cooling/heating medium.

Although ∆vaph is a complex function of the intensive variables in both
phases, it should in general not be disregarded, as its contribution could
be significant. In the mass transfer studies in this work, the components
considered include CH4, O2, NH3, CO, CO2, H2O, H2, and linear alkanes.
For pure component, ∆vaph was computed by the Peng–Robinson EoS at
T = 0.7Tc for the compounds studied here. The results are given along with
the heat of formation of gas, ∆fh

◦ (gas), in Table 3.2. Without considering
the sensible heat obtained from

∫ T
T◦
cpdT , the most significant contribution

to the total heat content of a particular phase originates from the ∆fh
◦.

Moreover, the heat of reaction, ∆rxh, in the two bubble columns studied in
this work is listed in Table 3.3. As seen, the heat of reaction is several times
larger than the ∆vaph.

The previous comparison of enthalpy contributions was on a purely ther-
modynamic basis. That is, no transport phenomena were taken into consid-
eration. This includes the reaction kinetics, the rate at which mass is trans-
ferred between the two phases, the heat exchange between the two phases,
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Table 3.2: Heat of vaporization and the heat of formation for the stud-
ied compounds. The heat of vaporization was computed with the Peng–
Robinson EoS at T = 0.7Tc. Here, T◦ = 298K is used to denote the reducing
temperature.

Compound ∆vaph/(RT◦) [-] ∆fh
◦/(RT◦) (gas) [-]

O2 2.6 0.0
NH3 8.8 -18.6
CO 2.3 -44.8
CO2 6.4 -158.9
H2O 15.3 -97.6
H2 0.4 0.0
CH4 3.1 -29.9
C2H6 5.6 -33.9
C3H8 7.2 -42.4
n-butane 8.7 -50.8
n-pentane 10.1 -59.3
n-hexane 11.4 -67.4
n-heptane 12.7 -75.8
n-octane 14.0 -84.3
n-nonane 15.2 -92.0
n-decane 16.4 -100.8
n-undecane 17.6 -109.3
n-dodecane 18.6 -117.0
n-tridecane 19.7 -125.5
n-tetradecane 20.6 -133.9
n-pentadecane 21.6 -143.2
n-hexadecane 22.5 -151.3
n-heptadecane 23.4 -158.9
n-octadecane 24.5 -167.4
n-nonadecane 25.4 -175.5
n-eicosane 26.1 -183.9

Table 3.3: Heat of reaction in the two bubble columns studied in this work.
Here, T◦ = 298.15K is used to denote the reducing temperature.

Enthalpy contribution Single cell protein Fischer–Tropsch synthesis

∆rxh/(RT◦) 518.9 67.4
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and the heat exchange with the cooling/heating medium. For instance, the
rate at which heat evolves through a reaction taking place is

ĥrx = rrx∆rxh. (3.55)

Here, rrx denotes the reaction rate, a quantity that depends on the condi-
tions in the column. Similarly, the heat transferred between the two adjoin-
ing phases relies on the heat transfer coefficient, hL, and the temperature
difference between the phases. Furthermore, heat transferred between one
of the phases and the cooling/heating medium relies on the heat transfer
coefficient, hcooling, and the temperature difference between the phase and
the cooling/heating medium.

Moreover, the heat transfer due to mass transfer between the two ad-
joining phases relies on the magnitude of the mass transfer flux, Ni. For
instance, the light hydrocarbons have high vapor pressures, and thus they
have a high tendency to evaporate when they are produced in the Fischer–
Tropsch synthesis at temperature (240 ◦C) and pressure (30 bar) conditions
commonly found in a Fischer–Tropsch slurry bubble column reactor. On
the other hand, the heavier hydrocarbons have low vapor pressures, and
thus they have a low tendency to evaporate when they are produced in
the Fischer–Tropsch synthesis at temperature and pressure conditions com-
monly found in a Fischer–Tropsch slurry bubble column reactor. Hence,
light hydrocarbons will have a higher mass transfer flux, while heavier hy-
drocarbons will have a smaller mass transfer flux. The combination of Ni

and the associated ∆vaphi over all components i will determine the total
contribution of the heat of vaporization/condensation.

The quantities discussed in the previous paragraph are system specific
due to the implicit dependency on the flow conditions in Ni, rrx, hL and
hcooling. Therefore, the impact of rrx, Ni, and heat transfer on the total heat
equation cannot be determined on a general basis. Based on the quantities
that could be described on a general basis (∆vaph, ∆fh

◦,
∫ T
T◦
cpdT , and ∆rxh)

the authors have chosen to neglect the impact of ∆vaph in all applications
throughout the entirety of this work. The rationale for this decision bases
on the magnitude of the different contributions; the magnitude of ∆vaph is
several times less (for all compounds studied) than the magnitude of the
other mentioned quantities.
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Chapter 4

Journal Publications

The work within this dissertation is published in three journal articles given
in the following sections as Paper I, Paper II, and Paper III. Paper I contains
work on the differential Gibbs and Helmholtz reactor models, which are re-
actor models that are based on chemical equilibrium rather than reaction
kinetics. Here, non-ideal gas descriptions are employed and tested for two
chemical processes (steam methane reforming and the methanol synthesis).
Furthermore, the reactor models are solved with two different numerical ap-
proaches; the finite volume method and the orthogonal collocation method.
For the differential Helmholtz reactor model, the finite volume method was
particularly interesting due to providing a numerical grid volume that can
be utilized while minimizing the Helmholtz energy function. As the pressure
is readily available from the continuity/momentum equations, it is natural
to choose this pressure as the pressure to be held constant while minimizing
the Gibbs energy function.

In Paper II (single cell protein production) and Paper III (Fischer–
Tropsch synthesis), emphasis was placed on mass transfer phenomena, and
in particular the equilibrium that is believed to prevail at the interface sep-
arating the two adjoining phases. The approaches discussed in Chapter 3
were presented, and in particular the approach discussed in section 3.1.3
was implemented and demonstrated for three different EoSs: the Soave–
Redlich–Kwong, the Peng–Robinson, and the PC-SAFT EoSs. In all cases,
the results were compared to classical mass transfer expressions based on
Henry’s law. Furthermore, perturbation studies were performed to explore
the sensitivity of the numerical solution of the governing equations. Espe-
cially temperature and pressure perturbation studies were performed, how-
ever, the simulation time to achieve converged governing equations was also
shown to be decisive in the mass transfer modeling. The novel mass transfer
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expressions developed here are inevitably more computationally expensive
than the expressions based on Henry’s law due to the need of converging an
optimization problem for the mass transfer.

The qualitative differences between eq. (3.46) and mass transfer expres-
sions based on Henry’s law were presented, e.g., the evaporation or conden-
sation of the solvent. It is advisable to perform careful evaluations when
choosing which mass transfer expression to employ for the reasons discussed
in Paper II and Paper III. For instance, if the evaporation or condensa-
tion of the solvent is important, then the novel mass transfer expressions in
eq. (3.46) are superior to the expressions based on Henry’s law. Conversely,
if numerical efficiency is important, then the mass transfer expressions based
on Henry’s law are favored due to being computationally cheaper than the
mass transfer expression proposed in eq. (3.46).

4.1 Paper I: The Differential Gibbs and Helmholtz
Reactor Models
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Differential Gibbs and Helmholtz reactor models for ideal and non-ideal
gases: Applications to the SMR and methanol processes
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h i g h l i g h t s

� Chemical equilibrium and fluid dynamics are combined for non-ideal gas mixtures.
� Minimum Gibbs and Helmholtz energy analyzes performed.
� Collocation method preferred over finite volume method.
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a b s t r a c t

This work unifies the concepts of chemical reaction equilibrium and transport phenomena applied to
fluid flow of reactive gas mixtures over solid catalysts. Different from accurate modeling of reactions,
which in the outset relies on reaction kinetics, the current approach is rather based on calculation of ther-
modynamic equilibrium thus requiring far fewer model parameters. Here, minimization of Gibbs or
Helmholtz energy is solved in an inner loop inside the transport equations for heat, mass, and momen-
tum. In addition to ideal gas, the non-ideal virial expansion and Soave-Redlich-Kwong equations of state
have been used to model the gas mixture. The use of thermodynamic energy potentials ensures that all
the derived properties like e.g. heat capacity, density, reaction enthalpy and equilibrium composition are
derived from one fundamental relation only. The complete model framework is exemplified using the
steam methane reforming and methanol synthesis processes. Herein, different combinations of energy
potential (Gibbs versus Helmholtz) and numerical solution method for solving the transport equations
(finite volume versus orthogonal collocation) have been studied with focus on model complexity, and
efficiency and robustness of the solver. Orthogonal collocation is shown to be more efficient than finite
volume, and Gibbs energy is shown to be more efficient than Helmholtz energy. The last statement
depends on both flow conditions and implementation details and is therefore not a general result. The
proposed model framework is a novel tool for calculating industrial reactors which operate quite close
to equilibrium and might as such be useful for process design studies, albeit not for accurate simulation.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In transport phenomena, chemical reactions are characterized
and quantified by kinetic expressions of two types: 1) irreversible
reactions, where the reaction proceeds unidirectionally until one of
the reactants is exhausted and 2) reversible reactions, where for-
ward and backward reactions compete. Reversible reactions
asymptotically approach chemical equilibrium, which is mathe-

matically enforced by including the equilibrium constant in the
reaction rate expressions.

Many studies have been conducted in order to shift the equilib-
rium limitation imposed on the reversible reaction kinetics. The
steam methane reforming (SMR) process (see e.g. Tran et al.
(2017) and Dixon (2017)), where CH4 and H2O are converted into
CO, CO2 and H2, is the largest industrial source of hydrogen and
accounts for � 50% of its production (Wismann et al., 2019).
Sánchez et al. (2017), Chao et al. (2017), Wang et al. (2010) and
Fernández and Abanades (2017) investigated the possibility of
overcoming equilibrium limited reaction kinetics in the SMR pro-
cess by removing the CO2 product with the adsorbing agent CaO.
The gaseous CO2 was adsorbed on CaO to form CaCO3, and in the
studies of Sánchez et al. (2017) and Fernández and Abanades
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(2017), the CaCO3 was stripped for CO2 in a regenerator unit and
CaO was sent back to the reactor to repeat the cycle. Among others,
Solsvik and Jakobsen (2011) and Phuakpunk et al. (2018) explored

the possibility to combine the catalyst and adsorbing agent into the
same pellet. The product yield was higher in this so-called
sorption-enhanced SMR process than the conventional SMR

Nomenclature

Latin Letters
A Formula matrix –
A Area m2

A Helmholtz energy function J
a Molar attractive term SRK Pa m6/mol2

b Formula vector –
B Mixture excluded volume SRK m3

B Mixture second virial coefficient m3

b Molar excluded volume SRK m3 mol�1

b Molar second virial coefficient cm3 mol�1

C Number of components –
c Component –
c Constraint optimization problem –
Cp Isobaric heat capacity J K�1

cp Specific isobaric heat capacity J K�1 kg�1

Cv Isochoric heat capacity J K�1

D Diagonal matrix mol�1

D Mixture attractive term SRK Pa m6

d Diameter m
E Auxiliary matrix –
e Vector of only ones –
E Set of equality constraints –
F Mass flow kg s�1

f Friction factor –
f function varying
G Gibbs energy function J
H Hessian matrix varying
H Enthalpy J
h Molar enthalpy J mol�1

I Identity matrix –
I Set of inequality constraints –
I Ionization energy eV
J Jacobian vector varying
k Binary interaction parameter –
k Boltzmann’s constant J K�1

L Lagrangian function J
m Parameter –
Mm Molar mass kg kmol�1

N Stoichiometric matrix –
N Total number of moles mol
N Total number –
n Number of moles mol
NA Avogadro’s number particles/mol
p Newton step in search direction varying
p Pressure Pa
R Rate of generation of a component kg s�1 m�3

R Universal gas constant J K�1 mol�1

r Spatial separation cm
r Radius m
Re Reynolds number –
S Entropy J K�1

s Molar entropy J K�1 mol�1

T Temperature K
U Internal energy function J
U Overall heat transfer coefficient W m�2 K�1

V Volume m3

v Velocity m s�1

x Vector of decision variables varying
X Generic extensive property varying

xi Partial molar X varying/mol
y Molar fraction –
Z Compressibility factor –
z z-coordinate in physical space m

Greek Letters
a Step length in search direction –
a Trial coefficient varying
D Change –
d Kronecker delta –
e Minimum of potential well J
e Void fraction of catalyst –
k Lagrangian multiplier varying
k Well width –
k Thermal conductivity W m�1 K�1

l Chemical potential J mol�1

l Dynamic viscosity Pa s
r Gradient operator in optimization varying
m Iteration count –
m Variable of integration m3

m Stoichiometric coefficient –
n Pressure equation on residual form Pa
p Variable of integration Pa
q Mass density of mixture kg m�3

r Separation distance Å
/ Pair-potential J
/ Trial function varying
u Fugacity coefficient –
x Acentric factor –
x Mass fraction –

Superscripts
HS Hard sphere –
ig Ideal gas –
o Standard state –
r;p Residual at the same pressure –
r;v Residual at the same volume –
� Optimal value –
s Superficial –

Subscripts
0 Start estimate –
a Ambient –
c Value at critical point –
el Element –
eq At chemical equilibrium –
f Formation –
i Component number –
i Inner –
ii Pair like-like molecules –
ij Pair unlike molecules –
in At reactor inlet –
N Order of approximation –
o Outer –
p Catalyst pellet –
r Reduced –
rx Reaction –
t Tube –
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process. Wu et al. (2016) provide more details in an excellent
review of the sorption-enhanced SMR process. The principle of
shifting the equilibrium condition of the SMR by removing a pro-
duct component from the chemical mixture has also been analyzed
in a membrane reactor by multiple investigators (e.g. Jordal et al.
(2004, 2005) and Pedernera et al. (2007) for H2 removal).

In chemically reactive non-equilibrium systems, reaction
kinetic models determine the reactivity of species. These models
are typically empirical (Fogler, 2014), and in cases where models
do not exist, the change in composition due to chemical reaction
cannot be computed. In many process design studies, the reaction
kinetics is unknown or is not well developed, and chemical reac-
tors are therefore traditionally computed solely by chemical equi-
librium, corresponding to infinitely fast kinetics. Chemical
equilibrium is equivalent to a minimum energy principle. Specifi-
cally, this could involve a) minimizing the Helmholtz energy func-
tion at given temperature, or b) minimizing the Gibbs energy
function at given temperature and pressure.

As a compromise between the fluid mechanical framework and
the chemical equilibrium concept, Solsvik et al. (2016) proposed
the ‘‘Differential Gibbs and Helmholtz reactor models”. The com-
bined framework employs the fluid mechanical transport equa-
tions for mass, species mass, momentum, and energy. In
particular, the source term of species mass is computed alge-
braically assuming instantaneous chemical reactions limited by
thermodynamic equilibrium only. This forces the transport equa-
tions to be DAE rather than ODE. The notation of ‘‘Differential
Gibbs and Helmholtz reactor models” solely reflect this transition.
From the DAE description, chemical equilibrium prevails at all
points in space and time (unsteady flow). Here, the temperature
field (and for Gibbs energy also the pressure field) is controlled
by the fluid flow solver. One practical consequence of the transition
to DAE is that all thermodynamic properties of the reacting system,
like e.g. heat capacity, will require iterations inside a nested loop in
the fluid flow solver. The differential Gibbs and Helmholtz reactor
models are to be used in the absence of reaction rate kinetic mod-
els, or in order to investigate the equilibrium limits of a reversible
reaction. They also arguably improve the much simplified ‘‘chem-
ical reactors” used in process design software.

In the work of Solsvik et al. (2016), the chemical composition
was first found by minimizing Gibbs or Helmholtz energy. This
composition was afterwards used to calculate the reaction rate
source terms, which finally were used to determine the rate of
energy production due to chemical reaction. Subsequently, the
velocity and pressure fields were obtained from the continuity
and momentum equations. This procedure was repeated until con-
vergence was achieved.

The authors employed a one-dimensional plug flow packed bed
reactor model assuming ideal gas, see Froment and Bischoff (1990).
The reactor model was applied to the SMR process and solved with
the orthogonal collocation method (OCM, see e.g. Villadsen and
Stewart, 1995; Shen et al., 2011; Solsvik et al., 2013; Jakobsen,
2014). The result was compared to the reaction rate kinetics of
Xu and Froment (1989a), Xu and Froment (1989b), which for a
reaction kinetic based reactor model obtained conditions close to
equilibrium at the reactor outlet (Froment and Bischoff, 1990).

In many industrial situations, however, deviations from ideal
gas are significant. Examples include synthesis of ammonia (Bell
et al., 2010, Chap. 11), urea (Chinda et al., 2019), Fischer–Tropsch
fuels (Mikhailova et al., 2003), and as in this work: methanol
(Miroshnichenko and Vrabec, 2015).

Recently Marino et al. (2019) coupled ANSYS FLUENT (ANSYS
Inc, 2013) to the thermodynamic software HSC (Roine, 2019) for
performing fluid flow calculations with local chemical equilibrium
at each point in space and time. Solid and gas phases were
assumed ideal whereas liquid phases were non-ideal utilizing the

activity coefficient method. The steady state flow problem is solved
in two stages. Species mass balances were solved by first ignoring
the reaction term to calculate an estimated molar concentration
field. In the second stage, the concentration field was input to
HSC as an initial estimate, and the optimum solution from the
Gibbs energy minimization was taken as the true molar concentra-
tion field at that iteration step. This two-stage procedure was
repeated until convergence was achieved.

Here, the focus is to relax the ideal gas assumption used in the
work of Solsvik et al. (2016), by incorporating non-ideal equations
of state (EOSs) for a more accurate thermodynamic state descrip-
tion. Consequently, the equilibrium composition, density and
temperature fields are all different from those computed by
Solsvik et al. (2016). As known from the continuity equation,
velocity is inversely proportional to density, and from the
momentum equation, the pressure is strongly coupled to the
velocity field. Hence, it is expected that the velocity and pressure
fields will also change by going from ideal to non-ideal gases. The
extended model framework will be applied to the SMR process
also considered by Solsvik et al. (2016) and the methanol synthe-
sis which is an example of a nearly equilibrated process (Dadgar
et al., 2018). Both the assumption of ideal gas and non-ideal EOSs
will be studied.

The numerical properties of the differential Gibbs and Helm-
holtz reactor models are investigated with respect to speed and
number of iterations in two well-established numerical solution
approaches: the OCM and the finite volume method (FVM, see
e.g. Versteeg and Malalasekera, 2007; Ferziger et al., 2020;
Roache, 1998; Jakobsen, 2014).

The first part of this paper encompasses the transport phenom-
ena, i.e. reactor model, constitutive equations, and numerical solu-
tion approach. The second part contains results and discussion, and
the last part contains conclusions. An outline of the required ther-
modynamic theory, including EOSs, chemical reaction equilibrium
along with optimization theory, and finally the framework of resid-
ual functions can be found in Appendix A.

2. Differential reactor model equations

In the present study, we employ a one-dimensional pseudo-
homogeneous plug flow packed bed reactor model (Froment and
Bischoff, 1990). The model equations consist of the continuity
equation, species mass balance, momentum equation, and
enthalpy equation. The continuity equation is given by

d qv sð Þ
dz

¼ 0; ð1Þ

where q and v s denote the mass density and superficial velocity.
The latter is the cross-sectionally average of the velocity vector, that
is vs ¼ hviA: Furthermore, z denotes the spatial coordinate
considered.

The species mass balance is given by

d qv sxcð Þ
dz

¼ Rc; ð2Þ

where xc and Rc denote the mass fraction and reaction rate of com-
ponent c, respectively. The mass fractions, xc , are determined from
the chemical equilibrium calculation by minimizing the Helmholtz
or Gibbs energy functions using the iterative numerical schemes of
(7) or (8), respectively. The reaction rates, Rc , are determined from
the species mass balances (2).

The momentum equation is given by

d
dz

qvsv s

e2

� �
¼ � dp

dz
� f

qv s j vs j
dp

; ð3Þ
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where e; p; f , and dp represent the void fraction, pressure, friction
factor, and diameter of the catalyst pellets, respectively. Here the
void fraction is assumed uniform.

The enthalpy equation is given in terms of temperature as

qv scp
dT
dz

¼
XNrx

r¼1

�DrxHrRrð Þ þ 4U
dt

Ta � Tð Þ; ð4Þ

and will henceforth be referred to as the temperature equation. In
(4), cp is the specific isobaric heat capacity, T is the temperature,
Nrx is the number of reactions taking place, DrxHr is the specific reac-
tion enthalpy for reaction r; Ta is the ambient temperature (temper-
ature of the heating/cooling medium), dt is the diameter of the tube,
and U is the heat transfer coefficient parametrized in detail by Yagi
and Kunii (1957, 1960), de Wasch and Froment (1972) and Froment
and Bischoff (1990). Pure component gas conductivities are
required in order to compute the heat transfer coefficient and were
obtained from Reid et al. (1987). The temperature Eq. (4) is solved
for temperature, T.

2.1. Closure equations

2.1.1. Species mass
In the proposed reactor model concept, the species mass trans-

port equations are solved for the rate of production/consumption,
i.e. (2) is solved for Rc . Hence, the mass fractions must be computed
from another relation. In this work, the mass fractions are taken as
the equilibrium composition computed by minimizing the thermo-
dynamic functions Gibbs (G) or Helmholtz energy (A). The proce-
dure is performed at all nodal points. Thus, there are as many
minimization problems as there are discretized nodal points in
the reactor.

The optimization problem in terms of the Helmholtz energy
function reads

min
V ;n1 ;n2 ;...;nC

ðAÞT
s:t: V ¼ VoPC

j¼1
Aijnj ¼ bi; i ¼ 1;2; . . . ;Nel

ni � 0; i ¼ 1;2; . . . ; C;

ð5Þ

and in terms of the Gibbs energy function, the optimization prob-
lem reads

min
n1 ;n2 ;...;nC

ðGÞT;p

s:t:
PC
j¼1

Aijnj ¼ bi; i ¼ 1;2; . . . ;Nel

ni � 0; i ¼ 1;2; . . . ;C:

ð6Þ

In (5) and (6), V is the volume, ni are mole numbers, Aij represents
the number of element i present in one unit of species j, and bi rep-
resents the number of element i present in total. The productPC

j¼1Aijnj ¼ bi is therefore a mass balance over element i
(Michelsen and Mollerup, 2007). There are Nel number of distinct
elements, and thus, there are Nel balance equations of the formPC

j¼1Aijnj ¼ bi.
By formulating a Lagrangian function and linearizing (see

Appendix A.2 Eqs. (A.27)–(A.39b)), the iterative numerical scheme
for minimizing the Helmholtz energy function is formulated as

HA
1 0
0 A

� �>

1 0
0 A

� �
0 0
0 0

� �
0
BBB@

1
CCCA

m

� pV

pn

� �
k1
ki–1

0
BBB@

1
CCCA

mþ1

¼
JA

V � V0

An� b

0
B@

1
CA

m

; ð7Þ

and the iterative numerical scheme for minimizing the Gibbs
energy function is formulated as

HG A>

A 0

 !m �pn

k

� �mþ1

¼ JG
An� b

� �m

: ð8Þ

Here H and J denote the Hessian matrix and Jacobian vector of the
thermodynamic function indicated in the subscript. For instance, HA

is the Hessian matrix of the Helmholtz energy function. Further-
more, pn ¼ nmþ1 � nm are the steps in mole number, pV ¼ Vmþ1 � Vm

is the step in volume, k are the Lagrangian multipliers, m is the iter-
ation counter, A is the formula matrix and b is the formula vector.

The iterative schemes in (7) and (8) require initialization. The
routine is initialized by the current mole numbers. To start off
with, the mole number vector, n, at each nodal point in the reactor
is specified as the mole fraction vector at the reactor inlet. After
converging the minimization problem, n is updated according to
the converged equilibrium mole numbers. Furthermore, the mole
fractions are updated as y ¼ n=N, where N is the total mole num-
ber, that is N ¼Pni.

Every iteration in (7) and (8) require evaluating the Hessian and
Jacobian. For the Helmholtz energy function, the Jacobian and Hes-
sian are given by

JA ¼
@A
@V

� �
T;n

@A
@n

� �
T;V

 !
¼ �p

l

� �
ð9aÞ

HA ¼
@2A
@V2

� �
T;n

@2A
@V@n>

� �
T

@2A
@n@V

� �
T

@2A
@n@n>

� �
T;V

0
B@

1
CA

¼
� @p

@V

� �
T;n � @p

@n>
� �

T;V

@l
@V

� �
T;n

@l
@n>

� �
T;V

0
@

1
A;

ð9bÞ

and for the Gibbs energy function, the Jacobian and Hessian are
given by

JG ¼ @G
@n

� �
T;p

¼ l ð10aÞ

HG ¼ @2G
@n@n>

 !
T;p

¼ @l
@n>

� �
T;p

: ð10bÞ

Here l is the vector of chemical potentials. The Jacobian and Hes-
sian in (9) and (10) are valid for any utilized EOS. For instance,
the ideal gas Jacobian and Hessian of the Helmholtz energy function
are written

J igA ¼
�NRT=V

lo Tð Þ þ RT ln nRT
Vpo

 !
ð11aÞ

Hig
A ¼ RT

N=V2 �V�1e>

�V�1e D

 !
; ð11bÞ

while for the Gibbs energy function, they are written

J igG ¼ lo Tð Þ þ RT ln
np
Npo

ð12aÞ

Hig
G ¼ RT D� 1

N
ee>

� �
: ð12bÞ

Here R is the universal gas constant, po is the standard pressure of
1 bar, and Dij ¼ dij=ni is the diagonal matrix with dij representing
the Kronecker delta which is 1 for i ¼ j and 0 otherwise. The stan-
dard chemical potential, lo Tð Þ, is given by (Winterbone and
Turan, 1997, p. 268; Haug-Warberg, 2006, p. 134)
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lo
i T;poð Þ ¼ hig

i T;poð Þ � Tsigi T;poð Þ
¼ Df h

o
i Toð Þ þ R T

To
cop;i Tð ÞdT

h i
� T soi Toð Þ þ R T

To

co
p;i

T dT
h i

;

ð13Þ
where hig

i and sigi are the ideal gas partial molar enthalpy and
entropy, respectively, Df h

o
i is the standard heat of formation, cop;i is

the standard, ideal gas heat capacity and soi is the standard entropy
of component i. The standard heat of formation and the standard
entropy are tabulated at the reference temperature, To, at NIST
JANAF1. The standard heat capacities were determined from the
polynomial expression (for flexibility over a small temperature
range)

cop;i Tð Þ ¼ Ai þ BiT þ CiT
2 þ DiT

3: ð14Þ
Here Ai;Bi;Ci and Di are constants specific to species i. The constants
are taken from Lydersen (1983).

Due to non-trivial technicalities of the considered state (T;V ;n
or T; p;n), details on the evaluation of the non-ideal gas Jacobian
and Hessian functions in (9) and (10) are given in A.3. It is empha-
sized that the residual Gibbs energy function is not derived in a
straight forward manner for pressure explicit EOSs, such as the
SRK-EOS. In this case, the residual Gibbs energy function is evalu-
ated through the residual Helmholtz energy function.

2.1.2. Density
The density for any EOS at any spatial point in the reactor is

given by

q T; p;nð Þ ¼ N
V

XC
i¼1

yiMm;i; ð15Þ

where V is dependent on the EOS and computed iteratively by a
Newton–Raphson search at the T;p;n of the nodal point considered.
The relations are taken from Michelsen and Mollerup (2007, p. 94):

Vmþ1 ¼ Vm � n T;p;V ;nð Þ
@n T;p;V ;nð Þ

@V

� �
T;p;n

; ð16Þ

where n is the pressure Eq. (C.1) on residual form given in
Appendix C. The required derivative is given by (C.2b).

For ideal gas (see Appendix A.1.1), no iterations are needed in
order to compute the volume, and (15) reduces to

q ¼ p
RT

XC
i¼1

yiMm;i: ð17Þ

2.1.3. Momentum
The friction factor in (3) is parameterized by Ergun (1952) but

was later modified by Tallmadge (1970) to higher Reynolds num-
bers (Coker, 2001). In this work, the Tallmadge (1970) modification
is used

f ¼ 1� e
e3

1:75þ 4:2
1� e
Re1=6

� �
: ð18Þ

The Reynolds number is given by

Re ¼ qv sdp

l
; ð19Þ

where l denotes the mixture dynamic viscosity and is given by

l ¼
XC
i¼1

yili: ð20Þ

The individual contribution of each species, li, is given by the
Sutherland et al. (1893) expression

li ¼
BiT

3=2

Si þ T
; ð21Þ

where Bi and Si denote species specific constants taken from
Lydersen (1983).

2.1.4. Temperature
Heat capacity: The extensive2 isobaric heat capacity is defined

as

Cp � T
@S
@T

� �
p;n

¼ �T
@2G

@T2

 !
p;n

: ð22Þ

However, for pressure explicit EOSs, an alternative relation exists

Cp ¼ CV � T
@p
@T

� �2
V ;n

@p
@V

� �
T;n

; ð23Þ

where the extensive isochoric heat capacity is defined as

CV � T
@S
@T

� �
V ;n

¼ �T
@2A

@T2

 !
V ;n

: ð24Þ

For the virial expansion, evaluating (22) is possible, and when using
the Gibbs energy function, (22) is obviously preferred over (23).
However, for pressure explicit EOSs, such as the SRK-EOS, (23) must
be used in combination with (24), both for the Gibbs and the Helm-
holtz energy function. The volume required for evaluating the pres-
sure derivatives in (23) and the Helmholtz energy function
derivatives in (24) is computed through (16). The auxiliary pressure
derivatives are given in (C.2), and the second-order derivatives of
the Helmholtz energy function are given in Appendix B. Further
details on evaluating the heat capacity are given in Appendix A.3.

The specific heat capacity required in the temperature Eq. (4) is
obtained by the appropriate conversion

cspecificp ¼ Cextensive
p

N
XC

i¼1
yiMm;i

; ð25Þ

where Mm;i is the molar mass of component i and the superscripts
‘‘specific” and ‘‘extensive” are applied for clarity.

Reaction enthalpy: The reaction enthalpy is computed from

DrxHr ¼
XC
i¼1

mi;rhi; ð26Þ

where mi;r denotes the stoichiometric coefficient of component i in

reaction r, and hi is the partial molar enthalpy. The independent
reactions, and thus also the stoichiometric coefficients, are found
from the null space of the formula matrix, A. The formula matrix
described in the optimization problems (5) and (6) is first put on
row reduced echelon form, that is A � I Eð Þ. The stoichiometric
matrix is then recovered as

N ¼ �E
I

� �
; ð27Þ

where I is the identity matrix. The stoichiometric matrix has
dimensions NC 	 Nrx. For the SMR and the methanol processes, the
stoichiometric matrices are given as

1 The values are tabulated at https://janaf.nist.gov/ (last accessed 26.06.2020),
except for methanol which is found in Green (1961). 2 Property that depends on the physical size of the system considered.
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ð28Þ
Hence there are two independent reactions in both the SMR process
and the methanol process. The reactions may be read from the
stoichiometric matrices in (28). For the SMR process, the reactions
are

1
2 CH4 þ 1

2 CO2 ¼ CO þH2
1
2 CH4 þ 3

2 CO2 ¼ 2COþH2O;

and for the methanol process, the reactions are

CO2 þH2 ¼ COþH2O
CO þ 2H2 ¼ CH3OH:

Furthermore, the required partial molar enthalpies are given by (see
also definitions (A.26) and (A.52a))

hi ¼ li þ Tsi ¼ @G
@ni

� �
p;n

� T
@2G
@T@ni

 !
p

: ð29Þ

For the virial expansion, evaluating (29) is possible, and when using
the Gibbs energy function, it is obviously preferred. However, for
pressure explicit EOSs, the derivation is more involved. This is pri-
marily due to the implicit form obtained when mixing T; p and
T;V as free variables. The reader is referred to Appendix A.3 for a
detailed description on evaluating the partial molar enthalpies, or
to Michelsen and Mollerup (2007) for general details on the subject.

2.2. Numerical solution approaches

Two numerical solution methods have been studied in this
work: the OCM (Villadsen and Stewart, 1995; Shen et al., 2011;
Solsvik et al., 2013; Jakobsen, 2014) and the FVM (Versteeg and
Malalasekera, 2007; Ferziger et al., 2020; Roache, 1998; Jakobsen,
2014). In the former of the two methods, the quantity of interest
is found by forcing the residual of the equations to zero at a set
of points called collocation points. The collocation points have no
spatial extent, and correspondingly no volume is associated with
these discrete points. Therefore, in this numerical solution method,
intensive3 variables are the most accessible. In finding the equilib-
rium composition, the most natural choice of thermodynamic energy
function is the Gibbs energy as it is formulated in the T and p vari-
ables, which are both intensive quantities. The minimization prob-
lem presented by (6) in Section 2.1.1 is then solved for all
collocation points, and each minimization problem has the con-
straints of keeping the temperature and pressure constant at the
considered collocation point.

The FVM, on the other hand, is based on balancing quantities,
such as mass, momentum, and energy, over grid cell volumes that
do have spatial extent, contrary to the collocation points in the
OCM. In terms of the Gibbs energy function, the calculation routine
is similar (but not identical) to the one for the OCM. On the other
hand, the Helmholtz energy function is a function of T and V. The
volume to be held constant in optimization problem (5) is then
computed from the EOS with (16). However, a second alternative
for the volume may be proposed for the Helmholtz energy function

with the FVM; that is, the volume is not computed from the EOS,
but taken from the computational grid.

The discrete points at which the velocity field is computed is
indicated by arrows, while the scalar quantities are computed at
the bullet points. In the OCM, the velocity and scalar points coin-
cide, while the FVM uses a staggered grid. This is illustrated in
Fig. 1.

2.2.1. Orthogonal collocation method
In the OCM, the unknown function, f xð Þ; is approximated as a

truncated series expansion of interpolating polynomials, i.e.

f xð Þ � f N xð Þ ¼
XN
i¼0

ai/
N
i xð Þ; ð30Þ

where ai is a basis coefficient and /N
i xð Þ is an N’th order polynomial.

By choosing /N
i xð Þ as Lagrange interpolating polynomials, ai can be

chosen as f xið Þ (Kreyszig, 2011). Thus, the problem of finding a func-
tion, f xð Þ, reduces to finding a set of coefficients, f xið Þ, at a set of
abscissas, xi, called collocation points. This problem takes a lin-
earized form of Af ¼ b, where the A-matrix contains linear opera-
tors such as derivatives and integrals. These are dependent on the
location of the collocation points.

The collocation points are usually taken as the roots of orthog-
onal polynomials, hence the name orthogonal collocation. Depend-
ing on whether collocation points are placed on the boundary or
not, three different types of grids exist: Gauss (no boundary nodes),
Gauss–Lobatto (both boundary nodes), and Gauss-Radau (one
boundary node). In this work, the collocation points were taken
as the roots of Legendre polynomials and placed in a Gauss–
Lobatto type of grid. Information on how to find the collocation
points and construct A and b is studied extensively in literature
and can be found elsewhere (Villadsen and Michelsen, 1978;
Press et al., 1992; Solsvik and Jakobsen, 2012; Solsvik et al.,
2013; Solsvik and Jakobsen, 2013a; Shen et al., 2011; Golub and
Welsch, 1969; Golub, 1973; Jakobsen, 2014).

With the OCM approach, the continuity Eq. (1) is solved for the
velocity, vs, the species mass balance (2) is solved for the reaction
rate, Rc , the momentum Eq. (3) is solved for pressure, p, and the
temperature Eq. (4) is solved for temperature, T. The density, q,
is obtained from a thermodynamic computation on the volume,
as discussed in Section 2.1.2.

2.2.2. Finite volume method
In the FVM the transport equations are written as balances over

a set of grid cell volumes (Versteeg and Malalasekera, 2007;
Ferziger et al., 2020; Roache, 1998; Jakobsen, 2014). The unknown
quantities are then approximated as an average assumed represen-
tative for the entire grid cell volume. In the present study, two
solution strategies are considered for the pressure–velocity field.
In the first approach, the SIMPLE algorithm of Patankar and
Spalding (1972) (see also e.g. Patankar, 1980) along with the
upwind scheme is employed for pressure velocity coupling, and a
staggered grid is considered. In this methodology, the pressure is
corrected by a constructed pressure correction equation generated
from the momentum and continuity equations, whereas the veloc-
ity is determined from the momentum equation. This solution
approach differs from the OCM approach. In the latter, the velocity
is determined from the continuity equation and the pressure is
determined from the momentum equation.

In the second approach, the Ergun equation – which represents
a simplified form of the momentum equation – is used to compute
the pressure whereas the velocity is obtained from the continuity
equation. The transport equations are thus solved for the same
variables in this approach as in the OCM approach.3 Property that is independent of the physical size of the system considered.
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Both solution strategies in the FVM framework utilize the stag-
gered grid in Fig. 1b) with the upwind scheme. The two strategies
utilizing the FVM will be referred to as FVM-SIMPLE and FVM-
Ergun.

2.2.3. Program flow
The combination of numerical schemes, chemical processes and

EOSs considered in this study is presented in Fig. 2. For the OCM,
the SMR and methanol (MeOH) processes were simulated for ideal
gas, second virial expansion, and SRK-EOSs. For the FVM, both
FVM-Ergun and FVM-SIMPLE were employed. For the FVM-Ergun,
two options were analyzed for the volume to be utilized in mini-
mizing the Helmholtz energy function: (i) computing the volume
from the EOS with (16) (VEOS) and (ii) using the volume of the grid
cell (Vcell). This volume analysis was applied to the SMR process
with the SRK-EOS. The two solutions were compared. It was
assumed that the volume analysis was purely of numerical charac-
ter (independent of the chemical process and EOS), and conse-
quently, no other cases than the SMR process with the SRK-EOS
were analyzed.

For the FVM-SIMPLE, the methanol and SMR processes were
solved with the second virial expansion and calculating the volume
from the EOS with (16). The solution profiles obtained with the
FVM-Ergun employing the second virial expansion and calculating
the volume from the EOS with (16) were compared to the solution
profiles obtained with the FVM-SIMPLE for both chemical pro-

cesses. The differences in the solution profiles in the FVM-SIMPLE
and the FVM-Ergun were only investigated employing the second
virial expansion in the present work.

In Fig. 3, the general program structure algorithm is illustrated
for both the differential Gibbs (left-hand side) and Helmholtz
(right-hand side) reactor models. The shaded background high-
lights the novelty of this work compared to the ideal gas algorithm
by Solsvik et al. (2016), and furthermore its differences compared
to a reaction rate based reactor model. This involves the equilib-
rium computations, as well as the non-ideal blocks computing
the density and residual properties. Moreover, the Helmholtz
energy function is evaluated at the volume of the system, and it
is proposed that two different volumes exist, namely the VEOS or
the Vcell. As such, the equilibrium computation can be carried out
at two different volumes. The Gibbs energy function, on the other
hand, utilizes pressure and not volume. As a result, no choice of
volume is associated with the differential Gibbs reactor model.
The Gibbs energy function is evaluated at the pressure obtained
from the continuity/momentum equations and the equilibrium
computation is subsequently carried out at that pressure.

Before entering the equilibrium computation, the differential
Helmholtz reactor model must compute an initial composition or
volume by Newton–Raphson iteration depending on the choice of
volume: if EOS is chosen (VEOS), the initial composition, n, is known
and the initial volume, V, is calculated by (16). If the grid cell is
chosen (V cell, only for the SRK-EOS), the initial volume, V, is known

Fig. 1. The numerical grids used in (a) the OCM and (b) the FVM. A uniform staggered grid is used in the FVM and Gauss–Lobatto points are used in the OCM.

Fig. 2. Flow chart of the different combinations of numerical schemes, processes, and EOSs analyzed in the present work. Here IG denotes ideal gas.
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and the composition, n is computed by the real root of the SRK
pressure Eq. (A.10). The equation is rearranged in terms of the total
mole numbers and given as

ab½ 
N3 þ V RTbþ b2p� a
� �h i

N2 þ V2RT
h i

N � pV3 ¼ 0; ð31Þ

and the composition is given as n ¼ yN. In (31), b yð Þ ¼ B=N is the
excluded volume per mole and a T; yð Þ ¼ D=N2 represents the attrac-
tive term per square mole. B and D are computed by (A.11a) and
(A.11b), respectively. In both the case of choosing VEOS and the case
of choosing Vcell, the volume is held constant under minimization,
and as a result, the pressure changes.

In the Gibbs reactor model, the pressure is held constant under
minimization, and the volume consequently changes. Thus, in
order to find the density for the differential Gibbs reactor model,
the volume is found by Newton–Raphson iteration with (16) after
the minimization, in contrast to the Helmholtz reactor model
where the Newton–Raphson iteration with (16) is done before

the minimization. In both the differential Gibbs and Helmholtz
reactor models, the density at any location in the reactor is com-
puted by (15).

In the Helmholtz reactor, there is an additional convergence cri-
terion compared to the Gibbs reactor. Since the equilibrium prob-
lem is solved by changing the composition while holding
temperature and volume constant, the pressure consequently
changes during optimization. The pressure at minimum Helmholtz
energy is indicated by peq in Fig. 3. However, the solution of the
transport equations provides another pressure indicated by p in
the top right of Fig. 3, which does not necessarily coincide with
peq. Thus, the two pressures must be iterated until they converge
to the same value.

By specifying the composition vector at the reactor inlet, nin, the
composition vector can be updated throughout the reactor accord-
ing to the minimum of (5) or (6). In order to update the density in
the reactor model, the volume is calculated by (16) in each dis-
cretization node utilizing the computed T; p;n of that node. In

Equlibrium

Initialize fields
and constants

Momentum and
continuity

Non-ideal

Species mass

Temperature

Converged?

Terminate

Volume?EOS Grid cell

Ideal?

Ideal gas law

Initialize fields
and constants

Momentum and
continuity

Non-ideal

Species mass

Temperature

Converged?

Terminate

Ideal?

Gibbs Helmholtz

Non-ideal

no

Density

Ideal

R

T

yes

no

yesno

Ideal

R

T

yes

no

yes

DensityDensity

Residual
properties

Density

Newton-Raphson

V

Residual
properties

Newton-Raphson

Ideal

Equlibrium

Fig. 3. General algorithm for the differential Gibbs and Helmholtz reactors. The choice of approach to compute the volume and the choice of EOS are indicated by decision
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terms of the Helmholtz reactor model, T; peq;n is used to update
the volume, resulting in a Gauss–Seidel iteration scheme for the
density update.

2.3. Initial values, boundary conditions and parameter values

All the transport Eqs. (1)–(4) are ordinary differential equations,
and with the computational grids in Fig. 1, there are three cases. In
the case of the OCM, all variables share the same collocated grid.
That is, the spatial coordinate, z, is discretized in a set of collocation
points zif gNi¼1, and the dependent variables are evaluated at this set.
By using the Gauss–Lobatto grid, all variables were specified at the
reactor inlet. The problem is an initial value problem, and the ini-
tial values are given as

p ¼ pin

v s ¼ v s
in

T ¼ T in

xc ¼ xc;in;8c
q ¼ q T in;pin;xinð Þ

9>>>>>>=
>>>>>>;

at z ¼ 0; ð32Þ

where the density was computed by the EOS with (15).
In the case of the FVM, there are two alternative approaches:

the FVM-Ergun and the FVM-SIMPLE. In both cases, the values
for v s; T, and xc were specified at the reactor inlet. The pressure
was, however, specified at two different boundaries for the two
numerical approaches. With FVM-Ergun, the pressure was speci-
fied at the reactor inlet and thus all variables were specified iden-
tically to the OCM. Hence, FVM-Ergun is also an initial value
problem and the initial values are given by (32). In the FVM-
SIMPLE methodology, pwas specified at a ghost node at the reactor
outlet as indicated in Fig. 1b). As a result, pin was unknown and
extrapolated from the interior part of the grid. Consequently, qin

was recalculated as a function of the changing pin in each iteration.
The FVM-SIMPLE problem is thus a boundary value problem.

In both FVM-Ergun and FVM-SIMPLE, the last velocity node was
calculated by assuming the mass flow at the reactor outlet was
constant, i.e. FI¼Nþ1 ¼ Fi¼N ¼ qv sAð Þi¼N . The density at the reactor
outlet was extrapolated as qi¼N ¼ qI¼N (see Fig. 1). In the interior
part of the domain, the density at the velocity nodes, qi, was inter-
polated from the density at the scalar nodes, qI , to evaluate the
mass flow at the velocity nodes, Fi. The mass flow at the scalar
nodes, FI , was subsequently interpolated from Fi.

The numerical values of the initial values are given in Table 1
and were the same as those in Solsvik et al. (2016) for the SMR pro-

cess, and the same as those in Solsvik and Jakobsen (2013b) for the
methanol process.

3. Results and discussion

The plug flow reactor model in which the composition is pro-
vided from thermodynamic equilibrium was utilized. The effect
of the EOS and numerical solution approach was analyzed for the
SMR and methanol processes. For the SMR process with the ideal
gas EOS, the pressure, velocity, temperature, and density profiles
are shown in Fig. 4, while the composition profiles are shown in
Fig. 5. The Gibbs and Helmholtz function formulations provide
two identical equilibrium problem formulations, and conse-
quently, the compositions resulting from the optimization routines
are equivalent. This should be expected since the two energy func-
tions contain the same information, and their optima correspond
to the same state. As a result, it is immaterial whether the Gibbs
energy function or the Helmholtz energy function is used with
respect to the result.

