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a b s t r a c t

Spatial aggregation with respect to a population distribution
involves estimating aggregate population quantities based on
observations from individuals. In this context, a geostatistical
workflow must account for three major sources of aggregation
error: aggregation weights, fine scale variation, and finite popu-
lation variation. However, these sources of aggregation error are
commonly ignored, and the population instead treated as a fixed
population density surface. We improve common practice by
introducing a sampling frame model allowing aggregation mod-
els to account for aggregation error simply and transparently.
This preserves aggregate point estimates while increasing their
uncertainties.

We compare the proposed and the traditional approach us-
ing two simulation studies mimicking neonatal mortality rate
(NMR) data from the 2014 Kenya Demographic and Health Sur-
vey. In the traditional approach, undercoverage/overcoverage of
interval estimates depends arbitrarily on the aggregation grid
resolution, while the new approach is resolution robust. Differ-
ences between the aggregation approaches increase as an area’s
population decreases, and are particularly large at the second
administrative level and finer, but also at the first administra-
tive level for some population quantities. These findings are
consistent with those of an application to the true NMR data.
We demonstrate in a sensitivity analysis that burden estimates
and their uncertainties are not robust to changes in population
density and census information, while prevalence estimates and
uncertainties seem stable.
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1. Introduction

Spatial aggregation based on point-referenced observations is an important problem in spatial
tatistics (Gelfand et al., 2010). If the quantities of interest can be written as integrals of a spatial
ield, the desired posterior distributions can be computed by block kriging (Gelfand et al., 2010)
r are directly available in basis decomposition methods such as fixed rank kriging (Cressie and
ohannesson, 2008), the stochastic partial differential equation (SPDE) approach (Lindgren et al.,
011), and LatticeKrig and its extensions (Nychka et al., 2015; Paige et al., 2022a). However, in some
ases, point-referenced measurements are collected from a ‘target’ population, a finite population
f interest, that may consist of people (Kenya National Bureau of Statistics, 2014), plants, or animal
pecies (Funwi-Gabga and Mateu, 2012; Ballmann et al., 2017; Laber et al., 2018). In these cases,
ggregate estimates, often at multiple different areal resolutions, may be desired for the target
opulation from which the observations were collected. We term this problem spatial aggregation
ith respect to a population distribution.
Our focus is small area estimation (SAE) of prevalence, i.e., the proportion of individuals with

outcome 1, based on binary responses (0 or 1). Some approaches (Giorgi et al., 2018; Dwyer-
Lindgren et al., 2019; Osgood-Zimmerman et al., 2018) approximate the prevalence with the risk,
hich is the expected number of individuals with outcome 1. It is worth emphasizing that even if
e knew the risk in an area exactly, say r = 0.7, the prevalence p could vary widely around this
umber for a small population size just as an empirical binomial proportion might vary around its