There is, however, a difference regarding calculation routine
and efficiency. The chemical equilibrium reactor models are more
complicated to implement compared to that of a standard reactor
model based on reaction rate kinetics because an optimization
problem needs to be solved. This is easily seen in Fig. 3. Addition-
ally, as pointed out in Section 2.2.3, the differential Helmholtz
reactor model is more complicated than the Gibbs reactor model
due to the two pressures, p and peq, computed before and after
the minimization, respectively. This imposes an additional conver-
gence criterion on the Helmholtz reactor, making it slightly more
demanding to implement than the Gibbs reactor. However, com-
puting the equilibrium pressure, peq, allows the density to be
updated with the current iteration’s pressure estimate, which
decreases the total number of iterations spent before convergence
is obtained compared to the Gibbs reactor where the pressure of
the previous iteration is used.

By choosing the Helmholtz reactor, the optimization problem to
be solved increases in dimensionality due to the additional con-
straints and decision variables, as seen by comparing (5) and (6).
This makes the optimization problem slower for the Helmholtz
energy function formulation, and even though the Helmholtz reac-
tor model converges in fewer iterations, it spends more time at
each iteration than the Gibbs reactor model. Overall, the Gibbs
reactor model converges approximately 30%, 140%, and 14% faster
than the Helmholtz reactor model for ideal gas, the virial expan-
sion, and the SRK-EOS, respectively. The virial expansion can be
implemented both as a volume-explicit as well as a pressure-
explicit EOS, allowing both the residual Gibbs and the residual
Helmholtz energy functions to be computed from their defining
Eqs. (A.47) and (A.59), respectively. The residual Helmholtz energy
function is, however, more demanding to compute as seen in
Appendix B.1. In terms of the SRK-EOS, both the Gibbs and Helm-
holtz reactors were implemented through the residual Helmholtz
energy function, as indicated by (A.50) and (A.61), respectively.
Thus, the mathematical complexity between the residual Gibbs
and Helmholtz energy functions are similar. Due to the larger
dimensionality in the Helmholtz energy function optimization
problem, the Helmholtz reactor spends more time in each iteration
than the Gibbs reactor. The Gibbs and Helmholtz reactor models
with the SRK-EOS spend similar times overall.

In terms of numerical solution strategy, the OCM was more effi-
cient than both the FVM-Ergun and the FVM-SIMPLE for all cases
analyzed. A total number of 40 points were utilized in both the
OCM and the FVM numerical approaches.

For any EOS different from ideal gas, the density cannot be
directly computed at a given temperature, pressure and composi-

Table 1
Initial values and parameters to initialize the Differential Gibbs and Helmholtz
reactors.

Variable SMR Methanol Unit

Reactor length 7 7 m
dp 0.0173 0.0042 m
e 0.5 0.5 –
ri 0.051 0.051 m
ro 0.066 0.066 m
ksteel 52 52 W m�1 K�1

Ta 1050 520 K
T in 700 500 K
pin 29 50 bar
vs
in 1.5 1.5 m s�1

yCH4 ;in 0.22 – –
yMeOH;in – 0.0022 –
yCO;in 0.00007 0.0580 –
yCO2 ;in 0.008 0.0220 –
yH2O;in 0.73 0.0005 –
yH2 ;in 0.04193 0.8900 –
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tion. This is indicated by the Newton–Raphson block before the
density block near the middle of Fig. 3. To find the density, the vol-
ume is first found by iteration on (16), and as such, the calculation
time is significantly increased. This is true also for the differential
Gibbs reactor model, which for ideal gas had no extra calculation
loop other than the equilibrium calculation.

All subsequent results are obtained by using the Ergun’s equa-
tion to compute the pressure and the continuity equation to com-
pute the velocity unless explicitly stated that the FVM-SIMPLE is
used.

3.1. Steam-methane reforming

To assess the assumption of ideal gas at the simulated condi-
tions, other EOSs were attempted, namely the virial EOS and the
SRK-EOS. The relative deviation from ideal gas is shown in Fig. 6
and Fig. 7 and were obtained by using the OCM on the differential
Gibbs reactor. At the specified conditions, the relative deviations
from ideal gas are all below 5%. As seen in Fig. 8, CO2 is favored
by high temperatures, and whenever the temperature is lower
than that of ideal gas, a negative deviation in CO2 is observed. Sim-
ilar arguments hold for the other products (CO, H2), while the con-

verse is true for the reactants (CH4, H2O). The deviation in density
at the reactor inlet is caused by its initial value. The reactor inlet
temperature, pressure and composition are specified and constant.
The density is calculated from either the ideal gas EOS, virial
expansion EOS or the SRK-EOS. Utilizing an EOS other than the
ideal gas EOS will cause a deviation in the density computed at
the reactor inlet.

In the Helmholtz energy function approach, the volume chosen
is either calculated from the EOS with (16), or if the FVM is
employed, the grid cell volume could be chosen. This is shown near
the top of the Helmholtz approach in Fig. 3. The relative deviations
between the two approaches are at the number representation in
MATLAB. Whether the volume is calculated from the EOS or mixed
with the numerics by using the grid cell volume, the solution is
unaltered. It is therefore a matter of preference which method is
used.

Furthermore, the differences between the FVM-SIMPLE and the
FVM-Ergun were investigated. The results are obtained with the
virial EOS on the differential Helmholtz reactor and are shown in
Fig. 9 and Fig. 10. With FVM-Ergun, the pressure was given at
the reactor inlet, however, with the FVM-SIMPLE algorithm, the
pressure was given at the reactor outlet. The specified reactor out-
let pressure was the solution to the FVM-Ergun simulation, and
therefore the deviations are zero at the reactor outlet. However,
at the reactor inlet, there is a slight mismatch which also causes
the other variables to deviate from the solution to FVM-Ergun.
The deviations approach zero as the pressure differences vanish.
The deviation in mole fraction of CO seems higher than the others
due to its initially low value. Small errors are amplified due to
being relative deviations, not absolute. Altogether, the deviations
are small and negligible, showing that the differential Gibbs and
Helmholtz reactors are suitable for existing pressure-based solu-
tion strategies, even for more rigorous EOSs.

A parameter sensitivity study was performed to investigate the
sensitivity of the solution. Therefore, the temperature initial value
was decreased from 700 K to 400 K while keeping everything else
constant. The results are obtained with the OCM on the differential
Gibbs reactor and are shown in Fig. 11 and Fig. 12. The results dis-
play relative deviations in the variables at the reactor outlet as a
function of the reactor inlet temperature. As the reactor inlet tem-
perature is decreased, a stronger deviation is observed for density,
and therefore also in velocity. In turn, the pressure drops due to the
coupling between pressure and velocity. At 400 K a relative devia-

Fig. 4. Pressure, velocity, temperature, and density along the axial direction, z (m), for the Gibbs (G) and Helmholtz (A) differential reactors assuming ideal gas (IG) for the
SMR process.

Fig. 5. Mole fractions along the axial direction, z (m), for the Gibbs and Helmholtz
differential reactors assuming ideal gas for the SMR process.
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tion as high as 30% is observed in the velocity for the virial EOS.
The deviations are more modest for the SRK-EOS; however, the
deviations are still large. The trends for the SRK-EOS agree with
the virial expansion for all variables: there are positive deviations
in velocity and negative deviations in pressure, temperature, and
density. As for the mole fractions in Fig. 12, the deviations are
small. Even for a pressure deviation of 7% less, the greatest devia-
tion observed is 1:2% less for CO. This is due to chemical reaction
equilibrium being mainly governed by the temperature as is show-
cased in Fig. 8. The trends apply for the other components as well;
mole fractions of reactants drop, and mole fractions of products
rise as the temperature increases. The temperature at the reactor
outlet only deviates from ideal gas by a maximum of 0:6% less,
and at this temperature, the ideal gas assumption was shown to
be satisfactory. Therefore, the observed deviations in mole frac-
tions are minor.

3.2. Methanol synthesis

The methanol synthesis was also first simulated for ideal gas
using the OCM, and the results are displayed in Fig. 13 and

Fig. 6. Pressure, velocity, temperature, and density relative percent deviation from ideal gas along the axial direction, z (m), for the SMR process. Full lines (——) are the virial
EOS, and the dashed lines (– – –) are SRK.

Fig. 7. Mole fraction relative percent deviation from ideal gas along the axial
direction, z (m), for the SMR process. Full lines (——) are the virial EOS, and the
dashed lines (– – –) are SRK.
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Fig. 8. Mole fraction of CO2 at equilibrium as a function of temperature and pressure. The figure is generated based on ideal gas assumption. The virial EOS and the SRK-EOS
display the same trend values to within 2% relative error.
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Fig. 14. In line with the SMR results, the differential Gibbs and
Helmholtz reactors for the methanol synthesis also produce equiv-
alent results. Since the reactions in this process are overall exother-
mic, the temperature rises for a positive reaction term. As the
reactors establish instantaneous equilibrium, this exothermic part
yields a strong contribution to the temperature equation. It is seen
that the reaction term dominates over the heat exchange term
from the ambient cooling medium.

It is observed from Fig. 14 that the inlet temperature of 500 K
gives a large change in composition. As a result of the exothermic
reaction, the temperature spikes as seen in Fig. 13. As the cooling
from the heat exchange with the cooling medium starts to domi-
nate the temperature equation, the reaction slowly proceeds. The
reactor stabilizes at the temperature of the cooling medium
(520 KÞ, and the profiles are constant thereafter. From the compo-
sitional profiles, it is seen that the mole fraction of the products
increases as the temperature decreases from 570� 520 K. Hence,
it can be concluded that the equilibrium in the range
500� 570 K is best favored somewhere between 500 K and 520 K.

Immediately after the temperature rises, the density also drops.
However, as the cooling takes place, the density slowly rises again

up until z ¼ 4 m. At this point, the temperature is unaltered, and
the reaction has died out. Hence, the density is governed by the
pressure drop from the flow conditions. As the pressure declines,
so does the density. To satisfy the continuity equation, the velocity
inversely follows the density profile. However, the changes in den-
sity and velocity after z ¼ 4 m are minor.

The relative deviations between the virial expansion and ideal
gas as well as the relative deviations between the SRK-EOS and
ideal gas are given in Fig. 15 and Fig. 16. The results were obtained
by using the OCM on the differential Gibbs reactor. Even though
the temperature range is significantly lower than that for the
SMR process, the deviations observed are still minor for all flow
variables. For the composition profiles, the highest deviation in
the mole fractions obtained by the different EOSs is observed as
the temperature gradient approaches zero, i.e. z ¼ 3 m. At this
point, the heat exchange from the cooling medium dominates in
the temperature equation, and the reactor temperature approaches
the ambient temperature for all EOSs. Hence, the compositions are
computed at the same temperature for the different EOSs, and the
deviations are therefore a result of the EOS itself, not the flow con-
ditions. The highest deviation observed is around 8%, indicating
that ideal gas should be used with caution.

The results in Fig. 17 and Fig. 18 are relative deviations between
the solution obtained by the FVM-SIMPLE approach and the FVM-
Ergun. The same procedure was applied here as for the SMR pro-
cess; hence the pressure deviation is zero at the reactor outlet.
However, as the deviations are smaller at the reactor inlet for this
process, the velocity deviations throughout the whole reactor are
also smaller. Once again, the deviations are negligible for all vari-
ables, including the composition. Thus, the differential Gibbs and
Helmholtz reactor models fit well into the SIMPLE methodology,
even with the sharp gradients illustrated by the methanol process.

To investigate how the variables respond to perturbed initial
values, the reactor inlet temperature was once again decreased,
this time from 500 K to 300 K. The deviations at the reactor outlet
were plotted as a function of the perturbed inlet temperature. The
results were obtained by the OCM on the differential Gibbs reactor
and are shown in Fig. 19 and Fig. 20. As seen in Fig. 20, the compo-
sitional deviations are approximately equal for all inlet tempera-
tures investigated. This is due to the low deviations in the flow
variables shown in Fig. 19. For small deviations in temperature
and pressure, the resulting deviation in composition remains con-

Fig. 9. Pressure, velocity, temperature and density relative percent deviation between the FVM-SIMPLE pressure correction approach and FVM-Ergun along the axial
direction, z (m), for the SMR process. The profiles are obtained with the virial EOS.

Fig. 10. Mole fraction relative percent deviation between the FVM-SIMPLE pressure
correction approach and FVM-Ergun along the axial direction, z (m), for the SMR
process. The profiles are obtained with the virial EOS.
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stant. Hence, the deviations observed in Fig. 20 are caused by the
EOS, and not the decreased inlet temperatures.

4. Conclusion

Chemical equilibrium computations play an important role due
to the limitations the state of equilibrium imposes on reversible
reaction kinetics. However, by solely performing a chemical equi-
librium computation the temperature (and pressure) are assumed
constant. For transport phenomena, the constant temperature (and
pressure) are not necessarily physically realistic and restrict e.g.
density variations and fluid acceleration due to temperature and
pressure gradients, respectively.

In transport phenomena, reaction rate kinetic models are fre-
quently employed in order to compute compositional change due
to chemical reaction. These models are correlated empirically,
and if they are unknown, the production and consumption of spe-
cies due to chemical reaction cannot be computed. Hence, at the
expense of transient information of the reaction rates, Solsvik

Fig. 11. Pressure, velocity, temperature and density relative deviation from ideal gas at lowered inlet temperatures for the SMR process. Full lines (——) are the virial EOS, and
the dashed lines (– – –) are SRK.

Fig. 12. Mole fraction relative deviation from ideal gas at lowered inlet temper-
atures for the SMR process. Full lines (——) are the virial EOS, and the dashed lines (–
– –) are SRK.

Fig. 13. Pressure, velocity, temperature and density along the axial direction, z (m), for the Gibbs and Helmholtz differential reactors assuming ideal gas for the methanol
process.
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et al. (2016) replaced the reaction rate kinetic framework by the
chemical equilibrium framework. The result was coined the differ-
ential Gibbs and Helmholtz reactor models and represents an alter-
native to classical reactor computations in the absence of reaction
rate kinetics. The reactor models were implemented for ideal gas
using the OCM and demonstrated for the SMR process.

In this work, the efforts of Solsvik et al. (2016) were extended to
incorporate EOSs for real fluid mixtures, namely the virial EOS and
the SRK-EOS. The proposed formalism provides coherency and
internal consistency between the chemical equilibrium composi-
tion, reaction enthalpy, density, and heat capacity as they are all
derived and computed from the same energy function, i.e. the
Helmholtz or Gibbs energy functions. The new approach for com-
puting chemical reaction in a transportive, reactive system does,
however, introduce an iterative approach for computing the den-
sity due to the possible existence of multiple density roots at the
temperature and pressure of the discretization point.

The assumption that the gas mixture behaves ideally for the
SMR process was verified by the two alternative EOSs utilized for
real gases, with all deviations from ideal gas being below 2% for
the specified operating conditions. When the inlet temperature
was decreased from 700 K to 400 K, on the other hand, the devia-

tions ranged as high as 30% at most for the velocity. For the metha-
nol synthesis, the deviations in flow variables, i.e. velocity,
pressure, density and temperature, were minor between ideal gas
and the virial EOS and the SRK-EOS. However, the equilibrium
computation was affected more with deviations in mole fraction
from ideal gas ranging up to approximately 8%. Thus, at the inves-
tigated operating conditions, the common assumption of ideal gas
is reasonable for the SMR process. On the other hand, the devia-
tions in chemical composition observed for the methanol synthesis
suggest that ideal gas should be used with caution.

A numerical study was carried out in order to investigate how
the differential Gibbs and Helmholtz reactor models perform in
well-established numerical routines such as the OCM and the
FVM. For the FVM, the pressure-based solution strategy SIMPLE
was attempted. The differential Gibbs and Helmholtz reactor mod-
els both converged to within an error of 10�6 for all variables and
are therefore suitable in the OCM and the FVM frameworks, even
for the methanol process which displayed sharp gradients at the
reactor inlet. In all cases investigated, the OCM was more efficient,
and converged faster, than both the FVM-Ergun and the FVM-
SIMPLE.

Fig. 14. Mole fractions along the axial direction, z (m), for the Gibbs and Helmholtz
differential reactors assuming ideal gas for the methanol process.

Fig. 15. Pressure, velocity, temperature and density relative percent deviation from ideal gas along the axial direction, z (m), for the methanol process. Full lines (——) are the
virial EOS, and the dashed lines (– – –) are SRK.

Fig. 16. Mole fraction relative percent deviation from ideal gas along the axial
direction, z (m), for the methanol process. Full lines (——) are the virial EOS, and the
dashed lines (– – –) are SRK.
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The differential Gibbs and Helmholtz reactor models have dif-
ferent numerical properties. In the Helmholtz reactor, computing
the equilibrium pressure, peq, allows the density to be updated
with the current iteration’s pressure estimate, which decreases
the total number of iterations spent before convergence is obtained
compared to the Gibbs reactor where the pressure of the previous
iteration is used to update the density. However, the optimization
problem to be solved is larger in dimensionality for the Helmholtz
reactor model than the Gibbs reactor model. The increased compu-
tational burden due to the larger dimensionality outweighs the
decreased computational burden due to the fewer number of iter-
ations from the rapid density updates. Overall, the Gibbs reactor
model converges approximately 30%, 140%, and 14% faster than
the Helmholtz reactor model for ideal gas, the virial expansion,
and the SRK-EOS, respectively.

The equilibrium solutions are minima to the Gibbs or Helmholtz
energy functions, and for other EOSs than the ideal gas law, the
existence of multiple minima may occur. Further work includes
investigating the probability and consequences related to the exis-

Fig. 17. Pressure, velocity, temperature, and density relative percent deviation between the FVM-SIMPLE pressure correction approach and FVM-Ergun along the axial
direction, z (m), for the methanol process. The profiles are obtained with the virial EOS.

Fig. 18. Mole fraction relative percent deviation between the FVM-SIMPLE pressure
correction approach and FVM-Ergun along the axial direction, z (m), for the
methanol process. The profiles are obtained with the virial EOS.

Fig. 19. Pressure, velocity, temperature and density relative deviation from ideal gas at lowered inlet temperatures for the methanol process. Full lines are from the virial EOS
and dashed lines are from SRK.
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tence of multiple minima, as well as investigating the multiphase
behavior of the reactor concepts. It is not foreseen any conceptual
problems with extending the present framework for the Gibbs and
Helmholtz equilibrium calculations to more complex reactor mod-
els than the present tubular ones.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Funding: This project was supported by the Department of
Chemical Engineering at NTNU.

Appendix A. Thermodynamic theory

In this section, a description of three different EOSs is pre-
sented: the ideal gas law, the virial expansion, and the SRK-EOS.
Next, a general description of chemical reaction equilibrium will
be formulated as a minimization problem in terms of the Gibbs
and Helmholtz energy functions. Thus, an outline of the optimiza-
tion theory follows. In order to compute the behavior of real fluid
mixtures, residual functions are introduced. The EOSs first pre-
sented will then be utilized in the residual functions, and the
behavior of the non-ideal gas mixtures are quantified.

A.1. Equations of State

A.1.1. Ideal gas
The ideal gas law is the simplest EOS in terms of model com-

plexity and it often gives a good approximation. For these reasons,
it is frequently employed in transport phenomena. Additionally,
real gas behavior is defined in the residual framework as the devi-
ation from ideal gas behavior, as discussed in Appendix A.3. The
ideal gas law has the following form:

p T;V ;nð Þ ¼ NRT
V

: ðA:1Þ

An ideal gas consists of particles (atoms or molecules) moving
freely and independently in space without any inter-particle inter-
actions (Elliott and Lira, 2012, Chap. 1). Furthermore, the particles
occupy no volume, and hence, there are no attractive nor repulsive
interactions for an ideal gas. These assumptions are generally better
at high temperatures, where the kinetic energy is far greater than
the inter-particle potential energy, as well as low pressure, where
the particles have greater separation distances. For large separation
distances, the volume occupied by the particles themselves is less
relevant compared to the total volume of the system considered.
The low pressure and large separation distances can also be viewed
as low density.

The chemical potential of component i in an ideal gas mixture
can be shown to be (Elliott and Lira, 2012, Chap. 10)

lig
i T;p;nð Þ ¼ lo

i Tð Þ þ RT ln
nip
Npo

; ðA:2Þ

where the standard chemical potential is given by (13).

A.1.2. Virial equation of state
In order to quantify real gases with modest deviations from the

ideal gas behavior, the virial EOS was chosen. The virial EOS repre-
sents a power series expansion in which the virial coefficients are
systematically incorporated to correct for the deviations from the

ideal gas state. The n-th virial coefficient accounts for interactions
between n molecules. For instance, the second virial coefficient
accounts for interactions between two colliding molecules. The vir-
ial expansion is applicable from low to moderate densities or pres-
sures (Prausnitz et al., 1999, Chap. 5), and as the ideal gas state is
characterized by the zero density or pressure limit, the virial
expansion is suitable at slight deviations from the ideal gas state.

The virial EOS is primarily a power series in molar density;
however, it can readily be recast into a pressure expansion. The vir-
ial expansion in terms of pressure reads (truncated after the sec-
ond term) (Elliott and Lira, 2012, Chap. 7)

pV
NRT

¼ 1þ b Tð Þ
RT

p; ðA:3Þ

where b is the same temperature-dependent virial coefficient as
that for the density expansion. For charge-symmetric particles, this
(pure component) coefficient is related to the intermolecular pair-
potential, / rð Þ, through (Hirschfelder et al., 1964)

b Tð Þ ¼ 2pNA

Z 1

0
1� exp �/ rð Þ

kT

� �� �
r2dr: ðA:4Þ

Here Avogadro’s number, Boltzmann’s constant and the radial sep-
aration are denoted NA; k, and r, respectively.

In this work, the square well pair-potential was chosen. This has
the following mathematical form

/ rð Þ ¼
1; r 6 r
�e; r < r 6 kr
0 r > kr;

8><
>: ðA:5Þ

where r is the radial separation distance where the particles cannot
get closer due to their hard sphere volumes, e is the well depth and
k > 1 is a parameter used to choose the width of the well. Here all
three parameters are fitted to the experimental data of Dymond
et al. (2002) for the second virial coefficient. The computed virial
coefficients are obtained by inserting (A.5) into (A.4) and perform-
ing the integration

b Tð Þ ¼ 2
3pNAr3 1þ 1� k3

� �
exp e

kT

� �� 1
� �� 	

¼ bHS 1þ 1� k3
� �

exp e
kT

� �� 1
� �� 	

:
ðA:6Þ

Here bHS denotes the virial coefficient of a corresponding hard
sphere pair-potential. The optimized parameter values are given
in Table 2.

Combining rules are required for /ij to account for the interac-
tions of unlike molecules. The combining rules used in this study
are the Lorentz (1881) combining rule, and those derived from
London dispersion forces (Haslam et al., 2008):

rij ¼ 1
2
rii þ rjj
� � ðA:7aÞ

kij ¼ riikii þ rjjkjj
rii þ rjj

ðA:7bÞ

eij ¼ 2
r3

iir3
jj

r6
ij

k3ii � 1
� �1=2

k3jj � 1
� �1=2

k3ij � 1

0
B@

1
CA IiIj

� �1=2
Ii þ Ij

 !
eiiejj
� �1=2

; ðA:7cÞ

where Ii is the ionization energy of molecule i taken from Lide
(2005). Furthermore, the virial coefficient of the mixture is theoret-
ically derived as

NB T;nð Þ ¼
XC
i¼1

ni

XC
j¼1

njbij Tð Þ; ðA:8Þ

where bij are cross-terms. The cross-terms are determined by
inserting (A.7) into (A.6). The resulting EOS reads
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pV
NRT

¼ 1þ B T;nð Þ
NRT

p: ðA:9Þ

A.1.3. Soave-Redlich-Kwong
For the compounds CO, CO2, CH4 in the SMR and methanol pro-

cesses the SRK-EOS (Soave, 1972) describes the gas behavior satis-
factorily (Elliott and Lira, 2012, Chap. D.2). The SRK-EOS is,
however, not primarily intended for associating (polar) com-
pounds, such as H2, H2O and methanol found in the SMR and the
methanol processes. Alternatives such as cubic plus association
exist, however in this study no association term is employed. A
desirable feature of the SRK-EOS is its ability to predict thermody-
namic properties at any conditions of temperature and pressure,
although inaccurate results may be obtained far from the region
where it was fitted. As the SRK-EOS can handle a broad range of
conditions, this EOS is a suitable choice in the transport phenom-
ena framework, where temperature and pressure vary in space
and time.

The cubic SRK-EOS represents a further development of the
pioneering cubic EOS of van der Waals (1873, chap. 8). The pres-
sure equation for SRK reads

p T;V ;nð Þ ¼ NRT
V �B nð Þ �

D T;nð Þ
V V þBð Þ : ðA:10Þ

Here B denotes an excluded volume and D denotes an attractive
term, both of which are functions of the composition of the mixture.
The parameters are determined by quadratic mixing rules

NB nð Þ ¼
XC
i¼1

ni

XC
j¼1

njbij ðA:11aÞ

D T;nð Þ ¼
XC
i¼1

ni

XC
j¼1

njaij Tð Þ; ðA:11bÞ

where the cross coefficients bij and aij are determined by a set of
combining rules. The cross coefficients are functions of their pure

component counterpart, bii and aii. In this study, the arithmetic
mean combining rule was used for bij and the geometric mean
was used for aij:

bij ¼ 1
2

bii þ bjj
� � ðA:12aÞ

aij ¼
ffiffiffiffiffiffiffiffiffiffi
aiiajj

p
1� kij
� �

: ðA:12bÞ
Here kij represents adjustable binary interaction parameters. In the
present work, all kij were set to zero. For the SRK-EOS, the pure
component bii and aii are computed from (Soave, 1972)

bii ¼ 0:08664
RTc

pc
ðA:13aÞ

aii ¼ 0:42747
RTcð Þ2
pc

1þm 1�
ffiffiffiffiffiffiffiffiffiffi
T=Tc

p� �� �2
ðA:13bÞ

m ¼ 0:480þ 1:574x� 0:176x2; ðA:13cÞ
where Tc and pc are the critical temperature and pressure and x is
the acentric factor. Critical parameters and acentric factors were
taken from NIST Chemistry WebBook (Lemmon et al., 2019) and
are given in Table 3. Further information on the SRK-EOS can be
found elsewhere, such as Michelsen and Mollerup (2007, Chap. 3)
or the original work of Soave (1972).

A.2. Chemical reaction equilibrium

The total differential of the internal energy function is written

dU S;V ;nð Þ ¼ @U
@S

� �
V ;n

dSþ @U
@V

� �
S;n
dV þ

XC
i¼1

@U
@ni

� �
S;V ;nj–i

dni;

ðA:14Þ
where S is the entropy. From the first law of thermodynamics,
(A.14) may be rewritten as

dU S;V ;nð Þ ¼ TdS� pdV þ
XC
i¼1

lidni: ðA:15Þ

By a Legendre transformation, the Helmholtz and Gibbs energy func-
tions are defined as (Callen, 1985; Hołyst and Poniewierski, 2012)

A T;V ;nð Þ � U � @U
@S

� �
V ;n

S ¼ U � TS ðA:16aÞ

G T;p;nð Þ � U � @U
@S

� �
V ;n

S� @U
@V

� �
S;n
V ¼ U � TSþ pV : ðA:16bÞ

By virtue of being an Euler-homogeneous function of degree one,
the internal energy function in (A.15) can be integrated to

U S;V ;nð Þ ¼ TS� pV þ
XC
i¼1

lini; ðA:17Þ

which is used in combination with (A.16) to obtain the more fre-
quently encountered form of the Helmholtz and Gibbs energy
functions

A T;V ;nð Þ ¼ �pV þ
XC
i¼1

lini ðA:18aÞ

G T;p;nð Þ ¼
XC
i¼1

lini: ðA:18bÞ

Fig. 20. Mole fraction relative deviation from ideal gas at lowered inlet temper-
atures for the methanol process. Full lines are from the virial EOS and dashed lines
are from SRK.

Table 2
Fitted parameters for a square well potential.

Property CH4 CO CO2 H2 H2O MeOH

r Å
� 	

3.3515 3.3437 3.4155 2.5362 2.7905 0.3790

e 10�20 J
h i

0.1873 0.1215 0.4527 0.0680 1.5900 2.3036

k [–] 1.6252 1.6419 1.3968 1.3994 1.2185 4.5757
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The total differential of the Helmholtz and Gibbs energy functions
are

dA T;V ;nð Þ ¼ @A
@T

� �
V ;n

dT þ @A
@V

� �
T;n

dV þ
XC
i¼1

@A
@ni

� �
T;V ;nj–i

dni ðA:19aÞ

dG T; p;nð Þ ¼ @G
@T

� �
p;n
dT þ @G

@p

� �
T;n

dpþ
XC
i¼1

@G
@ni

� �
T;p;nj–i

dni: ðA:19bÞ

However, they can equivalently be obtained by differentiating
(A.16) and inserting the total differential for the internal energy
function in (A.15):

dA T;V ;nð Þ ¼ dU � TdS� SdT

¼ �SdT � pdV þ
XC
i¼1

lidni
ðA:20aÞ

dG T;p;nð Þ ¼ dU � TdS� SdT þ pdV þ Vdp

¼ �SdT þ Vdpþ
XC
i¼1

lidni:
ðA:20bÞ

By comparing (A.19) and (A.20), six identities are obtained. The
result is presented in Table 4.

The equilibrium state is the set of variables that minimizes the
energy function chosen. That is, the set T;V ;nf g that minimizes A
at a fixed temperature, or the set T; p;nf g that minimizes G at fixed
temperature and pressure. For both the Helmholtz and the Gibbs
energy functions, the vector of mole numbers, n, must be deter-
mined in the respective optimization problem formulation. If mul-
tiple phases are present, the volume root of the EOS utilized must
be identified for each phase subject to an additional constraint
(Pereira et al., 2010). In the Helmholtz energy function formula-
tion, the phase volumes are constrained by the specified total vol-
ume, V0, of the system considered, i.e. the total volume of the nodal
discretization point. Thus, it is sufficient to specify the temperature
and total volume in order to solve the minimum Helmholtz energy
problem. On the other hand, if the Gibbs energy function is chosen,
the phase volumes are constrained by the specified pressure, i.e.
the pressure at the nodal discretization point. Thus, it is sufficient
to specify temperature and pressure in order to solve the minimum
Gibbs energy problem. Although only one phase is considered in
this work, the volume is included in the Helmholtz energy function
formulation in order to construct a routine that only needs minor
modifications to handle multiphase systems.

The state of equilibrium is found by formulating and solving an
optimization problem, either for the Helmholtz energy function as

min
V ;n1 ;n2 ;...;nC

Að ÞT

V ¼ Vo s:t:

XC
j¼1

Aijnj ¼ bi; i ¼ 1;2; . . . ;Nel

ni P 0; i ¼ 1;2; . . . ;C;

ðA:27Þ

or the Gibbs energy function as

min
n1 ;n2 ;...;nC

Gð ÞT;p

s:t:

XC
j¼1

Aijnj ¼ bi; i ¼ 1;2; . . . ;Nel

ni P 0; i ¼ 1;2; . . . ;C:

ðA:28Þ

As there is only one phase present in the systems considered in this
work, there is only one phase volume present in the Helmholtz
problem in (A.27). Hence, the volume constraint is reduced, and
the phase considered occupies the entire total volume.

The equilibrium problems can be solved by the method of
Lagrangian multipliers as described in Taylor (2010) and Nocedal
and Wright (2006). First, the minimization problem in terms of
the Helmholtz energy function is discussed, and subsequently,
minimizing the Gibbs energy function is treated. In order to mini-
mize the Helmholtz energy function subject to the constraints

written on residual form,
PC

j¼1Aijnj � bi and V � V0, the Lagrangian
function is defined:

L V ;n; kð Þ ¼ A T;V ;nð Þ � k1 V � V0ð Þ �
XNel

i¼1

XC
j¼1

kiþ1 Aijnj � bi
� �

:

ðA:29Þ
By using the Lagrangian function instead of the Helmholtz energy
function directly, we can ensure that the constraints are satisfied
at the minimum. Here V ;nð Þ represents the vector of decision vari-
ables (the variables to find in the optimization problem) and ki rep-
resents the Lagrangian multipliers.

To iterate towards aminimum, a searchdirection is tobe specified.
Newton’s method is chosen in this study due to its quadratic conver-
genceproperty.The resulting step, called theNewton step, isobtained
from a second-order Taylor expansion on (A.29) around V ;n; kð Þ:

L0 V þ pV ;nþ pn; kþ pkð Þ � L V ;n; kð Þ

þ LVpV þ
XC
j¼1

Lnjpnj
þ
XNelþ1

j¼1

Lkj pkj

" #

þ 1
2 LVVp2

V þ
XC
j¼1

LVnjpVpnj
þ
XNelþ1

j¼1

LVkj pVpkj

" #"

þ
XC
i¼1

LniVpni
pV þ

XC
j¼1

Lninj pni
pnj

þ
XNelþ1

j¼1

Lnikj pni
pkj

" #

þ
XNelþ1

i¼1

LkiVpki
pV þ

XC
j¼1

Lkinj pki
pnj

þ
XNelþ1

j¼1

Lkikj pki
pkj

" ##
;

ðA:30Þ

Table 3
Fluid properties for the components.

Property CH4 CO CO2 H2 H2O MeOH

Tc K½ 
 190.56 132.86 304.13 33.145 647.096 512.6
pc MPa½ 
 4.5992 3.4935 7.3773 1.2964 22.0640 8.1035
x [–] 0.01142 0.050 0.22394 �0.219 0.3443 0.5625

Table 4
Thermodynamic identities for the Helmholtz and Gibbs energy functions.

Helmholtz Gibbs

S ¼ � @A
@T

� �
V ;n

(A.21)
S ¼ � @G

@T

� �
p;n

(A.22)

p ¼ � @A
@V

� �
T;n

(A.23)
V ¼ @G

@p

� �
T;n

(A.24)

li ¼
@A
@ni

� �
T;V ;nj–i

(A.25) li ¼
@G
@ni

� �
T;p;nj–i

(A.26)
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where p ¼ pV ;pn;pkð Þ> is the Newton step vector, and a short-hand
notation is used to denote partial derivatives with respect to the

independent variables. For instance, LVnj ¼ @2L
@V@nj

� �
nk–j ;k

denotes the

partial derivative with respect to V and nj while keeping all other
mole numbers, nk, and Lagrangian multipliers, k, constant. In
(A.30), the first bracket represents all first derivatives, and the sec-
ond bracket containing all remaining elements represents the sec-
ond derivatives. The Lagrangian function evaluated at the new
location V þ pV ;nþ pn; kþ pkð Þ is indicated by L0.

At the minimum, the gradient of (A.30) is zero. By differentiat-
ing (A.30) with respect to pV ; pni

and pki
, we obtain 2þ C þ Nel

equations:

L0
pV

¼ LV þLVVpV þ
XC
j¼1

LVnjpnj
þ
XNelþ1

j¼1

LVkj pkj
ðA:31aÞ

L0
pni

¼ Lni þLniVpV þ
XC
j¼1

Lninj pnj
þ
XNelþ1

j¼1

Lnikj pkj
ðA:31bÞ

L0
pki

¼ Lki þLkiVpV þ
XC
j¼1

Lkinj pnj
þ
XNelþ1

j¼1

Lkikj pkj
; ðA:31cÞ

where i ¼ 1;2; . . .C in (A.31b) and i ¼ 1;2; . . .Nel þ 1 in (A.31c). In all
the equations in (A.31), the first term on the right-hand side repre-
sents the first derivative and the following terms represent the sec-
ond derivatives of the Lagrangian function in (A.29). Differentiation
of (A.29) with respect to V ;ni and ki yields

LV

Lni

Lk1

Lki–1

0
BBBBBB@

1
CCCCCCA

¼

@A
@V

� �
T;n � k1

@A
@ni

� �
T;V ;nj–i

�
XNel

j¼1

Ajikjþ1

V0 � V

bi �
XC
j¼1

Aijnj

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ðA:32Þ

The notation ki–1 with i ¼ 2;3; . . . ;Nel þ 1 has been used to repre-
sent the Lagrangian multipliers related to the elemental balance
constraints. By further differentiating (A.32), the second derivatives
are obtained:

LVV LVni LVk1 LVki–1

LniV Lninj Lnik1 Lnikj–1

Lk1V Lk1ni Lk1k1 Lk1ki–1

Lki–1V Lki–1nj Lki–1k1 Lki–1kj–1

0
BBB@

1
CCCA

¼

@2A
@V2

� �
T;n

@2A
@V@ni

� �
T;nj–i

�1 0

@2A
@ni@V

� �
T;nj–i

@2A
@ni@nj

� �
T;V ;nk–i;j

0 �Aji

�1 0 0 0
0 �Aij 0 0

0
BBBBBB@

1
CCCCCCA
:

ðA:33Þ

By inspecting the first and second derivatives in (A.32) and (A.33),
respectively, some simplifications can be made to the gradient of
the Lagrangian in (A.31). In (A.31a) and (A.31b), the first and last
terms on the right-hand side have cancelling terms. The definition
of the step in the Lagrangian multipliers are pmþ1

k ¼ kmþ1 � km, where
m denotes the iteration number. By employing this definition along
with the first and second derivatives of (A.32) and (A.33), the first
and fourth terms of the right-hand side of (A.31a) and (A.31b) are
expanded as:

ðA:34aÞ

ðA:34bÞ
In (A.34a), the first and second brackets denote the first and fourth
term of (A.31a), respectively. Similarly, the first and second brackets
of (A.34a) denote the first and fourth term of (A.31b), respectively.

From the lower right quadrant of (A.33), it is seen that all
derivatives in the last summation of (A.31c) are zero. Hence,
(A.31c) is independent of pk. The remaining equations, (A.31a)
and (A.31b), eliminated km by (A.34), and as a result, km is not
required in order to solve the system of equations. Thus, no initial
guess of k is required, and the new Lagrangian multipliers, kmþ1, are
obtained independently of the previous values by solving the sys-
tem of Eqs. (A.31).

The derivatives in (A.32) and (A.33) along with the simplifica-
tions in (A.34) are inserted into (A.31). For optimal steps, the
left-hand side is set to zero, yielding:

0 ¼ @A
@V

� �m
T;n

h i
þ @2A

@V2

� �m
T;n

� �
pmþ1
V

þ
XC
j¼1

@2A
@V@nj

� �m
T;nk–j

� �
pmþ1
nj

þ �1½ 
kmþ1
1

ðA:35aÞ

0 ¼ @A
@ni

� �m

T;V ;nj–i

" #
þ @2A

@ni@V

 !m

T;nj–i

2
4

3
5pmþ1

V

þ
XC
j¼1

@2A
@ni@nj

 !m

T;nk–i;j

2
4

3
5pmþ1

nj
þ
XNel

j¼1

�Aji
� 	

kmþ1
jþ1

ðA:35bÞ
0 ¼ V0 � Vm½ 
 þ �1½ 
pmþ1

V ðA:35cÞ

0 ¼ bi �
XC
j¼1

Aijnmj

" #
þ
XC
j¼1

�Aij
� 	

pmþ1
nj

: ðA:35dÞ

Here the inserted derivatives are indicated by brackets. Solving
(A.35) for the first derivatives and multiplying the results by �1
yield the Newton iteration scheme:

@A
@V

� �m

T;n
¼ @2A

@V2

 !m

T;n

�pmþ1
V

� �

þ
XC
j¼1

@2A
@V@nj

 !m

T;nk–j

�pmþ1
nj

� �
þ kmþ1

1

ðA:36aÞ
@A
@ni

� �m

T;V ;nj–i

¼ @2A
@ni@V

 !m

T;nj–i

�pmþ1
V

� �

þ
XC
j¼1

@2A
@ni@nj

 !m

T;V ;nk–i;j

�pmþ1
nj

� �
þ
XNel

j¼1

Ajik
mþ1
jþ1

ðA:36bÞ

Vm � V0 ¼ �pmþ1
V

� � ðA:36cÞ
XC
j¼1

Aijnmj � bi ¼
XC
j¼1

Aij �pmþ1
nj

� �
: ðA:36dÞ

The first and second derivatives of the Helmholtz energy function in
(A.36) are gathered in matrix notation as:
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JA ¼
@A
@V

� �
T;n

@A
@n

� �
T;V

 !
¼ �p

l

� �
ðA:37aÞ

HA ¼
@2A
@V2

� �
V ;n

@2A
@V@n>

� �
T

@2A
@n@V

� �
T

@2A
@n@n>

� �
T;V

0
B@

1
CA

¼
� @p

@V

� �
T;n � @p

@n>
� �

T;V

@l
@V

� �
T;n

@l
@n>

� �
T;V

0
@

1
A;

ðA:37bÞ

and are referred to as the Jacobian and Hessian functions, respec-
tively. The last equalities in (A.37a) and (A.37b) were obtained by
employing (A.23) and (A.25) in Table 4. Utilizing the short-hand
notation of (A.37), the system of equations in (A.36) is rewritten
on matrix form as

HA
1 0
0 A

� �>

1 0
0 A

� �
0 0
0 0

� �
0
BBB@

1
CCCA

m

� pV

pn

� �
k1
ki–1

0
BBB@

1
CCCA

mþ1

¼
JA

V � V0

An� b

0
B@

1
CA

m

: ð7Þ

The system of equations in (7) along with the Jacobian and Hessian
functions in (A.37) represent an iterative scheme for minimizing the
Helmholtz energy function.

The Gibbs energy function is approached in the same manner as
the Helmholtz energy function by forming a Lagrangian function:

L n; kð Þ ¼ G T;p;nð Þ �
XNel

i¼1

XC
j¼1

ki Aijnj � bi
� �

: ðA:38Þ

Following the systematic procedure in (A.30)–(A.36) employed for
the Helmholtz energy function, the system of equations on matrix
form now reads

HG A>

A 0

 !m �pn

k

� �mþ1

¼ JG
An� b

� �m

ð8Þ

instead of (7). With identity (A.26) in Table 4, the Jacobian and Hes-
sian functions of the Gibbs energy function in the system of Eqs. (8)
are written as

JG ¼ @G
@n

� �
T;p

¼ l ðA:39aÞ

HG ¼ @2G
@n@n>

 !
T;p

¼ @l
@n>

� �
T;p

: ðA:39bÞ

The system of equations in (8) along with the Jacobian and Hessian
functions in (A.39) represent an iterative scheme for minimizing the
Gibbs energy function.

In both the Gibbs and Helmholtz energy function formulations,
it is necessary to ensure that the mole numbers are positive at all
iterations, since the chemical potential is undefined for any ni < 0,
as seen for ideal gas in (A.2). To accept the step pmþ1

n , it is required
that ni remains positive. This is implemented as
nmþ1
i ¼ nmi þ ampmþ1

ni
P 0;8i, where a represents a scaling factor. This

equation is rearranged so that am 6 � nm
i

pmþ1
ni

;8i. Hence,

am ¼ min 1;min
pni<0

�nmi
pmþ1
ni

 !
: ðA:40Þ

In (A.40), the most violating step pmþ1
ni

determines am. If no con-
straints are violated, am ¼ 1. For the Helmholtz energy function,
the step in V and k must be shortened by the same am, so that (7)
is satisfied. In terms of the Gibbs energy function, the scaling affects
n and k only.

At the optimal solution, the first-order conditions known as the
Karush–Kuhn–Tucker (KKT) conditions must be satisfied (Nocedal
and Wright, 2006, p. 321)(Kuhn and Tucker, 1951)

rxL x�; k�ð Þ ¼ 0 ðA:41aÞ
ci x�ð Þ ¼ 0; for all i 2 E ðA:41bÞ
ci x�ð Þ P 0; for all i 2 I ðA:41cÞ

k�i P 0; for all i 2 I ðA:41dÞ
k�i ci x

�ð Þ ¼ 0; for all i 2 E [ I ; ðA:41eÞ

where x represents the vector of decision variables, (V ;n) or n; ci is
constraint i; � indicates the trial solution (which is optimal when
(A.41) is satisfied) and E and I represent the set of equality
(An� b and V � V0) and inequality constraints (n P 0), respec-
tively. Since a limits the step to never break any inequalities,
(A.41c) and (A.41d) are automatically satisfied. Solving the system
(7) or (8) ensures that (A.41b) is satisfied and therefore also
(A.41e). Satisfying (A.41a) is an iterative process, however when
this condition is fulfilled, the KKT conditions are satisfied.

A.3. Residual properties

Residual functions are defined as the deviation between a real
fluid from the ideal gas behavior in the same state. Hence, incorpo-
rating the framework of residual functions in the solution of the
energy minimization problems (5) and (6) allow us to consider
chemical equilibrium compositions of real fluids. It is emphasized
that all residual functions are zero if the ideal gas law in (A.1) is
employed.

Gibbs energy: For the Gibbs energy function, the residual is
defined as

Gr;p T; p;nð Þ � G T;p;nð Þ � Gig T;p;nð Þ; ðA:42Þ

where the superscript ig is used to denote ideal gas and r;p is used
to denote the residual with respect to pressure. Hence, in order to
determine the Gibbs energy function of the real fluid mixture:

G T;p;nð Þ ¼ Gig T;p;nð Þ þ Gr;p T;p;nð Þ: ðA:43Þ
Furthermore, we need expressions for the ideal gas- and residual
Gibbs energy functions. By the linearity of the differentiation oper-
ators, the Jacobian and Hessian functions required in (A.39) are
determined by the ideal gas and residual Jacobian and Hessian:

JG ¼ JigG þ Jr;pG ðA:44aÞ
HG ¼ Hig

G þHr;p
G : ðA:44bÞ

The ideal gas Gibbs energy function is found from (A.18b):

Gig ¼
XC
i¼1

lig
i ni; ðA:45Þ

where the chemical potential of component i for an ideal gas was
given in (A.2). The required Jacobian and Hessian functions of the
ideal gas Gibbs energy function is found by differentiating (A.45)
with respect to ni. The result is given by (A.39) written out for ideal
gas

J igG ¼ lo Tð Þ þ RT ln
np
Npo

ð12aÞ

Hig
G ¼ RT D� 1

N
ee>

� �
: ð12bÞ

The residual Gibbs energy function is written as (Haug-Warberg,
2006)
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Gr;p ¼
Z p

0

@G
@p

� �
T;n

� @Gig

@p

 !
T;n

0
@

1
Adp; ðA:47Þ

where p indicates a variable of integration. The equation above is
rewritten by inserting the identity (A.24) of the partial derivative

of G and substituting the ideal gas law (A.1) for V ig:

Gr;p ¼
Z p

0
V pð Þ � NRT

p

� �
dp: ðA:48Þ

The residual function in (A.48) can be computed without any fur-
ther manipulations of the integral for EOSs that are explicit in vol-
ume, like the virial EOS in (A.9) (Elliott and Lira, 2012).
Subsequently, residual functions such as the residual chemical
potential and entropy can readily be obtained by differentiation
using Table 4, see (A.52).

The required residual Jacobian and Hessian functions are given,
respectively, as

Jr;pG ¼ RT lnu � lr;p ¼ @Gr;p

@n

� �
T;p

ðA:49aÞ

Hr;p
G ¼ RT

@ lnu
@n

� �
T;p

¼ @lr;p

@n>

� �
T;p

¼ @2Gr;p

@n@n>

 !
T;p

; ðA:49bÞ

where the fugacity coefficient, ui, has been defined as the residual
chemical potential at specified temperature and pressure. In terms
of the virial expansion, the first and second-order derivatives of the
far right-hand side of (A.49) are calculated from (B.10) and (B.11),
respectively. In terms of the SRK-EOS, the fugacity coefficient and
its derivative with respect to mole numbers are implicitly com-
puted through the Helmholtz energy function, that is (Michelsen
and Mollerup, 2007, p. 64)

lnui ¼
1
RT

@Ar;v

@ni

� �
T;V ;nj–i

� ln Z ðA:50aÞ

@ lnui
@nj

� �
T;p;nk–j

¼ 1
RT

@2Ar;v

@ni@nj

� �
T;V ;nk–j

þ 1
N

þ 1
RT

@p
@ni

� �
T;V ;nk–i

@p
@nj

� �
T;V ;nk–j

@p
@Vð ÞT;n ;

ðA:50bÞ

where the compressibility factor is Z ¼ pV=NRT, and V is computed
at given T;p;n by (16).

In transport phenomena, the most common is to utilize the
temperature and pressure fields computed from the temperature
and momentum/continuity equations to perform thermodynamic
computations. Thus, heat capacities and derivatives with respect
to mole numbers are evaluated at constant pressure, and the vari-
ables of interest include the specific isobaric heat capacity, cp, and

the partial molar enthalpy, hi � @H=@nið ÞT;p, for the temperature
equation. The extensive heat capacity is defined as

Cp � T
@S
@T

� �
p;n

¼ �T
@2G

@T2

 !
p;n

; ð22Þ

where identity (A.22) is used for entropy. Hence, the residual heat
capacity is given by

Cr;p
p ¼ �T

@2Gr;p

@T2

 !
p;n

: ðA:51Þ

For the virial expansion, (A.51) may be used in combination with
the derivatives in (B.11). However, for the SRK-EOS, which is expli-
cit in pressure, the residual isobaric heat capacity is evaluated
through the Helmholtz energy function, see (A.62d).

The heat capacity of the real fluid mixture is obtained by sum-
ming the ideal gas contribution shown in (14) and the residual

contribution discussed above. The resulting heat capacity is
divided by the total mass with (25) to obtain the specific heat
capacity required for the temperature equation in Section 2.

The partial molar property of a generic extensive quantity

X T; p;nð Þ is defined as xi � @X
@ni

� �
T;p
. This definition along with the

identities for entropy (A.22) and chemical potential (A.26) yield
the following partial molar properties:

gr;p
i � lr;p

i ¼ @Gr;p

@ni

� �
T;p;nj–i

ðA:52aÞ

sr;pi ¼ � @2Gr;p

@T@ni

 !
p;nj–i

; ðA:52bÞ

where the partial derivatives of the Gibbs energy function depend
on the choice of EOS and are given for the virial expansion in Appen-
dix B. For the SRK-EOS, they are given through the Helmholtz
energy function, see e.g. (A.50a) for gr;p

i .
The partial molar enthalpy required for the temperature equa-

tion in Section 2 is given by its relation to the Gibbs energy func-
tion: H ¼ Gþ TS. By the linearity of the differentiation operator,
the derivative of enthalpy with respect to mole numbers at con-
stant temperature and pressure yields

hr;p
i ¼ gr;p

i þ Tsr;pi : ðA:53Þ
For the virial expansion, (A.53) is used in combination with

(A.52). However, for the SRK-EOS, which is explicit in pressure,
the residual partial molar enthalpy is evaluated through the
Helmholtz energy function, see (A.62b). The partial molar
enthalpy of the real gas mixture is obtained by adding the ideal
gas partial molar enthalpy shown in (13) to the residual
contribution.

Helmholtz energy: For the Helmholtz energy function, the
residual function is defined as

Ar;v T;V ;nð Þ � A T;V ;nð Þ � Aig T;V ;nð Þ; ðA:54Þ
where the superscript r; v is used to denote residual with respect to
volume. That is, the real fluid and the ideal gas fluid are evaluated at
the same temperature and volume. Hence, in order to determine the
Helmholtz energy function of the real fluid mixture:

A T;V ;nð Þ ¼ Aig T;V ;nð Þ þ Ar;v T;V ;nð Þ: ðA:55Þ
Furthermore, we need expressions for the ideal- and residual Helm-
holtz energy functions. Following the derivation of the Gibbs energy
function, the required properties for the chemical equilibrium prob-
lem consist of the Jacobian and Hessian functions of the real fluid
mixture.

The ideal gas Helmholtz energy function is found from (A.18a)

Aig ¼ �NRT þ
XC
i¼1

lig
i ni; ðA:56Þ

where the chemical potential is expressed in volume by rewriting
(A.2) using the ideal gas law in (A.1):

lig
i T;V ;nð Þ ¼ lo

i Tð Þ þ RT ln
niRT
Vpo

: ðA:57Þ

The required Jacobian and Hessian functions of the ideal gas Helm-
holtz energy function are foundby differentiating (A.56)with respect
to V and ni. The result is given by (A.37) written out for ideal gas

J igA ¼
�NRT=V

lo Tð Þ þ RT ln nRT
Vpo

 !
ð11aÞ

Hig
A ¼ RT

N=V2 �V�1e>

�V�1e D

 !
: ð11bÞ
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The residual Helmholtz energy is written as (Haug-Warberg, 2006)

Ar;v ¼
Z V

1

@A
@m

� �
T;n

� @Aig

@m

 !
T;n

0
@

1
Adm; ðA:59Þ

where m is a variable of integration. The equation above is rewritten
by inserting the identity (A.23) of the partial derivative of A and
substituting the ideal gas law (A.1) for pig:

Ar;v ¼
Z V

1

NRT
m

� p mð Þ
� �

dm: ðA:60Þ

The residual in (A.60) can be computed without any further manip-
ulations of the integral for EOSs that are explicit in pressure, like the
SRK-EOS. Subsequently, residual functions such as the residual
entropy, pressure and chemical potential may readily be obtained
by differentiation using Table 4. That is,

Sr;v ¼ � @Ar;v

@T

� �
V ;n;p

r;v ¼ � @Ar;v

@V

� �
T;n and lr;v

i ¼ @Ar;v

@ni

� �
T;V ;nj–i

.

The required residual Jacobian and Hessian functions are given,
respectively, as

Jr;vA ¼

@Ar;v

@V

� �
T;n

@Ar;v

@n

� �
T;V

0
BBB@

1
CCCA ðA:61aÞ

Hr;v
A ¼

@2Ar;v

@V2

 !
T;n

@2Ar;v

@V@n>

 !
T

@2Ar;v

@n@V

 !
T

@2Ar;v

@n@n>

 !
T;V

0
BBBBB@

1
CCCCCA: ðA:61bÞ

The derivatives of the residual Helmholtz energy function depend
on the choice of EOS and are given for the virial expansion and
the SRK-EOS in Appendix B.

Useful quantities such as cp and hi are not obtained by straight
forward differentiation of the Helmholtz energy function as is the
case with the Gibbs energy function. This invites to mixed use of
T;V- and T; p-variables. The relations are given by Michelsen and
Mollerup (2007, p. 64-65):

@ lnui
@T

� �
p;n

¼ 1
RT2

T @2Ar;v

@T@ni

� �
V ;nj–i

� @Ar;v

@ni

� �
T;V ;nj–i

� �

þ 1
T � v i

RT
@p
@T

� �
V ;n

ðA:62aÞ

hr;p
i ¼ �RT2 @ lnui

@T

� �
p;n

ðA:62bÞ

Cr;v
V ¼ �T

@2Ar;v

@T2

 !
V ;n

ðA:62cÞ

Cr;p
p ¼ Cr;v

V � T
@p
@T

� �2
V ;n

@p
@V

� �
T;n

� NR; ðA:62dÞ

where Cr;v
V denotes residual isochoric heat capacity, and the partial

molar volume, v i, is obtained by a cyclic relation at constant tem-
perature (Michelsen and Mollerup, 2007, p. 55):

@p
@ni

� �
T;V ;nj–i

@ni

@V

� �
T;p

@V
@p

� �
T;n

¼ �1: ðA:63Þ

Rearranging this relation leads to the expression (Michelsen and
Mollerup, 2007, p. 57)

v i ¼ @V
@ni

� �
T;p;nj–i

¼ � @p
@ni

� �
T;V ;nj–i

,
@p
@V

� �
T;n

: ðA:64Þ

The partial derivatives of the residual Helmholtz energy function in
(A.62) as well as the pressure derivatives in (A.64) are given in
Appendices B and C, respectively.

The heat capacity of the real gas mixture is obtained by adding
the ideal gas contribution shown in (14) to the residual contribu-
tion in (A.62d). Equivalently, the partial molar enthalpies of the
real gas mixture is obtained by adding the ideal gas contribution
shown in (13) to the residual contribution in (A.62b).

Appendix B. Derivatives of residual functions

B.1. Virial equation of state

B.1.1. The helmholtz energy function
The virial EOS on pressure explicit form is given as

p T;V ;nð Þ ¼ NRT
V � B T;nð Þ : ðB:1Þ

The residual Helmholtz energy function is obtained by employing
its defining Eq. (A.60) and inserting (B.1). The result is:

Ar;v T;V ;nð Þ ¼ �NRT ln
V � B T;nð Þ

V
: ðB:2Þ

Differentiating (B.2) yields the first-order derivatives of the residual
Helmholtz energy function:

@Ar;v

@T

� �
V ;n

¼ �NR ln
V � B
V

� T
V � B

@B
@T

� �
n

� �
ðB:3aÞ

@Ar;v

@V

� �
T;n

¼ �NRT
B

V V � Bð Þ ðB:3bÞ

@Ar;v

@ni

� �
T;V ;nj–i

¼ �RT ln
V � B
V

� N
V � B

@B
@ni

� �
T;nj–i

" #
: ðB:3cÞ

The second-order derivatives are obtained by differentiating (B.3):

@2Ar;v

@T2

 !
V ;n

¼ NR
V � B

2
@B
@T

� �
n
þ T
V � B

@B
@T

� �2

n
þ T

@2B

@T2

 !
n

" #
ðB:4aÞ

@2Ar;v

@V2

 !
T;n

¼ NRTB
V V � Bð Þ

1
V
þ 1
V � B

� �
ðB:4bÞ

@2Ar;v

@ni@nj

� �
T;V ;nk–i;j

¼ RT
V�B

@B
@ni

� �
T;nj–i

þ @B
@nj

� �
T;nk–j

�

þ N
V�B

@B
@ni

� �
T;nj–i

@B
@nj

� �
T;nk–j

þN @2B
@ni@nj

� �
T;nk–i;j

�
ðB:4cÞ

@2Ar;v

@T@V

 !
n

¼ � NR
V � B

B
V
þ T
V � B

@B
@T

� �
n

� �
ðB:4dÞ

@2Ar;v

@T@ni

� �
V ;nj–i

¼ �R

"
ln V�B

V � N
V�B

@B
@ni

� �
T;nj–i

� T
V�B

"
@B
@T

� �
n þ N

"
@2B
@ni@T

� �
T;nj–i

þ
@B
@ni

� �
T;nj–i

@B
@Tð Þn

V�B

3
75
3
75
3
75

ðB:4eÞ

@2Ar;v

@V@ni

 !
T;nj–i

¼ � RT
V � B

B
V
þ N
V � B

@B
@ni

� �
T;nj–i

" #
: ðB:4fÞ

The derivatives of the mixture virial coefficient are obtained by dif-
ferentiating (A.8) twice. The first-order derivatives are given as
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@B
@T

� �
n
¼ 1

N

XC
i¼1

ni

XC
j¼1

nj
dbij

dT
ðB:5aÞ

@B
@ni

� �
T

¼
2
XC

j¼1
njbij � B

N
; ðB:5bÞ

and the second-order derivatives are given as

@2B

@T2

 !
n

¼ 1
N

XC
i¼1

ni

XC
j¼1

nj
d2bij

dT2 ðB:6aÞ

@2B
@ni@nj

 !
T

¼
2bij � @B

@ni

� �
T
� @B

@nj

� �
T

N
ðB:6bÞ

@2B
@T@ni

 !
¼

2
XC

j¼1
nj

dbij
dT � @B

@T

� �
n

N
: ðB:6cÞ

The integrated pair-potential of components i and j results in the
cross coefficients bij Tð Þ. The temperature derivatives of these are
obtained by differentiating (A.6)

dbij

dT
¼ �bHS

ij eij
1� k3ij

� �
kT2 exp

eij
kT

� �
ðB:7aÞ

d2bij
dT2

¼ �bHS
ij eij 1� k3ij

� � � eij
kT2

exp
eij
kT

� �
kT2�2kT exp

eij
kT

� �
kT2ð Þ2

 !

¼ � dbij
dT

eijþ2kT

kT2
:

ðB:7bÞ

B.1.2. The Gibbs Energy Function
The virial EOS on volume explicit form is given as

V T; p;nð Þ ¼ NRT
p

þ B T;nð Þ: ðB:8Þ

The residual Gibbs energy function is obtained by employing its
defining Eq. (A.48) and inserting (B.8). The result is:

Gr;p T; p;nð Þ ¼ B T;nð Þp: ðB:9Þ
Differentiating (B.9) yields the first-order derivatives of the residual
Gibbs energy function:

@Gr;p

@T

� �
p;n

¼ p
@B
@T

� �
n

ðB:10aÞ

@Gr;p

@p

� �
T;n

¼ B ðB:10bÞ

@Gr;p

@ni

� �
T;p

¼ p
@B
@ni

� �
T
; ðB:10cÞ

The second-order derivatives are obtained by differentiating (B.10):

@2Gr;p

@T2

 !
p;n

¼ p
@2B

@T2

 !
n

ðB:11aÞ

@2Gr;p

@p2

 !
T;n

¼ 0 ðB:11bÞ

@2Gr;p

@ni@nj

 !
T;p

¼ p
@2B

@ni@nj

 !
T

ðB:11cÞ

@2Gr;p

@T@p

 !
n

¼ @B
@T

� �
n

ðB:11dÞ

@2Gr;p

@T@ni

 !
p

¼ p
@2B
@T@ni

 !
ðB:11eÞ

@2Gr;p

@p@ni

 !
T

¼ @B
@ni

� �
T

: ðB:11fÞ

The derivatives of the mixture virial coefficient and the cross coef-
ficients are the same as for the residual Helmholtz energy function
and are given by (B.5), (B.6) and (B.7).

B.2. Soave-Redlich-Kwong

The derivatives for the SRK-EOS are given in terms of the resid-
ual Helmholtz energy function in Michelsen and Mollerup (2007,
Chap. 3), except for the temperature derivatives of the attractive
terms, a. The mixture attractive terms are given by (A.11b), and
the cross-terms are determined by (A.12b). The pure component
aii is given by (A.13b).

The temperature derivative of any of the aij are obtained by dif-
ferentiating (A.12b):

daij
dT

¼ 1
2
ffiffiffiffiffiffiffiffiffiffi
aiiajj

p ajj
daii

dT
þ aii

dajj
dT

� �
1� kij
� � ðB:12aÞ

d2aij
dT2 ¼

ajj
d2aii
dT2

þ 2 daii
dT

dajj
dT þ aii

d2ajj
dT2

2
ffiffiffiffiffiffiffiffiffiffi
aiiajj

p �
ajj

daii
dT þ aii

dajj
dT

� �2
4 aiiajj
� �3=2

2
64

3
75 1� kij
� �

:

ðB:12bÞ
Differentiating (A.13b) yields the pure component temperature
derivatives:

daii

dT
¼ �0:42747

RTcð Þ2
pc

m 1þm 1� ffiffiffiffiffi
Tr

p� �� �
Tc

ffiffiffiffiffi
Tr

p ðB:13aÞ

d2aii
dT2 ¼ 0:42747

RTcð Þ2
pc

m 1þmð Þ
2TTc

ffiffiffiffiffi
Tr

p : ðB:13bÞ

The reduced temperature has been introduced as Tr ¼ T=Tc .
The fugacity coefficient and its derivative required for the Gibbs

energy function minimization problem were previously expressed
in terms of the residual Helmholtz energy function. The relations
were given by (A.50). The isobaric heat capacity and partial molar
enthalpy required for the temperature Eq. (4) were also expressed
in terms of the residual Helmholtz energy function and were given
by (A.62d) and (A.62b), respectively.

The interested reader is referenced to Michelsen and Mollerup
(2007) for further information on the SRK-EOS.

Appendix C. Pressure and its derivatives

From (A.23), the pressure is given by p ¼ � @A
@V

� �
T;n. Due to (A.55),

the pressure of the real gas mixtures may be split into the residual
and ideal gas contribution

p ¼ � @Ar;v

@V

� �
T;n

þ NRT
V

: ðC:1Þ

Thus, the required pressure derivatives are given in terms of the
residual Helmholtz energy function and an ideal gas contribution:

@p
@T

� �
V ;n

¼ � @2Ar;v

@T@V

 !
n

þ NR
V

ðC:2aÞ

;
@p
@V

� �
T;n

¼ � @2Ar;v

@V2

 !
T;n

� NRT

V2 ðC:2bÞ

@p
@ni

� �
T;V ;nj–i

¼ � @2Ar;v

@V@ni

 !
T;nj–i

þ RT
V

: ðC:2cÞ
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ABSTRACT: In this work, the driving force of interfacial mass transfer is modeled as deviation
from the gas−liquid equilibrium, which by assumption is thought to exist at the interface
separating the gas and liquid phases. The proposed mass transfer model provides a flexible
framework where the phase equilibrium description in the driving force can be substituted
without difficulties, allowing the mass transfer modeling of distillation, absorption/stripping,
extraction, evaporation, and condensation to be based on a thermodynamically consistent phase
equilibrium formulation. Phase equilibrium by the Soave−Redlich−Kwong equation of state
(SRK-EoS) is in this work compared to the results of the classical Henry’s law approach. The
new model formulation can predict mass transfer of the solvent, which Henry’s law cannot. The mass transfer models were evaluated
by simulating a single-cell protein process operated in a bubble column bioreactor, and the solubilities computed from the SRK-EoS
and Henry’s law were in qualitative agreement, albeit in quantitative disagreement. At the reactor inlet, the solubility of O2 and CH4
was 150% higher with the SRK-EoS than with Henry’s law. Furthermore, the SRK-EoS was computationally more expensive and
spent 10% more time than Henry’s law.

■ INTRODUCTION
Mass transfer is crucial in many chemical engineering
applications. For instance, mathematical modeling of separation
processes such as distillation, absorption/stripping, extraction,
evaporation, and condensation depends on a physical
description of mass transfer between a liquid and a gas phase.
In biochemical engineering, on the other hand, bacteria rely on
substrates and also possibly O2 to sustain their metabolism. For
instance, a particular bacterium, Methylococcus capsulatus
(Bath), is an aerobic, methanotrophic bacterium that has
received much attention due to its high protein content (≈70−
80% on a dry mass basis, see, e.g., Olsen et al.,1 Øverland et al.,2

and Anupama and Ravindra3). The accumulated biomass is
termed single-cell protein (SCP) and could serve as a potential
food or animal feed.2−5 In Norway, fish farming is a significant
source of income, and the high cost of fishmeal6 makes SCP
production an attractive alternative to existing protein sources.
M. capsulatus (Bath) consumes CH4 and O2 to grow.

7 Both CH4
and O2 are highly volatile compounds, and consequently, they
are conveniently supplied to the broth from a gaseous phase.
Hence, the liquid phase, where the bacteria grow, receives CH4
and O2 through mass transfer with the gaseous phase. According
to several investigators, the gas fermentation of SCP is mass
transfer limited,1,8−11 and hence, the modeling of this process
relies on accurate mass transfer models.
Mass transfer coefficients are based on a diverse set of theories

addressing different physical phenomena such as the surface
renewal,12 the laminar and turbulent boundary layers, one-
film13,14 and two-film,15 and the penetration concept of
Higbie.16 Mass transfer models of this kind served as a
foundation for studying the mass transfer coefficient, kL, which

governs the resistance to mass transfer on the liquid side of the
phase boundary. For instance, Weber17 investigated the mass
transfer coefficient for spherical cap bubbles and derived an
expression for kL based on the penetration theory. On the other
hand, Rzehak18 derived an expression for kL based on the surface
renewal theory. Other investigators, such as Frössling19 and
Hughmark,20 based their work on the boundary layer theory.
Furthermore, some investigators have suggested empirical
relations for the mass transfer coefficient, see, for example,
Calderbank and Moo-Young.21

The driving force for mass transfer is commonly regarded as a
difference in concentration between the bulk phase and the
interface.22 All the theories above for mass transfer require a
relation for the interface concentration, and most commonly,
phase equilibrium is assumed to prevail at the interface
separating the two phases. Hence, the driving force for mass
transfer is the deviation from phase equilibrium. Highly volatile
gases, such as CH4 and O2, have low solubility in H2O, and
consequently, Henry’s law and the Henry’s law constant are
frequently employed to describe the gas−liquid equili-
brium.23−28 However, the Henry’s law constant is not truly
constant but depends on temperature and weakly on pressure.
Neglecting this dependency may lead to erroneous predictions,
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depending on the compounds present and the temperature
variation.29 For instance, the solubility of CO2 in H2O doubles
over a temperature interval of 20 K.30

Furthermore, the Henry’s law constant is extensively studied
for solutes in H2O, see, for example, the compiled database of
Sander.31 On the other hand, data are scarce for solvents other
than H2O. This limits the applicability of mass transfer models
relying onHenry’s law andHenry’s law constants. Moreover, the
experimental data on the Henry’s law constant are mainly
limited to one solute−solvent pair at a time. Thus, the Henry’s
law constants are meant for binary gas−liquid equilibria
computations. In the presence of multiple, poorly soluble
compounds, a set of Henry’s law constants are frequently
employed. This is equivalent to approximating the multi-
component phase equilibrium as a set of pseudo-binary phase
equilibria.
Henry’s law is valid at the infinite dilution limit for solute i in

solvent j. Hence, it is an appropriate choice for approximating
poor solubilities in a solvent. For the slightly soluble gas NH3,
the solubility is not poor, and Henry’s law is not appropriate.32

Hence, mass transfer models employing Henry’s law are
inappropriate for predicting mass transfer of slightly soluble
gases. Additionally, the mass transfer of the solvent cannot be
computed in the Henry’s law model approach since the Henry’s
law constant is not available for the solvent. The mass transfer of
the solvent is thus commonly neglected or ignored.
The mass transfer flux from gas to liquid is mainly modeled by

the mass transfer coefficient and a suitable equilibrium relation.
The mass transfer coefficient is extensively studied; however,
limited studies exist on the equilibrium relations. In this study,
we focus on the equilibrium condition that is assumed to prevail
at the interface. In common practice, Henry’s law is assumed to
be a suitable equilibrium relation and is used to close the gas−
liquid mass transfer problem. However, due to the limitations of
Henry’s law discussed above, we aim to (a) extend the
concentration range where the mass transfer models are valid
and (b) predict mass transfer of the solvent. By utilizing an
equation of state (EoS), the equilibrium composition at the
gas−liquid interface is computed rigorously without assump-
tions of the solute concentrations or which solvent is present.
This study employs the one- and two-film model and suggests

a general phase equilibrium approach to relate the interface
concentrations. In particular, we suggest a rigorous EoS-based
phase equilibrium approach capable of predicting multi-
component mass transfer of all components. This methodology
allows for predicting the mass transfer of poorly soluble and
slightly soluble gases and the solvent. The novel mass transfer
model handles evaporation and condensation processes equally
well, as no assumptions are made for the concentrations in each
phase. This allows for mass transfer processes where Henry’s law
is inappropriate, such as processes where the solutes are not
infinitely diluted or when mass transfer of the solvent is critical.
The suggested mass transfer concept is evaluated by simulating
the biochemical production of SCP with the bacteria M.
capsulatus (Bath) operated in a bubble column bioreactor.
The contribution of this work lies in the treatment of the gas−

liquid interface in the context of mass transfer. Although phase
equilibrium is commonly assumed to prevail at the interface, the
phase equilibrium has, to the authors’ knowledge, not been
computed to date in the literature. Rather, Henry’s law is
employed to relate the gas- and liquid-side concentrations
through a constant or a correlation at best. This study will
endeavor to treat the driving force for mass transfer in agreement

with the underlying assumptions. Hence, to determine the
driving force, a full phase equilibrium computation is performed
at the gas−liquid interface.
This paper is divided into five parts. First, a thorough

introduction to thermodynamic theory and phase equilibrium is
provided. Second, the mass transfer models are derived and
discussed. The third part contains transport phenomena, reactor
model, constitutive equations, and numerical solution approach.
In the fourth part, results and discussion are provided, and in the
fifth part, concluding remarks are given.

■ THERMODYNAMIC MODELING
A common assumption in the gas−liquidmass transfer modeling
is that phase equilibrium prevails at the interface separating the
two phases. We thus provide a thorough introduction to
thermodynamics and phase equilibrium in the following.
The criteria for gas−liquid phase equilibrium are

T TG L= (1a)

p pG L= (1b)

i N, 1,2, ...,i iG, L, Cμ μ= = (1c)

where T is the temperature, p is the pressure, μi is the chemical
potential of component i, and NC is the number of components.
The gas and liquid phases are denoted G and L, respectively.
Equation 1c constitutesNC equations in 2NC unknown chemical
potentials. Hence, additional NC relations are required to
determine the chemical potentials and the equilibrium
composition in both phases. The additional mass balances
required to close the equilibrium problem is formulated as

n ni i i iL, G, L,
0

G,
0β β+ = + (2)

where ni is the number of moles of component i and βi
0 is the

initial number ofmoles of component i. Thus, eq 2 is a constraint
to ensure that mass is conserved through the process of finding
the equilibrium composition. Further treatment of βL,i

0 and βG,i
0 is

deferred to the section Rigorous Phase Equilibrium: Consistent
Fluxes.
There are primarily three different concepts for modeling the

chemical potentials in the liquid and gas phases: the assumption
of ideality, the methods of nonideal EoS, and activity
coefficients. For instance, the ideal gas law

p V NRTig = (3)

can be used to model the chemical potential in the gas phase as

T p T p RT
n p
Np

n( , , ) ( , ) lni i
iigμ μ= ° ° +
° (4)

In Eq. 3, V is the volume,N is the total number of moles in the
gas mixture, and R is the gas constant. The superscript “ig”
denotes ideal gas. In eq 4, n is the vector of mole numbers, p◦ is
the standard state pressure, and μi° is the standard state chemical
potential given by33,34
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where the ideal gas partial molar enthalpy and entropy at the
reference pressure are denoted as h̅i

ig(T,p◦) and si̅
ig(T,p◦),

respectively. The standard heat of formation is denoted as
Δfhi°(T◦), the standard ideal gas heat capacity is denoted as cp,i° ,
and the standard entropy is denoted as si°. The standard heat of
formation and entropy are tabulated at the reference temper-
ature T◦ by Aylward and Findlay.35

Equations of State. Fluids may be described by an EoS. For
instance, ideal gases are described by the ideal gas EoS in eq 3.
On the other hand, real fluids require a nonideal EoS to be
characterized. Thus, to characterize the real fluid μi in eq 1c, we
require a nonideal EoS. Details on a specific EoS are therefore
given in the following.
A particular class of EoSs is cubic in volume. This permits the

EoS to model the behavior of both gases and liquids with the
same, relatively simple model description. Here, the cubic
Soave−Redlich−Kwong EoS (SRK-EoS) was used, see, for
example, Soave36

p T V
NRT

V B
D T

V V B
n

n
n

n
( , , )

( )
( , )

( ( ))
.= − − + (6)

In eq 6, B denotes an excluded volume and D denotes an
attractive term, both of which are functions of the composition
of the mixture. Additionally, D is a function of the system
temperature. The mixture B and D were modeled by the
quadratic mixing rules

NB n n bn( )
i

N

i
j

N

j ij
1 1

C C∑ ∑=
= = (7a)

D T n n a Tn( , ) ( )
i

N

i
j

N

j ij
1 1

C C∑ ∑=
= = (7b)

The cross coefficients bij and aij in eqs 7a and 7b were
determined by combining rules, which are functions of their
pure component contributions, bii and aii. In this study, the
arithmetic and geometric mean combining rules for bij and aij
were employed37

b b b
1
2

( )ij ii jj= +
(8a)

a a a k(1 )ij ii jj ij= − (8b)

The binary interaction parameter, kij, is an adjustable
parameter used to fit experimental data. Soave36 modeled pure
component aii and bii in eqs 8a and 8b as

b
RT

p
0.08664ii

c

c

=
(9a)

a
RT

p
m T T0.42747

( )
(1 (1 / ))ii

c
2

c
c

2= + −
(9b)

m 0.480 1.574 0.176 2ω ω= + − (9c)

In eqs 9a, 9b, and 9c, the critical temperature and pressure are
denoted as Tc and pc, respectively, and the acentric factor is
denoted as ω. Critical constants and acentric factors were taken
from NIST Chemistry WebBook.38

Chemical Potential. As illustrated in Figure 1, the chemical
potential following the SRK-EoS was obtained from the ideal gas

chemical potential and the residual chemical potential. The sum
of the two gives the chemical potential of the real fluid

T p T p T pn n n( , , ) ( , , ) ( , , )i i
p

i
r, igμ μ μ= + (10)

Here μi
r,p denotes the residual chemical potential at specified T

and p. Michelsen and Mollerup39 derived the residual chemical
potential as

RT

n
p p RT Z

ln

( )d ln

i
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i

i

V

T V n

r,

ig

, , k j

i
k
jjj

y
{
zzz∫

μ φ

ν

≡
= ∂

∂ − −
∞

≠ (11)

where both the ideal gas EoS in eq 3 and the nonideal gas EoS in
eq 6 have been used in the integral. Here,φi has been introduced
as the fugacity coefficient of component i, and Z = pV/(NRT) is
the compressibility factor. Michelsen and Mollerup39 gave the
solution to the integral in eq 11 and its compositional derivative.
The required temperature derivatives of the attractive term, a,
can be found in Øyen et al.40

Due to the SRK-EoS being cubic in volume, three possible
volumes satisfy eq 6 at a given temperature, pressure, and
composition. Thus, eq 11 is an implicit relation in volume, and
the appropriate compressibility factor must be chosen for the
corresponding phase. In this study, the three volumes satisfying
eq 6 were obtained by the built-in function roots in Matlab. The
smallest of these roots corresponded to the liquid phase, while
the largest root corresponded to the gas phase.
By definition, fugacity is defined as

RT
f

p
T p T pnln ( , , ) ( , )i

i iμ μ
°

≡ − ° ° (12)

and the criterion for phase equilibrium in eq 1c can alternatively
be stated as

f fi iG, L,= (13)

The chemical potential in eq 10 is combined with eqs 4, 11,
and 12, and the result is inserted into eq 13 to obtain

n

N

n

N
ln ln ln lni

i
i

i
G,

G
G,

L,

L
L,φ φ+ = +

(14)

In eq 14, the first term on the left-hand side is the ideal gas
contribution, and the second term on the left-hand side is the
residual (departure from ideal gas) contribution to the gas-phase
chemical potential of component i. Similarly, on the right-hand
side, the first term is the ideal gas contribution and the second
term is the residual contribution to the liquid-phase chemical
potential of component i.

Negative Flash Algorithm. The combination of eqs 2 and
14 is sufficient to identify the equilibrium composition in both
phases; however, since the problem is nonlinear, an iterative

Figure 1.Nonideal EoS is used in combination with the ideal gas EoS to
characterize the real fluid chemical potential. Here, p and pig are
independent models.
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procedure is required. The procedure used here is based on
Newton−Raphson iteration on the chemical potential. Thus, a
Taylor expansion is performed on eq 14. The left-hand side is
expanded in all nG,j, and the right-hand side is expanded in all nL,j
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Here δij denotes the Kronecker delta, which is 1 whenever i = j
and 0 otherwise, andΔnj is used to denote the step taken in mole
numbers of component j. The terms inside the summation will
be denoted as the Jacobian, Jij, of eq 14.
We assume that the phases establish equilibrium without any

reaction, implying that the species mole numbers are conserved.
Thus, any moles removed from one phase are received in the
other phase, that is, ΔnG,i = −ΔnL,i. For brevity of notation, the
subscripts describing the variables held constant under the
partial differentiation are omitted. The Taylor expansion in eq
15 is thus rewritten as
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For convenience, we introduce two new variables to denote
the modified chemical potentials in eq 14

n

N
ln lni

i
iG,

G,

G
G,η φ= +

(17a)

n

N
ln lni

i
iL,

L,

L
L,η φ= +

(17b)

It is noted that the fugacity of component i in the gas phase is
ln f G,i = ηG,i + ln p and the fugacity of component i in the liquid
phase is ln f L,i = ηL,i + ln p. With the Jacobian of eqs 17a and 17b
being

J
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Equation 16 can be written in the matrix form as

J J n ( )L G L
1

L Gη η[ + ]Δ = − −ν ν ν ν ν+
(19)

where the iteration count is denoted as ν. The mole numbers are
updated as

n n nL
1

L L
1= + Δν ν ν+ +

(20a)

n n nG
1

G L
1= − Δν ν ν+ +

(20b)

With eqs 11, 17a, 17b, 18a, 18b, 19, 20a, and 20b along with the
initialization in eq 2, it is possible to solve the phase equilibrium
problem by a sequence of successive iterations.
There are potential pitfalls where the algorithm above might

not converge. In Figure 2, a cross is used to denote a mixture

with an overall composition, βL,i
0 + βG,i

0 , inside a one-phase,
stable-phase region. If the algorithm is initiated within a stable
phase, the iterative procedure may not converge. If the overall
composition, βL,i

0 + βG,i
0 , decomposes into two phases (marked

with circles in Figure 2), then the mass balance in eq 2 requires
that the gas phase is present in negative amounts. This situation
was discussed by Whitson and Michelsen,41 and the proposed
flash algorithm was coined “the negative flash.” With this
procedure, it is possible to perform equilibrium computations on
stable phases to compute the equilibrium concentrations of both
phases.
Our proposal to a stable convergence of the equilibrium

problem with Newton−Raphson iteration, see eq 19, was
inspired by the procedure of Whitson and Michelsen.41 The
algorithm allows for negative amounts of a particular phase in
order to converge to two stable equilibrium phases. To prevent
divergence, the iteration procedure requires careful control of
the steps taken, ΔnL,i. As seen in eqs 17a and 17b, the mole
fraction, xi = ni/N, is not allowed to become negative since the
logarithm of negative numbers does not exist. Allowing negative
mole numbers but not negative mole fractions implies that the
mole numbers of all components in a particular phase must have
the same sign, that is

n
n

j N0, 2,3, ...,
j

1
C> =

(21)

For a binary mixture, this is illustrated in Figure 3, where the
mole number of components 1 and 2 is along the x- and y-axis,
respectively. Hatched areas are illegal quadrants, meaning the
second and fourth quadrants, Q2 andQ4, are thermodynamically
illegal. On the other hand, the first and third quadrants, Q1 and
Q3, are legal. If the equilibrium solver is initialized with both βL

0

and βG
0 in Q1, and the converged nL and nG both also lie in Q1,

the problem is commonly termed a “flash” problem. If βL
0 and βG

0

lie in Q1 and the converged nL or nG lie in Q3, the problem is
termed a “negative flash” problem. Note that if nL or nG lies in
Q3, then the volume of that phase is also negative.
With Figure 3 in mind, the step,ΔnL, was controlled carefully.

This process was done by scaling the step with τ ∈ (0, 1]

n nL LΔ = τΔ ′ (22)

Figure 2. Simplistic binary gas−liquid phase diagram. The blue line
denotes the bubble point line, and the red line denotes the dew point
line.
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where ΔnL′ is the original vector of steps in mole numbers
computed from eq 19. If an update in mole numbers with eqs
20a and 20b attempted to change quadrants, the step length was
reduced. A change in quadrants was detected if

n

n
0j

j

1

<
ν

ν

+

(23)

To preserve the sign of nj, we set the right-hand side of eqs 20a
and 20b greater than 0 and utilize eq 22

n

nj
j

j
τ < − Δ (24)

With eq 23 we found the j components attempting to change the
quadrant, and with eq 24, we found the component determining
the maximum allowable step length that preserves quadrants for
all components. A condensed form of eqs 23 and 24 is given as
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k

jjjjjj
y
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zzzzzzτ = − Δ
ν

ν< +ν ν+
(25)

This procedure ensured that the new iterate nν+1 stayed inside
the same legal quadrant.
If the current iterate nν was sufficiently close to the origin and

the step Δnν+1 would cross the origin and into another legal
quadrant, then that step was accepted, and the vector of mole
numbers was allowed through the origin. The step length was
then obtained from the largest −njν/Δnjν+1 out of all j

n

n
1.1max j

j
1

i

k

jjjjjj
y

{

zzzzzzτ = − Δ
ν

ν+
(26)

and all mole numbers were barely allowed through the origin to
stabilize the algorithm and reject unreasonably large steps. If the
iterate nν was not sufficiently close to the origin, and the step
Δnν+1 would cross the origin and into another legal quadrant,
caution was exercised. If the origin is crossed and the solution to
the phase equilibrium problem in eq 14 does not lie on the other
side of the origin, this will most likely cause divergence. The step
length was then computed by eq 25 until nνwas sufficiently close
to the origin, where eq 26 was appropriate, and nν was allowed
through the origin.
Steps that stayed inside the current quadrant were also

shortened to prevent aggressive steps from being taken, as these
may lead to rapid divergence. When τ was computed, aggressive
steps were prevented by choosing the smallest |nj

ν/Δnjν+1| out of
the j components with nj

ν/Δnjν+1 < 1

n

n
min

n n

j

j/ 1 1
j j

1

i

k

jjjjjjj
y

{

zzzzzzzτ = Δ
ν

νΔ < +ν ν+
(27)

Whenever the step, Δnjν+1, was larger than the current iterate,
nj
ν, the step length was reduced. If more than one component
met this condition, the component j having the most aggressive
step (smallest fraction in eq 27) was chosen for computing τ.
This corresponds to the most significant reduction in step
length.
Full steps, that is, τ = 1, were allowed for steps inside the same

quadrant if the phase equilibrium criterion was close to satisfied.
This is equivalent to the right-hand side of eq 19 being close to
zero. All other steps inside the same quadrant were shortened by
τ = 0.5 to prevent aggressive steps.
The previous discussion was applied to both the liquid-phase

mole numbers, nL
ν, and the gas-phase mole numbers, nG

ν . If the
step length was reduced considering one of the phases, this must
not lead to the violation of eq 21 for the other phase, as this will
cause the algorithm to fail.

Mass Transfer. For a gas in contact with a liquid, the mass
transfer occurs over the interface that separates the two phases.
In the two-film model, a thin film is formed on each side of the
interface that separates the phases, that is, a film of thickness δG
is formed on the gas side and a film of thickness δL is formed on
the liquid side of the interface (see Figure 4).

The mass transfer flux is assumed to be proportional to the
difference in mass fraction, analogous to Fick’s law.
Furthermore, the flux is steady state, as the interface is assumed
not to accumulate mass. Hence, the mass transfer flux from the
gas phase to the interface is given by

N k ( )i i i i
G I

G, G G, ,I G,ρ ω ω= −−
(28)

where kG,i is the mass transfer coefficient of component i on the
gas side of the interface, ρG is themass density of the gas mixture,
ωG,i,I is the mass fraction of component i at the interface on the
gas side, and ωG,i is the mass fraction of component i in the bulk
of the gas phase. For a purely diffusive flux, kG,i = DG,i/δG where
DG,i is the diffusion coefficient of the gaseous component i.
However, for combined convective and diffusive contributions,
kG,i is parametrized by the Reynolds and Schmidt numbers42.
The mass transfer flux from the interface and into the liquid is

given by

N k ( )i i i i
I L

L, L L, ,I L,ρ ω ω= −−
(29)

Here kL,i is the mass transfer coefficient of component i on the
liquid side, ρL is the mass density of the liquid mixture, ωL,i,I is
the mass fraction of component i at the interface on the liquid
side, and ωL,i is the mass fraction of component i in the bulk of
the liquid phase. For a purely diffusive flux, kL,i = DL,i/δL where
DL,i is the diffusion coefficient of the liquid component i.

Figure 3. Allowed thermodynamic quadrants Q1 and Q3. The mole
numbers of components 1 and 2 are along the x- and y-axis, respectively.
The volume of Q3 must be negative.

Figure 4. Two-film mass transfer model.
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However, for combined convective and diffusive contributions,
kL,i is parametrized by the Reynolds and Schmidt numbers42.
Generally accepted, gas−liquid equilibrium prevails at the

interface, implyingωL,i,I =ωL,i* andωG,i,I =ωG,i* , where the asterisk
(*) denotes the thermodynamic phase equilibrium state. In
general, ωL,i* = f(T,p,ωL,ωG) and ωG,i* = f(T,p,ωL,ωG), where the
boldface ω indicates the vector of species mass fractions. Thus,
the equilibrium state depends on a common and equal
temperature, T, a common and equal pressure, p, and the
composition of both phases. This dependency is clear from the
phase equilibrium criteria in eqs 1a, 1b, and 1c and the mass
balance closures in eq 2. However, this dependency reduces to
temperature and pressure for a binary mixture with two phases,
as seen from the Gibbs phase rule

F N N 2C P= − + (30)

Here, F is the degree of freedom, NC is the number of
components, NP is the number of phases, and the number 2
denotes that two intensive variables may be specified. For a
binary mixture with two phases, F = 2; however, if the intensive
variables T and p are specified, then F = 0. Thus, varying the
composition at constant T and p within any two-phase region of
a binary mixture does not alter the equilibrium composition.
From eqs 28 and 29, we propose three different formulations

for mass transfer. The first and second formulations are based on
the continuity of fluxes through the interface, meaning the mass
leaving the gas phase with eq 28 is received in the liquid phase
with eq 29. Utilizing this equality, eqs 28 and 29 are gathered
into a single expression for mass transfer. The third formulation
employs eq 29 solely and thus assumes that the conditions in the
liquid phase govern mass transfer. The first and second
formulations are equivalent to the two-film model, and the
third formulation is equivalent to the one-film model.
In the first approach, which is the most common in transport

phenomena involving mass transfer (see, e.g., refs 43−49),
Henry’s law is employed in order to relate the two interface
concentrations, ωG,i,I and ωL,i,I. This relation closes the mass
transfer problem and allows the mass transfer flux to be
computed. Details on the first approach are given in the section
Approach Based on Henry’s Law.
The second approach employs the multicomponent gas−

liquid equilibrium algorithm in the section Negative Flash
Algorithm to compute the interface concentrations, ωG,i,I and
ωL,i,I, directly. Thus, the mass transfer flux can readily be
computed through unifying eqs 28 and 29. The second approach
is discussed in the section Rigorous Phase Equilibrium:
Consistent Fluxes.
The third approach, see eq 29, is similar to the second

approach because the multicomponent gas−liquid equilibrium
algorithm in the section Negative Flash Algorithm is employed.
However, no further manipulations are exercised on the mass
transfer equations. In all formulations, no net mass transfer takes
place when the bulk gas is in phase equilibrium with the bulk
liquid.
Approach Based on Henry’s Law. With eqs 28 and 29

being equal, their expressions may be combined into a single
equation. For poorly soluble gases in the liquid solvent, the
infinite dilution limit known as Henry’s law is an appropriate
relation for the interface concentrations. The definition of the
Henry’s law constant of solute i in solvent j is50

H
f

x
limij

x

i

i0

L,

i

≡ **→ (31)

where xi* is the mole fraction of component i in the liquid at
equilibrium. With the definition in eq 31 along with eqs 4, 11,
and 12, eq 13 is written as

py H xi i ij iφ* = * (32)

Here, yi* is the mole fraction of component i in the gas at
equilibrium. In the Henry’s law implementation, the gas phase
was assumed ideal, and thus, φi = 1. The conversion from mole
fractions to mass fractions is given as
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where Mw,i is the molar weight of component i. Thus, eq 32 is
written as
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and by introducing the average molar weight of the mixture as

M
M

1
/j j j

w
w,ω

̅ = ∑ (35)

Equation 34 is rewritten as

p
H

M

Mi
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iL,
w,G

w,L
G,ω ω* = ̅ *

̅ *
*

(36)

Equation 29 is divided by kL,iρL, and since ωL,i,I = ωL,i* , the
expression in eq 36 is inserted
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(37)

Furthermore, we divide eq 28 by k i
H

p

M

MG, G
ij w,L

w,G
ρ ̅ *

̅ * and insertωG,i,I

= ωG,i*
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Equation 38 is subtracted from eq 37, and the equality of
fluxesNi

G−I =−Ni
I−L =−Ni is employed in order to eliminate the

dependency on ωG,i*

N
k k

p
H

M

M
1 1

i
i i

H

p

M

M
ij

i i
L, L G, G

w,G

w,L
G, L,

ij w,L

w,G

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzzρ ρ
ω ω+ = ̅ *

̅ * −̅ *
̅ * (39)

It is commonly accepted that most of the resistance to mass
transfer lies on the liquid side and that this assumption implies

that ( )k k1/( ) 1/i i
H

p

M

ML, L G, G
ij w,L

w,G
ρ ρ≫ ̅ *

̅ * . By implementing this

inequality into eq 39, the resulting mass-based mass transfer flux
reads
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(40)
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The evaluation of eq 40 requires knowledge of M̅w,L* and M̅w,G* .
For the liquid, eq 32 is rewritten as

x
p

H
yi

ij
i

* =
(41)

to obtain

M x M
j

N

j jw,L
1

w,

C∑̅ * = *
= (42)

For the gas, we assume ωG,i* = ωG,i to evaluate M̅w,G* = M̅w,G
with eq 35. Thus, with M̅w,G* = M̅w,G, eq 40 is simplified, and we
obtain the expression for mass transfer assuming Henry’s law
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(43)

As expected, eq 43 reduces to zero when the gas and liquid
phases are in phase equilibrium.
To show the similarities between eq 43 and the next mass

transfer models, we introduce the equilibrium constant (K-
value). The mole-based K-value is defined as

K
y

xi
i

i

m ≡
*
* (44)

and the mass-based K-value is defined as

Ki
i

i

G,

L,

ω
ω

≡
*
* (45)

By employing eqs 44 and 45 in combination with eqs 33 and
35, we obtain

K
M

M
Ki i

w,L

w,G

m= ̅ *
̅ * (46)

Furthermore, eq 32 is inserted for Ki
m in eq 46 to obtain

K
H

p

M

Mij
ij w,L

w,G
= ̅ *

̅ *
∞

(47)

Here, Kij
∞ denotes the mass-based K-value as solute i is infinitely

diluted in solvent j. Thus, Kij
∞ is restricted to Henry’s law,

whereas Ki is not. Equation 43 may be rewritten with eq 47

N k
Ki i

i

ij
iL, L

G,
L,

i

k
jjjjjj

y

{
zzzzzzρ

ω
ω= −∞

(48)

We emphasize that, in general, eq 31 is valid for both binary
and multicomponent systems. However, in practice, the Henry’s
law constants are taken from binary gas−liquid equilibrium
experiments. Hence, by employing a set of binary Henry’s law
constants in a multicomponent mixture, the multicomponent
phase equilibrium is approximated as a set of pseudo-binary
phase equilibria. This approximation has four significant
consequences. First and foremost, the solubility of each gaseous
component is entirely independent of all other gaseous
components. Thus, the pseudo-binary phase equilibria are
only functions of T and p, as previously mentioned with the
Gibbs phase rule in eq 30. This approximation is the major
strength of Henry’s law as it simplifies the phase equilibrium
computations substantially. However, for complicated systems

where the mass transfer fluxes depend on each other, the
pseudo-binary equilibrium approximation may not be accurate.
Second, Henry’s law assumes that one solvent is in excess in

the liquid phase and that the gaseous components exist as solutes
in trace amounts in this solvent. Liquid mixtures containing
substantial amounts of dissolved gas solutes violate the
assumption of infinite dilution in eq 31 where Henry’s law is
valid.
Third, it is impossible to compute the mass transfer of the

solvent directly with eq 43 since Hjj is neither available nor a
meaningful quantity. However, this mass transfer flux is not
directly required since the amount of solvent can be computed
as

1N
i

N

i
1

1

C

C∑ω ω= −
=

−

(49)

On the other hand, this does not provide any guarantee that
gas−liquid equilibrium prevails at the interface for the solvent,
since phase equilibrium is governed by the equality of chemical
potentials in eq 1c and not eq 49. Furthermore, using eq 49, the
errors in the species mass balances of component j = 1, 2, ..., NC

− 1 are accumulated into ωNC
. Hence, it is unwise to employ eq

49 for the solvent in the gas phase as it is likely to exist in trace
amounts in the gas phase. The numerical errors propagating
from the species mass balances of component j = 1, 2, ...,NC − 1
may therefore be large compared to the small ωG,NC

, and the use
of eq 49 may in the worst case yield a negative mass fraction of
solvent, that is,ωG,NC

< 0. Hence, the mass transfer of the solvent

is commonly neglected or ignored and NNC
= 0. Consequently,

the mass fraction of the solvent in the gas phase is likely
erroneous.
Fourth, the simplicity and applicability of eq 43 rest on the

availability of experimental or correlated values for the Henry’s
law constant for solute i in solvent j. Most experimental work on
the Henry’s law constant is for poorly soluble gases in H2O. This
limits the practicality of eq 43, and for studies where Hij is not
available, the mass transfer flux, Ni, cannot be computed.

Rigorous Phase Equilibrium: Consistent Fluxes. This
approach aims to remedy the four shortcomings of the Henry’s
law approach mentioned in the section Approach Based on
Henry’s Law. Therefore, we model the solubilities as a coupled
set of equations using the rigorous phase equilibrium approach
discussed in the section Negative Flash Algorithm. The K-values
in eq 45 are thus functions of the temperature, pressure, and
composition of both phases, in contrast to the pseudo-binary
phase equilibria employed with Henry’s law, where Kij

∞ was a
function of temperature and pressure only (see eq 30).
The mass transfer flux expression is derived by assuring that

the gas-to-interface flux is consistent with the interface-to-liquid
flux. By dividing eq 28 by kG,iρGKi and noting thatωG,i,I =ωG,i* , we
obtain

N
k K K K

i

i i

i

i

i

i

G I

G, G

G, G,

ρ
ω ω=

*
−

−

(50)

Furthermore, division of eq 29 by kL,iρL and inserting eq 45 for
ωL,i* yields

N
k K

i

i

i

i
i

I L

L, L

G,
L,ρ

ω
ω=

*
−

−

(51)
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Equation 50 is subtracted from eq 51 andNi
G−I =−Ni

I−L =−Ni

N
k k K K

1 1
i

i i i

i

i
i

L, L G, G

G,
L,

i

k
jjjjj

y

{
zzzzzρ ρ

ω
ω+ = −

(52)

It is commonly accepted that most of the resistance to mass
transfer lies on the liquid side and that this assumption implies
that 1/(kL,iρL)≫ 1/(kG,iρGKi). By implementing this inequality
into eq 52, the resulting mass-based mass transfer flux reads

N k
Ki i

i

i
iL, L

G,
L,

i
k
jjjjj

y
{
zzzzzρ

ω
ω= −

(53)

We emphasize the similarities in eqs 48 and 53. The
similarities originate from the assumption that phase equili-
brium prevails at the interface; however, eq 48 is restricted to the
infinite dilution limit. Furthermore, the mass transfer of the
solvent cannot be predicted with eq 48. These two limitations do
not apply to eq 53 as the assumptions limiting Henry’s law were
not made in the derivation of eq 53.
The K-values in eq 53 were obtained by solving the phase

equilibrium problem with eqs 11 and 17−20 along with the
initialization in eq 2.We assumed that the equilibrium prevailing
at the interface is the state obtained if the bulk gas and liquid
phases were in phase equilibrium. Thus, the initializations in eq
2 were determined by the reactor’s local bulk gas and liquid
fluxes. The liquid, gas, and total molar fluxes are given,
respectively, by

v
G

M xj
N

j j
L

L L L

1 w,
C

ρ α= | |
∑ = (54a)

v
G

M yj
N

j j
G

G G G

1 w,
C

ρ α= | |
∑ = (54b)

G G GT L T= + (54c)

Here, |vL| and |vG| are the Euclidean lengths of the local
instantaneous velocities of the liquid and gas phases,
respectively. Moreover, the volume fraction of the liquid is
denoted as αL = VL/V, representing the fractional volume of the
averaging volume occupied by the liquid. Similarly, the volume
fraction of gas is denoted as αG = VG/V, representing the
fractional volume of the averaging volume occupied by gasthe
volume fractions sum to unity for a two-phase flow.
The normalized mole number fluxes at each cross section

were obtained from eqs 54a, 54b, and 54c and describe the
required mass balances in eq 2

G
G

xi iL,
0 L

T
β =

(55a)

G
G

y1i iG,
0 L

T

i
k
jjjjj

y
{
zzzzzβ = −

(55b)

The phase equilibrium computation is visualized in Figure 5.
In order to obtain the mass balances required for the equilibrium
computation, the gas and liquid molar fluxes, GG and GL, are
hypothetically mixed in the first tank. The resulting stream GT
contains both gas and liquid. This mixing process corresponds to
eqs 54a, 54b, 54c, 55a, and 55b. In the second tank, the negative
flash computation described in the section Negative Flash
Algorithm is performed, and eq 19 is solved with the

initialization obtained from the first tank with eqs 54a, 54b,
54c, 55a, and 55b.
It is emphasized that we use the mixing and flash process

visualized in Figure 5 exclusively to find the equilibrium
concentrations that would exist if the bulk phases were to
establish phase equilibrium. Hence, the bulk gas and liquid
phases are not necessarily in phase equilibrium as demonstrated
in Figure 5.
The equilibrium mole fractions were retrieved as

y
n

Ni
iG,

G

* =
*
* (56a)

x
n

Ni
iL,

L

* =
*
* (56b)

and converted to equilibrium mass fractions with

x M

Mi
i iw,

w
ω* =

*
̅ * (57)

where M̅w*was computed with eq 42. TheK-values onmass basis
were thus directly computed with eq 45 and the mass transfer
flux of component i was computed with eq 53.

Rigorous Phase Equilibrium: Liquid-Side Flux Equa-
tions.The third approach was similar to the one discussed in the
section Rigorous Phase Equilibrium: Consistent Fluxes: the
equilibrium composition was rigorously determined from eqs 11
and 17−20 along with the initialization in eqs 54a, 54b, 54c, 55a,
and 55b. However, here, the mass transfer flux was determined
from eq 29, and thus, it did not directly depend on neither ωG
norωG*. However,ωL* depends onωG through eqs 54a, 54b, 54c,
55a, and 55b, and hence, the mass transfer fluxes still depend on
the conditions of both phases.
As seen from the Gibbs phase rule in eq 30, ωL* and ωG*

depend exclusively on temperature and pressure for binary
mixtures. As the mass transfer expression in eq 29 depends only
onωL*(T,p) andωL, mass transfer is allowed without considering
the gas-phase concentrations. A possible, unphysical scenario is
a nonzero driving force, ωL,i* − ωL,i ≠ 0, in combination with a
gaseous absence of the same component, ωG,i = 0. The driving
force in eq 29 thus allows mass to be transferred from the gas
phase and into the liquid phase, although this mass does not exist
in the gas phase. This is unacceptable. As a result, this method
was abandoned and not explored further.

■ REACTOR MODEL
In SCP production, mass transfer is crucial to sustain a healthy
microbiological culture and maintain high production. A reactor
design that facilitates mass transfer is the vertical U-loop reactor
pilot situated at the Technical University of Denmark (DTU).

Figure 5. Bulk phases are hypothetically mixed according to the molar
fluxes, and the total mixture is flashed according to the SRK-EoS and
the negative flash algorithm.
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At Tjeldbergodden in Norway, an industrial horizontal U-loop
reactor was also operated by Norferm for several years before
being shut down in 2006, possibly due to restructuring of
Norferm’s available resources. At both DTU and Tjeldbergod-
den, the U-loop tube is equipped with static mixers and a heat
exchanger for heat removal. A degassing tank is connected to the
U-loop to remove the CO2 produced.
The methanotrophic bacteriaM. capsulatus (Bath) were used

to produce SCP by consuming CH4. A black boxmodel was used
to lump all metabolic reactions into one representative
reaction9,51

CH 1.454O 0.104NH

0.52X 0.48CO 1.688H O
4 2 3

2 2

+ +
= + + (58)

Here, X represents a lump of representative biomass, which is
assumed to have the chemical formula CH1.8O0.5N0.2. The
reaction kinetics of eq 58 was studied by Joergensen and Degn,52

and the bacteria were found to metabolize optimally at 45 °C.
Hence, Joergensen and Degn52 parametrized the reaction rate at
45 °C. Their correlation is given in the Supporting Information.
The U-loop tube is commonly regarded as a plug flow reactor,

and the degassing tank is commonly regarded as a combination
of a separator unit and a continuously stirred tank reactor.1,9,11,53

In this work, we modeled the U-loop tube as a bubble column
reactor described by two phases: one gas phase and one liquid
phase. The gas phase was assumed to consist of bubbles of
constant diameter and contain a mixture of O2 and CH4. On the
other hand, the liquid phase was a broth consisting of H2O,NH3,
and bacteria. Moreover, the reaction was assumed to take place
in the liquid broth exclusively. We modeled each phase by a set
of continuity, species mass, momentum, and energy equations,
referred to as the governing equations. In this work, the
governing equations were cross-sectionally averaged and
assumed time-independent. Mass transfer between the gas and

liquid phases was accounted for by the methods described in the
section Mass Transfer.
The one-dimensional governing equations are shown in Table

1. Further closure equations required to solve the set of
governing equations are given in the section Closure Equations
to Reactor Model in the Supporting Information. In the
following, we present the gas- and liquid-phase density, the
numerical solution method, the program flow, a set of
parameters, and reactor dimensions.

Density.The liquid-phase density was assumed constant and
equal to the pure liquidH2O density atT = 298.15 K, that is, ρL =
ρL,H2O(298.15 K). The value is tabulated by Aylward and
Findlay.35 For mass transfer governed by Henry’s law, see eq 43,
the gas-phase density was obtained by the ideal gas law, as this is
consistent with the assumptions made in eq 32. The density was
thus obtained by rewriting eq 3

pM

RTG
w,Gρ = ̅

(67)

On the other hand, for mass transfer governed by rigorous
phase equilibrium as in the section Rigorous Phase Equilibrium:
Consistent Fluxes, the gas-phase volume was obtained from the
SRK-EoS (see eq 6). Subsequently, the density was obtained by

N
V

M GG w,ρ = ̅
(68)

In eq 68, V was chosen as the largest of the three solutions to
eq 6.

Numerical Solution Method. The governing equations in
Table 1 were solved with the orthogonal collocation method,
which is a spectral method of weighted residuals. Here, the
function is approximated at a set of nodal points termed
collocation points

Table 1. Governing Equations Describing the Bubble Column

Transport of Total Mass
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Transport of Momentum
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Transport of Energy
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f z z( ) ( )
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j j
N

0

∑ γϕ≈
= (69)

In eq 69, f(z) is the function of interest, γj are the basis
coefficients independent of z, and ϕj

N(z) are Nth-order trial
polynomials. If ϕj

N(z) are chosen as Lagrange interpolating
polynomials, then γj = f(zj) is the function value itself.54 Here,
{zj} is the set of collocation points and j = 0, 1, ..., N. With this
approach, the problem can be written on a linearized form, Af =
b, where A contains linear terms in f, such as derivatives and
integrals.
The collocation points were computed from the roots of

Legendre polynomials, as they yield low condition numbers and
low error.55 Furthermore, both endpoints of the physical
domain were included. Hence, both the reactor inlet and the
reactor outlet were included in the computational domain,
resulting in a Gauss Lobatto type of grid. Obtaining the
collocation points has been studied extensively, and the reader is
referred elsewhere for details.42,56−62 In total, 30 grid points
were placed in the z-direction. A summary of the numerical
solution strategy is given in Table 2.

With the orthogonal collocation method, eq 59 was solved for
vL, eq 60 was solved for αG, eqs 61 and 62 were solved for ωL,i
andωG,i, respectively, eq 63was solved for p, eq 64 was solved for
vG, and eqs 65 and 66 were solved simultaneously for TL and TG,
respectively.
Program Flow. A schematic representation of the program

is given in Figure 6. The program was initialized before
attempting to solve all of the governing equations in Table 1.
The initialization was performed by converging the species mass
balances and holding all other variables constant. This reduces
the initially high mass transfer, which reduces the likelihood of
divergence once all the governing equations are solved.
After initialization, all governing equations were solved

sequentially, except for the energy equations, which were solved
simultaneously. Furthermore, the K-values were updated once
every outer iteration to reduce the computational expense
associated with this update. The inner loop on the species mass
balances was crucial to ensure that the mass transfer did not
cause divergence in the continuity equations, as the continuity
equations are sensitive to mass transfer.
In Figure 6, the approach for modeling the K-values (Henry’s

law or rigorous phase equilibrium) and the mass transfer may
easily be changed without altering the main structure
significantly. Thus, the mass transfer model for Henry’s law in
the section Approach Based on Henry’s Law and the mass
transfer model for rigorous phase equilibrium in the section
Rigorous Phase Equilibrium: Consistent Fluxes share the same
flow chart in Figure 6. The differences between the Henry’s law
and SRK-EoS approach reside in the phase equilibrium
computation and are displayed in Figure 7. The mass transfer
model in the section Rigorous Phase Equilibrium: Liquid-Side

Flux Equations was deemed inappropriate and, hence, not
implemented.

Parameters and Initial Conditions. The parameters and
reactor dimensions used for the simulations are shown in Table
S1 in the Supporting Information. The binary interaction
parameters, kij, were fitted to the literature data50,63−90 by the
authors for the species pairs O2−H2O, CH4−H2O, and CO2−
H2O. The other species pairs were found in the literature.91−93

All binary interaction parameters are given in Table 3.
Furthermore, the critical constants required for the SRK-EoS
were obtained from Lemmon et al.38 and are summarized in
Table S2 in the Supporting Information.

Table 2. Numerical Properties

property value

solution method orthogonal collocation method
collocation points roots of Legendre polynomials
grid size 30 grid points
error 10−9−10−16, see Figure 16 in results
run time 8−10 h, see Figure 16 in results

Figure 6. Program flow of the bubble column bioreactor. The program
utilizes an outer loop and an inner loop in order to converge all
governing equations.
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Furthermore, the inlet values are shown in Table 4, where the
superficial velocity is denoted as vs = vα. The superficial liquid
velocity was based on the dilution rates

D
V

VL
L

reactor
= ̇

(70)

where V̇L = vL
sAreactor is the volumetric flow rate and Vreactor is the

reactor volume. Dilution rates relevant for the SCP fermentation
process are given in Table 5, and the superficial liquid velocity
was obtained by rearranging eq 70

v D LL
s

L= (71)

where L is the length of the reactor. Moreover, vG
s was based on

values similar to the experimental study of Petersen et al.10 and
the theoretical study of Al Taweel et al.9 The reactor
temperature was chosen to match the optimal growth
temperature found by Joergensen and Degn.52 Increasing the
pressure increases the solubility of O2 and CH4, but it
simultaneously increases the operating costs of the plant. The
nominal operating pressure was set by considering a trade-off
between solubility and operating costs.
The initial composition of the liquid phase was based on an

SCP plant operated at Tjeldbergodden Norway by Norferm
from the late 1990s to 2006.94 On the other hand, the initial
composition of the gas phase was based on two considerations:
(i) the stoichiometry of the biological reaction in eq 58 requires
an O2/CH4 ratio of 1.454 (we have chosen 0.76) and (ii) the
combustibility of the O2−CH4 mixture.95−99

The initial conditions used in the continuity eqs 59 and 60
were set to

v
v

1L,in
1 L,in

s

G,in
1α

= −
ν

ν
+

+
(72)

and

G,in
1

G,inα α=ν ν+
(73)

Since only the superficial velocities were specified, the inlet
gas area fraction in eq 73 must be recomputed at each iteration
by

v

vG,in
G,in
s

G,in
1α =ν

ν+
(74)

In eq 74, the inlet local instantaneous velocity was computed
from the algebraic slip model

Figure 7. Differences in phase equilibrium computations between the
Henry’s law and the SRK-EoS approaches.

Table 3. Binary Interaction Parameters Used with the SRK-
EoS

kij O2 CH4 CO2 NH3 H2O

O2 0 0 0.106 0 −0.365
CH4 0 0 0.118 0 −0.37
CO2 0.106 0.118 0 0 −0.138
NH3 0 0 0 0 −0.28
H2O −0.365 −0.37 −0.138 −0.28 0

Table 4. Initial Conditions Used in Simulation of the Bubble
Column Bioreactor

variable liquid gas unit

vin
s 6.34 × 10−4 0.05 m3 m−2 s−1

xO2,in 10−9 0.430

xCH4,in 10−9 0.567

xCO2,in 10−9 0.001

xNH3,in 0.01 0.001

xH2O,in 0.975319997 0.001

xX,in 0.01468 0
pout 3 3 bar
Tin 45 45 °C

Table 5. Dilution Rates in the Literature

dilution rate reference

0.0697−0.2231 h−1 Olsen et al.1

0.0463−0.0940 h−1 Petersen et al.10

0.19−0.2 h−1 Villadsen8

0−0.035 h−1 Prado-Rubio et al.11

120 h−1 Al Taweel et al.9

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c03131
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

K



v v
C v v

p
z

g

1

d
d

d D z

z
z

G,in
1

L,in 3
4 L , 0 L,in G,in

0
G, 0

b

i

k
jjjjj

y

{
zzzzz

ρ

ρ

= − | − |

+

ν ν
ν ν

+
=

=
=

(75)

which was directly obtained by neglecting the convective and
viscous terms in eq 64. The expression in eq 75 is implicit in vG,in,
and the iteration count is denoted as ν. At the reactor outlet, the
boundary condition was specified as

v
z

d
d

0G =
(76)

For the liquid-phase momentum equation, the pressure was
specified at the outlet, pz=L = pout.
The species mass balances employed Danckwerts boundary

conditions.100 For the inlet, the boundary condition for the
liquid phase was
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and for the gas phase
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Here, the symbol 0− denotes the inlet values as specified in Table
4 and 0+ denotes the inlet values on the inside of the reactor,
which is part of the computational grid. The outlet boundary
conditions were
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For the energy equations, the Danckwerts boundary
conditions were also employed. Thus, the inlet boundary
conditions were
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and the outlet boundary conditions were

T
z

d
d

0
z

L

L

=
= (83)

T
z

d
d

0
z

G

L

=
= (84)

The reactor model is described through eqs 59−66 with initial
and boundary conditions given by eqs 72−84. A graphical
representation of the reactor model and the initial and boundary
conditions are given in Figure 8.

Additional closure relations for eqs 61−66 in the Supporting
Information. The closure relations include, but are not limited
to, the reaction rate, drag forces, and heat capacities.

■ RESULTS AND DISCUSSION
A novel mass transfer model based on thermodynamic phase
equilibrium at the gas−liquid interface was derived for the
bubble column in the section Mass Transfer. The new and the
conventional mass transfer formulations were here analyzed for a
bioreactor producing SCP. That is, gas−liquid equilibrium
relations based on (i) Henry’s law and (ii) the SRK-EoS were
used to relate the interface concentrations and close the mass
transfer problem. The two solutions were compared in terms of
differences in flow fields, phase fraction, pressure, density,
species composition, temperature, and numerical properties
including convergence time and residual.
This section is organized into five parts. The first part gives the

limitations and considerations regarding verification and
validation of the novel mass transfer expression. The second
part, Nonreactive System: Three Components, presents the
results of a simplified test case of mass transfer in a ternary
mixture without reaction to verify that the novel mass transfer
model described in the section Rigorous Phase Equilibrium:
Consistent Fluxes yields physical results. It is noted that a study
of a binary system would suffice for an analysis of the proposed
mass transfer models. However, binary phase equilibria depend
exclusively on T and p, and in this study, we intend to explore
how the dependency onω affects the equilibrium and hence the
mass transfer flux. In the third part, Reactive System: The SCP
Bioreactor, the SCP bioreactor exemplifies a reactive six-
component system with mass transfer. The fourth part presents
a sensitivity study in pressure for the SCP bioreactor, and the
fifth part presents a sensitivity study in kij, kL, and db for the SCP
bioreactor.

Limitations, Verification, and Validation of the Mass
Transfer Expressions. It is noted that the density of the gas
mixture in this work may exhibit nonideal behavior. However,
from the experimental compressibility charts obtained by
Viswanath and Su,101 pure O2, CH4, CO2, and H2O behave
ideally at the temperature and pressure considered for the SCP
process. On the other hand, for pure NH3, the reduced

Figure 8. Graphical representation of the reactor model and its initial
and boundary conditions.
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temperature is 0.785 and the reduced pressure is 0.0265. For low
reduced temperatures, such as that for NH3 in this work,
nonideal behavior is commonly observed. However, since the
reduced pressure is very low, pure NH3 behaves approximately
ideally. Hence, all compounds present in the SCP process would
behave ideally as pure components at the T and p investigated in
this study. Since most of the gas phase consists of O2, CH4, and
CO2, which are all supercritical with high reduced temperature
and low reduced pressures, an ideal gas assumption is considered
reasonable.
In the mass transfer model formulation in eq 53, we assumed

that the temperature and pressure profiles through the gas−
liquid interface have no gradient, that is, TL = TI = TG and pL = pI
= pG. High heat transfer coefficients have been observed for the
bubble column reactor,102 and thus, the equality of temperatures
in eq 1a is, in this work, justified. Furthermore, the equality of
pressures in eq 1b is not believed to be the weakest link, as the
pressure difference pG − pL is balanced by the interfacial
tension.103 Here, the interfacial tension effects are assumed to be
small compared to the operating pressure. However, for other
cases where TG ≠ TL or pG ≠ pL, the proposed mass transfer
model breaks down as the conditions of phase equilibrium are
violated. Thus, the proposed mass transfer model requires
sufficiently high heat transfer coefficients and negligible pressure
differences between the gas and liquid phases in the reactor/
separator considered. Alternatively, two additional equations
stating the balance of momentum and energy over the interface
(jump conditions) must be formulated to find the interface
temperature, TI, and the interface pressure, pI. In that case, the
novel mass transfer concept is generic, and theK-values required
in the mass transfer expression in eq 53 can be computed at TI
and pI by converging the phase equilibrium problem.
The derived expression for mass transfer in eq 53 requires

convergence of the phase equilibrium problem. The solution
strategy employed here assumes that the converged solution
consists of two stable phases; however, in general, P phases can
coexist. A fundamental problem with the phase equilibrium
formulation is that in order to solve the phase equilibrium
problem, Pmust be specified. However, P is not known until the
problem is solved. The common strategy is to solve the two-
phase equilibrium problem and check for stability. If the
converged phases are unstable, new phases are added
successively until stability is obtained.39 This procedure was
not adopted here due to the coupling to the transport
phenomena. It is generally difficult to handle phases appearing
or disappearing in transport phenomena. Thus, to ensure that
the number of phases was consistent with the transport
phenomena solver, we required two phases from the phase
equilibrium problem. No test was performed on phase stability;
however, most of the liquid phase considered in this work
consists of H2O with approximately 1% NH3 by weight. Since
NH3 is soluble in H2O, the liquid phase is unlikely to separate
into two liquid phases. Furthermore, the gas phase consists
primarily of O2, CH4, and CO2. The mixture of these
compounds do not form two gaseous phases at the temperature
and pressure studied in this work. Hence, the assumption that
the phase equilibrium problem yields two phases is reasonable in
this study.
The driving force for species mass transfer in eq 53 employs

the K-value in the denominator. This has the advantage of
reducing the driving force to zero when / /i iG L, G L,i i

ω ω ω ω= * * .
However, volatile compounds have high K-values and non-

volatile compounds have low K-values. Thus, the driving force
for the different compounds may be separated by several orders
of magnitude. Typically, nonvolatile compounds with low K-
values tend to exhibit very high driving forces, which quickly
forces ωi to ωi* for that compound i. Furthermore, the
nonvolatile compounds exhibit high mass transfer compared
to the nonvolatile compounds. Hence, the sum of mass transfer
of all components in the continuity eqs 59 and 60 is essentially
determined by the nonvolatile compounds with high mass
transfer. Resultingly, the continuity equations are particularly
sensitive to mass transfer of nonvolatile compounds when mass
transfer is computed with eq 53. Iterating on the continuity
equations therefore required small under-relaxation factors. It is
worth mentioning that Hij is also in the denominator, and the
discussion above also applies for the classical mass transfer
expression based on Henry’s law, except for the nonvolatile
solvent, which is neglected with Henry’s law.
The implementation of the thermodynamic code for the SRK-

EoS has been thoroughly verified by multiple internal
consistency tests. Since the SRK-EoS is explicit in pressure,
the full library was implemented as a Helmholtz energy library.
Furthermore, Gibbs energy is related to Helmholtz energy
throughG =A + pV. BothHelmholtz andGibbs energy are Euler
homogeneous functions of degree one, and hence, Euler’s
theorem for homogeneous functions applies. This yields 2 + NC
tests for Helmholtz energy and 1 + NC tests for Gibbs energy.
Further tests include the Gibbs−Duhem relation, the symmetry
of the second derivative matrix, and tests on the first derivatives
of Gibbs energy. The interested reader is encouraged to see
Michelsen and Mollerup39 for a full list of the performed tests.
To the authors’ knowledge, there is no experimental data for

bubble columns to validate the novel mass transfer concept: it is
experimentally challenging to measure the composition of both
phases at different positions in the reactor. This is also the case
for the SCP process, where experimental data scarcity is a
considerable concern in the first place. Kashid et al.24 employed
a logarithmic mean concentration difference to experimentally
study kLa. The equilibrium concentration was experimentally
determined; however, only inlet and outlet effects were studied,
and conditions inside the microreactor were ignored. On the
other hand, Darmana et al.25 set the mass transfer to a constant
term and integrated in time in an attempt to obtain an analytical
solution to the single bubble trajectory. This approach had
several flaws: (i) the gas-phase density change as the bubble rose
through the column was neglected, (ii) the change in kL was
neglected, (iii) the concentration change was neglected, (iv) the
equilibrium concentration change was neglected, and (v) the
liquid was quiescent. These assumptions are questionable; for
instance, the gas-phase density would change by a factor of 2 in
the system studied. In another study, Mohamadi-Baghmolaei et
al.104 endeavored to obtain an analytical solution to the species
mass balance equation. Here, all variables were fixed except a
normalized concentration of the studied species. The
normalized concentration contained both the bulk and the
equilibrium concentration, and thus, their analytical solution
could not predict them both. In this study, we aim to predict the
bulk concentration by employing mass transfer expressions
based on the equilibrium concentration. We therefore require
individual knowledge of both ωi and ωi*. Current experimental
studies measure ωi and ωi* at reactor inlets and/or outlets, such
as in the study of Kashid,105 whereas a validation of mass transfer
models requires knowledge of the composition locally through
the reactor. The novel mass transfer concept presented in this
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study proposes a conceptual improvement to mass transfer with
less restrictions and assumptions.
Nonreactive System: Three Components. In a non-

reactive system, a mixture of O2, CH4, and H2O is considered.
From Figure 9, we observe that ωL,i obtained from the Henry’s

law and the SRK-EoS approaches are in qualitative agreement.
As the liquid is almost stagnant, the mixture establishes phase
equilibrium at a bubble column height of 1 m, and the
equilibrium prevails for the remaining height of the bubble
column. However, the two mass transfer approaches do give
quantitatively different results, and the solubility of O2 and CH4
is 50% higher for the SRK-EoS approach than the Henry’s law
approach.
On the other hand, in Figure 9, the trends in the profiles for

ωG,i are in qualitative disagreement for all components. In the
SRK-EoS approach, ωG,O2

and ωG,CH4
decrease, while ωG,H2O

increase with height. However, in the Henry’s law approach, all
profiles are constant over the reactor height. With the Henry’s
law approach, ωG,i* cannot be obtained from the Henry’s law

constants; hence, we assumed ωG,i* = ωG,i. This assumption
reduces the driving force in eq 53 from ωG,i/Ki − ωL,i to ωL,i* −
ωL,i. The ωL,i are thus forced to ωL,i* , which depend on pressure.
At convergence, the pressure drop yields an oblique ωL,i profile;
however, ωG,i are horizontal due to the assumption ωG,i* = ωG,i.
On the other hand, the SRK-EoS approach is not restricted to
ωG,i* = ωG,i, and resultingly, the ωG,i are oblique.
There are limitations in theHenry’s law approach with respect

to the modeling of the solvent, that is, H2O. In the Henry’s law
approach, the coefficientHjj does not exist. Furthermore,ωG,H2O

cannot be computed by 1 − ∑i≠H2Oωi due to ωG,H2O ≪ 1.

Hence, the mass transfer fluxNH2O = 0 was used in the gas-phase

species mass balance to obtain ωG,H2O, see eq 62. The SRK-EoS
approach is not restricted to any assumption about the solvent,
and consequently,NH2O = 0 was obtained from eq 53, which was

used in the gas-phase species mass balance to obtain ωG,H2O.

Thus, we observe significant differences in the ωG,H2O obtained
with the Henry’s law and the SRK-EoS approaches.
The αG profiles obtained with the Henry’s law and the SRK-

EoS approaches are presented in Figure 10. The two approaches
are in qualitative agreement, and the αG profiles increase with
the dispersion height in both approaches. As observed in Figure
9, ωL,O2

and ωL,CH4
decrease as the liquid rises through the

column and the pressure drops (see Figure S2). This re-
evaporation causes αG to increase.
Although the Henry’s law and the SRK-EoS approaches yield

significantly different liquid compositions, the differences in αG
are moderate. While the maximum difference in liquid
composition was found to be approximately 50%, the maximum
difference in αG is merely 2.2%. Furthermore, the SRK-EoS
approach yields slightly higher αG, presumably due to the
evaporation of H2O.
For completeness of the case study, the simulation results of

vL, vG, ρ, and p are given in the section Supporting Figures in the
Supporting Information.

Reactive System: The SCP Bioreactor. The species mass
fraction profiles of the liquid and gas phases are shown in Figures
11 and 12, respectively. O2 and CH4 are transferred from the gas
phase to the liquid phase, where the bacteria consume these
species and produce biomass. As the phase equilibrium governs

Figure 9.Mass fractions in the gas- and liquid-phase in the nonreactive
system. Blue lines denote results utilizing Henry’s law, and red lines
denote results utilizing the SRK-EoS. Full lines () denote the
converged values, and dashed lines (− −) denote the equilibrium state.
The solid and dashed lines overlap. Black circles denote the inlet values
specified in Table 4.

Figure 10. Area fraction of the gas-phase in the nonreactive ternary system. Blue lines denote results utilizing Henry’s law, and red lines denote results
utilizing the SRK-EoS.
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mass transfer, the trends are realistic; for reactants in the liquid
phase, ωL < ωL* as they are consumed, and for products in the
liquid phase, ωL > ωL* as they are produced. Since ωL < ωL* for
the reactants, the driving force for mass transfer increases.
Consequently, we observe a net mass transfer from the gas to the
liquid phase in the reactive system, and as a result, αG decreases
(see Figure 13). The reactive system thus differs qualitatively
from the nonreactive system, where ωL = ωL* and ωG = ωG* for
the entire dispersion height of the bubble column, and αG
increases as the pressure declines (see Figure 10). Furthermore,
the ωL* and ωG* profiles in Figures 11 and 12 are different from
those in the section Nonreactive System: Three Components.
In the nonreactive system, O2 and CH4 condensate initially.

At a column height of 1 m, they have reached equilibrium, and as
the pressure declines, the solubility of O2 and CH4 proportion-
ally follows. Hence, O2 and CH4 re-evaporate at column heights
greater than 1 m in the nonreactive system. In the reactive
system, O2 and CH4 are continuously consumed in the liquid
phase, preventing them from reaching phase equilibrium. As the
offset from liquid-phase equilibrium prevails, NO2

> 0, and O2 is

Figure 11. Mass fractions in the liquid phase in the reactive SCP system. Blue lines denote results utilizing Henry’s law, and red lines denote results
utilizing the SRK-EoS. Full lines () denote the converged values, and dashed lines (−−) denote the equilibrium state. Black circles denote the inlet
values specified in Table 4.

Figure 12. Mass fractions in the gas phase in the reactive SCP system.
Blue lines denote results utilizing Henry’s law, and red lines denote
results utilizing the SRK-EoS. Full lines () denote the converged
values, and dashed lines (− −) denote the equilibrium state. Black
circles denote the inlet values specified in Table 4.

Figure 13.Area fraction of the gas phase in the reactive SCP system. Blue lines denote results utilizingHenry’s law, and red lines denote results utilizing
the SRK-EoS.
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transferred from the gas phase into the liquid phase. Thus, the
ωG,O2

profile declines for both the Henry’s law and the SRK-EoS
approaches in the reactive system. In the nonreactive system,
ωG,O2

remained approximately constant with the Henry’s law

approach due to L,O L,O2 2
ω ω= * . We conclude that with the

Henry’s law approach, the gradients in the ωG,O2
profile are

produced by the offset from liquid-phase equilibrium resulting
from the reaction. Furthermore, the decrease in the αG profile
originates from NO2,CH4

> 0, and this mass transfer is caused by
the offset from liquid-phase equilibrium induced by the reaction.
We emphasize that biomass is not included as a component in

the phase equilibrium computations, and hence, the L,H O2
ω*

computed based on the SRK-EoS approach is significantly
higher than ωL,H2O (approximately 0.999 vs 0.94). Moreover, as
previously mentioned for the nonreactive case, the mass transfer
of H2O cannot be modeled in the Henry’s law approach, as the
Hjj coefficient does not exist. Furthermore, ωG,H2O cannot be

computed with 1 − ∑i≠H2Oωi, as the errors from the other

species mass balances would propagate intoωG,H2O. SinceωG,H2O

is small, the numerical errors would be relatively large, possibly
allowing ωG,H2O to become negative. Ultimately, the mass
transfer (evaporation) of H2O cannot be predicted with the
Henry’s law approach, and NH2O must be neglected. As seen in
Figure 12, this can amount to 2% by weight under the current
operating conditions.
The volumetric mass transfer coefficient, kLa, used was based

on the parametrizations of Calderbank and Moo-Young.21 In
this study, the values of kLa lay in the range 800−2000 h−1. This
is similar to what was experimentally found by Petersen et al.10

However, Petersen et al.10 placed static mixers in the reactor in
order to break up bubbles and hence increase the interfacial area,
while in this study, the bubble diameters were kept constant.
Petersen et al.10 claimed that the static mixers produced an
exceptionally high interfacial area; however, no value for this
area was given, presumably due to the experimental complexity
of separating kL and a.

106 Hence, no comparison can bemade on
the individual values of kL and a.
On the other hand, Olsen et al.,1 Villadsen,8 Villadsen et al.,51

and Al Taweel et al.9 have based their computations on values in
the range 0−720 h−1 and concluded that the process was mass
transfer limited. Despite the fact that kLawas larger in this study,
we still found the SCP production to be mass transfer limited
(see Figure 11). At a reactor height of approximately 3−5 m, the
O2 dissolved in the liquid phase is depleted, and the reaction
only proceeds as it is continuously supplied with O2 from the
gaseous phase. At a reactor height of 3−5 m, a cusp in the CH4
profile is observed. Since the O2 depletion has throttled the
reaction, mass transfer dominates the species mass balance of
CH4, resulting in increased ωL,CH4

.
Although O2 and CH4 have similar solubilities in the liquid

phase, O2 is the component that depletes and becomes the
limiting reactant. From the bioreaction in eq 58, O2 is consumed
in larger quantities than CH4, and consequently, the results
agree with our intuitive understanding of the system studied. It
should be mentioned that depleting the O2 available to the
bacteria at a height of 3−5mwill result in a lack of O2 for heights
greater than 5 m which may yield undesirable metabolic effects
that are not yet well-understood.107

From Figure 12, the gas phase almost depletes entirely of O2

toward the end of the reactor. Over the reactor height, ωG,O2

decreases from an inlet value of 0.6 down to approximately 0.026
at the reactor outlet. On the other hand, ωG,CH4

is relatively
constant, although mass is transferred from gas to liquid. This
results from the decrease in ρG and αG, the increase in vG, and the
fact that CH4 is a relatively light component (low molecular
weight). Ultimately, the mass flux of CH4, computed as
ρGvGαGωG,CH4

, decreases with height. Furthermore, the mass
fraction profile of CO2 in the gas phase increases with height as it
is produced in the liquid phase and transferred to the gas phase.
Moreover, CO2 is a heavy component, and on mass basis, it
represents a significant part of the density of the mixture.
For the slightly soluble NH3, the underlying assumptions of

Henry’s law break down. Interestingly, the differences in ωNH3

between the Henry’s law and the SRK-EoS approaches are less
than those for O2 and CH4. The differences in ωL,NH3

are within

8%, and the differences in ωG,NH3
are within 20%. The accuracy

of the Henry’s law approach is possibly due to the trace amounts
of NH3 in this particular system. As seen from the definition of
the Henry’s law constant in eq 31, the equilibrium relation is
valid as the concentration of the solute approaches zero. This is
the case here, although a higher gas-phase concentration would
ultimately dissolve enough NH3 to violate eq 31. Conversely,
liquid-phase concentrations of NH3 that violate eq 31 are also
prone to erroneous predictions of the evaporation rates.
Henry’s law in its definition (see eq 31) is valid for

multicomponent systems. However, in practice, the tabulated
Henry’s law constants are taken from binary experiments or as
correlations based on the regression of binary experiments. By
employing a set of Hij meant for binary phase equilibrium, the
multicomponent phase equilibrium reduces to a set of pseudo-
binary phase equilibria. This does give the advantage that the
solution to the phase equilibrium problem is independent of eq
2, as seen from Gibbs phase rule in eq 30, but rules out possible
cross-interactions between solutes. The mass fraction profiles
obtained from the SRK-EoS approach did not clearly indicate
any cross-interaction effects between solutes.
Although the simple one-film model in eq 29 was considered

inappropriate, an interesting similarity is noted between this
approach and the two-film approach, see eq 53 in the section
Rigorous Phase Equilibrium: Consistent Fluxes. If ωG,i at any
point takes the exact value of the equilibrium mass fraction, ωG,i
= ωG,i* , then ωG,i/Ki = ωG,i* /(ωG,i* /ωL,i* ) = ωL,i* . In this particular
scenario, themass transfer expressions in eqs 29 and 53 coincide.
At any iteration where this is not true, the mass transfer
expressions would differ. Employing eq 29 will thus produce
different results from eq 53 employed here.
In Figure 13, αG is displayed. As αG was solved from eq 60, it is

especially sensitive to the net mass transfer on the right-hand
side of the equation. Furthermore, as the bubble diameter was
assumed constant, any mass transferred out of the gas phase was
captured in αG. From Figure 13, αG is seen to decrease for the
entire dispersion height with the mass transfer expression based
on Henry’s law. The results based on the SRK-EoS are different
on two levels: (i) αG initially increases before it starts decreasing,
and (ii) at a height of 7 m, a minimum in αG is observed before
an increase takes place. The trends observed in (i) originates
from the evaporation of H2O, as this agrees with the mass
fraction profile of H2O in Figure 12. Moreover, the increase in
αG with the SRK-EoS at reactor heights greater than 7 m is also
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Figure 14. Temperature profiles in the gas and liquid phases in the reactive SCP system. Blue lines denote results utilizing Henry’s law, and red lines
denote results utilizing the SRK-EoS.

Figure 15.Density in the gas phase and the pressure common to both phases in the reactive SCP system. Blue lines denote results utilizingHenry’s law,
and red lines denote results utilizing the SRK-EoS.

Figure 16. Errors of the governing equations in terms of the L2-norm of the residual. L is the liquid phase, G is the gas phase, C is the continuity
equation,M is themomentum equation, SMB is speciesmass balance, and E is energy. Blue is Henry’s law and red is the SRK-EoS. Note the logarithmic
axis in the energy equations.
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caused by the mass transfer of H2O near the end of the reactor.
Since H2O is relatively nonvolatile, its K-value is low. From eq
53, large driving forces are expected for low K-values when the
phases are not in phase equilibrium, causing the mass transfer of
H2O to have a significant impact on the continuity equations, see
eqs 59 and 60. This creates a positive gradient in the gas
continuity equation (see eq 60), causing the increase in αG near
the reactor outlet.
It is crucial to control the temperature, as the bacteria

metabolize optimally at 45 °C.52 In Figure 14, the temperature is
seen to vary at most by 0.18 °C. Hence, the bubble column
reactor is a good choice for heat removal from the reaction in eq
58. As the reaction initiates, the temperature of the liquid phase
increases as heat is released from the reaction. The temperature
reaches a maximum at an approximate reactor height of 4 m and
decreases as the bubble column reactor is cooled by the heat
exchange with the cooling medium. The gas-phase temperature
follows the liquid-phase temperature closely due to the high heat
transfer coefficients observed in bubble column reactors.102

The pressure pL = pG = p is displayed in the right part of Figure
15. The pressure is obtained from the momentum equation for
the liquid phase, which is dominated by the hydrostatic pressure
of the liquid. Consequently, the pressure differences between the
approaches based on Henry’s law and the SRK-EoS are
negligible here.
The gas-phase density is displayed in the left part of Figure 15.

At the reactor inlet, the simulations based on the SRK-EoS and
Henry’s law share the same T, p, and composition, ω. Thus, the
observed differences in ρG at the inlet originate from the
different EoSs employed: with the SRK-EoS, ρG was computed
from eqs 68 and 6, and with Henry’s law, ρG was computed from
eq 67. At heights above the reactor inlet, the differences in ρG
originate from the differences in TG and ωG (the pressure
differences are negligible). Nevertheless, the differences in ρG
are minor, and the relative differences are at most 2%. The ideal
gas law and the SRK-EoS are in agreement on the prediction of
the gas density.
For completeness of the study of the SCP bioreactor, the

results for vL and vG are given in the section Supporting Figures
in the Supporting Information.
Overall, the Henry’s law and the SRK-EoS approaches use

similar simulation times, see Figure 16. However, the approach
based on Henry’s law is approximately 1 h faster. This difference
is attributed to how the mass transfer fluxes are updated. The
mass transfer fluxes with the Henry’s law approach are updated
by Hij obtained from a correlation, while the update in the mass
transfer fluxes with the SRK-EoS approach requires the
convergence of the multicomponent phase equilibrium problem
in eq 19. Hence, the update in the mass transfer fluxes with the
SRK-EoS approach is expected to be more computationally
expensive than the update in the mass transfer fluxes with the
Henry’s law approach. The computational costs are reflected in
Figure 16.
The errors shown in Figure 16 were computed in terms of the

L2 norm of the residual of the governing equations in Table 1
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1 1
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In eq 85, aij denotes element ij of the A-matrix used to
compute the dependent variables, x, and b is the source/sink
vector of the algebraic equations for (i) the continuity equations,

(ii) the momentum equations, (iii) the energy equations, and
(iv) the species mass balances. The error in the energy equations
was taken as the largest error of the two phases: ϵE = max(ϵE,G,
ϵE,L). Similarly, the error in the species mass balance of
component i was computed by ϵSMB,i = max(ϵSMB,G,i, ϵSMB,L,i).
The component iwith the largest ϵSMB,i is displayed in Figure 16.
The errors in the governing equations are all relatively low,

both for the Henry’s law and for the SRK-EoS approaches. The
error in liquid continuity, species mass balances, and energy is
lower for the Henry’s law approach than that for the SRK-EoS
approach. However, the error in gas continuity and liquid
momentum is lower for the SRK-EoS approach than for the
Henry’s law approach. The errors are on the order of machine
precision, except for the energy equation. The error in the
energy equation is approximately 2 orders of magnitude lower
with theHenry’s law approach than with the SRK-EoS approach.
From the error bars in Figure 16, it is concluded that the profiles
in Figures 11−15 and S3 are converged profiles.
The initial composition in the gas phase used in this work

consists of approximately 57 mol % CH4 and 43 mol % O2. As
CH4 is highly flammable, the U-loop reactor at Tjeldbergodden
utilized a series of injection points where CH4 was injected.
Thus, O2 was separated from CH4, and the risk of explosion was
severely reduced. The autoignition temperature for CH4 in air
has a lower limit of approximately 640 °C,95 far from the
operating conditions of 45 °C of the SCP reactor. On the other
hand, the explosion limit does change dramatically in the
presence of an ignition source. Gieras et al.96 used an ignition
source with an effect of ca. 10 W, and they found experimentally
that a CH4−air mixture has a lower and upper explosion limit of
4.65 mol % CH4 and 15.5 mol % CH4, respectively, at 20 °C.
Their results agree with Takahashi et al.97 and Kondo et al.,98

where similar low-intensity sources of ignition were used. Huang
et al.99 used a tungsten wire to supply 3400 J over 6 s, and their
lower and upper explosion limits agree with other inves-
tigators.96−98

The experimentally observed lower and upper CH4 explosion
limits correspond to O2:CH4 ratios of approximately 4.3 and
1.14, respectively. The stoichiometric ratio for the combustion
of CH4 is 2, and the gas mixture used in this work has a ratio of
0.76 at the reactor inlet. The ratio used here is thus well below
both the stoichiometric ratio and the upper explosion limit.
Hence, the gas phase will not combust even in the presence of
ignition sources. There is, however, a risk of explosion if the
composition should drift to 47 mol % CH4 and 53 mol % O2
during operation. This explains why CH4 was injected at a series
of locations at the SCP production plant at Tjeldbergodden: a
gas leakage in the 57 mol % CH4 and 43 mol % O2 mixture
employed in this work in combination with an ignition source
will likely combust, while the pure O2 stream used at
Tjeldbergodden will not combust.
The bacteria assumed for this work consume more O2 than

CH4 (see eq 58), and as a result, we expect a higher mass transfer
driving force for O2. As the bubbles rise in the reactor, the
O2:CH4 ratio is expected to decrease. This reduction is observed
in Figure 12, where the inlet ratio is 0.76 and the outlet ratio is
approximately 0.03 for the gas phase. The explosion hazards thus
decrease over the reactor height, and the risks are mainly
attributed to gas leakages in the upstream pipeline transporting a
mixture of 57 mol % CH4 and 43 mol % O2.

Sensitivity Study in Pressure. A sensitivity study was
performed to explore how the solution responds to perturba-
tions in the pressure. Thus, the outlet pressure boundary
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condition was set to four different values: pout = {2, 3, 4, 5} bar,
all within the recommendation of Villadsen8 of 10 bar. Full
simulations were performed for both the mass transfer based on
Henry’s law and the SRK-EoS for each of the different pout
boundary conditions. All other variables and boundary
conditions were kept as specified in Tables 1, 4, 5, and S1.

The relative difference between the solution obtained by
employing Henry’s law and the SRK-EoS are displayed in
Figures 17−21 and were computed as ϵX = 100(XSRK − XHenry)/
XHenry. Here, X represents αG, ωG, ωL, TG, TL, ρG, and p.
In Figure 17, the initial evaporation of H2O creates a positive

relative difference between the SRK-EoS and the Henry’s law

Figure 17.Relative difference in αG for different outlet pressures. Legend: pout = 2 bar (−−); pout = 3 bar (); pout = 4 bar (···); and pout = 5 bar (−·−).

Figure 18.Relative difference inωL for different outlet pressures. Legend: pout = 2 bar (−−); pout = 3 bar (); pout = 4 bar (···); and pout = 5 bar (−·−).

Figure 19.Relative difference inωG for different outlet pressures. Legend: pout = 2 bar (−−); pout = 3 bar (); pout = 4 bar (···); and pout = 5 bar (−·−).
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approaches. At a reactor height of approximately 2 m, the
Henry’s law approach predicts a higher αG than the SRK-EoS
approach. This is true for all pressures studied and is visualized
for pout = 3 bar in Figure 13. A minimum is then observed at a
reactor height of 5−8 m before the differences become smaller.
The minimum is located at the same height as where the
differences in ωL,O2

level out, see Figure 18. The highest relative
difference observed is approximately 8%.
In Figure 18, the differences in ωL,O2

are conspicuous due to
spanning 3 orders of magnitude over the reactor height.
Increasing the pressure tends to delay the peak of the relative
differences in ωL,O2

: for pout = 2 bar, the differences start
increasing immediately and peak at a reactor height of 2.5 m. On
the other hand, for pout = 5 bar, the peak of the relative
differences inωL,O2

is shifted to 4 m. For the volatile compounds
CH4 and CO2, increasing the outlet pressure tends to decrease
the highest relative difference observed. For themedium-volatile
NH3, the nonvolatile H2O, and biomass, the opposite is true:
higher outlet pressure increases the highest relative difference.
High relative differences are observed for all volatile compounds,
while lower differences are observed for less volatile compounds.
The high relative differences observed for the volatile

compounds at low pressures are in agreement with the trends
observed for ρG in Figure 21. As p → 0, the ideal gas law is
increasingly accurate, especially since the gas mixture consists
primarily of O2, CH4, and CO2, which all exhibit ideal behavior
under the conditions studied.101 Thus, the ideal gas law is
assumed to correctly predict ρG. The differences in ρG between
the Henry’s law and the SRK-EoS simulations are partly due to
the different gas-phase compositions and partly due to the use of
different EoSs (the ideal gas law vs the SRK-EoS). This was
tested by computing ρG with the ideal gas law under the
conditions otherwise obtained with the SRK-EoS, (T,p,ω)SRK.
At (T,p,ω)SRK, the SRK-EoS predicted a ρG at most 7.59%
higher than the ideal gas law at a reactor height of 5.7 m.
In Figure 19, the evaporation of H2O produces a large relative

difference due to the inability of Henry’s law to predict mass
transfer of the solvent. This is especially prominent at lower
pressures, as this further facilitates evaporation. Except for CH4,
the relative differences inωG are all considerable. From theωL,O2

profiles in Figure 19, we point out that the SRK-EoS approach
predicts a higher mass transfer of O2 than what the Henry’s law
approach predicts. The high mass transfer of O2 increases the
reaction rate of the liquid-phase reaction, and ωL,NH3

decreases

while ωL,CO2
increases. Thus, less NH3 evaporates with the SRK-

Figure 20.Relative difference inTG andTL for different outlet pressures. Legend: pout = 2 bar (−−); pout = 3 bar (); pout = 4 bar (···); and pout = 5 bar
(−·−).

Figure 21. Relative difference in ρG and p for different outlet pressures. Legend: pout = 2 bar (−−); pout = 3 bar (); pout = 4 bar (···); and pout = 5 bar
(−·−).
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EoS than with the Henry’s law approach. Similarly, more CO2
evaporates with the SRK-EoS than the Henry’s law approach.
This is reflected in Figure 19 for all values of pout.
The relative differences between the Henry’s law and the

SRK-EoS approaches are modest for TG, TL, and p, as seen from
Figures 20 and 21, respectively. Moreover, the relative
differences in vG and vL (not shown in graphics) were also
below 1%.
It is worth mentioning that the reaction rate is not a function

of temperature. Joergensen and Degn52 parametrized the
reaction rate solely as a function of concentration at the optimal
growth temperature T = 45 °C. Perturbing the temperature
could therefore yield unrealistic growth rates, where the
concentration of biomass may be erroneously estimated.
Hence, a sensitivity study in temperature was not performed.
Furthermore, the reaction rate expression ignored inhibiting
effects due to excessive substrate (CH4) feeding and cell
poisoning due to the presence or production of toxic
compounds from other metabolic pathways. One such
phenomenon is the inhibitory effects of NH3 oxidation on
CH4 uptake in the bacteria, reported by Petersen et al.28

Sensitivity Study in kij, kL, and db. Four additional studies
were performed where the solution obtained with mass transfer
based on the SRK-EoS was examined for sensitivities in three
different parameters: the binary interaction parameters, kij, the
mass transfer coefficient, kL, and the bubble diameter, db. The
base case is defined by the simulations done with the kij fitted to
the literature data (Table 3) and the parameters in Tables 4, 5,
and S1. The sensitivity in kij was examined by performing
simulations with mass transfer based on the SRK-EoS, where the
K-values were computed with kij obtained from Aspen HYSYS.
The kij from Aspen HYSYS are displayed in Table 6. The

sensitivity in kL was studied by setting it to 1/2 and 2 times the
nominal kL° obtained from the correlation of Calderbank and
Moo-Young.21 The sensitivity in db was investigated by
employing db = 1 mm as opposed to the nominal value of db° =
2 mm. The results of all perturbation studies are shown in
Figures 22−27.
Clearly, from Figure 25, the L,O2

ω* and L,CH4
ω* were severely

underestimated when kij was obtained from Aspen HYSYS. The
values at the outlet with conditions T = 45 °C and p = 3 bar were

6.41 10L,O
6

2
ω* = × − and 2.07 10L,CH

8
4

ω* = × − . Conversely,
the values observed by experimental investigators50,63,77,108

(also see Battino and Clever109) at T = 40−50 °C and p = 1 bar
are 1.67, 1.87 10L,O

5
2

ω* = [ ] × − and 3.15 10L,CH
5

4
ω* = × − .

With the pressure in this study being higher than in the
experimental studies, the solubility is expected to be even higher
than those found experimentally at p = 1 bar. Hence, the
equilibrium is erroneously predicted by 1 to 3 orders of

magnitude with kij obtained from Aspen HYSYS. As the driving
force for mass transfer relies onωL,i* , virtually no O2 and CH4 are
transferred from the gas to the liquid phase. Thus, the bacteria
are deprived of the substrates they require, and they do not
metabolize. No reaction is observed in Figure 25 for the
simulations based on kij from Aspen HYSYS.
The studies based on kL are similar to the base case. For the

case with kL = 1/2kL°, the ωL,i profiles are strikingly similar to
those obtained with the Henry’s law, see Figures 11 and 25. The
same is not true for the ωG,i, mostly due to the evaporation of
H2O. On the other hand, for the case with kL = 2kL°, a higher
ωL,CO2

and ωL,CH4
than the base case are observed. This further

emphasizes that the process is mass transfer limited.
Interestingly, the ωL,i and ωG,i profiles are remarkably similar
to those obtained with db = 1 mm; the reason for this is that the
interfacial area becomes a = 2a° when db = 1/2db°, as seen from
eq S93. Hence, when the effects related to the driving force are
neglected, Nia = 2(Nia)° for both kL = 2kL° and db = 1/2db°. It is
emphasized that the solution is quite sensitive to bubble
diameter. Consequently, the model formulation would benefit
from increased knowledge of the bubble size distribution
through, for example, the population balance framework.110

Industrial Implications of the Mass Transfer Expres-
sion. Currently, efforts are made to build a competitive
biological industry. In this endeavor, it is vital to acquire a
proper understanding of the transport phenomena in the reactor
unit. Theoretical prestudies of reactor units are reliable tools in
predicting optimal operating conditions and consequently
reduces the costs of equipment. Furthermore, the overall
feasibility of the process based on the productivity can be
predetermined before expensive investments are made. In gas
fermentation, the theoretical prestudy for predicting the
productivity relies on accurate mass transfer modeling. For
this purpose, the novel mass transfer expression developed in
this study can be a useful tool for the biological industry.
Other examples in industry include systems where the solvent

is expensive, and predicting its evaporation is crucial for
estimating operating costs. For instance, in CO2 absorption
plants, loss of absorbent due to evaporation is a known issue, and
low vapor pressure is one of the criteria for choosing the
absorbent.111−113 Furthermore, the environmental impact of
absorbent evaporation is not negligible. For instance, mono-
ethanolamine degrades over time andin the presence of
precursor amines or oxidantsforms carcinogenic compounds
that represent a risk to the aquatic ecosystem and drinking water
supplies.114 In this case, quantification of the solvent mass
transfer is important, and this is not possible with mass transfer
expressions based on Henry’s law. With the novel mass transfer
concept developed in this study, the mass transfer of the solvent
can be predicted.
In the Fischer−Tropsch synthesis, many liquid products form

through a chain-elongating hydrogenation reaction. Here, the
solvent is not uniquely defined, and the liquid consists of a
mixture of n-alkanes, n-alkenes, oxygenated compounds, H2O,
and dissolved CO, H2, and CO2. Moreover, the mixture
represents both highly volatile and nonvolatile compounds,
making Henry’s law applicable for only a small portion of
compounds present. In the Fischer−Tropsch synthesis, it is,
therefore, reasonable to employ the novel mass transfer concepts
developed in this study since it amends the two main
shortcomings of Henry’s law: (i) the new concept does not
require identification of a single solvent to predict mass transfer,

Table 6. Binary Interaction Parameters from Aspen HYSYS
Used with the SRK-EoSa

kij O2 CH4 CO2 NH3 H2O

O2 0 0 0.0975 0 0
CH4 0 0 0.0956 0 0.5
CO2 0.0975 0.0956 0 0 0.0392
NH3 0 0 0 0 −0.2725
H2O 0 0.5 0.0392 −0.2725 0

aConversely, the binary interaction parameters fitted to the literature
by the authors are displayed in Table 3.
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and (ii) the new concept does not require the infinite dilution
assumption but is also applicable for mixtures containing volatile
and nonvolatile compounds.

Figure 22. Sensitivity of αG in kij, kL, and db. Legend: base case (); kij from Aspen HYSYS (− −); kL = 1/2kL° (···); kL = 2kL° (−·−); and db = 1 mm
(-•-).

Figure 23. Sensitivity of vG and vL in kij, kL, and db. Legend: base case (); kij from Aspen HYSYS (−−); kL = 1/2kL° (···); kL = 2kL° (−·−); and db = 1
mm (-•-).

Figure 24. Sensitivity of ωG in kij, kL, and db. Legend: base case (); kij from Aspen HYSYS (− −); kL = 1/2kL° (···); kL = 2kL° (−·−); and db = 1 mm
(-•-).
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Figure 25. Sensitivity of ωL in kij, kL, and db. Legend: base case (); kij from Aspen HYSYS (− −); kL = 1/2kL° (···); kL = 2kL° (−·−); and db = 1 mm
(-•-).

Figure 26. Sensitivity of TG and TL in kij, kL, and db. Legend: base case (); kij from Aspen HYSYS (−−); kL = 1/2kL° (···); kL = 2kL° (−·−); and db = 1
mm (-•-).

Figure 27. Sensitivity of ρG and p in kij, kL, and db. Legend: base case (); kij from Aspen HYSYS (− −); kL = 1/2kL° (···); kL = 2kL° (−·−); and db = 1
mm (-•-).
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■ CONCLUSIONS

This work suggests a novel approach for modeling mass transfer
and is examined by simulation of a bubble column bioreactor
producing SCP. We employ the two-film model, and in contrast
to the standard practice, full phase equilibrium (i.e., also
including the solvent) has been assumed at the interface
separating the two phases. Furthermore, we employ a
thermodynamically consistent multicomponent phase equili-
brium approach based on the SRK-EoS to model the interface
concentrations. The results were compared to the classical
approach using Henry’s law, which is thermodynamically
inconsistent.
The mass transfer model based on the SRK-EoS predicted

solubilities for O2, CH4, CO2, and NH3 in qualitative agreement
with the mass transfer model based on Henry’s law. However,
the standard modeling approach based on Henry’s law cannot
predict any mass transfer of H2O, which is the solvent in this
system. According to the modeling approach based on the SRK-
EoS, the mass transfer of H2O corresponds to evaporation, and
at the reactor outlet, H2O constitutes 2% of the gas mixture by
weight. Furthermore, the quantitative differences for the
solubilities in the liquid phase are considerable. At the reactor
inlet, the solubility of O2 is approximately 150% higher
(relatively) for the SRK-EoS approach than for the Henry’s
law approach. This difference was obtained with experimentally
fitted interaction parameters for the SRK-EoS.
The production of SCP in a bubble column bioreactor was

mass transfer limited in accordance with other investigators.1,8,51

This was further supported by a sensitivity study in kL, where the
productivity of SCP biomass increased when kL was increased,
and the productivity of SCP biomass decreased when kL was
decreased. Here, kLa was comparable to experimental values,10

and we rigorously modeled the phase equilibrium at the
interface with the SRK-EoS and experimentally fitted interaction
parameters. Hence, we consider the mass transfer in this work to
represent the bubble column bioreactor adequately. Binary
interaction parameters obtained from Aspen HYSYS were
regrettably found to be unsuitable in this study.
In terms of numerical efficiency, the approach based on

Henry’s law is approximately 10% faster than the SRK-EoS,
which corresponds to 1 h. Furthermore, the L2-norm of the
residual of the governing equations is considered satisfactory for
both the Henry’s law and the SRK-EoS approaches, with the
largest L2-norm being 10−11 for the gas-phase momentum with
the Henry’s law approach and 10−9 for the energy equation with
the SRK-EoS approach.
Significant deviations between the Henry’s law and the SRK-

EoS approaches were observed. However, there are no
experimental data for the SCP bioreactor to support neither
the Henry’s law approach nor the SRK-EoS approach. Thus,
further work on the SCP bioreactor requires measurements of
the composition in the gas and liquid phases. As a concluding
remark, we suggest employing a thermodynamic model
(Henry’s law, EoS, or activity coefficient method) that
accurately models the gas−liquid equilibrium of the studied
compounds. If the mass transfer of the solvent is crucial, we
emphasize that Henry’s law is inappropriate, and the novel mass
transfer concept is preferable.
Although we employed the SRK-EoS to compute the interface

concentrations in the novel mass transfer model, the mass
transfer concept is generic. We foresee no difficulties extending
the concept to activity coefficient methods.
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■ LIST OF SYMBOLS

Latin Letters
A area (m2)
a gas−liquid contact area (m2 m−3)
a molar attractive term SRK (Pa m6 mol−2)
B mixture excluded volume SRK (m3)
b molar excluded volume SRK (m3 mol−1)
C coefficient (varying)
c concentration (mol L−1)
cp specific isobaric heat capacity (J K−1 kg−1)
D mixture attractive term SRK (Pa m6)
D dispersion coefficient (m2 s−1)
D dilution rate (h−1)
d diameter (m)
Eö Eötvös number ()
F degree of freedom ()
f friction factor ()
f function (varying)
f fugacity (Pa)
G molar flux (kmol m−2 s−1)
g gravitational acceleration (m s−2)
H Henry’s law constant (Pa)

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c03131
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

X



h molar enthalpy (J mol−1)
h heat transfer coefficient (W m−2 K−1)
J Jacobian matrix (mol−1)
K equilibrium K-value ()
K kinetic saturation constant (μ mol L−1)
k binary interaction parameter ()
k mass transfer coefficient (m s−1)
k conductivity (W m−1 K−1)
L reactor length (m)
m parameter ()
ṁ mass flow (kg h−1)
Mw molar weight (kg kmol−1)
N total number of moles (mol)
N total number ()
N mass transfer flux (kg m−2 s−1)
n number of moles (mol)
P number of phases ()
P swarm correlation parameter ()
p pressure (Pa)
Pr Prandtl number ()
R rate of generation of a component (kg m−3 s−1)
R gas constant (J K−1 mol−1)
Re Reynolds number ()
s molar entropy (J K−1 mol−1)
Sc Schmidt number ()
T temperature (K)
t thickness (m)
U overall heat transfer coefficient (W m−2 K−1)
V volume (m3)
V̇ volumetric flow rate (m3 h−1)
v velocity (m s−1)
x mole fraction in liquid ()
y mole fraction in gas ()
Z compressibility factor ()
z z-coordinate in physical space (m)

Greek Letters
α area fraction ()
β initial number of moles (mol)
γ basis coefficient (varying)
Δ change ()
δ Kronecker delta ()
η modified chemical potential ()
λ thermal conductivity (W m−1 K−1)
μ chemical potential (J mol−1)
μ dynamic viscosity (Pa s)
μ kinetic growth factor (h−1)
ν iteration count ()
ν variable of integration (m3)
ν stoichiometric coefficient ()
ρ mass density of mixture (kg m−3)
σ gas−liquid surface tension (N m−1)
τ step size ()
ϕ trial function (varying)
φ fugacity coefficient ()
ω acentric factor ()
ω mass fraction ()

Superscripts
0 start estimate
° standard state
° base case sensitivity study
G−I gas-to-interface
G−L gas-to-liquid

I−L interface-to-liquid
ig ideal gas
m molar
r,p residual at the same pressure
s superficial
W−L wall-to-liquid
* equilibrium value

Subscripts
a ambient
b bubble
C components
c value at critical point
col bubble column
cool cooling
D drag
eff effective
f formation
fric friction
G gas
i component number
ii pair like-like molecules
ij pair unlike molecules
in at reactor inlet
L liquid
N order of approximation
out at reactor outlet
p particle
rx reaction
T total
W Wilke
X biomass
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Wolinśka, A. Methanotrophic Bacterial Biomass as Potential Mineral
Feed Ingredients for Animals. Int. J. Environ. Res. Public Health 2019, 16,
2674.
(5) Kuhad, R. C.; Singh, A.; Tripathi, K. K.; Saxena, R. K.; Eriksson, K.
E. L. Microorganisms as an alternative source of protein. Nutr. Rev.
1997, 55, 65−75.
(6) Refstie, S. Evaluating soybean meal as a fish meal substitute in
feeds for Atlantic salmon and rainbow trout. Ph.D. Thesis, University of
Life Sciences, Ås, 2000.
(7) Whittenbury, R.; Phillips, K. C.; Wilkinson, J. F. Enrichment,
Isolation and Some Properties of Methane-utilizing Bacteria. J. Gen.
Microbiol. 1970, 61, 205−218.
(8) Villadsen, J. Bioprotein. Dan. Kemi 2002, 83, 20−23.
(9) Al Taweel, A. M.; Shah, Q.; Aufderheide, B. Effect of Mixing on
Microorganism Growth in Loop Bioreactors. Int. J. Chem. Eng. 2012,
2012, 1−12.
(10) Petersen, L. A. H.; Villadsen, J.; Jørgensen, S. B.; Gernaey, K. V.
Mixing and mass transfer in a pilot scale U-loop bioreactor. Biotechnol.
Bioeng. 2017, 114, 344−354.
(11) Prado-Rubio, O. A.; Jørgensen, J. B.; Jørgensen, S. B. Computer
Aided Chemical Engineering; Elsevier B.V., 2010; Vol. 28, pp 319−324.
(12) Danckwerts, P. V. Significance of Liquid-FilmCoefficients in Gas
Absorption. Ind. Eng. Chem. 1951, 43, 1460−1467.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c03131
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

Y



(13) Brunner, E. Reaktionsgeschwindigkeit in heterogenen Systemen.
Ph.D. Thesis, Georg-Augusts-Universitat: Gottingen, 1904.
(14) Brunner, E. Reaktionsgeschwindigkeit in heterogenen Systemen.
Z. Phys. Chem. 1904, 47, 56−102.
(15) Whitman, W. G.; Keats, J. L. Rates of Absorption and Heat
Transfer between Gases and Liquids. J. Ind. Eng. Chem. 1922, 14, 186−
191.
(16) Higbie, R. The Rate of Absorption of a Pure Gas into a Still
Liquid during Short Periods of Exposure. Trans. Am. Inst. Chem. Eng
1935, 31, 365−389.
(17) Weber, M. E. The effect of surface active agents on mass transfer
from spherical cap bubbles. Chem. Eng. Sci. 1975, 30, 1507−1510.
(18) Rzehak, R. Modeling of mass-transfer in bubbly flows
encompassing different mechanisms. Chem. Eng. Sci. 2016, 151, 139−
143.
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Closure Equations to Reactor Model

Species Mass

The reaction kinetic rate expression was based on the production of one mole X and followed

the Monod-Haldane equation1,2:

µX = µmax,CH4µmax,O2

cL,CH4

Km,CH4 + cL,CH4

cL,O2

Km,O2 + cL,O2

. (1)

In Eq. (1), µmax,i is the maximum specific growth rate, Km,i is the saturation constant

denoting the concentration at which µX = µmax,i/2, and cL,i is the molar concentration of

component i in the liquid. The constants were taken from Joergensen and Degn 3 and Olsen

et al. 4 and are given in Table S1.

The mass–based volumetric production or consumption of species i is related to Eq. (1)

through4–6

Ri =
Mw,i

Mw,X

νi
0.52

µXρLωL,X, (2)

where νi are the stoichiometric coefficients as they are represented in the chemical reaction,

and the factor 0.52 occurs as the reaction rate is based on the production of one mole of X.

The effective dispersion coefficient of the liquid was taken from the correlations of Deckwer

et al. 7 :

DL,eff,z = 0.678d1.4col(vGαG)0.3. (3)

Here, the diameter of the reactor column is denoted dcol. The liquid–phase dispersion coef-

ficient in Eq. (3) is valid in the variable ranges vsL = 7.07× 10−3 m s−1, 0 ≤ vsG ≤ 0.15 m s−1,

and on columns with internal diameter 0.15 m and 0.2 m.

Furthermore, the effective dispersion coefficient of the gas was taken from the correlations

of Field and Davidson 8 :

DG,eff,z = 56.4d1.33col v
3.56
G . (4)
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The gas–phase dispersion coefficient in Eq. (4) is valid in the variable ranges 0 ≤ vsL ≤

0.0135 m s−1, 0.0085 ≤ vsG ≤ 0.13 m s−1, and column diameters 0.076 ≤ dcol ≤ 3.2 m9.

For bubbly flow, Calderbank and Moo-Young 10 parametrized the mass transfer coeffi-

cients as functions of the Schmidt number, and we adopted their method here:

kL,i = 0.31

(
(ρL − ρG)µLg

ρ2L

)1/3

Sc−2/3i . (5)

In Eq. (5), g is the specific gravity, and µL is the dynamic molecular viscosity of the liquid,

which was assumed equal to the pure liquid H2O viscosity11. The Schmidt number is denoted

Sci and is given by

Sci =
µL

ρLDW,i

. (6)

Here DW,i are the multicomponent diffusivities approximated by Wilke’s model

DW,i =
1− ωL,i

M̄w,L

NC∑

j=1
j 6=i

ωL,j

Mw,jDj

, (7)

where the molecular diffusivities in H2O, Dj, were computed by Erkey et al. 12 with molecular

diameters from Bondi 13 .

Furthermore, Henry’s law correlations for O2, CH4, CO2, and NH3 were taken from

Benson et al. 14 , Rettich et al. 15 , Sander 16 , and Sander 16 , respectively.

The surface area separating the gas– and the liquid–phases was computed by the assump-

tion of spherical bubbles7:

a = 6
αG

db
. (8)

Here, db is the bubble diameter which was assumed constant throughout this work.
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Momentum

For both the liquid– and the gas–phases, the Reynolds analogy was assumed valid, and

hence, the effective, turbulent viscosities were

µL,eff,z ≈ ρLDL,eff,z, (9)

µG,eff,z ≈ ρGDG,eff,z. (10)

Furthermore, the drag force acting on the two phases was modeled as17

fG−L
drag = −3

4

αG

db
ρLCD|vL − vG|(vL − vG), (11)

where CD is the drag coefficient. Tomiyama 18 parametrized the drag coefficient for pure,

uncontaminated systems as:

C ′D = max

[
min

[
16

Rep

(
1 + 0.15Re0.687p

)
,

48

Rep

]
,
8

3

Eö
Eö + 4

]
. (12)

When multiple bubbles flow through a liquid, a swarm effect is observed. The modified drag

coefficient accounts for this effect by introducing an area fraction dependency19:

CD = C ′D(1− αG)P , (13)

in which P denotes a correction factor. The relative Reynolds and Eötvös numbers are given

as

Rep =
ρL|vL − vG|db

µL

(14)

Eö =
g(ρL − ρG)d2b

σ
. (15)
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In Eq. (15), σ denotes the surface tension.

The wall-to-liquid friction was modeled analogously to the gas-to-liquid drag:

fW−L
fric = −1

2

αL

dcol
ρLfWvLvL. (16)

Petukhov 20 parametrized the wall friction coefficient21, and we adopted their correlation

here:

fW = (0.79 lnRe− 1.64)−2 , (17)

where

Re =
ρLvLdcol
µL

. (18)

Energy

The heat capacity of the liquid–phase was assumed equal to the liquid H2O heat capacity

at T = 25 °C and p = 1 bar, i.e. cp,L = c◦p,H2O
(298.15K). Additionally, cp,L was assumed

independent of temperature. The value is tabulated by Aylward and Findlay 22 . For the

gas–phase, the heat capacity was computed from a weighted sum of the pure component

contributions:

cp,G =

NC∑

i=1

ωG,icp,G,i. (19)

The pure component heat capacities were taken from Aylward and Findlay 22 . Furthermore,

the gas–phase heat capacity was also assumed independent of temperature.

Similar to the effective turbulent viscosity, the effective thermal conductivity was assumed

to follow the Reynolds analogy:

λL,eff,z = DL,eff,zρLcp,L (20)

λG,eff,z = DG,eff,zρGcp,G. (21)
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The energy transfer from the liquid to the external heat exchanger was modeled with an

overall heat transfer coefficient computed by a series of resistances:

1

U
=

1

hW
+
twall
ksteel

+
1

hcool
. (22)

Here, hW is the heat transfer coefficient on the liquid side of the column wall, twall is the

thickness of the column wall, ksteel is the conductivity of steel, and hcool is the heat transfer

coefficient on the heat exchanger side of the column wall. Deckwer 23 parametrized hW as

hW = 0.1λ0.5L ρ0.75L c0.5p,Lµ
−0.25
L g0.25(vGαG)0.25, (23)

and gave values for hcool 24. Here, λL denotes the molecular conductivity of the liquid, which

was assumed equal to the pure H2O conductivity given by Ramires et al. 25 .

Calderbank and Moo-Young 10 parametrized the interphase heat transfer coefficient as:

hL = k̄Lcp,LρLS̄c
2/3Pr−2/3. (24)

Here, the average mass transfer coefficient, k̄L, and the average Schmidt number were com-

puted by weighted sums:

k̄L =

NC∑

i=1

ωL,ikL,i, (25)

S̄c =

NC∑

i=1

ωL,iSci, (26)

and the Prandtl number is given as

Pr =
cp,LµL

λL
. (27)

Doran 26 estimated the heat of reaction for processes with biomass production to be

∆rxh ≈ −460 kJ mol−1 O2 consumed. This heat of reaction was assumed representative for
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the black–boxed chemical reaction.

Supporting Figures

For the non-reactive ternary system, Figures S1 and S2 present the simulation results of the

gas– and liquid–phase velocities, gas density, and pressure.
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Figure S1: Local instantaneous velocities in the gas and liquid–phase in the non-reactive
system. Blue lines denote results utilizing Henry’s law and red lines denote results utilizing
the SRK-EoS.
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Figure S2: Density in the gas–phase and the pressure common to both phases in the non-
reactive system. Blue lines denote results utilizing Henry’s law and red lines denote results
utilizing the SRK-EoS.
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Figure S3: Local instantaneous velocities in the gas and liquid–phase in the reactive SCP
system. Blue lines denote results utilizing Henry’s law and red lines denote results utilizing
the SRK-EoS.
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Table S1: Parameters used in simulation of the bubble column bioreactor.

Variable Value Unit

L 12 m
dcol 0.2 m
twall 8.18 mm
ksteel 16 W m−1 K−1

hcool 3000 W m−2 K−1

Ta 45 °C
ρL 1000 kg m−3

µL 0.8903 cP
σ 70.5 mN m−1

db 2 mm
P 2 −
µmax,CH4 0.37 h−1

µmax,O2 1 h−1

Km,CH4 1.3 µmol L−1

Km,O2 2.0 µmol L−1

Table S2: Critical constants and acentric factors used with the SRK-EoS.

Component Tc [K] pc [MPa] ω [−]
O2 154.581 5.043 0.0222
CH4 190.564 4.5992 0.0114
CO2 304.1282 7.3773 0.2239
NH3 405.4 11.333 0.2560
H2O 647.096 22.064 0.3443
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a b s t r a c t

An industrial-scale Fischer–Tropsch (FT) slurry bubble column reactor (SBCR) was theoretically investi-
gated, emphasizing the mass transfer between the gas and slurry phases. In this endeavor, three different
driving forces for mass transfer (the impetus behind the motion of species mass) were proposed: one
based on Henry’s law and two based on rigorous phase equilibrium. The mass transfer model based on
Henry’s law relies on the solvent, which here was specified as a paraffin with carbon chain length in
the range of 16–36. The conversion level was found to increase with increasing carbon chain length.
On the other hand, the mass transfer models based on phase equilibrium do not require identifying a sol-
vent, which is advantageous for the Fischer–Tropsch synthesis (FTS) where the large number of com-
pounds render the solvent a vague and ambiguous concept. Here, the phase equilibrium was
computed with the Peng–Robinson (PR) and the perturbed-chain statistical associating fluid theory
(PC-SAFT) equations of state (EoSs); however, the proposed concept is generic and easily extended to
other EoSs and activity coefficient-based models. With all three mass transfer formulations, the conver-
sion level increased with increasing pressure and decreased with increasing temperature. Furthermore,
increasing the catalyst loading did not increase the conversion level, whereas increasing the mass trans-
fer coefficient did increase the conversion level. It was concluded that the reactor operates in the mass
transfer limited regime rather than the kinetically limited regime. The mass transfer model based on
Henry’s law was the least computationally expensive to evaluate, followed by the PR and PC-SAFT
EoSs in increasing order; however, the mass transfer models based on the PR and PC-SAFT EoSs are cap-
able of predicting the thermodynamic spontaneity of forming additional phases, which Henry’s law is
incapable of.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In the last two centuries, the demand for fuels has increased
exponentially (Smil, 2016), and while the demand is currently
met, most fuels are produced through non-renewable resources,
such as coal, oil, and gas. In the wake of an increasing focus on sus-
tainable and environmentally friendly fuels, the Fischer–Tropsch

synthesis (FTS) has re-emerged as a viable option to convert syngas
(CO and H2) into liquid fuels.

The FTS has been accredited to Fischer and Tropsch (1923) for
their discovery of converting syngas into liquid fuels over an iron
catalyst (Dry, 1989; Stranges, 2000). At that time, the syngas was
obtained from coal, and the process is hence termed coal-to-
liquid (CtL). Since then, two new methods have been discovered:
gas-to-liquid (GtL) and biomass-to-liquid (BtL). In the GtL process,
the syngas is obtained by reforming CH4 through, e.g., steam–
methane reforming, partial oxidation, or autothermal reforming.
In the BtL process, the syngas is obtained by gasifying biomass into

https://doi.org/10.1016/j.ces.2022.117774
0009-2509/� 2022 The Authors. Published by Elsevier Ltd.
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Nomenclature

Latin Letters
A Area m2

A Helmholtz energy J
A Matrix of linear terms varying
a Gas–liquid contact area m2m�3

ai Model constants PC-SAFT, i ¼ 0;1; . . . ;6f g –
aFT Reaction kinetic parameter kmolkg�1catPa

�2s�1

B Mixture excluded volume PR m3

bi Model constants PC-SAFT, i ¼ 0;1; . . . ;6f g –
bFT Reaction kinetic parameter Pa�1

CD Drag coefficient varying
C1 Compressibility expression –
C Number of components –
CN Carbon number –
cp Specific isobaric heat capacity J K�1 kg�1

D Mixture attractive term PR Pa m6

Deff ;z Effective axial dispersion coefficient m2 s�1

d Diameter m
di Segment diameter of component i Å
Eö Eötvös number –
F Source/sink term varying
f Friction factor –
G Molar flux kmol m�2 s�1

g Gravitational acceleration m s�2

gij Radial distribution function between components –
H Henry’s law constant Pa
h Molar enthalpy J mol�1

hL Liquid side heat transfer coefficient W m�2 K�1

I Dispersive integral –
J Jacobian matrix mol�1

K Phase equilibrium ratio –
kij Binary interaction parameter –
kB Boltzmann constant J K�1

kG Gas side mass transfer coefficient m s�1

kL Liquid side mass transfer coefficient m s�1

k Conductivity W m�1 K�1

Li Lump of paraffins, i ¼ 1;2;3;4f g –
L Reactor length m
‘ Lagrange interpolating polynomial –
m Number of segments PC-SAFT –
Mw Molar weight kg kmol�1

N Number of molecules –
NA Avogadro number –
Ni Mass transfer flux of component i kg m�2 s�1

n Number of moles mol
N ;M Lump chain length –
P Swarm correlation parameter –
p Pressure Pa
Pr Prandtl number –
R Gas constant J K�1 mol�1:
Ri Rate of generation of component i kg m�3 s�1

rFT Fischer–Tropsch reaction rate kmolkg�1cats
�1

Re Reynolds number –
S Perimeter m
s Scaling parameter –
Sc Schmidt number –
T Temperature K
t Thickness m
U Overall heat transfer coefficient W m�2 K�1

V Volume m3

v Velocity m s�1

X Conversion level mol%
xi Mole fraction of component i in liquid –
yi Mole fraction of component i in gas –
y Function varying

Z Compressibility factor –
z z-coordinate in physical space m

Greek Letters
a Area fraction –
aASF Chain growth probability –
b Initial number of moles mol
c Acentric factor –
D Change –
d Kronecker delta –
e Well depth J
g Modified chemical potential –
k Thermal conductivity W m�1 K�1

li Chemical potential of component i J mol�1

l Dynamic viscosity Pa s
m Iteration count –
mi Stoichiometric coefficient of component i –
ni Auxiliary variable, i ¼ 0;1;2;3f g mi�3

q Mass density of mixture kg m�3

r Gas–liquid surface tension N m�1

ri Segment diameter of component i Å
/ Weighted area fraction ratio –
u Fugacity coefficient –
w Area fraction ratio –
x Mass fraction –

Superscripts
0 Start estimate
Aq Aqueous
assoc Associative
� Base case sensitivity study
disp Dispersive
G� I Gas-to-interface
G� L Gas-to-liquid
hs Hard sphere
I � L Interface-to-liquid
ig Ideal gas
m Molar
P � L Pipe-to-liquid
r,p Residual at the same pressure
r,v Residual at the same volume
s Superficial
S� L Solid-to-liquid
W � L Wall-to-liquid
� Equilibrium value
~ Reduced

Subscripts
1 Infinite dilution limit
a Ambient
ASF Anderson–Schulz–Flory
NBP Normal boiling point
b Bubble
c Value at critical point
col Bubble column
cool Cooling
D Drag
eff Effective
FT Fischer–Tropsch
fric Friction
G Gas
i; j; k or l Component number
ii Pair like molecules
ij Pair unlike molecules
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biomass syngas (Baliban et al., 2013). The fuels produced through
the FTS contain practically no nitrous, sulfuric, or aromatic com-
pounds and are thus said to be clean fuels (Sehabiague and
Morsi, 2013a). Moreover, an FTS plant utilizing the BtL technology
is considered carbon–neutral (Hamelinck et al., 2004; van Steen
and Claeys, 2008). Hence, the FTS can be instrumental in transi-
tioning to clean fuel technologies.

The products from the FTS depend on the solid catalyst (usually
cobalt- or iron-based). In general, the mixture consists of various n-
alkanes (paraffins), n-alkenes (olefins), alcohols, acids, ketones, and
aldehydes. The products exist in various carbon chain lengths and
constitute both volatile and non-volatile compounds. The cobalt
catalyst is found to have negligible water–gas–shift (WGS) activity
(Maretto and Krishna, 2001; Hillestad, 2015), high selectivity
towards paraffins (Rodrigues et al., 2011; Marano and Holder,
1997), and relatively slow deactivation (Sari et al., 2009). On the
other hand, iron catalysts are active towards the WGS reaction
and produce olefins and oxygenated compounds in addition to
paraffins (Marano and Holder, 1997).

Two different modes of FTS operation currently exist: low-
temperature Fischer–Tropsch (LTFT) and high-temperature Fis-
cher–Tropsch (HTFT). The LTFT aims to produce waxes, while the
HTFT aims to produce gasoline and a-olefins (Rauch et al., 2013).
While the HTFT is usually operated in ebullated or fluidized bed
reactors, the LTFT is usually operated in fixed beds or slurry reac-
tors (Rauch et al., 2013). In fixed bed reactors operating in LTFT
mode, the produced waxes inhibit the reaction rate due to diffu-
sion limitations in the wax–catalyst region (Dry, 2004). This effect
is not observed for slurry reactors where the catalyst has been
crushed into fine particles before being suspended in the liquid
phase. A particular slurry reactor, the slurry bubble column reactor
(SBCR), also has the advantage of very high heat transfer coeffi-
cients (Kast, 1962), ensuring excellent temperature control. More-
over, the SBCR is simple in design (essentially a vertical cylinder),
making it cheap and easy to construct in large scale. The most
notable drawbacks of the SBCR are related to the regeneration of
catalyst particles, the complicated nature of the gas–liquid mass
transfer, and the hydrodynamics of the three-phase flow.

Gas–liquid mass transfer is essential in an SBCR operating at
LTFT conditions. The syngas is typically sparged from the bottom
of the SBCR, and a swarm of bubbles rises through the SBCR. The
reactants are transported from the gas bubbles and into the liquid
phase, where the solid catalyst is suspended. The driving force for

gas–liquid mass transfer (the impetus behind the motion of species
mass) is commonly regarded as the difference between the phase
equilibrium concentration and the bulk phase concentration.
Often, Henry’s law data is used to close the mass transfer models
(Sehabiague et al., 2008; Sehabiague and Morsi, 2013; Marano
and Holder, 1997; Maretto and Krishna, 1999; Chao and Lin,
1988); however, this closure relation is inappropriate in the FTS
for two reasons: (i) Henry’s law is a relation for gas–liquid equilib-
rium (GLE) which is valid only for estimating the solubility of a
volatile, poorly soluble compound, i.e., CO, H2, H2O, CO2, and light
hydrocarbons, in a specified solvent, and (ii) due to the vast
amount of chemical compounds present, the solvent to be
regarded is not uniquely defined (Derevich et al., 2008). Thus, the
mass transfer of low to medium volatile compounds in the FTS can-
not be estimated with Henry’s law. These compounds include
hydrocarbons of notable chain lengths and oxygenated
compounds.

To the authors’ knowledge, no mass transfer models relying on
more sophisticated GLE descriptions than Henry’s law exist to date
in the literature for the FTS. On the other hand, efforts have been
made to describe the FTS mixture when phase equilibrium has
been established, and the net mass transfer is zero. In that case,
the FT reactor is similar to a reactive flash calculation. For instance,
some authors attempted to model the phase behavior of the FTS
mixture with Raoult’s law (Raje and Davis, 1996; Masuku et al.,
2012; Masuku et al., 2011; Caldwell and Van Vuuren, 1986).
Raoult’s law is primarily a good approximation for estimating the
vapor pressure of non-volatile compounds, where the compound
is present in excess in the liquid phase. Hence, Raoult’s law is
expected to represent the GLE of the heavy, non-volatile com-
pounds well (Marano and Holder, 1997). In an experimental study,
Raje and Davis (1996) reported the opposite trend: short-chained
hydrocarbons (volatile compounds) are well represented by
Raoult’s law, and heavy compounds (chain length > 20) deviate
considerably. Masuku et al. (2012) further confirmed this trend
in their experimental work. It was also concluded by Derevich
et al. (2008) that Raoult’s law is incapable of predicting the solubil-
ities of CO and H2 in FT solvents.

Sadeqzadeh et al. (2013) employed Henry’s law for volatile
compounds and Raoult’s law for heavy compounds. Although this
agrees with our intuitive understanding of the physical properties
of the mixture considered, Raje and Davis (1996) concluded that
Raoult’s law does not represent the non-volatile, heavy compounds

in At reactor inlet
L Liquid
L Lumps
out At reactor outlet
P Pipe
p Particle
pol Polynomials
rx Reaction
S Solid
SL Slurry
SiS Solid in gas-free slurry
T Total
W Wall

Abbreviations
ASF Anderson–Schulz–Flory
BtL Biomass to liquid
CtL Coal to liquid

EoS Equation of state
FT Fischer–Tropsch
FTS Fischer–Tropsch synthesis
GLE Gas–liquid equilibrium
GLLE Gas–liquid–liquid equilibrium
GtL Gas to liquid
HTFT High-temperature Fischer–Tropsch
LTFT Low-temperature Fischer–Tropsch
MHV2 Modified Huron/Vidal 2
PBR Packed bed reactor
PC-SAFT Perturbed-chain statistical association fluid theory
PR Peng–Robinson
PSRK Predictive SRK
SBCR Slurry bubble column reactor
SRK Soave–Redlich–Kwong
SSTR Slurry stirred tank reactor
WGS Water–gas-shift
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well. Sadeqzadeh et al. (2013) similarly concluded that their GLE
modeling approach was inadequate and that further sophisticated
GLE models should be employed in FTS modeling.

Although cubic equations of state are actively used in GLE com-
putations, they were initially fitted to vapor pressures for relatively
small molecules where the reduced temperatures are above 0.6
(Bond and Dawe, 1988). Heavy compounds usually display reduced
temperatures in the range 0.40–0.65; hence, utilization of cubic
EoSs on heavy hydrocarbons in the FTS must be regarded as an
extrapolation. Bond and Dawe (1988) and Gray et al. (1989) con-
cluded that cubic EoSs in their original form yielded unsatisfactory
results for the FTS. Wang et al. (1999) also reached similar
conclusions.

Nevertheless, some investigators have employed cubic EoSs as
part of a larger model to predict the phase behavior in the FTS.
For instance, Ahón et al. (2005) used the Soave–Redlich–Kwong
(SRK) EoS to model the gas–liquid distribution of different com-
pounds in a well-mixed (no spatial variations), transient slurry
reactor. However, Ahón et al. (2005) made no experimental com-
parison. On the other hand, Derevich et al. (2008) employed amod-
ified PR EoS to predict the phase behavior of the gas–liquid
mixture. Their results were in good agreement with the experi-
mental results.

Zheng et al. (2019) employed the predictive Soave–Redlich–K
wong (PSRK), the Soave–Redlich–Kwong/modified Huron-Vidal
mixing rules (SRK/MHV2), and the PC-SAFT EoSs, in an endeavor
to find the best EoS in the FTS. Their results show that the PC-
SAFT EoS accurately describes the phase behavior of the complex
FTS mixture over a wide range of operating conditions and success-
fully predicts the solubilities of syngas in the FT liquid products.

This study establishes a mass transfer model based on an accu-
rate GLE description. The purpose is to bridge the gap in LTFT
SBCRs, where current mass transfer models in the literature are
solely based on Henry’s law. Our contribution aims to allow for
condensation of syngas and evaporation of FTS products with a
sound basis in thermodynamic phase equilibrium. Furthermore,
we perform a sensitivity study showing how simulation results
are affected by changing the GLE modeling description, i.e., the
PR and PC-SAFT EoSs, in the mass transfer driving force. Subse-
quently, we compare the results obtained with mass transfer based
on Henry’s law to the results obtained with mass transfer based on
the PR and PC-SAFT EoSs. Moreover, we illustrate how the choice of
solvent affects the results obtained with mass transfer based on
Henry’s law.

This work is divided into four parts. First, the necessary theory
is provided, including a description of the SBCR, the FT mixture,
reaction kinetics, and mass transfer modeling. Second, the solution
strategy, numerical considerations, parameters, and initial condi-
tions are given. Third, results and discussions are presented, and
fourth, conclusions are drawn.

2. The Reactor Model

The SBCR consists of three phases: liquid, gas, and solid phase.
The solid phase consists of finely ground catalyst particles sus-
pended in the liquid phase. The gas phase consists of gas bubbles
injected or sparged from the bottom of the SBCR.

Resistance to chemical conversion is assumed to be threefold.
First, the reactants are transferred from the gas phase to the liquid
phase. Second, the reactants are transferred from the liquid phase
and onto the catalytic surface, and third, the chemical reaction
occurs. The first and second resistances are related to mass transfer
limitations, and the third resistance is related to reaction kinetic
limitations. Since the catalyst particles used in the FTS are tinier
than the gas bubbles, the solid–liquid interfacial area is larger than

the gas–liquid interfacial area. Therefore, it is reasonable to assume
that the mass transfer limitations are related to the gas–liquid
interface rather than the solid–liquid interface. This assumption
also agrees well with experimental observations (Dry, 2004),
where no solid–liquid mass transfer limitations were found. Fur-
ther treatment of the reaction kinetics and the mass transfer mod-
els are given in Sections 2.1, 2.2, 2.3.

The liquid, gas, and solid phases in the SBCR were modeled by a
set of transport equations for each of the phases: total mass (con-
tinuity), species mass, momentum, and energy. In total, the three
phases in the SBCR were represented by 12 governing equations.
However, two simplifications were made: i) the liquid and solid
phases were assumed to share the same temperature, TSL, and ii)
the solid catalyst phase was described by the continuity and
momentum equations. High heat transfer coefficients have been
observed for SBCRs (Kast, 1962) and the catalyst particles have a
large interfacial area, thus justifying simplification i). Hence, the
reactor model consists of the 10 transport equations given in
Table 1. Terms representing the exchange of mass, momentum,
or energy between the different phases exist as source and sink
terms in the respective transport equations. Particular emphasis
is placed on the reaction kinetics and the mass transfer modeling
in the following sections.

The solution of the FTS SBCR model is visually displayed in
Fig. 1. As seen, the FTS SBCR model is composed of the governing
equations in Table 1, the mass transfer model, and the gas–liquid
interface model. The mass transfer model is described in Sections
2.2 and 2.3, in which the gas–liquid interface model exists in the
driving force as the reciprocal GLE ratio, that is 1=Ki. As GLE is
assumed to prevail at the gas–liquid interface, Ki is modeled by
proper GLE descriptions. In this work, three GLE descriptions were
employed: Henry’s law, the PR EoS, and the PC-SAFT EoS.

2.1. Kinetic Modeling and Considered Species

The FTS is a chemically challenging process due to the many
components and reactions. Simplifying the number of components
is therefore imperative, and the procedure is, in general, carried out
in two steps: i) the different classes of organic compounds (alka-
nes, alkenes, and oxygenated compounds) are reduced through a
set of justified assumptions, and ii) the remaining organic com-
pounds are lumped into pseudo-components. In the FTS, paraffins
and olefins are produced in excess, and thus, the production of oxy-
genated compounds is in this work neglected. Furthermore, we
employ a lumping strategy to simplify the number of components
considered. The lumps considered are essential in reaction kinetics
modeling, and for the mass transfer modeling in this work. The
lumping strategy and reaction kinetic modeling is treated in this
section. Details on the mass transfer modeling are deferred to Sec-
tions 2.2 and 2.3.

The cobalt-based catalysts are generally preferred over the iron-
based catalysts in the FTS due to their high CO conversion, high
selectivity towards paraffins, and low WGS activity (Petersen
et al., 2019; Dry, 2004; van Steen and Claeys, 2008). Moreover,
the cobalt catalyst produces mostly paraffins, and in the presence
of H2 at LTFT conditions, olefins can be further hydrogenated into
paraffins (Peña et al., 2014). Therefore, it is reasonable for the cobalt
catalyst to assume that the FTS produces paraffins exclusively.

In this work, all reactions are lumped into the following repre-
sentative reaction (Yates and Satterfield, 1991):

COþ mH2H2!rFTH2Oþ
XNL
i¼1

mLiLi; ð11Þ

where rFT is the consumption rate of one mole of CO in the FT reac-
tion in Eq. (11), Li is a lump of paraffins, and NL is the number of
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lumps considered. Each lump Li is considered one distinct species,
and the paraffins contained within this lump are all treated with
the same set of representative physical properties. The estimation
of the physical properties of the different lumps is treated in
Section 2.5.

Although the reaction occurs in the slurry phase, the reactants
are supplied by mass transfer from the gaseous phase. On the other
hand, the experiments by Yates and Satterfield (1991) were per-
formed in the kinetically limited regime, and mass transfer limita-
tions were irrelevant. Hence, their reaction rate expression of Eq.
(11) was based on the partial pressures in the gas phase. However,
utilizing the reaction rate expression by Yates and Satterfield
(1991) in a mass transfer limited system can yield unphysical
results. For instance, a non-zero consumption of reactants can be
predicted due to their high partial pressures, even though the reac-
tants need not be present in the slurry phase where the reaction
occurs. The slurry phase reaction cannot proceed without dissolved
reactants, and consequently, the reaction rate expression by Yates
and Satterfield (1991) was modified to utilize the concentrations of
the reactants in the slurry phase rather than their partial pressures.
Hence, in this work, the reaction rate was expressed in terms of
slurry phase concentrations of the reactants:

rFT ¼ aFT
Km

COxCOK
m
H2
xH2p

2

1þ bFTK
m
COxCOp

� �2 ; ð12Þ

where aFT and bFT were parameter fitted constants given by Maretto
and Krishna (2001) as

aFT ¼ 8:8533� 10�3 exp 4494:41
1

493:15
� 1
TSL

� �� �
� 10�13; ð13Þ

bFT ¼ 2:226 exp �8236 1
493:15

� 1
TSL

� �� �
� 10�5: ð14Þ

Moreover, the molar GLE ratio is denoted

Km
i ¼

y�i
x�i

; ð15Þ

where yi and xi are the mole fractions of component i in the gas and
liquid phase, respectively, the asterisk (�) denotes the phase equi-
librium state, and p is the pressure. Ledakowicz et al. (1985),
Deckwer et al. (1986), Withers et al. (1990), and Sehabiague et al.
(2008) also gave expressions similar to Eq. (12); however, their con-
versions from gas partial pressures to slurry concentrations were all
based on Henry’s law. The volumetric reaction rate required in the
transport equation for species mass is given by

Ri ¼ rFTqSmiMw;i: ð16Þ
Except for short chain lengths (carbon chain length less than 10),
the product distribution of paraffins has been found to obey the
Anderson–Schulz–Flory (ASF) distribution reasonably well (Sari
et al., 2009; Masuku et al., 2011; Masuku et al., 2012; Todic et al.,
2013). Based on the ASF distribution, Hillestad (2015) created a
set of lumps, C1;C2;C 3;10½ �; C 11;1½ �

� 	
, and for each lump C N ;M½ �, the

stoichiometric coefficients of Eq. (11) were computed by:

m N ;M½ � ¼ 1� aASFð Þ aN�1ASF � aMASF
� �

: ð17Þ
Here aASF is the chain growth probability. Moreover, the stoichio-
metric coefficient of H2 was computed consistently with Eqs. (11)
and (17) as

mH2 ¼ 3� aASF: ð18Þ
Stoichiometric coefficients computed by Eqs. (17) and (18) ensure
that the element balances are respected, and the mass is conserved.
Furthermore, Hillestad (2015) gave the following expression for the
representative carbon number of each lump:

Table 1
Governing equations describing the FTS SBCR.

Transport of total mass

d
dz aLqLvLð Þ ¼PC

j¼1Nja (1)

d
dz aGqGvGð Þ ¼ �PC

j¼1Nja (2)

d
dz aSqSvSð Þ ¼ 0 (3)

Transport of species mass
d
dz aLqLvLxL;i
� � ¼ d

dz aLqLDL;eff;z
dxL;i

dz


 �
þ Niaþ aSRi

(4)

d
dz aGqGvGxG;i
� � ¼ d

dz aGqGDG;eff;z
dxG;i

dz


 �
� Nia (5)

Transport of momentum
d
dz aLqLvLvLð Þ ¼ d

dz aLlL;eff;z
dvL
dz


 �
� aL

dp
dz � aLqLg þ f G�Ldrag þ f S�Ldrag þ fW�Lfric þ f P�Lfric

(6)

d
dz aGqGvGvGð Þ ¼ d

dz aGlG;eff ;z
dvG
dz


 �
� aG

dp
dz � aGqGg � f G�Ldrag

(7)

�aS
dp
dz � aSqSg � f S�Ldrag ¼ 0 (8)

Transport of energy

aLqLvLcp;L þ aSqSvScp;S
� � dTSL

dz ¼ d
dz aSLkSL;eff;z

dTSL
dz


 �
þ SI

A U Ta � TSLð Þ þ hLa TG � TSLð Þ þ aSqSrFT �Drxhð Þ (9)

aGqGvGcp;G
dTG
dz ¼ d

dz aGkG;eff ;z
dTG
dz


 �
� hLa TG � TSLð Þ (10)

Fig. 1. Visual representation of the structure of the SBCR model.
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CN N ;M½ � ¼ Na
N�1
ASF � N � 1ð ÞaNASF � Mþ 1ð ÞaMASF þMaMþ1ASF

1� aASFð Þ aN�1ASF � aMASF
� � ; ð19Þ

for which the lump extending to infinitely long chains reduces to

CN N ;1½ � ¼ N þ aASF

1� aASF
: ð20Þ

The lumps used here are different from those of Hillestad (2015).
The lumps L1–L4 are used in this work, and their characteristics
are given in Table 2.

2.2. Mass Transfer Modeling with Henry’s law

The gas–liquid mass transfer model employed here is based on
the two-film model. For a gaseous component i infinitely diluted in
solvent j, Henry’s law is appropriate:

py�i ¼ Hijx�i ; ð21Þ
where Hij is the Henry’s law constant for solute i in solvent j. With
Henry’s law, the mass transfer flux is given by (see Appendix A for
the derivation):

Ni ¼ kL;iqL
p
Hij

Mw;G

M�w;L

xG;i �xL;i

 !
; ð22Þ

where the conversion from mole fraction, xi, to mass fraction, xi,
given as

xi ¼ xiMw;iXC
j¼1

xjMw;j

ð23Þ

has been used. Correlations for Hij are given by Marano and Holder
(1997) for the solutes CO, H2, H2O, and CO2 in the solvent paraffins
C16H34–C36H74. The molar weight of the mixture,Mw, is given by Eq.
(A.7).

Knowledge of the molar GLE ratio, Km
i , is required to compute

the reaction rate in Eq. (12). Assuming Henry’s law is valid, Km
i

was computed by rearranging Eq. (21) and inserting into Eq. (15):

Km;1
ij ¼ Hij

p
: ð24Þ

Furthermore, the mass based equilibrium ratio is defined by

Ki �
x�G;i
x�L;i

: ð25Þ

By employing the conversion formula in (23), the relation between
Ki and Km

i is given as:

Ki ¼
M�w;L

M�w;G

Km
i : ð26Þ

The GLE ratio employing Henry’s law is obtained by inserting Eq.
(24) into Eq. (26):

K1ij ¼
Hij

p
M�w;L

Mw;G
: ð27Þ

The resulting mass transfer flux based on Henry’s law is obtained by
inserting Eq. (27) into Eq. (22):

Ni ¼ kL;iqL
xG;i

K1ij
�xL;i

 !
: ð28Þ

It is emphasized that the reaction rate in Eq. (12) relies on the GLE
ratio. When mass transfer is computed based on Henry’s law, the
GLE ratio used in Eq. (12) is given by Eq. (24).

2.3. Mass Transfer Modeling with EoS

The gas–liquid mass transfer model employed here is based on
the two-film model. The driving force for mass transfer was mod-
eled as the deviation from GLE, where a complete phase equilib-
rium description (i.e., all components modeled, including the
solvent) was used. A negative flash algorithm based on Newton–
Raphson iteration was developed by Øyen et al. (2021), and their
solution strategy was employed in this work to facilitate the con-
vergence of the GLE problem. We emphasize that the heaviest
lump, L4, ranges from chain lengths 31–1, consequently consist-
ing of paraffins with negligible vapor pressures (10�6 times that
of H2O at the same temperature, see e.g., Sehabiague and Morsi
(2013)). Hence, L4 was assumed to remain in the slurry phase,
and its mass transfer was set to zero.

The mass transfer flux obtained from the above considerations
reads (see also the special case with Henry’s law in Eq. (28)):

Ni ¼ kL;iqL
xG;i

Ki
�xL;i

� �
: ð29Þ

For mass transfer based on an EoS, the computation of Ki requires
the convergence of the GLE problem, which is generally written

TG ¼ TSL ð30aÞ
pG ¼ pL ð30bÞ
lG;i ¼ lL;i; i ¼ 1;2; . . . ;C; ð30cÞ
where li is the chemical potential of component i. As Eq. (30c) con-
stitute C equations in 2C unknowns, the solution to the GLE prob-
lem requires another C equations. These are given as a
conservation of species:

nL;i þ nG;i ¼ b0
L;i þ b0

G;i; ð31Þ
where ni denotes the mole numbers of component i. The initializa-
tion in mole numbers was based on the molar fluxes in the SBCR:

b0
L;i ¼

GL

GT
xi ð32aÞ

b0
G;i ¼ 1� GL

GT

� �
yi; ð32bÞ

with

GL ¼ qL j vL j aLXC
j¼1

Mw;jxj
ð33aÞ

GG ¼ qG j vG j aGXC
j¼1

Mw;jyj
ð33bÞ

GT ¼ GL þ GG: ð33cÞ
Equations (30a), (30b), (30c), (31), (32a), (32b), (33a), and (33b)
were solved by the solution strategy proposed by Øyen et al.
(2021). The iterative procedure is given by

JmL þ JmG
� 

Dnmþ1
L ¼ � gmL � gmG

� �
; ð34Þ

Table 2
Straight-chained paraffins were lumped based on the carbon number (CN).

Lump CNs lumped [-] CN [-] Mw [kg kmol�1] m [-]

L1 1� 10 4.6466 67.0524 0.0651
L2 11� 20 14.6466 207.0524 0.0227
L3 21� 30 24.6466 347.0524 0.0079
L4 31�1 40.0000 562.0000 0.0043
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where

JG;ij ¼
dij
nG;i
� 1
nG
þ @ lnuG;i

@nG;j

� �
ð35aÞ

JL;ij ¼
dij
nL;i
� 1
nL
þ @ lnuL;i

@nL;j

� �
; ð35bÞ

gG;i ¼ ln
nG;i

nG
þ lnuG;i ð36aÞ

gL;i ¼ ln
nL;i

nL
þ lnuL;i: ð36bÞ

Here, J denotes the Jacobian, Dnmþ1 ¼ nmþ1 � nm is the step in the
vector of mole numbers, g is the vector of modified chemical poten-
tials, dij is the Kronecker delta which is one if i ¼ j and zero other-
wise, and ui is the fugacity coefficient of component i.

After converging Eq. (34) through the aid of Eqs. (31), (32a),
(32b), (33a), (33b), (33c), (35a), (35b), (36a) and (36b), the equilib-
rium mole fractions were extracted from the vectors of mole
numbers:

x�i ¼
nL;i

nL
; ð37Þ

y�i ¼
nG;i

nG
: ð38Þ

It is emphasized that Km
i was obtained directly through Eq. (15),

which was used to compute the reaction rate of the FT reaction with
Eq. (12). Furthermore, by converting the x�i to x�i with Eq. (23), the
Ki was obtained directly through Eq. (25). With knowledge of Ki, the
mass transfer in Eq. (29) was computed.

A pseudo-algorithm to evaluate the mass transfer flux, Ni, is
given in Algorithm 1. Here, Ni is determined after the GLE problem
has converged, which requires successive evaluations of ui and
@ui=@nj
� �

T;p through a thermodynamic EoS of choice. In this work,

the PR and PC-SAFT EoSs were chosen to model the GLE, and the
details are given in Sections 2.3.1 and 2.3.2, respectively. The inter-
ested reader is referred to Øyen et al. (2021) for a detailed descrip-
tion and the solution strategy of the Newton–Raphson-based
negative flash algorithm defined by Eqs. (31), (32a), (32b), (33a),
(33b), (33c), (34), (35a), (35b), (36a) and (36b).

Algorithm 1. Evaluation of the mass transfer

1: Choose thermodynamic EoS
2: b0L;i; b

0
G;i  Eqs. (32a), (32b), (33a), (33b), and (33c) .GLE

computation start
3: while Not converged do
4: ui  thermodynamic EoS
5: @ui=@nj

� �
T;p  thermodynamic EoS

6: JmL;ij; J
m
G;ij  Eqs. (35a) and (35b)

7: gmL;i;g
m
L;i  Eqs.(36a) and (36b)

8: Dnmþ1L;i  Eq. (34)

9: nmþ1L;i  nmL;i þ DnL;i

10: nmþ1G;i  nmG;i � DnL;i

11: end while .GLE computation end
12: x�i  Eq. (37)
13: y�i  Eq. (38)
14: x�L;i;x

�
G;i  Eq. (23)

15: Ki  Eq. (25)
16: Ni  Eq. (29)

The PR and the PC-SAFT EoSs contain binary interaction param-
eters, kij, fitted to experimental data. The kij parameter is intro-
duced to represent deviations from the predictive capabilities of
an EoS. Graboski and Daubert (1978a) and other investigators
(Graboski and Daubert, 1978b; Nishiumi et al., 1988; Heidman
et al., 1985) concluded that kij for hydrocarbon–hydrocarbon inter-
actions are zero for the SRK EoS, meaning the SRK EoS predicts the
hydrocarbon-hydrocarbon interactions adequately. The PR EoS is
closely related to the SRK EoS, and kij ¼ 0 was therefore adopted
for the PR EoS in this study. Furthermore, the PC-SAFT EoS was
developed for chain-like molecules, such as straight-chained paraf-
fins. Therefore, hydrocarbon-hydrocarbon interactions are within
the predictive capabilities of the PC-SAFT EoS; hence, kij ¼ 0 was
employed for hydrocarbon-hydrocarbon interactions in this study.
For the PR EoS, kij for non-hydrocarbon pairs were obtained from
the following set of references (Gray et al., 1983; Tang and
Kitagawa, 2005; Venkatramani and Okuno, 2014,; Chapoy et al.,
2020; Biquiza et al., 2010; Srinivas et al., 2012; Gao et al., 1999;
Rahbari et al., 2019; Petropoulou et al., 2017; mu Lin, 1984;
Gasem et al., 1993; Tsonopoulos and Wilson, 1983; Meng et al.,
2007; Ramdin et al., 2016). For the PC-SAFT EoS, kij for non-
hydrocarbon pairs were obtained from the following set of refer-
ences (Zheng et al., 2019; Gross and Sadowski, 2001;
Diamantonis and Economou, 2012; Perez et al., 2017;
Demetriades and Graham, 2016). Moreover, Demetriades and
Graham (2016) stated that CO2–H2 binary GLE has not yet been
computed with PC-SAFT, and thus kij is not available for the CO2–
H2 pair. The authors have not found any work in the literature on
this topic after the publication by Demetriades and Graham
(2016). A full presentation of the kij employed in this study is found
in Tables 3 and 4.

The mass transfer expression in Eq. (29) requires evaluation of
Ki, which here was obtained through solving the GLE problem. In
this context, the volume, V, was found through iteration at given
T; p;n. Here, the mole fractions were formally treated as mole
numbers, and hence, the volume found is the molar volume. The
iteration on volume was performed with Newton–Raphson itera-
tion on the pressure equation in Eq. (B.1), see Appendix B
(Michelsen and Mollerup, 2007):

Vmþ1 ¼ Vm �
@A
@V

� �
T;n þ p

@2A
@V2


 �
T;n

: ð39Þ

Here, A is the Helmholtz energy function. A discussion on initializ-
ing the iteration procedure of Eq. (39) is found in Gross and
Sadowski (2001). Note that for n < 0, Eq. (39) must allow V < 0 to
yield p > 0. This is particularly clear for gas mixtures exhibiting
ideal behavior:

pig ¼ nRT
V

: ð40Þ

Here RT is a positive quantity, and pig has the same sign as n=V .
Thus, p P 0 if, and only if, n=V P 0, i.e., if n and V have the same
sign. For the PR EoS, the volume roots were found through the
built-in function roots in Matlab.

2.3.1. Modeling the Interface GLE by the Peng–Robinson EoS
The PR EoS has gained considerable attention over the years due

to its simple structure and applicability. The EoS is explicit in pres-
sure and is written as (Peng and Robinson, 1976)

p T;V ;nð Þ ¼ nRT
V � B

� D
V V þ Bð Þ þ B V � Bð Þ ; ð41Þ
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where n ¼PC
i¼1ni, is the total number of moles, V is the volume,

B nð Þ denotes an excluded volume, and D T;nð Þ denotes an attractive
term. A full description of the PR EoS can be found elsewhere (Peng
and Robinson, 1976; Harvey, 1997; He et al., 2008; Traxinger et al.,
2019; Dahm and Visco, 2014; Elliott and Lira, 2012; Michelsen and
Mollerup, 2007); however, the critical constants, Tc and pc , and the
acentric factor, c, require special attention for the lumped hydrocar-
bons, L1–L4. Since the lumps represent a set of paraffins rather than
real compounds, data for Tc; pc , and c does not exist. On the other
hand, Gamba et al. (2009) recognized that the paraffins exhibit an
asymptotic behavior concerning the normal boiling point (NBP). A
correlation was given in terms of carbon chain length as:

TNBP ¼ 1078:7141� exp 6:9811554� 0:11483075CN2=3

 �

: ð42Þ

The critical constants were in turn correlated to the NBP as

Tc ¼ 1127:1710

� exp �10:635057ð Þ 1671:5921� TNBPð Þ2:3724157; ð43Þ

pc ¼ exp �15:488321þ 3:2328187
100
TNBP

� �3
 !

1288:8545� TNBPð Þ2:7447020:

ð44Þ
For the acentric factor, two correlations were given:

c¼ 1187:9291�exp 7:0738919ð Þ 1004:8417�TNBPð Þ8:9643355�10�4

1185:0931�exp 7:0704986ð Þ 1047:5707�TNBPð Þ1:0478687�10�3 :

(

ð45Þ
The first equation in Eq. (45) is valid in the range
359:13 6 TNBP 6 723:59K, and the second equation in Eq. (45) is
valid in the range 723:59 < TNBP 6 988:05K. The correlations of
Gamba et al. (2009) agree well with the experimental data of
Lemmon et al. (2019) (NIST), Ambrose and Tsonopoulos (1995,
2015), Helgeson et al. (1998), and Nikitin et al. (1997), as shown
in Fig. 2. Other critical constants and acentric factors are available
in the literature, and a summary is presented in Table 5.

The fugacity coefficient, uk, and its derivative with respect to
mole numbers are required to close the GLE problem in Eq. (34).
The fugacity coefficient is employed in Eqs. (36a) and (36b) and
is in general given by (Haug-Warberg, 2006):

lnuk ¼
1
RT

@Ar;v

@nk

� �
T;V

� ln Z; ð46Þ

where ni–k has been omitted from the list of variables to be held
constant under the partial derivation. The superscript ‘‘r,v” denotes
that the residual Helmholtz energy potential is evaluated at the
same T and V as the ideal gas Helmholtz energy potential. The com-
pressibility factor is given by

Z ¼ pV
nRT

: ð47Þ

The derivative of Eq. (46) is employed in Eqs. (35a) and (35b) and is
in general given by (Michelsen and Mollerup, 2007)

@ lnuk

@nl

� �
T;p

¼ 1
RT

@2Ar;v

@nk@nl

 !
T;V

þ 1
n
þ 1
RT

@p
@nk


 �
T;V

@p
@nl


 �
T;V

@p
@V

� �
T;n

: ð48Þ

First and second order derivatives of Ar;v, first order derivatives of p,
and Z are required for Eqs. (46) and (48). For the PR EoS, these five
relations are given by Michelsen and Mollerup (2007, p. 87–91).
Thus, uk and its derivative with respect to nl in Eq. (46) and (48)
can be obtained, and the GLE problem can be solved. Accordingly,
Ki can be directly computed with Eqs. (15), (23) and (25), and hence,
the mass transfer fluxes can be obtained with Eq. (29). See also
Fig. 1 for a visual representation of how the mass transfer and
GLE models are nested to solve the full FTS SBCR model.

2.3.2. Modeling the Interface GLE by the PC-SAFT EoS
The PC-SAFT EoS was shown by Zheng et al. (2019) to describe

the GLE behavior of the FT mixture precisely, and hence the GLE at
the interface is assumed accurately modeled by this EoS. Since the
mass transfer expression in Eq. (29) relies on the GLE at the gas–
liquid interface, the PC-SAFT EoS is appropriate for evaluating the
mass transfer flux in Eq. (29). Moreover, the PC-SAFT EoS was
based on the assumption that all molecules consist of hard, inter-
acting chains composed of m segments. This assumption is excep-
tional for long-chained paraffins, where, e.g., Raoult’s law was
found unsuitable (Masuku et al., 2012). A full description of pure
component parameters is summarized in Table 6. This includes
the four considered lumps, since each lump is considered a single

Table 3
Binary interaction parameters for the PR EoS.

kij CO H2 H2O CO2 L1 L2 L3 L4

CO 0 0.0750 0.0107 �0.0775 0.0710 0.1150 0.0708 �0.0021
H2 0.0750 0 �0.8900 0.1650 0.1930 0.3420 0.3220 0.1509
H2O 0.0107 �0.8900 0 �0.1207 0.6300 0.4000 0.2420 0.2420
CO2 �0.0775 0.1650 �0.1207 0 0.1250 0.1250 0.1250 0.1250
L1 0.0710 0.1930 0.6300 0.1250 0 0 0 0
L2 0.1150 0.3420 0.4000 0.1250 0 0 0 0
L3 0.0708 0.3220 0.2420 0.1250 0 0 0 0
L4 �0.0021 0.1509 0.2420 0.1250 0 0 0 0

Table 4
Binary interaction parameters for the PC-SAFT EoS.

kij CO H2 H2O CO2 L1 L2 L3 L4
CO 0 0 0 �0.0103 0.0430 0.1356 0.1570 0.1623
H2 0 0 0 0 0.0795 0.1654 0.2031 0.2194
H2O 0 0 0 �0.0033 0.1840 0.2110 0.2167 0.2199
CO2 �0.0103 0 �0.0033 0 0.0368 0.0787 0.0955 0.1024
L1 0.0430 0.0795 0.1840 0.0368 0 0 0 0
L2 0.1356 0.1654 0.2110 0.0787 0 0 0 0
L3 0.1570 0.2031 0.2167 0.0955 0 0 0 0
L4 0.1623 0.2194 0.2199 0.1024 0 0 0 0
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chemical species (although its properties are based on a number of
hydrocarbons with different carbon chain lengths).

The PC-SAFT EoS was initially developed by Gross and Sadowski
(2001) in the intensive variables T;qm ¼ N=V , and x ¼ Ni=N. Here,
qm denotes the molecular density, Ni ¼ niNA denotes the number
of molecules of component i;NA denotes the Avogadro constant,

and N ¼PC
i¼1Ni is the total number of molecules. However, the

Helmholtz energy potential does not contain a full thermodynamic
description when stated in T;qm; x, since it does not include the
size of the system, i.e., the total amount of substance, N. Further-
more, classical thermodynamic relations and definitions are valid
in the canonical variable set T;V ;N; for instance, Eqs. (46) and
(48) are generally valid, and with molecules instead of moles as
independent variables, the relations become

lnuk ¼
1
kBT

@Ar;v

@Nk

� �
T;V

� ln Z; ð49Þ

@uk

@nl

� �
T;p

¼ NA

kBT
@Ar;v

@Nk@Nl

� �
T;V

þ NA

N
þ NA

kBT

@p
@Nk


 �
T;V

@p
@Nl


 �
T;V

@p
@V

� �
T;N

; ð50Þ

where kB is the Boltzmann constant. Gross and Sadowski (2001) pro-
vided the first derivatives to the Helmholtz energy potential with
respect to T;qm, and xk. However, the derivatives with respect to

xk were performed without respecting
PC

i¼1xi ¼ 1. Nevertheless,
the final results made it possible to evaluateuk, but not @uk=@nlð ÞT;p.

Gross and Sadowski (2001) employed a different set of indepen-
dent variables and gave no second derivatives, making it impossi-

Fig. 2. Agreement of the correlations for normal boiling point, critical constants, and acentric factor by Gamba et al. (2009) with experimental investigators (Ambrose and
Tsonopoulos, 1995; Helgeson et al., 1998; Nikitin et al., 1997; Ambrose et al., 2015; Lemmon et al., 2019).

Table 6
Pure component parameters used for the PC-SAFT EoS. The parameters for L1–L4 are based on the correlations given in the appendix of Gross and Sadowski (2001).

Component m [–] r [Å] e=kB [K] Reference

CO 1.3097 3.2507 92.1500 (Gross and Sadowski, 2001)
H2 1.3060 2.6010 23.4200 (Zheng et al., 2019)
H2O 1.6619 2.4643 267.7100 (Zheng et al., 2019)
CO2 2.0729 2.7852 169.2100 (Gross and Sadowski, 2001)
L1 2.6230 3.7325 226.8623 (Gross and Sadowski, 2001)
L2 6.1118 3.9447 254.8303 (Gross and Sadowski, 2001)
L3 9.5351 3.9941 260.7040 (Gross and Sadowski, 2001)
L4 14.7757 4.0232 264.0939 (Gross and Sadowski, 2001)

Table 5
Pure component constants used for the Peng–Robinson EoS. The constants for L1–L4 are based on the correlations given by Gamba et al. (2009).

Component Tc [K] pc [MPa] c [–] Reference

CO 132.8600 3.4935 0.0500 (Lemmon et al., 2019)
H2 33.1450 1.2964 �0.2190 (Lemmon et al., 2019)
H2O 647.0960 22.0640 0.3443 (Lemmon et al., 2019)
CO2 304.1282 7.3773 0.2239 (Lemmon et al., 2019)
L1 456.8924 3.5591 0.2285 (Gamba et al., 2009)
L2 702.4393 1.4991 0.6705 (Gamba et al., 2009)
L3 812.1769 0.8645 1.0309 (Gamba et al., 2009)
L4 898.3432 0.4599 1.5315 (Gamba et al., 2009)
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ble to utilize Eqs. (39) and (50). To the authors’ knowledge, the PC-
SAFT EoS in the canonical variable set T;V ;N is not available in the
literature; hence, in this study, the PC-SAFT EoS was rewritten into
the canonical variable set T;V ;N, and the full description with the
first and second derivatives is given in Appendix C.

Eqs. (39), (49), and (50) require relations for the first order
derivatives of p, and the first and second order derivatives of Ar;v.
For the PC-SAFT EoS, the derivatives of p and the derivatives of

Ar;v are given in Appendix B and C, respectively. Thus, uk and its
derivative with respect to nl can be obtained, and the GLE problem
can be solved. Accordingly, Ki can be directly computed with Eqs.
(15), (23), and (25), and hence, the mass transfer fluxes can be
obtained with Eq. (29).

The interactions between the governing equations, the mass
transfer model, and the gas–liquid interface model is depicted in
Fig. 3. Here, the shaded background indicates the three different

Fig. 3. Interactions between governing equations, mass transfer model and gas–liquid interface model.
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parts highlighted in Fig. 1, i.e., the governing equations, the mass
transfer model and the gas–liquid interface model.

2.4. Numerical Solution of the Slurry Bubble Column Reactor Model

The SBCR model equations in Table 1 were solved using the
orthogonal collocation method. In this numerical method, the
dependent variables are approximated by:

y zð Þ 	
XNpol

j¼0
‘j zð Þyj; ð51Þ

where the Lagrange interpolating polynomials are Npol’th order
polynomials given by (Kreyszig, 2011)

‘j zð Þ ¼
YNpol

i ¼ 0
i–j

z� zi
zj � zi

; ð52Þ

and yj ¼ y zj
� �

is the value of y at z ¼ zj.

The Lagrange interpolating polynomials in Eq. (52) depend on
the number of grid points and the location of the grid points,
zj
� 	

. Here, zj
� 	

were computed as the roots of Legendre polynomi-
als, as this gives a dense placement of grid points near the inlet and
outlet of the SBCR. In total, 30 grid points were used in a Gauss–
Lobatto–Legendre grid arrangement.

The approximation in Eq. (51) reduces the problem of determin-
ing y zð Þ to a problem of determining the set of function coefficients
yj
� 	

. As the coefficients yj
� 	

are not functions of z, the derivative is
approximated as

dy
dz
	
XNpol

j¼0

d ‘j zð Þyj
� �
dz

¼
XNpol

j¼0

d‘j zð Þ
dz

yj; ð53Þ

allowing the derivative to be written as a linear operator in yj. Sim-
ilarly, the second derivative is approximated as

d2y
dz2
	
XNpol

j¼0

d2
‘j zð Þyj
� �
dz2

¼
XNpol

j¼0

d2
‘j zð Þ
dz2

yj: ð54Þ

For the governing equations in Table 1, the first and second deriva-
tives and other linear terms in yj are gathered in the dense matrix A,
and the source/sink terms are gathered in the vector F . Thus, for the
dependent variables aG;aS;xG;i;xL;i;vG;vS;vL;p; TG, and TSL, the lin-
ear system of equations is written as Ay ¼ F . Hence, the dependent
variables are integrated along the axial direction, z, by left-inverting
the A-matrix. Initial and boundary conditions are discussed in Sec-
tion 2.5. The interested reader is referred elsewhere for detailed
information on the orthogonal collocation method (Villadsen and
Michelsen, 1978; Press et al., 1992; Solsvik and Jakobsen, 2012;
Shen et al., 2011; Golub and Welsch, 1969; Solsvik et al., 2013;
Solsvik and Jakobsen, 2013; Jakobsen et al., 2014).

2.5. Parameters and Initial and Boundary Conditions

The SBCR model requires a combination of parameters, initial
conditions, and constitutive equations. The parameters and initial
conditions are treated here; however, the constitutive equations
are provided in Appendix D due to spatial considerations. The con-
stitutive equations include, but are not limited to, diffusivities, vis-
cosities, drag forces, conductivities, and heat capacities. The
parameters employed for the simulations of the FTS SBCR are given
in Table 7, and the initial conditions are given in Table 8 and 9.

The boundary conditions of the SBCR governing equations in
Table 1 are split into four subsections: total mass, species mass,
momentum, and energy.

Table 7
Parameters used in simulation of the FTS SBCR.

Variable Value Unit Reference

L 50 m (Sehabiague and Morsi, 2013a)
dcol 9 m (Sehabiague and Morsi, 2013a)
dpipes 0.114 m (Sehabiague and Morsi, 2013a)
npipes 1200 – (Sehabiague and Morsi, 2013a)
twall 2 mm (Vik et al., 2015)
ksteel 16 W m�1 K�1 (Hust and Lankford, 1984)
hcool 3000 W m�2 K�1 (Deckwer, 1980)
Ta 492 K (Sehabiague and Morsi, 2013a)
qL 687.2 kg m�3 (Sehabiague and Morsi, 2013)
lL 1.05 cP (Sehabiague and Morsi, 2013)
kL 0.113 W m�1 K�1 (Maretto and Krishna, 1999)
r 16 mN m�1 (Sehabiague and Morsi, 2013)
db 8 mm (Vik et al., 2015), average
PG 2 – (Rampure et al., 2007)
PS 2 – (Rampure et al., 2007)
qS 3154 kg m�3 (Sehabiague and Morsi, 2013a)
dS 72 lm (Sehabiague and Morsi, 2013a)
cp;S 992 J kg�1 K�1 (Maretto and Krishna, 1999)
kS 1.7 W m�1 K�1 (Maretto and Krishna, 1999)
Drxh �167 MJ kmol�1 (Visconti, 2014)
aASF 0.9 – (Maretto and Krishna, 1999), Ref. [11]
aSiS 0.2 – (Maretto and Krishna, 1999)

Table 8
Initial conditions used in the simulations of the FTS SBCR.

Variable Liquid Gas Solid Unit

vs
in 0.01 0.26 See aSiS m3 m�2 s�1

xCO;in 0.03485 0.333 – –
xH2 ;in 0.05632 0.667 – –
xH2O;in 5:242� 10�6 1:103� 10�5 – –

xCO2 ;in 4:736� 10�7 1:311� 10�6 – –

xL1 ;in 1:432� 10�5 1:035� 10�5 – –

xL2 ;in 0.0001265 2:038� 10�6 – –

xL3 ;in 0.0001532 6:288� 10�8 – –

xL4 ;in 0.9085 1:395� 10�6 – –

pout 30 30 30 bar
T in 513 513 513 K
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2.5.1. Initial Conditions for the Total Mass
The initial condition for the liquid phase continuity equation

was specified in terms of the superficial velocity, v s
L, in Eq. (55).

The local instantaneous velocity at the inlet, vL;in, was obtained
in terms of the other initial conditions as:

vmþ1L;in ¼
v s

L;in

1� amG;in � amS;in
; ð68Þ

where amG;in and amS;in were updated at each iteration, m, by

amþ1G;in ¼
v s

G;in

vmG;in
; ð69Þ

and

amþ1S;in ¼ aSiS 1� amþ1G;in


 �
: ð70Þ

In Eq. (69), vmG;in was updated with Eq. (63). Moreover, in Eq. (70),
aSiS denotes the volume fraction of solid catalyst in gas-free slurry,
that is

aSiS ¼ aS

aS þ aL
: ð71Þ

The initial condition for the gas phase continuity equation was
specified in terms of the superficial velocity, vs

G, in Eq. (56); how-
ever, aG;in was updated with Eqs. (63) and (69) at each iteration.
An initial guess of aG;in ¼ 0:528 was employed.

The initial condition for the solid phase continuity equation was
specified in terms of the area fraction of gas-free slurry, aSiS, in Eq.
(57). Since the solid phase continuity equation contains no source
or sink terms, integration of Eq. (3) leads to

aS ¼
amS;invmS;in
vS

: ð72Þ

Here, amS;in was iteratively updated with Eq. (70), and vmS and vmS;in are
treated in Section 2.5.3.

2.5.2. Initial and Boundary Conditions for the Species Mass
The species mass equations were solved forxi, and Danckwerts

boundary conditions were employed (Danckwerts, 1953). In Eqs.
(58) and (60), 0� denotes the inlet from outside the SBCR, and 0þ

denotes the inlet from inside the SBCR. The axial location z ¼ 0þ

is thus a part of the computational domain, whereas xL z ¼ 0�ð Þ
is the value specified in Table 8. The Danckwerts boundary condi-
tions reflect that axial mixing is relevant even at the SBCR inlet.

2.5.3. Initial and Boundary Conditions for the Momentum
The initial condition for the gas phase momentum equation was

specified as the algebraic slip model in Eq. (63). Here, vL;in was
computed with Eq. (68).

The solid phase momentum equation was solved for vS, and
since the algebraic slip model was used, no boundary conditions
are required. However, the solid phase momentum equation is
implicit in vS, and iteration is still required:

vmþ1S ¼ vL � 1
3

4dS
Cm
D;S�LqL j vL � vmS j

dp
dz
þ qSg

� �
: ð73Þ

2.5.4. Initial and Boundary Conditions for the Energy
The energy equations were solved for T, and Danckwerts bound-

ary conditions were employed (Danckwerts, 1953). The slurry and
gas phase energy equations were solved simultaneously.

2.6. Program Flow

Three different mass transfer formulations were proposed in
Section 2: one based on Henry’s law, see Eq. (28), one based on
the PR EoS, and one based on the PC-SAFT EoS. While a visual rep-
resentation is given in Fig. 1, the program flow of the SBCR simula-
tion is given in Fig. 4. As indicated on the left-hand side in Fig. 4,
the main structure of the SBCR simulations is identical in the three
different mass transfer formulations. The differences in mass trans-
fer formulations are displayed on the right-hand side in Fig. 4 with
a shaded background. The PR EoS and the PC-SAFT EoS share a sim-
ilar structure; however, the computation ofuk and @uk=@nlð ÞT;p dif-
fers. In both the PR and PC-SAFT EoS cases, the complete GLE
problem must be solved to evaluate Ni. On the other hand, with
the mass transfer formulation based on Henry’s law, only correla-
tions for Hij are required to evaluate Ni.

Table 9
The set of initial and boundary conditions for the SBCR governing equations in Table 1. See also Tables 7 and 8 for specific reactor inlet and outlet values of the equations below.

Conservation of total mass

vs
Ljz¼0 ¼ vs

L;in (55)

vs
Gjz¼0 ¼ vs

G;in (56)

aSiSjz¼0 ¼ aSiS;in (57)
Conservation of species mass

aLqLvLxL;i
� �jz¼0þ � aLqLDL;eff;z

dxL;i

dz

�
 ���
z¼0þ

¼ qLvs
LxL;i

� �jz¼0� (58)

dxL;i

dz

���
z¼L
¼ 0 (59)

aGqGvGxG;i
� �jz¼0þ � aGqGDG;eff ;z

dxG;i

dz

�
 ���
z¼0þ

¼ qGvs
GxG;i

� �jz¼0� (60)

dxG;i

dz

���
z¼L
¼ 0 (61)

Conservation of momentum
pjz¼L ¼ pout (62)

vGjz¼0 ¼ vL;in � 1
3

4db
qLCD;G�L jz¼0 jvL;in�vG jz¼0 j

dp
dz

���
z¼0
þ qGjz¼0g


 �
(63)

Conservation of energy

aLqLvLcp;L þ aSqSvScp;S
� �

TSL
� jz¼0þ � aSLkSL;eff ;z

dTSL
dz


 ����
z¼0þ

¼ qLvs
Lcp;L þ qSvSaScp;S

� �
TSL

� jz¼0� (64)

dTSL
dz

���
z¼L
¼ 0 (65)

aGqGvGcp;GTG
� �

z¼0þ � aGkG;eff;z
dTG
dz


 �
z¼0þ

¼ qGvs
Gcp;GTG

� �
z¼0�

(66)

dTG
dz

���
z¼L
¼ 0 (67)
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3. Results and Discussion

In this study, an industrial scale FTS SBCR was simulated
with three different driving forces for mass transfer. The mass
transfer expression based on Henry’s law relies on the physical
properties of the solvent, whereas the mass transfer expres-
sions based on the PR and the PC-SAFT EoSs do not require
the identification of a single solvent. On the other hand, the
EoS-based mass transfer formulations rely on kij. In the suc-

ceeding results, emphasis is placed on i) how the EoS and
the associated kij affect the mass transfer based on an EoS,
ii) how the classification of the solvent affects the mass trans-
fer based on Henry’s law, iii) how the conversion level is
affected by temperature and pressure, iv) whether the SBCR
is kinetically or mass transfer limited, v) the computational
burden of the different mass transfer formulations, and vi) jus-
tification of the assumption that no more than two phases
exist at phase equilibrium.

Fig. 4. Flow chart showing the program structure used for simulating the SBCR. Three different mass transfer approaches are shown on the right-hand side with a shaded
background. A detailed visual representation of the different mass transfer approaches is shown in Fig. 3.
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3.1. Mass Transfer Based on an EoS

The area fractions of the gas, liquid, and solid phases are dis-
played in Fig. 5. Initially, the liquid evaporates at a higher rate than
the gas condenses, and consequently, aG rises. After reaching a col-
umn height of 4 m, the condensation of CO and H2 becomes dom-
inant, and the net mass transfer is positive into the liquid, causing
aG to decrease. Furthermore, as the reactants are transferred out of
the gas phase and into the liquid phase, the FT reactions com-
mence. As a result, H2O and paraffins are formed. The lighter paraf-
fins and H2O have high vapor pressures, and these components are
thus transported back to the gas phase. This evaporation causes the
molecular weight of the gas mixture to increase, and hence qG

increases, see Fig. 6. Moreover, vG initially increases, and after
the column height of approximately 4 m, the gas–liquid drag force
causes vG to decrease. As mass is transferred from the gas to the
liquid phase, the decrease in aG causes an increase in aL. As aL

and vL are inversely proportional, vL decreases, see Fig. 7. Similarly,
vS was obtained from the algebraic slip model, which is dominated
by the solid–liquid drag force and the gravitational acceleration.
Since the gravitational acceleration is constant, vS decreases as
vL decreases due to the solid–liquid drag. As a result of the balance
equation for total mass of solid, aS increases. The trends discussed
for aG;aL;aS;vG;vL;vS and qG are valid for all simulations with
mass transfer based on an EoS.

It is clear from Fig. 8 that the mass transfer expressions based
on an EoS rely on kij. For instance, by comparing the results based
on the PR EoS with kij ¼ 0 to the results based on the PR EoS with
kij – 0;xG;H2 varies by 30 % relatively at the SBCR outlet. Similarly,
by comparing the results based on the PC-SAFT EoS with kij ¼ 0 to
the results based on the PC-SAFT EoS with kij – 0;xG;H2 varies by
35 % relatively at the SBCR outlet. Furthermore, there is a wide
variety of EoSs available in the literature, and the importance of
choosing a suitable EoS that accurately represents the GLE is cru-

Fig. 5. Area fraction of the gas (left-hand side), liquid (middle), and solid (right-hand side) phases in the FTS SBCR. Legend: PR with kij ¼ 0 ( ); PR with kij – 0 ( ); PC-SAFT
with kij ¼ 0 ( ); and PC-SAFT with kij – 0 ( ).

Fig. 6. Gas phase density (left-hand side) and pressure (right-hand side) in the FTS SBCR.
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cial in the proposed mass transfer modeling framework. For
instance, by comparing the PR and PC-SAFT EoSs with
kij – 0;xG;H2 varies by 50 % relatively. Moreover, the differences
in x�L;i displayed in Fig. 9 are significant. The reaction rate in the
FTS SBCR relies on both the liquid phase composition through xCO
and xH2 , and the gas phase composition through Km

CO and Km
H2
. Thus,

the conversion of CO in the SBCR varies when the composition in
the gas and liquid phases vary. From Fig. 10, the lowest conversion
of CO was 63 mol% and was obtained with the PC-SAFT EoS with
experimentally fitted kij. The highest conversion of CO with mass
transfer based on an EoS was 74 mol% and was obtained with
the PR EoS with kij ¼ 0.

The equilibrium ratio, Ki, is in the denominator of the proposed
mass transfer expressions based on an EoS, see Eq. (29). Conse-
quently, the driving force becomes zero as xG;i=xL;i ! x�G;i=x�L;i.
However, Ki is based on the mass fraction of both the gas and

the liquid phases. As seen in Fig. 11, typically Ki 
 1 or Ki � 1,
except for KL2 	 1. Moreover, the Ki span seven orders of magni-

tude, that is Ki 2 10�4;102
h i

. A large Ki produces a smooth driving

force for mass transfer, where Ki has a dampening effect on the
driving force. A smaller Ki produces a sharp gradient in the driving
force for mass transfer, where the bulk concentration is quickly
forced to phase equilibrium, see for instance components L2, and
L3 (the mass transfer of L4 was set to zero). In the balance equation

for total mass, the total flux term,
PC

i¼1Ni, is required. Since a small
Ki produces a sharp gradient, the total flux term is also expected to
have a sharp gradient. Thus, the balance equation for total mass is
quite sensitive to the mass transfer of non-volatile compounds.
This sensitivity is counteracted by using under-relaxation factors
for the balance equations for total mass. Here, an under-
relaxation factor of 0.01 was used, meaning 1% of the new solution
was accepted in each iteration.

Fig. 7. Local instantaneous velocity of the gas (left-hand side), liquid (middle), and solid (right-hand side) phases in the FTS SBCR. Legend: PR with kij ¼ 0 ( ); PR with kij – 0
( ); PC-SAFT with kij ¼ 0 ( ); and PC-SAFT with kij – 0 ( ).

Fig. 8. Mass fractions in the gas phase in the FTS SBCR. Legend: PR with kij ¼ 0 ( ); PR with kij – 0 ( ); PC-SAFT with kij ¼ 0 ( ); and PC-SAFT with kij – 0 ( ). Dashed lines
( ) indicate equilibrium mass fractions, and black circles at the SBCR inlet denote boun.dary conditions.
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The profiles in Figs. 5-12 obtained by mass transfer based on an
EoS all display the same qualitative trends with one exception: in
the simulations with mass transfer based on the PC-SAFT EoS with
kij – 0; TG and TSL decrease initially. Since the FT reaction is
exothermic, the reaction rate is lower in this case than for the other
three simulations with mass transfer based on an EoS. The lower
reaction rate originates from the lower solubility of CO and H2,
as seen from the dashed lines in Fig. 9. Furthermore, the conversion
of CO in Fig. 10 also reflects the lower reaction rate obtained with
the PC-SAFT EoS and kij – 0.

3.2. Mass Transfer Based on Henry’s Law

The numerical solution of the FTS SBCR model with mass trans-
fer based on Henry’s law is displayed in Figs. 13-18. Clearly, the
numerical solution is sensitive to the choice of solvent. In the FTS,
the slurry phase consists of a vast amount of long-chained hydro-
carbons, and many of them are equally qualified as solvents. For

instance, in the experimental work of Sari et al. (2009), hydrocar-
bons with carbon chain lengths in the range 1–46 were observed,
and their mass fractions were measured. The shorter hydrocarbons
are volatile and are thus inappropriate as a solvent; however,
hydrocarbons that have low vapor pressure have a high tendency
to remain in the slurry phase. All paraffins with carbon chain
lengths greater than ten have a vapor pressure lower than 5 bar
at 240�C (Lemmon et al., 2019), which is less than the operating
pressure of	 30 bar used in this work. Hence, paraffins with carbon
chain lengths greater than ten could thus be regarded as suitable
solvents. Therefore, with mass transfer based on Henry’s law, the
solvent could be specified as a paraffin with a carbon chain length
longer than ten. Thus,many choices are available, resulting in ambi-
guity for the FTS mass transfer modeling. In this study, solvents
with carbon chain lengths in the range 16–36 were studied; how-
ever, this range only represents a small portion of the suitable sol-
vent carbon chain lengths. Although other solvent ranges should be
studied, the parametrizations of Hij by Marano and Holder (1997)

Fig. 9. Mass fractions in the liquid phase in the FTS SBCR. Legend: PR with kij ¼ 0 ( ); PR with kij – 0 ( ); PC-SAFT with kij ¼ 0 ( ); and PC-SAFT with kij – 0 ( ). Dashed lines
( ) indicate equilibrium mass fractions, and black circles at the SBCR inlet denote boun.dary conditions.

Fig. 10. Conversion of CO in the FTS SBCR. Note that the line for Henry’s law with solvent carbon number 16 lies under the line for the PC-SAFT EoS with kij – 0, and the line
for Henry’s law with solvent carbon number 36 lies under the line for the PR EoS with kij ¼ 0.

S.B. Øyen, H.A. Jakobsen, T. Haug-Warberg et al. Chemical Engineering Science 259 (2022) 117774

16



are not valid outside carbon chain lengths in the range 16–36. On
the other hand, for the mass transfer based on an EoS, the specifica-
tion of a single solvent is not required. Thus, there is no ambiguity
related to the choice of solvent for mass transfer based on an EoS.

For the FTS SBCR with mass transfer based on Henry’s law, the
area fractions are displayed in Fig. 13. Clearly, aG decreases by
increasing the solvent carbon chain length. As the mass is trans-
ferred from the gas phase to the liquid phase, aL consequently
increases by increasing the solvent carbon chain length. The trends
in aG and aL are related to CO and H2: as seen in Figs. 14 and 15, the
solubilities and mass transfer of CO and H2 increase with solvent
carbon chain length. Higher solubility of CO and H2 yields a higher
FT reaction rate, which is consistent with the high conversion
obtained for solvent carbon chain length of 36 (see Fig. 10). As a
result of the increased conversion, more H2O is produced and sub-
sequently transferred back to the gas phase. The main contributors
to the variation of aG are thus condensation of CO and H2 and the
evaporation of H2O. In Fig. 13, aG varies by 8.7 percentage points at
the SBCR outlet by varying solvent carbon chain length of 16 to 36.
Similarly, aL and aS vary by 7.1 and 1.6 percentage points at the
SBCR outlet, respectively.

On the other hand, with the PR and PC-SAFT EoSs with
kij – 0;aG varies by 4.4 percentage points. However, by comparing
the PR EoS with kij ¼ 0 to the PC-SAFT EoS with kij – 0;aG varies by
8.6 percentage points, which is approximately the same variation
observed for mass transfer based on Henry’s law by varying the
solvent carbon chain length from 16 to 36.

Increasing the solvent carbon chain length increases the solubil-
ity and mass transfer of CO and H2. In turn, the FT reaction rate and
product concentration increase with increasing solvent carbon
chain length. The increased reaction rate is consistent with all
xL;i in Fig. 14 and TG and TSL in Fig. 16. Furthermore, the produced
H2O is transferred to the gas phase, and the xG;H2O thus also
increases as the solvent carbon chain length increases, as seen in
Fig. 15. Mass transfer of L1;L2;L3, and L4 was set to zero as the
Hij was unavailable in the literature for these compounds.
Although the four different lumps have a representative carbon
chain length (see Table 2), Hij was also unavailable for paraffins
that match this representative carbon chain length. For instance,
L1 is represented with carbon chain length of 4.64, that is, between
n-butane and n-pentane. However, only Hij for CH4, C2H6, C3H8, and
n-hexane was available from the correlations of Marano and

Fig. 11. Equilibrium ratios in the FTS SBCR. Legend: PR with kij ¼ 0 ( ); PR with kij – 0 ( ); PC-SAFT with kij ¼ 0 ( ); and PC-SAFT with kij – 0 ( ).

Fig. 12. Temperature in the gas and slurry phases in the FTS SBCR. Black circles at the SBCR inlet denote boundary conditions.
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Holder (1997). As the mass transfer of L1 could not be predicted
from the mass transfer expressions based on Henry’s law, L1

remains in the liquid phase. On the contrary, pure n-pentane is
supercritical at the T and p in the FTS SBCR (Lemmon et al.,
2019), and it is thus likely to evaporate. Further parametrizations
are required to predict the evaporation of paraffins in the FTS SBCR
with mass transfer based on Henry’s law. On the other hand, the
mass transfer expressions based on an EoS describe the evapora-
tion of the paraffins, and L1 was here predicted to be quite volatile:
xL;L1 < 5� 10�3 and xG;L1 > 0:07. Thus, the equilibrium ratio
KL1 > 30 for all four EoS cases (PR and PC-SAFT, with and without
kij).

Based on the choice of solvent carbon chain length, qG ranges
from 10 to 11.3 kg m�3 at the FTS SBCR outlet. Hence, the relative
difference is 12 %, exclusively from changing the solvent carbon
chain length. However, the relative differences are less than those
observed for mass transfer based on an EoS. By varying the EoS
employed from PC-SAFT with kij – 0 to PR with kij ¼ 0;qG ranges
from 11 kg m�3 to 13 kg m�3, which amounts to a relative differ-
ence of 23 %. We emphasize that the EoS employed in the mass
transfer expression should be based on a sound understanding of
the GLE behavior of the studied compounds, and based on the stud-
ies of Zheng et al. (2019), the PC-SAFT EoS was found more suit-
able. In comparison, the PC-SAFT EoS predicts qG=11 kg m�3 at

Fig. 13. Area fraction of the gas (left-hand side), liquid (middle), and solid (right-hand side) phases in the FTS SBCR. The vertical arrow indicates the direction of an increase in
the solvent’s carbon number. Legend: carbon number = 16 ( ); carbon number = 20 ( ); carbon number = 24 ( ); carbon number = 28 ( ); carbon number = 32 ( ); carbon
number = 36 ( ).

Fig. 14. Mass fractions in the liquid phase in the FTS SBCR. Black circles at the SBCR inlet denote boundary conditions. The vertical arrow indicates the direction of an increase
in the solvent’s carbon number. The y-axis is broken for CO, H2, L1;L2, and L3. Legend: carbon number = 16 ( ); carbon number = 20 ( ); carbon number = 24 ( ); carbon
number = 28 ( ); carbon number = 32 ( ); carbon number = 36 ( ).
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the SBCR outlet, which places it between the predictions using
Henry’s law with solvent carbon chain lengths of 28 and 36.

The pressure predictions made by using mass transfer based on
Henry’s law (Fig. 17) are similar to the pressure predictions made
by using mass transfer based on an EoS (Fig. 6): The inlet pressure
ranges from approximately 33 bar to 33.5 bar depending on the
solvent carbon chain length or EoS employed. As the boundary
condition was specified at the SBCR outlet, all pressure profiles join
at pout ¼ 30bar. The velocity predictions with mass transfer based
on Henry’s law in Fig. 18 are similar to those based on an EoS in
Fig. 7.

With mass transfer based on Henry’s law, the conversion level
was 63–74 mol%, based on which solvent carbon chain length
was used (see Fig. 10). The conversion level is thus in the same
range as with mass transfer based on an EoS, where the PR and
PC-SAFT EoSs with kij ¼ 0 and kij – 0 were employed. Furthermore,

the conversion level increased with increasing solvent carbon
chain length for mass transfer based on Henry’s law. This is due
to the Hij of CO and H2 decreasing with increasing solvent carbon
chain length, resulting in a higher mass transfer driving force
(see Eqs. (27) and (28)).

3.3. Conversion Level of the FTS SBCR

The conversion level of CO, H2, or CO + H2 (syngas), has become
a conventional measure of the performance of FTS reactors. How-
ever, the conversion level relies on numerous parameters and the
physical properties of the studied system. In Table 10, a review
of experimental (Bremaud et al., 2005; Gavrilović et al., 2021; Ma
et al., 2011; Masuku et al., 2012; Peña et al., 2014; Pinna et al.,
2003; Rodrigues et al., 2011; Sadeqzadeh et al., 2013; Sari et al.,
2009; Todic et al., 2013; Yates and Satterfield, 1991) and theoreti-

Fig. 16. Temperature in the gas and slurry phases in the FTS SBCR. Black circles at the SBCR inlet denote boundary conditions. The vertical arrow indicates the direction of an
increase in the solvent’s carbon number.

Fig. 15. Mass fractions in the gas phase in the FTS SBCR. Black circles at the SBCR inlet denote boundary conditions. The vertical arrow indicates the direction of an increase in
the solvent’s carbon number. Note the crossover at z ¼ 20m for the lumps L1–L4. Legend: carbon number = 16 ( ); carbon number = 20 ( ); carbon number = 24 ( ); carbon
number = 28 ( ); carbon number = 32 ( ); carbon number = 36 ( ).
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Fig. 17. Gas phase density (left-hand side) and pressure (right-hand side) in the FTS SBCR. The vertical arrow indicates the direction of an increase in the solvent’s carbon
number.

Fig. 18. Local instantaneous velocity of the gas (left-hand side), liquid (middle), and solid (right-hand side) phases in the FTS SBCR. The vertical arrow indicates the direction
of an increase in the solvent’s carbon number. Legend: carbon number = 16 ( ); carbon number = 20 ( ); carbon number = 24 ( ); carbon number = 28 ( ); carbon
number = 32 ( ); carbon number = 36 ( ).

Table 10
A review of experimental and theoretical investigations in the literature. Here, Cat = Catalyst, Cat load = Catalyst loading; L = reactor length; X = conversion level; PBR = packed bed
reactor; SSTR = slurry stirred tank reactor.

T [�C] p [bar] Cat [-] Cat load [wt%] L [m] dcol [m] X [mol%] Reactor Ref

200–240 20–35 Co/Al2O3 12.5 N/A N/A 10–84 SSTR (Sari et al., 2009)
205–230 15 Co/Al2O3 4.8 N/A N/A 40–70 SSTR (Todic et al., 2013)
210–230 20–22 Co/Al2O3 N/A N/A 0.01 15–75 PBR (Gavrilović et al., 2021)
220 15 Co/Al2O3 3.1–5.4 N/A N/A 12–94 SSTR (Ma et al., 2011)
220 20 Co/Al2O3 N/A N/A N/A 25–52 SSTR (Masuku et al., 2012)
220 20 Co/Al2O3 N/A N/A N/A 30–50 SSTR (Bremaud et al., 2005)
220 20 Co/Al2O3 4 0.1805 0.046 20–70 SSTR (Sadeqzadeh et al., 2013)
220 20 Co/Al2O3 10.4–15 N/A N/A 29–45 SSTR (Pinna et al., 2003)
220–230 20 Co/Al2O3 3–8 N/A N/A 30–75 SSTR (Peña et al., 2014)
220–240 5–15 Co/SiO2 4.1 N/A N/A 11–73 SSTR (Yates and Satterfield, 1991)
240 20 Co/SBA-15 3.3 N/A N/A 10–80 SSTR (Rodrigues et al., 2011)
197–267 10–50 A variety 0–50 vol% 50 9 0–99 SBCR (Sehabiague and Morsi, 2013a)
200–260 N/A Co/Al2O3 16.7 2.0 0.0508 20–40 SBCR (Kim et al., 2009)
210–235 8–25 Co-based N/A N/A N/A 30 GLE (Visconti, 2014)
227 30 Co/Al2O3 25–50 30–50 6–8 50–85 SBCR (Sehabiague et al., 2008)
240 30 Co/SiO2 44–63 30 7 50–90 SBCR (Maretto and Krishna, 1999)
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cal (Sehabiague et al., 2008; Sehabiague and Morsi, 2013a; Maretto
and Krishna, 1999; Kim et al., 2009; Visconti, 2014) studies are
summarized. Despite covering a wide range of temperatures, pres-
sures, catalyst loadings (concentrations), H2/CO ratios, and superfi-
cial gas velocities, most of the experimental conversions peak at
70–85 mol%, and only the study of Ma et al. (2011) reach as high
as 94 mol%. Maretto and Krishna (1999) suggests that catalyst con-
centration may be as high as aSiS ¼ 0:4 (68 wt% for the catalyst
used by Maretto and Krishna (1999)) in a commercial reactor unit
before the experiments at the University of Amsterdam show com-
plications in the downstream separation of the slurry. Most exper-
imental studies mentioned here are well below this maximum
limit. Moreover, Maretto and Krishna (1999) performed simula-
tions at similar operating conditions to those employed here, and
for an aSiS ¼ 0:2, and vs

G;in ¼ 0:26, their conversion level of syngas
reached approximately 50 mol%. In this study, the conversion level
of syngas reached 70–84 mol%, depending on which mass transfer
model has been employed. The conversion level of syngas is dis-
played in Fig. 19.

Sehabiague and Morsi (2013a) have performed a comprehen-
sive theoretical sensitivity study in conversion levels of syngas,
yields, selectivities, site-time yield, and mass transfer limitations.
In this endeavor, effects such as choice of catalyst, catalyst loading,
H2/CO ratio in the gas phase at the SBCR inlet, superficial gas veloc-

ity, temperature, and pressure, were studied. Their results show
that the conversion level of syngas can be as low as 5 mol%, but
also as high as 	 98mol%. In this study, the conversion level of syn-
gas ranges from 70 to 84 mol%, based on which mass transfer
model has been employed. In Table 11, the results obtained here
are compared to the simulation case of Sehabiague and Morsi
(2013a) that closest resembles this study. In the study of
Sehabiague and Morsi (2013a), a much higher conversion level
was obtained. The catalyst loading employed by Sehabiague and
Morsi (2013a) is twice as high as that employed here. However,
increasing aS;in to 0.196 did not increase the conversion level any
further, suggesting a mass transfer limitation in the SBCR studied
here. It is also mentioned that the upper catalyst loading limit
(aSiS ¼ 0:50) studied by Sehabiague and Morsi (2013a) is higher
than the recommendations (aSiS ¼ 0:40) of Maretto and Krishna
(1999) for commercial application.

Experimental studies in the literature show diverging results for
how the conversion level changes with operating pressure. For
instance, Sari et al. (2009) show that the conversion level of CO
increases as the pressure increases. Conversely, Sadeqzadeh et al.
(2013) show that the conversion level of CO consistently decreases
as the pressure is increased. In an extensive report by Kuo (1983),
the common trend is that the syngas conversion level decreases as
the pressure increases, albeit for an iron-based catalyst at an ele-
vated temperature and significantly lower pressure and H2/CO
ratios. In another comprehensive report by Davis (2002), both
iron-based and cobalt-based catalysts were tested in the same lab-
oratory. Their findings were diverse: for the iron-based catalysts,
the CO conversion level increased as the pressure rose from 13 to
25 bar at 250�C. In contrast, the CO conversion level decreased as
the pressure rose from 25 to 32 bar at 230�C. On the other hand,
the cobalt-based catalysts show a significant increase in the con-
version level of CO (from 20 to 40 mol%) as the pressure rose from
7 to 21 bar. Increasing the pressure from 21 to 34.5 bar yielded a
slight increase in the CO conversion level.

The theoretical study of Sehabiague and Morsi (2013a) shows a
decreasing conversion level of syngas as the pressure is increased.
This trend is interesting since they employed the reaction rate
expression by Yates and Satterfield (1991) in its original form,
where the consumption rate of CO is given by:

�rFT ¼ aFT
yCOyH2

p2

1þ bFTyCOpð Þ2
ð74Þ

Fig. 19. Conversion level of syngas at the FTS SBCR outlet as a function of the SBCR outlet pressure.

Table 11
Comparison of this work and the closest resembling study of Sehabiague and Morsi
(2013a).

Variable This study Sehabiague and
Morsi (2013a)

T in [�C] 240 240
pout [bar] 30 30
Catalyst Co/MgO/SiO2 Co/MgO/SiO2

aS;in [–] 0.086 0.175
Kinetic expression Eq. (12) converted from (Yates

and Satterfield, 1991)
Yates and
Satterfield (1991)

vs
G;in [m s�1] 0.26 0.30

vs
L;in [m s�1] 0.01 0.01

yH2
=yCO [–] 2 2

dcol [m] 9 9
H [m] 50 50
Conversion of

syngas [mol%]
70–84 98
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The partial change of Eq. (74) concerning pressure is:

@ �rFTð Þ
@p

� �
T;yCO ;yH2

¼ 2aFTyCOyH2

p

1þ bFTyCOpð Þ3
ð75Þ

Since aFT; bFT yCO, and yH2
are positive quantities, then

@ �rFTð Þ=@p > 0 8p > 0. Thus, the consumption of CO increases for
all positive pressures with the expression by Yates and Satterfield
(1991). The decrease in the conversion level of syngas obtained by
Sehabiague and Morsi (2013a) must result from other effects origi-
nating from the changed hydrodynamics obtained when the pres-
sure field is changed. By increasing the pressure from 15 to
30 bar, Sehabiague and Morsi (2013a) report a decrease of conver-
sion level of syngas from 70 to 45 mol%. In the experimental work of
Sadeqzadeh et al. (2013), a decrease of conversion level was also
reported for the same pressure change (15 to 30 bar).

In this study, opposite trends for the conversion level were
found. Here, the conversion level of syngas increases as the pres-
sure at the outlet of the SBCR increases. This trend is valid for all
mass transfer models employed in this study (see Fig. 19). The

results of Sehabiague and Morsi (2013a) have shown that the
effects related to the hydrodynamics by increasing the pressure
cannot be neglected. Nevertheless, the conversion level of syngas
in this work increases as the pressure at the outlet of the SBCR
increases. It is stressed that the reaction rate expression employed
in this study is on the slurry phase concentration form in Eq. (12)
rather than the partial pressure form in Eq. (74). This rationale was
discussed previously in Section 2.1 and was based on mass transfer
limitation considerations.

For mass transfer based on Henry’s law, the consumption rate of
CO in Eq. (12) reduces to (see also Sehabiague et al. (2008) for an
identical expression):

�rFT ¼ aFT
HCOxCOHH2xH2

1þ bFTHCOxCOð Þ2
: ð76Þ

Thus, the FT reaction rate with Henry’s law in Eq. (76) does not
directly depend on pressure. Nevertheless, the conversion level of
CO and syngas increases with increasing pressure, as seen in Figs. 19
and 20. This increase in conversion level is attributed to the mass

Fig. 20. Conversion level of CO at the FTS SBCR outlet as a function of the SBCR outlet pressure.

Fig. 21. Conversion level of syngas at the FTS SBCR outlet as a function of the SBCR inlet temperature. The gas and slurry phases shared the same inlet boundary condition on
the x-axis.

S.B. Øyen, H.A. Jakobsen, T. Haug-Warberg et al. Chemical Engineering Science 259 (2022) 117774

22



transfer expression where Km;1
ij ¼ Hij=p is in the denominator, see

Eqs. (22) and (24). As Hij is not a function of p;1=Km
ij is directly pro-

portional to p, and the mass transfer increases with increasing p. As
more reactants are dissolved in the liquid, the reaction rate
increases resulting in a higher conversion level.

On the other hand, multiple effects affect the conversion level
for the mass transfer expressions based on an EoS. First, the reac-
tion rate cannot be reduced to a form that does not directly depend
on pressure, such as that in Eq. (76). The reaction rate thus remains
as in Eq. (12), where pressure dependencies exist directly through
p and indirectly through Km

i . Second, the mass transfer driving
forces are more complicated expressions. Although Ki still exists
in the denominator, Ki is deduced from a converged GLE problem,
and its pressure dependency is therefore implicit. However, the
overall effect is similar to the case with mass transfer based on
Henry’s law: the conversion level increases with increasing
pressure.

Figs. 21 and 22 show, respectively, how the conversion level of
syngas and CO varies with SBCR inlet temperature. Both the con-

version level of syngas and CO decreases as the SBCR inlet temper-
ature of the gas and slurry phases are increased. This trend is
unintuitive, as the reaction rate of the catalyst generally increases
with increasing temperature. For instance, in the experimental
work of Sari et al. (2009), the conversion level of CO increases as
temperature increases. However, their experiments were per-
formed in the kinetically limited regime, where mass transfer lim-
itations are irrelevant. Similarly, the experiments of Yates and
Satterfield (1991) were also performed in the kinetically limited
regime. Previously in this work, the catalyst loading was increased,
and the conversion level was unaffected. Therefore, mass transfer
effects were considered relevant in this study, as opposed to most
experimental studies that are kinetically limited. It is deduced that
there are two competing phenomena when the temperature is
increased: the increased catalyst activity and the mass transfer
limitations. The conversion level decreases for the studied temper-
ature increase, suggesting that the mass transfer limitation effect is
more significant than the increased catalyst activity effect. In the
temperature sensitivity study performed by Sehabiague and
Morsi (2013a), the reaction rate of Yates and Satterfield (1991) in

Fig. 22. Conversion level of CO at the FTS SBCR outlet as a function of the SBCR inlet temperature. The gas and slurry phases shared the same inlet boundary condition on the
x-axis.

Fig. 23. Conversion level of syngas and CO. Full lines indicate kL ¼ 2k�L , and dashed lines indicate kL ¼ k�L .
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the partial pressure form was employed. Sehabiague and Morsi
(2013a) reported that the conversion level of syngas increased from
35 to 98 mol% by increasing the temperature from 220 to 240 �C.
In this work, the conversion level of syngas decreased in the
same temperature range. Thus, mass transfer effects become
more prominent by converting the reaction rate expression from
partial pressure form to slurry phase concentration form. This sup-
ports the claim that the FTS SBCR in this study is mass transfer
limited.

3.4. Mass Transfer Limitations

Two observations have indicated that the studied FTS SBCR is
mass transfer limited in this work. First, increasing the catalyst
loading did not increase the conversion level. Second, increasing
the temperature decreases the conversion level. Hence, a sensitiv-
ity study in the mass transfer coefficient was performed. In Fig. 23,
the conversion levels of CO and syngas are displayed. The conver-
sion levels for all studied mass transfer expressions increase when
kL is increased by a factor of two. Furthermore, the conversion level
becomes less dependent on the mass transfer model as the FTS
SBCR is shifted from the mass transfer limited regime into the
kinetically limited regime. For instance, in Fig. 23, reasonable
agreement is observed for the conversion level profiles of all mass
transfer models when kL ¼ 2k�L (full lines). On the other hand, con-
siderable differences in the conversion level profiles are observed
when kL is computed from the correlations of Calderbank and
Moo-Young (1961), that is kL ¼ k�L . With the information from this
third sensitivity study, we infer that the FTS SBCR is mass transfer
limited.

3.5. Simulation Time and the Formation of an Aqueous Phase

Fig. 24 displays the time spent before convergence was
obtained for the FTS SBCR. Here, the mass transfer model based
on Henry’s law spends less than 1 min, followed by the PR EoS,
which spends approximately 5 min. The mass transfer model based
on the PC-SAFT EoS spends approximately 260 min and is the most
computationally demanding out of the three mass transfer models
evaluated here. Although the mass transfer model based on the PR
and the PC-SAFT EoSs are similar in structure, the PC-SAFT EoS
spends over 50 times longer than the PR EoS to converge. The
differences are attributed to the GLE problem, which must be

converged to obtain the Ki, see e.g., Algorithm 1 and Figure 1, 3,
and 4. In the GLE problem, @A=@Vð Þ; @A=@Nkð Þ;
@2A=@V2

 �

; @2A=@V@Nk

� �
, and @2A=@Nk@Nl

� �
are required. In gen-

eral, these derivatives are computationally expensive to evaluate,
especially the second order derivatives. As seen in Appendix C,
the mathematical complexity of both the required first and second
order derivatives is high, and the associated computational cost of
evaluating them is also high. Gautam and Seider (1979) employed
a solution strategy to the GLE problemwhere the second derivative
was assumed to consist of ideal contributions solely. Adopting the
procedure of Gautam and Seider (1979), the evaluation of Eq. (50)
was no longer required, and thus the derivatives @2A=@V@Nk

� �
and

@2A=@Nk@Nl
� �

need not be evaluated. Despite lowering the compu-
tational cost of evaluating the Jacobian matrix in Eqs. (35a) and
(35b), the solution strategy no longer yields quadratic convergence
(a part of the quadratic information is ignored). Hence, more iter-
ations are required to converge the GLE problem. As seen in Fig. 24,
the method of Gautam and Seider (1979) (PCSAFT ideal Jacobian)
spends two times longer than the method using both ideal and
non-ideal contributions in the Jacobian matrix. The strategy of
Gautam and Seider (1979) gave identical solution profiles as
including the non-ideal contribution in the Jacobian matrix; only
the numerical properties of the GLE iteration procedure differed.
The mass transfer expression based on Henry’s law does not
require convergence of the GLE problem, and the discussion related
to the Jacobian matrix is not relevant. Hij is computed from corre-
lations, and the computational effort of computing the mass trans-
fer is low. Hence, mass transfer based on Henry’s law is over 5
times faster than mass transfer based on the PR EoS and over
250 times faster than the PC-SAFT EoS.

Evaluating the mass transfer expressions based on the PR and
PC-SAFT EoSs relies on solving the GLE problem, which requires a
fixed number of phases to be specified. In this work, only a gas
and a liquid phase were considered for the GLE, that is, no solid cat-
alyst particles were considered for solving the GLE problem in this
study. The products for the FTS consist of a mixture of unpolar
paraffins and polar H2O. Furthermore, with the cobalt-based cata-
lyst, the WGS reaction is negligible, and hence, a significant
amount of H2O is produced. It is thus worthwhile to investigate
the possibility that an additional aqueous liquid phase has been
erroneously disregarded. In that case, the GLE problem should be
a gas–liquid–liquid-equilibrium (GLLE) problem, and a four-
phase fluid flow problem is in order.

Fig. 24. Time spent to converge the FTS SBCR simulations. The y-axis is on the logarithmic scale.
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To investigate the possible formation of an aqueous phase, the
thermodynamic spontaneity of the following reactions was
considered:

H2O g;mixð Þ ¼ H2O l;pureð Þ ð77Þ

H2O l;mixð Þ ¼ H2O l;pureð Þ ð78Þ
The spontaneity of the phase change reactions in Eqs. (77) and (78)
was characterized by the sign of the difference in modified chemical
potential. For the reaction in Eq. (77), the difference is

DgAq
G ¼ gpure

L;H2O
� gmix

G;H2O
; ð79Þ

where, gmix
G;H2O

is the modified chemical potential in Eq. (36a), and

gpure
L;H2O

is the modified chemical potential of pure liquid H2O at the
same T and p. Similarly, for the reaction in Eq. (78), the difference
in modified chemical potential is

DgAq
L ¼ gpure

L;H2O
� gmix

L;H2O
; ð80Þ

where gmix
L;H2O

is the modified chemical potential in Eq. (36b). If

DgAq
G > 0, then Eq. (77) is not spontaneous. Conversely, if DgAq

G < 0,

then Eq. (77) is spontaneous. Similarly, if DgAq
L > 0, then Eq. (78)

is not spontaneous, and if DgAq
L < 0, then Eq. (78) is spontaneous.

For the mass transfer model based on the PR EoS,
gpure
L;H2O

� gmix
G;H2O

> 0, meaning Eq. (77) is not spontaneous, and H2O
tends to stay in the gas phase rather than forming a new pure
H2O liquid phase. Furthermore, gpure

L;H2O
� gmix

L;H2O
> 0 implies that Eq.

(78) is not spontaneous. Thus, the H2O dissolved in the organic liq-
uid phase is stable and does not form a new pure H2O liquid phase.
The non-spontaneity of Eqs. (77) and (78) is seen graphically in
Fig. 25.

For the mass transfer model based on the PC-SAFT EoS, a super-
critical isotherm was produced in the pV-plane at the reactor tem-
perature. Thus, no liquid root exists for the PC-SAFT EoS at the
reactor temperature, and hence the formation of an aqueous phase
is impossible with the PC-SAFT EoS. On the other hand, the reactor
conditions are well below the critical conditions of H2O, that is
T 	 513K� 647:096K ¼ Tc and p 	 3MPa� 22:064MPa ¼ pc

(Lemmon et al., 2019). Attractive contributions to the Helmholtz
energy potential pack molecules closer together, allowing for
dense, condensed phases such as liquids. The attractive contribu-
tion is not well represented for H2O in the current implementation.

Here, the implementation of the PC-SAFT EoS was similar to the
original work of Gross and Sadowski (2001); however, in a later
revision (Gross and Sadowski, 2002), an associative contribution
was added to the Helmholtz energy potential. Since H2O is known
to be strongly associative, the inclusion of this associative contri-
bution is believed to be critical for representing H2O. There are dif-
ferent association schemes available, and there is no consensus as
to which association scheme describes H2O better. Nonetheless,
the inclusion of an associative contribution is still believed to
improve the predictions of pure H2O and correctly produce liquid
roots at the reactor temperature studied here.

Last, for the mass transfer expression based on Henry’s law, no
GLE problem had to be solved; only a set of Hij is required to deter-
mine the solubility of a solute i in a particular solvent j. Although
two phases have been assumed for this mass transfer model for-
mulation, no measure of the potential formation of an additional
aqueous liquid phase exists. For the PR and the PC-SAFT EoSs,
gpure
L;H2O

� gmix
H2O

functioned as a measure of thermodynamic feasibil-
ity: for a positive difference (as observed in Fig. 25), the formation
of a pure aqueous phase is not spontaneous. Conversely, for a neg-
ative difference the formation of a pure aqueous phase is sponta-
neous. For Henry’s law, g is not available; hence, the possibility
that an additional aqueous phase has been erroneously disre-
garded cannot be investigated.

In the experimental study of Loewert et al. (2019), a slurry
stirred tank reactor was operated at 240�C and 30 bar, similar
to the conditions in this study. Furthermore, the catalyst was
cobalt-based, and thus, the product composition is similar to
what was obtained in this study. Loewert et al. (2019) observed
a three-phase system in the reactor unit: a gas phase, a liquid
phase, and a solid catalyst phase. Downstream, a hot trap sepa-
ration unit operated at 170�C separated the light hydrocarbons
and unconverted reactants (gas phase) from the liquid phase.
The liquid products were further separated in a cold trap oper-
ated at 6–10�C. In the cold trap, H2O forms a dense aqueous
phase that splits from the hydrocarbon phase, and the two liquid
phases are separated. The use of a cold trap (6–10�C) indicates
that the aqueous phase does not form in the operating temper-
ature of the hot trap (170�C). Hence, it is not formed in the reac-
tor (240�C) unit either. The absence of an aqueous phase is
consistent with the predictions made by the PR and the PC-
SAFT EoSs in this study; no aqueous phase forms in the FTS SBCR
at the studied T and p.

Fig. 25. The driving force for forming an aqueous phase during the operation of the FTS SBCR. The potential of H2O condensing from the gas phase and forming an aqueous
phase is on the left-hand side. The potential of H2O separating from the organic liquid phase and forming an aqueous phase is on the right-hand side.
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It is also emphasized that the vapor pressure of pure H2O at the
reactor temperature (240�C) is approximately 33.5 bar (Lemmon
et al., 2019). Hence, H2O is quite volatile at the investigated
temperature, and the high rate of vaporization of H2O observed
in Figs. 8, 9, 14, and 15 is reasonable.

3.6. Model Verification and Validation

The implementation of the novel mass transfer models was ver-
ified through multiple consistency tests that are inherent to all
Helmholtz and Gibbs energy functions in thermodynamics. Both
the PR and the PC-SAFT EoSs were implemented as Helmholtz
energy libraries. Since the Helmholtz energy function is an Euler
homogeneous function of degree one, the Euler theorems are appli-
cable. The Euler theorems provide 2þ C consistency checks for the
Helmholtz energy function:

Ar;v ¼ @Ar;v

@V

� �
T;n

V þ
XC
l¼1

@Ar;v

@nl

� �
T;V

nl; ð81Þ

@2Ar;v

@V2

 !
T;n

V þ
XC
l¼1

@2Ar;v

@V@nl

 !
T

nl ¼ 0 ð82Þ

@2Ar;v

@nk@V

 !
T

V þ
XC
l¼1

@2Ar;v

@nk@nl

 !
T;V

nl ¼ 0; k ¼ 1;2; . . . ;C: ð83Þ

The 2þ C tests made up by Eqs. (81), (82), and (83) were found to
hold for both the PR and the PC-SAFT EoS implementations. Further-
more, the matrix @Ar;v=@Nk@Nlð ÞT;V was checked for symmetry
around the diagonal. Additionally, the Gibbs–Duhem relation was
confirmed to hold. Moreover, since G ¼ Aþ pV , we get 1þ C new
tests from the Euler theorems for the Gibbs energy function:

Gr;p ¼
XC
l¼1

@Gr;p

@nl

� �
T;p
nl; ð84Þ

XC
l¼1

@2Gr;p

@nk@nl

 !
T;p

nl ¼ 0; k ¼ 1;2; . . . ;C: ð85Þ

The 1þ C tests made up by Eqs. (84) and (85) were also tested, and
all of them were confirmed to hold. For more information on the
subject of thermodynamic consistency, the reader is referred to
Michelsen and Mollerup (2007).

On the other hand, model validation is challenging in the FTS. In
order to sophistically and rigorously validate the proposed mass
transfer model, multiple measurements of the composition in both
phases are required along the axial direction. To the authors’
knowledge, this composition measurement remains to done in an
FTS SBCR. Furthermore, due to the vast amount of species in the
FTS, experiments generally focus on the composition at the reactor
inlet or outlet, or more conveniently, the conversion level, see the
comparison in Table 10. However, the effects seen on the conver-
sion level must be seen as a combined effect of mass transfer, reac-
tion kinetics, diffusion, dispersion effects, and superficial gas
velocity. For instance, high conversion can be reached when the
superficial gas velocity is low, see e.g., Gavrilović et al. (2021).
The conversion level can therefore only be used as an indication
for whether the mass transfer expression provides physical simu-
lation results at flow conditions similar to those in the related
experimental study. Nevertheless, in this study, a set of mass trans-
fer expressions were compared while the other governing equa-
tions were identical. Thus, the experimental conversion levels
provide a meaningful way of comparing the mass transfer models
employed in this work.

4. Summary and Conclusion

In this study, an industrial scale cobalt-based FTS SBCR has been
simulated, emphasizing mass transfer between gas and liquid
phases. In particular, the driving force for mass transfer has been
explored, in which three different driving forces were employed:
one based on the PR EoS, one based on the PC-SAFT EoS, and one
based on Henry’s law. In the mass transfer expression based on
Henry’s law, the choice of solvent and its implications for the sim-
ulation results were highlighted. Here, the solvent has been speci-
fied as a paraffin with carbon chain length in the range of 16–36.
For solvent carbon chain length of 16, the conversion level of CO
at the SBCR outlet was 63 mol%, whereas for solvent carbon chain
length of 36, the conversion level of CO at the SBCR outlet was
74 mol%. For the same carbon chain length variation, a fourfold
variation in the solubility of CO was observed. Furthermore, as
Hij does not exist for all components, the mass transfer (evapora-
tion) of paraffins was neglected.

In the FTS, many hydrocarbons are present in substantial
amounts in the slurry phase, and identifying a single solvent is
therefore ambiguous. The novel mass transfer expressions based
on the PR EoS and the PC-SAFT EoS do not require the specification
of a single solvent; only the different species must be specified for
the mass transfer to be computed. The mass transfer expressions
based on the PR and the PC-SAFT EoSs are thus advantageous
regarding the solvent specification ambiguity. Moreover, the infi-
nite dilution limit employed with Henry’s law is only valid for
the volatile components present in the FTS. Hence, Henry’s law is
only theoretically justified for predicting the mass transfer for
some components. On the other hand, the mass transfer expres-
sions based on the PR and PC-SAFT EoSs are equally valid for dilute
and concentrated components, and consequently, the mass trans-
fer of all components in the FTS can be predicted with a sound
basis in thermodynamic phase equilibrium.

The conversion level of the FTS reactor has become the conven-
tional measure of the performance of the reactor. In this study, the
conversion level of CO at the SBCR outlet is in the range of 63–
74 mol%, depending on the mass transfer model employed. For
mass transfer based on Henry’s law, the conversion level of CO
was found to increase with increasing solvent carbon chain length.
For the mass transfer model based on an EoS, the lowest conver-
sion was observed for the PC-SAFT EoS with kij – 0, and the highest
conversion was observed for the PR EoS with kij ¼ 0. Furthermore,
a sensitivity study in pressure was performed, and the conversion
level of syngas was found to increase with increasing pressure. This
trend is in agreement with the extensive experimental work of
Davis (2002) and the experimental work of Sari et al. (2009), but
in disagreement with the experimental work of Sadeqzadeh et al.
(2013) and the theoretical work of Sehabiague and Morsi
(2013a). More experimental work is required to fully understand
the effects of pressure perturbations.

Additionally, a sensitivity study in temperature was performed.
The conversion level of syngas and CO decreased with increasing
temperature. This trend suggests that the SBCR is in the mass
transfer limited regime, not the kinetically limited regime. Increas-
ing the catalyst loading and the mass transfer coefficient confirmed
that the studied SBCR was indeed in the mass transfer limited
regime.

The three different propositions for the driving force of mass
transfer were analyzed in terms of simulation time. The mass
transfer expression based on Henry’s law was the fastest, with a
simulation time of less than 1 min. The mass transfer expression
based on the PR EoS was solved in 5 min and was the second fastest
proposition. The last and slowest mass transfer expression was
based on the PC-SAFT EoS, which is quite computationally
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demanding due to its high mathematical complexity. The simula-
tions with mass transfer based on the PC-SAFT EoS spent
260 min. The solution of the phase equilibrium problem requires
second derivatives, and since a high computational cost is associ-
ated with the second derivatives of the PC-SAFT EoS, an ideal gas
approximation in the second derivatives was attempted. Although
this resulted in computationally cheaper second derivatives, more
iterations were required. The overall effect was simulation times of
580 min, which is more than twice as long as the simulations with-
out the ideal gas approximation in the second derivatives.

The EoS description can predict the spontaneity of the forma-
tion of additional phases. Thus, the possible formation of an aque-
ous liquid phase was investigated. For the PR EoS, neither the gas
phase nor the slurry phase has a chemical potential of H2O that
supports the formation of an aqueous liquid phase. For the PC-
SAFT EoS, a liquid root could not be identified, as only a supercrit-
ical isotherm was produced in the pV-plane. Thus, also here, no
aqueous liquid phase can be formed. The operating conditions
investigated here do not support the supercritical isotherm for
H2O, and clearly, the associative contribution to the Helmholtz
energy potential introduced in a revision (Gross and Sadowski,
2002) of the PC-SAFT EoS must be included to represent H2O
appropriately. For mass transfer based on Henry’s law, the driving
force measuring the spontaneity of the formation of additional
phases was not available. Thus, the possibility that an aqueous
phase has been erroneously disregarded could not be investigated
with mass transfer based on Henry’s law.

The driving force of mass transfer between gas and liquid
phases was scrutinized in this study. However, the mass transfer
also relies on the size of the bubbles through the interfacial area
of the adjoining phases. Several correlations also suggest a bubble
size dependency of the mass transfer coefficient. In this work, the
bubble diameter was set constant. As a suggestion to improve the
model, further work may include the population balance frame-
work (see e.g., Vik et al. (2015)) and thereby gaining insight in
the bubble size distribution and its impact on the mass transfer
in the FTS SBCR.
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Appendix A. Derivation of Mass Transfer Based on Henry’s Law

In this work, the two-film model was employed. In this context,
a thin film is formed on each side of the interface separating the
two phases, and mass transfer flux equations can be formulated,
see Fig. 26. The flux equation representing mass transfer from
the gas phase to the interface is given by

NG�I
i ¼ kG;iqG xG;i;I �xG;i

� �
: ðA:1Þ

Similarly, the flux equation representing mass transfer from the
interface to the liquid phase is given by

NI�L
i ¼ kL;iqL xL;i;I �xL;i

� �
: ðA:2Þ

In Eqs. (A.1) and (A.2), GLE is commonly assumed to prevail at the
interface, i.e., xG;i;I ¼ x�G;i and xL;i;I ¼ x�L;i. Thus,

NG�I
i ¼ kG;iqG x�G;i �xG;i


 �
; ðA:3Þ

NI�L
i ¼ kL;iqL x�L;i �xL;i


 �
: ðA:4Þ

For infinitely diluted solute i in solvent j, Henry’s law is given by Eq.
(21). With Eq. (21), x�L;i can be written

x�L;i ¼
p
Hij

M�w;G

M�w;L

x�G;i; ðA:5Þ

where the molar weight of the mixture is denoted Mw. To represent
Mw in terms of mass fractions, the conversion formula from mass
fraction to mole fraction is given as

xi ¼ xi=Mw;iXNc

j¼1
xj=Mw;j

: ðA:6Þ

Hence, the molar weight of the mixture is given by

Mw ¼
XC
j¼1

xjMw;j ¼ 1XC
j¼1

xj=Mw;j

: ðA:7Þ

By dividing Eq. (A.4) by kL;iqL, and utilizing Eq. (A.5), we obtain

NI�L
i

kL;iqL
¼ p

Hij

M�w;G

M�w;L

x�G;i �xL;i: ðA:8Þ

Next, Eq. (A.3) is divided by kG;iqG
Hij

p

M�w;L

M�
w;G

:

NG�I
i

kG;iqG
Hij

p

M�w;L

M�
w;G

¼ p
Hij

M�w;G

M�w;L

x�G;i �xG;i


 �
: ðA:9Þ

The mass transfer fluxes are now gathered into a single expression
by recognizing that the fluxes are continuous through the interface,
i.e., Ni ¼ NI�L

i ¼ �NG�I
i . Thus, by subtracting Eq. (A.9) from Eq. (A.8):

Ni
1

kL;iqL
þ 1

kG;iqG
Hij

p

M�
w;L

M�
w;G

0
BB@

1
CCA ¼ p

Hij

M�w;G

M�w;L

xG;i �xL;i: ðA:10Þ

Due to the diffusivity coefficient being larger in the gas phase than
in the liquid phase, the majority of the mass transfer resistance is on
the liquid side of the phase boundary. Thus, the first term in the
parenthesis on the left-hand side of Eq. (A.10) dominates. The sec-
ond term in the parenthesis is therefore neglected. Furthermore,
by assuming x�G;i ¼ xG;i, then M�w;G is obtained from Eq. (A.7) and

M�w;L is obtained through
Eqs. (A.5) and (A.7). The resulting expression reads

Ni ¼ kL;iqL
p
Hij

Mw;G

M�w;L

xG;i �xL;i

 !
: ðA:11Þ

Fig. 26. An illustration of the two-film mass transfer model.
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Appendix B. The pressure and its derivatives

The pressure is defined through the volume derivative of the
Helmholtz energy potential:

p � � @A
@V

� �
T;N

: ðB:1Þ

Furthermore, the Helmholtz energy potential can be split into the
residual contribution and the ideal gas contribution:

A ¼ Ar;v þAig: ðB:2Þ
Employing Eq. (B.2) and noting that the derivative is a linear oper-
ator, Eq. (B.1) can equivalently be stated as

p ¼ � @Ar;v

@V

� �
T;N
� @Aig

@V

 !
T;N

¼ pr;v þ pig; ðB:3Þ

which yields

p ¼ � @Ar;v

@V

� �
T;N
þ NkBT

V
ðB:4Þ

With Eq. (B.4), the first derivatives in pressure are given as

@p
@T

� �
V ;N
¼ � @Ar;v

@T@V

� �
N
þ NkB

V
ðB:5Þ

@p
@V

� �
T;N
¼ � @Ar;v

@V2

� �
T;N
� NkBT

V2 ðB:6Þ

@p
@Nk

� �
T;V

¼ � @Ar;v

@V@Nk

� �
T

þ kBT
V

: ðB:7Þ

Appendix C. The PC-SAFT EoS in Canonical Variables

In the PC-SAFT EoS, molecules are viewed as chains of hard
spheres that interact. Initially, a number, �m, of hard spheres are
given a reduced hard sphere Helmholtz energy, ~ahs. These hard
sphere segments move closer by adding the reduced dispersive (at-
tractive) Helmholtz energy, ~adisp. When the hard spheres are suffi-
ciently close, they are assumed to form chains of segment length
�m. The chain contribution to the reduced Helmholtz energy is
denoted ~achain. Ultimately, the molecules (hard chains) are given
interaction sites where two or more molecules can associate
(e.g., hydrogen bonding). The reduced associative Helmholtz
energy is denoted ~aassoc.

The four different contributions are added to construct the
reduced residual Helmholtz energy potential:

~ar;v T;v ; xð Þ ¼ A
r;v T;V ;Nð Þ
NkBT

¼ �m~ahs þ ~achain þ ~adisp þ ~aassoc; ðC:1Þ

where r; v denotes that the real fluid and the corresponding ideal
gas are evaluated at the same temperature, T, volume, V, and vector

of molecules, N. Furthermore, N ¼PC
i¼1Ni is the total number of

molecules, v ¼ V=N is the molecular volume, and x ¼ N=N is the
vector of mole fractions. Ar;v denotes the extensive, residual Helm-
holtz energy potential.

The expression for ~ar;v is given in Gross and Sadowski (2001).
However, classical thermodynamic relations are defined through
the derivatives of the Ar;v and not ~ar;v. For instance:

Sr;v T;V ;Nð Þ � � @Ar;v

@T

� �
V ;N

; ðC:2Þ

pr;v T;V ;Nð Þ � � @Ar;v

@V

� �
T;N

; ðC:3Þ

lr;v
i T;V ;nð Þ � @Ar;v

@ni

� �
T;V ;nj–i

¼ NA
@Ar;v

@Ni

� �
T;V ;Nj–i

: ðC:4Þ

Rewriting Eqs. (C.2), (C.3), and (C.4) in terms of ~ar;v is a complicated
task, both in terms of thermodynamic understanding and mathe-
matical complexity. Here, we rewrite the expressions given by
Gross and Sadowski (2001) in terms of the Ar;v by multiplying Eq.
(C.1) by NkBT. The resulting expression reads:

Ar;v ¼ �mAhs þAchain þAdisp þAassoc; ðC:5Þ

Ahs T;V ;Nð Þ ¼ NkBT
n0

3n1n2
1� n3

þ n32
n3 1� n3ð Þ2

þ n32
n23
� n0

 !
ln 1� n3ð Þ

" #

ðC:6Þ

Achain T;V ;Nð Þ ¼ �kBT
XC
i¼1

Ni mi � 1ð Þ ln ghs
ii ; ðC:7Þ

Adisp T;V ;Nð Þ ¼ A1 þA2; ðC:8Þ

A1 T;V ;Nð Þ ¼ �2pkBT
V

I1
XC
i¼1

XC
j¼1

NiNjmimj
eij
kBT

� �
r3

ij; ðC:9Þ

A2 T;V ;Nð Þ ¼ �pkBT
V

�mC1I2
XC
i¼1

XC
j¼1

NiNjmimj
eij
kBT

� �2

r3
ij: ðC:10Þ

The additional relations are given by

�m Nð Þ ¼
XC
i¼1

ximi ðC:11Þ

di Tð Þ ¼ ri 1� 0:12 exp �3 ei
kBT

� �� �
ðC:12Þ

nn T;V ;Nð Þ ¼ p
6V

XC
i¼1

Nimid
n
i ; ðC:13Þ

ghs
ij T;V ;Nð Þ ¼ 1

1� n3
þ didj

di þ dj

3n2
1� n3ð Þ2

þ didj

di þ dj

� �2 2n22
1� n3ð Þ3

ðC:14Þ

C1 T;V ;Nð Þ ¼ 1þ �m
8n3�2n23
1� n3ð Þ4

þ 1� �mð Þ20n3�27n23þ12n33�2n43
1� n3ð Þ2 2� n3ð Þ2

" #�1

ðC:15Þ

I1 T;V ;Nð Þ ¼
X6
i¼0

ain
i
3 ðC:16Þ

I2 T;V ;Nð Þ ¼
X6
i¼0

bin
i
3 ðC:17Þ

ai Nð Þ ¼ a0i þ
�m� 1
�m

a1i þ
�m� 1
�m

�m� 2
�m

a2i ðC:18Þ

bi Nð Þ ¼ b0i þ
�m� 1
�m

b1i þ
�m� 1
�m

�m� 2
�m

b2i ðC:19Þ
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rij ¼ 1
2
ri þ rj
� � ðC:20Þ

eij ¼
ffiffiffiffiffiffiffi
eiej

p
1� kij
� � ðC:21Þ

C.1. Derivatives concerning T

For a generic function f i x; y; zð Þ, we use the shorthand notation
for its partial derivative:

f ix ¼
@f i
@x

� �
y;z
: ðC:22Þ

Employing Eq. (C.22), we write the temperature derivative of Eqs.
(C.5), (C.6), (C.7), (C.9), (C.10), (C.11), (C.12), (C.13), (C.14), (C.15),
(C.16), (C.17), (C.18), (C.19) as

Ar;v
T ¼ �mAhs

T þAchain
T þA1T þA2T ; ðC:23Þ

Ahs
T ¼

Ahs

T
þ NkBT

n0

3n1Tn2
1� n3

þ 3n1n2T
1� n3

þ 3n1n2n3T
1� n3ð Þ2

"

þ 3n22n2T
n3 1� n3ð Þ2

� n32n3T
n23 1� n3ð Þ2

þ 2n32n3T
n3 1� n3ð Þ3

þ 3n22n2T
n23

� 2n32n3T
n33

 !
ln 1� n3ð Þ � n32

n23
� n0

 !
n3T

1� n3

#
ðC:24Þ

Achain
T ¼ A

chain

T
� kBT

XC
i¼1

Ni mi � 1ð Þ g
hs
iiT

ghs
ii

ðC:25Þ

A1T ¼ I1T
I1
A1 ðC:26Þ

A2T ¼ �A2

T
þ C1T

C1
A2 þ I2T

I2
A2 ðC:27Þ

Furthermore, the derivatives concerning T of the additional rela-
tions are

diT ¼ 3ei
kBT

2 di � rið Þ; ðC:28Þ

nnT ¼
p
6V

XC
i¼1

Nimind
n�1
i diT ðC:29Þ

ghs
ijT ¼

n3T
1� n3ð Þ2

þ diTdj

di þ dj
þ didjT

di þ dj
� didjdiT

di þ dj
� �2 � didjdjT

di þ dj
� �2

" #
3n2

1� n3ð Þ2

þ didj

di þ dj

3n2T
1� n3ð Þ2

þ 6n2n3T
1� n3ð Þ3

" #

þ didj

di þ dj

diTdj

di þ dj
þ didjT

di þ dj
� didjdiT

di þ dj
� �2 � didjdjT

di þ dj
� �2

" #
4n22

1� n3ð Þ3

þ didj

di þ dj

� �2 4n2n2T
1� n3ð Þ3

þ 6n22n3T
1� n3ð Þ4

" #

ðC:30Þ

C1T ¼ �C2
1 4 �mn3T

2�n3
1�n3ð Þ4 þ

8n3�2n23
1�n3ð Þ5


 �h
þ2n3T 1� �mð Þ 10�27n3þ18n23�4n33

1�n3ð Þ2 2�n3ð Þ2



þ 20n3�27n23þ12n33�2n43
1�n3ð Þ3 2�n3ð Þ2 þ 20n3�27n23þ12n33�2n43

1�n3ð Þ2 2�n3ð Þ3
�i ðC:31Þ

I1T ¼
X6
i¼0

iain
i�1
3 n3T ðC:32Þ

I2T ¼
X6
i¼0

ibin
i�1
3 n3T ðC:33Þ

C.2. Derivatives concerning V

Ar;v
V ¼ �mAhs

V þAchain
V þA1V þA2V ; ðC:34Þ

Ahs
V ¼ �

n0V
n0
Ahs þ NkBT

n0

3n1Vn2
1� n3

þ 3n1n2V
1� n3

þ 3n1n2n3V
1� n3ð Þ2

"

þ 3n22n2V
n3 1� n3ð Þ2

� n32n3V
n23 1� n3ð Þ2

þ 2n32n3V
n3 1� n3ð Þ3

þ 3n22n2V
n23

� 2n32n3V
n33

� n0V

 !
ln 1� n3ð Þ � n32

n23
� n0

 !
n3V

1� n3

#
;

ðC:35Þ

Achain
V ¼ �kBT

XC
i¼1

Ni mi � 1ð Þ g
hs
iiV

ghs
ii

; ðC:36Þ

A1V ¼ �A1

V
þ I1V

I1
A1; ðC:37Þ

A2V ¼ �A2

V
þ C1V

C1
A2 þ I2V

I2
A2: ðC:38Þ

Furthermore, the derivatives concerning V of the additional rela-
tions are

nnV ¼ �
nn
V

ðC:39Þ

ghs
ijV ¼

n3V
1� n3ð Þ2

þ didj

di þ dj

3n2V
1� n3ð Þ2

þ 6n2n3V
1� n3ð Þ3

" #

þ didj

di þ dj

� �2 4n2n2V
1� n3ð Þ3

þ 6n22n3V
1� n3ð Þ4

" # ðC:40Þ

C1V ¼ �C2
1 4 �mn3V

2� n3
1� n3ð Þ4 þ

8n3 � 2n23
1� n3ð Þ5

 !"

þ 2n3V 1� �mð Þ 10� 27n3 þ 18n23 � 4n33
1� n3ð Þ2 2� n3ð Þ2

 

þ20n3 � 27n23 þ 12n33 � 2n43
1� n3ð Þ3 2� n3ð Þ2

þ 20n3 � 27n23 þ 12n33 � 2n43
1� n3ð Þ2 2� n3ð Þ3

!#

ðC:41Þ

I1V ¼
X6
i¼0

iain
i�1
3 n3V ðC:42Þ
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I2V ¼
X6
i¼0

ibin
i�1
3 n3V ðC:43Þ

C.3. Derivatives concerning Nk

Ar;v
k ¼ �mAhs

k þAhs �mk þAchain
k þA1k þA2k; ðC:44Þ

Ahs
k ¼

Ahs

N
� n0k

n0
Ahs þ NkBT

n0

3n1kn2
1� n3

þ 3n1n2k
1� n3

þ 3n1n2n3k
1� n3ð Þ2

"

þ 3n22n2k
n3 1� n3ð Þ2

� n32n3k
n23 1� n3ð Þ2

þ 2n32n3k
n3 1� n3ð Þ3

þ 3n22n2k
n23

� 2n32n3k
n33

� n0k

 !
ln 1� n3ð Þ � n32

n23
� n0

 !
n3k

1� n3

#
;

ðC:45Þ

Achain
k ¼ �kBT mk � 1ð Þ ln ghs

kk � kBT
XC
i¼1

Ni mi � 1ð Þ g
hs
iik

ghs
ii

; ðC:46Þ

A1k ¼ I1k
I1
A1 � 4pkBT

V
I1
XC
i¼1

Nimimk
eik
kBT

� �
r3

ik; ðC:47Þ

A2k ¼
�mk

�m
A2 þ C1k

C1
A2 þ I2k

I2
A2

� 2pkBT
V

�mC1I2
XC
i¼1

Nimimk
eik
kBT

� �2

r3
ik;

ðC:48Þ

Furthermore, the derivatives concerning Nk of the additional rela-
tions are

�mk ¼ mk � �m
N

ðC:49Þ

nnk ¼
p
6V

mkd
n
k ðC:50Þ

ghs
ijk ¼

n3k
1� n3ð Þ2

þ didj

di þ dj

3n2k
1� n3ð Þ2

þ 6n2n3k
1� n3ð Þ3

" #

þ didj

di þ dj

� �2 4n2n2k
1� n3ð Þ3

þ 6n22n3k
1� n3ð Þ4

" # ðC:51Þ

C1k ¼ �C2
1 4 �mn3k

2� n3
1� n3ð Þ4 þ

8n3 � 2n23
1� n3ð Þ5

 !"

þ 2n3k 1� �mð Þ 10� 27n3 þ 18n23 � 4n33
1� n3ð Þ2 2� n3ð Þ2

 

þ20n3 � 27n23 þ 12n33 � 2n43
1� n3ð Þ3 2� n3ð Þ2

þ 20n3 � 27n23 þ 12n33 � 2n43
1� n3ð Þ2 2� n3ð Þ3

!

þ2 �mk
4n3 � n23
1� n3ð Þ4

� �mk
20n3 � 27n23 þ 12n33 � 2n43

1� n3ð Þ2 2� n3ð Þ2
#

ðC:52Þ

I1k ¼
X6
i¼0

aikn
i
3 þ iain

i�1
3 n3k

h i
ðC:53Þ

I2k ¼
X6
i¼0

bikn
i
3 þ ibin

i�1
3 n3k

h i
ðC:54Þ

aik ¼
�mk

�m2 a1i þ
3 �mk

�m2 �
4 �mk

�m3

� �
a2i ðC:55Þ

bik ¼
�mk

�m2 b1i þ 3 �mk

�m2 �
4 �mk

�m3

� �
b2i ðC:56Þ

C.4. Derivatives concerning V ;V

Ar;v
VV ¼ �mAhs

VV þAchain
VV þA1VV þA2VV ; ðC:57Þ

Ahs
VV ¼ �

n0VV
n0
Ahs � 2

n0V
n0
Ahs

V þ
NkBT
n0

3n1VVn2
1� n3

þ 6n1Vn2V
1� n3

�

þ 6n1Vn2n3V
1� n3ð Þ2 þ

3n1n2VV
1� n3

þ 6n1n2Vn3V
1� n3ð Þ2 þ

3n1n2n3VV
1� n3ð Þ2 þ

6n1n2n
2
3V

1� n3ð Þ3

þ 6n2n
2
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n23
� 12n22n2Vn3V

n33
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Achain
VV ¼ �kBT

XC
i¼1
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iiVV
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� ghs
iiV
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 !2
2
4

3
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A1VV ¼ 2
A1

V2 � 2
I1V
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I1
A1; ðC:60Þ
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I2V
I2V
A2 þ 2

C1V

C1

I2V
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A2 þ C1VV
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A2

þ I2VV
I2
A2 ðC:61Þ

Furthermore, the derivatives concerning V ;V of the additional rela-
tions are

nnVV ¼ 2
nn
V2 ðC:62Þ
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ijVV ¼

n3VV
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" #
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2
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#

ðC:63Þ

S.B. Øyen, H.A. Jakobsen, T. Haug-Warberg et al. Chemical Engineering Science 259 (2022) 117774

30



C1VV ¼ 2C2
1V

C1
� C2

1 4 �mn3VV
2� n3
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 !"
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ðC:64Þ

I1VV ¼
X6
i¼0

iai i� 1ð Þni�23 n23V þ ni�13 n3VV
h i

ðC:65Þ

I2VV ¼
X6
i¼0

ibi i� 1ð Þni�23 n23V þ ni�13 n3VV
h i

ðC:66Þ

C.5. Derivatives concerning V ;Nk

Ar;v
Vk ¼ �mAhs

Vk þAhs
V
�mk þAchain

Vk þA1Vk þA2Vk; ðC:67Þ

Ahs
Vk ¼

1
N
� n0k

n0

� �
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þ 3n1n2Vn3k
1� n3ð Þ2

� 3n22n2k
n23

� 2n32n3k
n33

� n0k

 !
n3V

1� n3

#
;

ðC:68Þ

Achain
Vk ¼ �kBT mk � 1ð Þ g

hs
kkV

ghs
kk

� kBT
XC
i¼1

Ni mi � 1ð Þ ghs
iiVk

ghs
ii

� ghs
iiVg

hs
iik

ghs
ii

� �2
 !

ðC:69Þ

A1Vk ¼ I1k
I1
A1V þ I1V

I1
� 1
V

� �
A1k þ I1Vk

I1
� 2

I1V I1k
I21
þ I1k
VI1

 !
A1 ðC:70Þ

A2Vk ¼
�mk

�m
þ C1k
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þ I2k

I2

� �
A2V þ C1V

C1
þ I2V

I2
� 1
V

� �
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C2
1
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"

� �mk
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V

� ��
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ðC:71Þ

Furthermore, the derivatives concerning V ;Nk of the additional rela-
tions are

nnVk ¼ �
p

6V2 mkd
n
k ðC:72Þ

ghs
ijVk ¼ 2

n3k
1� n3

ghs
ijV þ 2

n3V
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I1Vk ¼
X6
i¼0

iaikn
i�1
3 n3V þ iai i� 1ð Þni�23 n3Vn3k þ ni�13 n3Vk

h ih i
ðC:75Þ

I2Vk ¼
X6
i¼0

ibikn
i�1
3 n3V þ ibi i� 1ð Þni�23 n3Vn3k þ ni�13 n3Vk

h ih i
ðC:76Þ

C.6. Derivatives concerning Nk;Nl

Ar;v
kl ¼ �mAhs

kl þ �mlAhs
k þ �mkAhs

l þ �mklAhs þAchain
kl þA1kl þA2kl

ðC:77Þ
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Furthermore, the derivatives concerning Nk;Nl of the additional
relations are

�mkl ¼ �
�mk þ �ml

N
ðC:82Þ
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I2kl ¼
X6
i¼0

bikln
i
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aikl ¼
�mkl

�m2 a1i þ
3 �mkl

�m2 �
4 �mkl

�m3 þ
4 �mk �ml

�m4

� �
a2i � 2 �ml

�m
aik ðC:88Þ
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�mkl

�m2 b1i þ 3 �mkl

�m2 �
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�m3 þ
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Appendix D. Constitutive Equations

D.1. Species Mass

The effective dispersion coefficient of the liquid was taken from
the correlations of Deckwer et al. (1974). However, the experi-
ments of Deckwer et al. (1974) were performed in columns with
internal diameters 0.15 m and 0.2 m. The internal diameter of
the column in this work was 9 m, and thus, appropriate scaling
techniques were employed. The scaling was based on the work of
Yang and Fan (2003):
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DL;eff ;z ¼ 0:678ds
col vGaGð Þ0:3; ðD:1Þ

where the diameter of the reactor column is denoted dcol. The scal-
ing parameter was given by Sehabiague and Morsi (2013a) as:

s ¼ s0 1� 0:11 ln
qG

qG;0

 !
: ðD:2Þ

Here, s0 ¼ 1:4 and qG;0 is the gas density at ambient conditions, i.e.,
at T ¼ 298:15K and p ¼ 1bar.

Furthermore, the effective dispersion coefficient of the gas was
related to DL;eff ;z as (Sehabiague and Morsi, 2013a):

DG;eff ;z ¼ DL;eff ;z 1� d2:5
b

d2:5
b;0 þ d2:5

b

 !
; ðD:3Þ

where the bubble diameter db;0 ¼ 10mm was classified as the tran-
sition to large bubbles.

The mass transfer coefficient was estimated based on the exper-
iments on bubbly flow performed by Calderbank and Moo-Young
(1961):

kL;i ¼ 0:31
qL � qGð ÞlLg

q2
L

� �1=3

Sc�2=3i : ðD:4Þ

In Eq. (D.4), g denotes the specific gravity, and lL denotes the
dynamic molecular viscosity of the liquid, given in Table 7. The Sch-
midt number of component i is given by

Sci ¼ lL

qLDWilke;i
; ðD:5Þ

where DWilke;i are the multicomponent diffusivities approximated by
Wilke’s model

DWilke;i ¼ 1�xL;i

Mw;L

XNC

j ¼ 1
j–i

xL;j

Mw;jDj

: ðD:6Þ

Here the molecular diffusivities, Dj, were computed by Erkey et al.
(1990) with molecular diameters from Bondi (1964). The parameter
N in Eq. (7) of Erkey et al. (1990) was back-calculated by Vik et al.
(2015) as N ¼ 0:605.

The gas–liquid interfacial area was computed by the assump-
tion of spherical bubbles (Deckwer et al., 1974):

a ¼ 6
aG

db
: ðD:7Þ

Here, db is the bubble diameter assumed constant throughout this
work.

D.2. Momentum

The Reynolds analogy was employed to estimate the effective
turbulent viscosities:

lL;eff ;z 	 qLDL;eff ;z; ðD:8Þ

lG;eff ;z 	 qGDG;eff;z: ðD:9Þ
Furthermore, the drag force between the gas and liquid phases was
modeled as (Albråten, 1982)

f G�Ldrag ¼ �
3
4
aG

db
qLCD;G�L j vL � vG j vL � vGð Þ; ðD:10Þ

where CD is the drag coefficient. Tomiyama (1998) parametrized the
drag coefficient for pure, uncontaminated systems as:

CD;G�L0 ¼max min
16
Rep

1þ 0:15Re0:687p


 �
;
48
Rep

� �
;
8
3

E€o
E€oþ 4

� �
:

ðD:11Þ
To account for the swarm effect observed when multiple bubbles
rise through the liquid phase, a correction is introduced (Rampure
et al., 2007):

CD;G�L ¼ CD;G�L0 1� aGð ÞPG ; ðD:12Þ
in which PG denotes the correction factor. The relative Eötvös num-
ber is given as

E€o ¼ g qL � qGð Þd2
b

r
; ðD:13Þ

where r denotes the surface tension. Furthermore, the relative Rey-
nolds number is given by

Rep ¼ qL j vL � vG j db

lL
ðD:14Þ

The drag force between the solid and liquid phases was modeled by
the same functional form as the drag between the gas and liquid
phases:

f S�Ldrag ¼ �
3
4
aS

dS
qLCD;S�L j vL � vS j vL � vSð Þ; ðD:15Þ

where the drag coefficient was obtained from the correlations of
Morsi and Alexander (1972):

CD;S�L ¼ 24
ReS

; ReS < 0:1 ðD:16aÞ

CD;S�L ¼ 22:73
ReS

þ 0:0903
Re2S

þ 3:690; 0:1 < ReS < 1 ðD:16bÞ

CD;S�L ¼ 29:1667
ReS

� 3:8889
Re2S

þ 1:222; 1 < ReS < 10 ðD:16cÞ

CD;S�L ¼ 46:50
ReS

� 116:67
Re2S

þ 0:6167; 10 < ReS < 100 ðD:16dÞ

CD;S�L ¼ 98:33
ReS

� 2778
Re2S

þ 0:3644; 100 < ReS < 1000 ðD:16eÞ

CD;S�L ¼ 148:62
ReS

� 47500
Re2S

þ 0:357; 1000 < ReS < 5000 ðD:16fÞ

CD;S�L ¼ �490:546
ReS

þ 578700
Re2S

þ 0:46; 5000 < ReS < 10000

ðD:16gÞ

CD;S�L ¼ �1662:5
ReS

þ 5416700
Re2S

þ 0:5191; 10000 < ReS < 50000:

ðD:16hÞ
Here, the Reynolds number of the solid was computed as

ReS ¼ qL j vS � vL j dS

lL
ðD:17Þ

The wall-to-liquid friction was modeled analogously to the gas-to-
liquid drag:

fW�Lfric ¼ �
1
2

1
dcol

qLfWvLvL: ðD:18Þ

Petukhov (1970) parametrized the wall friction coefficient
(Bergman and Lavine, 2017), and we adopted their correlation here:

fW ¼ 0:79 lnRe� 1:64ð Þ�2; ðD:19Þ
where the liquid Reynolds number is given by

S.B. Øyen, H.A. Jakobsen, T. Haug-Warberg et al. Chemical Engineering Science 259 (2022) 117774

33



Re ¼ qLvLdcol

lL
: ðD:20Þ

The friction force between the liquid and the cooling pipes was
modeled analogously to the friction force between the liquid and
the wall:

f P�Lfric ¼ �
1
2
npipes

dpipes
qLf PvLvL; ðD:21Þ

where (Petukhov, 1970; Bergman and Lavine, 2017)

f P ¼ 0:79 lnReP � 1:64ð Þ�2; ðD:22Þ

ReP ¼ qLvLdpipes

lL
: ðD:23Þ

D.3. Energy

The liquid phase heat capacity, cp;L, was assumed equal to the
heat capacity of pure C40H82 and was computed from the asymp-
totic behavior correlations of Marano et al. (1997b) at T ¼ 513k.
Moreover, cp;L was assumed independent of temperature. Although
the correlation of Marano et al. (1997b) is valid for 3 6 CN 6 18,
their results were in good agreement with different polyethylenes
which constitute long-chained alkenes, and thus the extrapolation
to CN ¼ 40 is reasonable. The solid phase heat capacity was
obtained from Maretto and Krishna (1999) and was assumed inde-
pendent of temperature.

The gas phase heat capacity was computed as a weighted sum
of the pure component contributions:

cp;G ¼
XNC

i¼1
xG;icp;G;i: ðD:24Þ

The pure component heat capacities of CO, H2, H2O, and CO2 were
obtained at T ¼ 500K from the tables given by Chase (1998). For
the lumps L1–L4, the heat capacities were obtained from the
asymptotic behavior correlations of Marano et al. (1997b). All gas
phase heat capacities were assumed ideal and independent of
temperature.

Although cp;L; cp;G;i, and cp;S were all computed at temperatures
relevant for the FTS, they were all assumed independent of temper-
ature. No real fluid contributions were employed for the liquid or
gas phases. As the bubble columns have a remarkable heat transfer
coefficient, the temperature variations are minor. Thus, the
assumption of temperature invariant heat capacities is not
believed to be the weakest link in the model description. The dif-
ferences between ideal gas heat capacity and real fluid heat capac-
ity could provide further insights on the behavior of the FTS SBCR;
nevertheless, the study of real fluid heat capacities is left for future
work.

Similar to the effective turbulent viscosity, the effective thermal
conductivity was assumed to follow the Reynolds analogy:

kL;eff;z ¼ DL;eff ;zqLcp;L ðD:25Þ

kG;eff;z ¼ DG;eff;zqGcp;G: ðD:26Þ
The energy transfer from the liquid to the external heat exchanger
was modeled with a perimeter-to-surface area ratio and an overall
heat transfer coefficient. The perimeter was computed by

SI ¼ p dcol þ npipesdpipes
� �

; ðD:27Þ
and the surface area available to fluid flow was computed by

A ¼ p
4

d2
col � npipesd

2
pipes


 �
ðD:28Þ

The overall heat transfer coefficient was computed by a series of
resistances:

1
U
¼ 1

hW
þ twall

ksteel
þ 1
hcool

: ðD:29Þ

Here, hW is the heat transfer coefficient on the liquid side of the
cooling pipe wall, twall is the thickness of the cooling pipe wall,
ksteel is the conductivity of steel, and hcool is the heat transfer coeffi-
cient on the heat exchanger side of the cooling pipe wall. Deckwer
(1980) parametrized hW as

hW ¼ 0:1k0:5SL q
0:75
L c0:5p;SLl

�0:25
SL g0:25 vGaGð Þ0:25; ðD:30Þ

and gave values for hcool (Vik et al., 2015). Here, kSL denotes the
molecular conductivity of the liquid, which was given by (Tareef,
1940)

kSL ¼ kL
2kL þ kS � 2wS kL � kSð Þ
2kL þ kS þ wS kL � kSð Þ ; ðD:31Þ

where kL and kS were taken from Maretto and Krishna (1999), and

wS ¼
aS

aL
: ðD:32Þ

Furthermore, the slurry phase heat capacity is given by

cp;SL ¼ /Scp;S þ /Lcp;L; ðD:33Þ
where

/S ¼
qSaS

qSLaSL
; ðD:34Þ

/L ¼ 1� /S: ðD:35Þ
The liquid and solid phase densities were taken from Sehabiague
and Morsi (2013) and Maretto and Krishna (1999), respectively.
The slurry volume fraction is

aSL ¼ aL þ aS; ðD:36Þ
and the slurry density is

qSL ¼
aSqS þ aLqL

aSL
: ðD:37Þ

Moreover, the slurry viscosity was parametrized by Vand (1948) as:

lSL ¼ lL exp
2:5wS

1� 0:609wS

� �
: ðD:38Þ

Calderbank and Moo-Young (1961) parametrized the interphase
heat transfer coefficient as:

hL ¼ �kLcp;LqL
�Sc2=3Pr�2=3: ðD:39Þ

Here, the average mass transfer coefficient, �kL, and the average Sch-
midt number were computed by weighted sums:

�kL ¼
XNC

i¼1
xL;ikL;i; ðD:40Þ

�Sc2=3 ¼
XNC

i¼1
xL;iSci; ðD:41Þ

and the Prandtl number is given as

Pr ¼ cp;LlL

kL
: ðD:42Þ
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Chapter 5

Concluding Remarks and
Suggestions for Further Work

5.1 Concluding Remarks

Transport phenomena have a solid foundation in mathematics, where the
transport equations are derived rigorously through tensor calculus. How-
ever, the transport equations require additional relations referred to as con-
stitutive equations. It is common for these constitutive equations to rely on
thermodynamics.

In this work, emphasis has been placed on two constitutive equations,
and new formulations with roots in thermodynamic equilibrium theory were
established. The two constitutive equations investigated are i) the reaction
rate and ii) the mass transfer flux. The reaction rate is commonly correlated
as a function of concentration and temperature in experimental investiga-
tions. These formulations yield reaction rates well suited for the transport
phenomena framework. On the other hand, thermodynamics offers another
alternative for computing the extent of reaction, namely through chemical
equilibrium. This framework does not provide insight into the transient be-
havior of the reaction but is commonly used in feasibility/process design
studies.

In the first part of this work, the transport phenomena framework was
combined with the chemical equilibrium framework to improve models cur-
rently employed in feasibility studies. The transport equations were solved in
a sequential approach, and the chemical compositions were obtained by min-
imizing Gibbs or Helmholtz energy rather than from reaction kinetics. The
energy minimization was performed while keeping temperature and pres-
sure constant for the Gibbs energy approach, while the minimization was
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performed keeping temperature and volume constant for the Helmholtz en-
ergy approach. With the Helmholtz energy approach, two different volume
approaches were attempted for the energy minimization, that is, one where
the volume was computed from the EoS (orthogonal collocation method) and
one where the volume was selected from the numerical grid (finite volume
method). The results were identical. In terms of computational cost, the
Gibbs energy approach came out superior to the Helmholtz energy approach.

The differential Gibbs and Helmholtz reactor models were exemplified
by the Soave–Redlich–Kwong EoS and the virial expansion truncated after
the second term. Furthermore, two chemical processes were used in the
analysis of the reactor models, and the simulations revealed that the reactor
models converged well for both EoSs applied to both of the processes. It is
mentioned in paper I that for large amounts of heat released/absorbed, the
instantaneously established equilibrium will likely yield significant variations
in the dependent variables at the reactor inlet. This is inevitable and an
inherent property of neglecting the dynamic nature of the reaction.

The new reactor model based on chemical equilibrium is not aimed to
replace reactor models with reaction kinetics but rather to provide an al-
ternative in the absence of expressions for species reaction rates. Rather, it
provides an improvement of the current approach applied in chemical pro-
cess feasibility studies due to including flow conditions such as temperature
and pressure gradients along with the chemical equilibrium calculations.

In the second part of this work, a set of mass transfer equations were
derived based on a complete phase equilibrium description, incorporating all
components, including what is commonly referred to as the solvent (the com-
ponent in excess). This is different from common practice, where Henry’s
law is employed to close the set of mass transfer equations. The novel mass
transfer concept provides a flexible framework that allows for selecting a
thermodynamic model that best fits the components in the process investi-
gated with the same, relatively simple expression for mass transfer. Further-
more, the term solvent is no longer required, as the phase equilibrium can be
computed without knowledge of this concept. This proved advantageous in
the Fischer–Tropsch synthesis, where the large number of components was
shown to leave the solvent a vague and ambiguous concept.

The mass transfer equations are commonly closed by employing Henry’s
law. In this dissertation, the underlying assumptions of Henry’s law were
scrutinized and compared to a more rigorous approach, namely the complete
phase equilibrium based approach. The assumptions and weaknesses of the
Henry’s law approach include

• The solutes are infinitely diluted in a component in excess (solvent).
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• The mass transfer of the solvent cannot be directly computed, since
its Henry’s law coefficient does not exist.

• The solvent is a vague and ambiguous concept.

In the single cell protein process, a mixture of both volatile, slightly volatile,
and non-volatile species was present, and it was shown that when the non-
volatile compound cannot be selected as the solvent, its mass transfer must
be ignored due to the second bullet point above. Furthermore, in the
Fischer–Tropsch synthesis process, several chemical components were present
in the liquid phase in substantial amounts. Hence, they are not infinitely
diluted in a specific solvent. Additionally, multiple components are equally
qualified as solvents, resulting in ambiguity in selecting solvent. The results
show that the numerical solution of the transport equations relies signif-
icantly on which solvent is chosen, and an a priori choice of the optimal
solvent is a complicated task. Moreover, the assumption of infinitely diluted
solutes is violated in this system. The novel mass transfer expressions sug-
gested here rely on a complete phase equilibrium description and can provide
a rigorous alternative to methods based on Henry’s law without suffering the
same assumption violations.

5.2 Suggestions for Further Work

All parts of this dissertation employ minimization routines in the form
of Gibbs or Helmholtz energy. For convex objective functions (Gibbs or
Helmholtz energy functions) together with convex constraints, it has been
proven that, if a minimum is located, then it is the global minimum [Nocedal
and Wright, 2006]. This is not necessarily the case for non-convex objective
functions or non-convex constraints, where multiple local minima may exist
while only one global minimum exists.

In terms of thermodynamics, the constraints are linear and thus con-
vex. Considering thermodynamic models, the ideal gas EoS yields a convex
Gibbs and Helmholtz energy surface. For non-ideal gas EoSs, it must be
proven that the thermodynamic model yields a convex energy surface or if
it contrarily yields a non-convex energy surface. The work in this disserta-
tion has not performed any proof of this kind, and the located minima may
therefore be local minima rather than global minima. Albeit disregarded
in this dissertation, it should be further explored if the differential Gibbs
and Helmholtz reactor models, or the mass transfer expressions derived here
are to be further developed. The topic of global optimization is discussed
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by Floudas and Pardalos [2014] or, more generally, in the Journal of Global
Optimization.

Mass transfer expressions have an explicit dependency on the interfacial
area separating the two adjoining phases. Furthermore, several investigators
suggest a bubble size dependency in their correlations for the mass transfer
coefficient. It is clear that the bubble size is crucial in mass transfer mod-
eling; however, in this dissertation, the focus was to improve the driving
force of mass transfer, and hence, the interfacial area was ignored and set
constant. Changes to the gaseous phase were thus modeled only as a change
in the area fraction. In order to improve on the physical description of the
model, the population balance equation could be employed for the dispersed
gaseous phase.

The developed mass transfer expressions are based on phase equilibrium;
hence, the underlying assumptions of phase equilibrium must hold. In this
work, the temperature and pressure differences between the two phases were
negligible. In other chemical processes, the differences might be substantial,
violating the equilibrium assumptions. Therefore, it is essential to only em-
ploy the mass transfer expressions for systems where the temperature and
pressure of the two phases are not too different. To further develop the
novel mass transfer expressions derived here, balance equations for energy
and momentum can also be formed around the interface separating the two
phases. An interface temperature and an interface pressure (respectively)
can thus be computed, allowing the phase equilibrium, and hence the mass
transfer, to be computed for any system with two adjoining phases. The
computational effort required to resolve the spatial scale of these calcula-
tions in addition to the spatial scale of the reactor itself is foreseen to be
considerable.

As a final note, it is mentioned that verification in mass transfer mod-
eling is a complicated matter. Mass transfer models are commonly built on
the assumption that local phase equilibrium prevails at the interface of the
adjoining phases. However, as shown in this work, equilibrium relies on the
composition of both phases. To date, experiments are yet to be performed
and reported where the composition of both gas and liquid phases are mea-
sured at multiple heights/locations in a bubble column. Experiments of this
kind remain vital for verifying the mass transfer models proposed in this
dissertation.
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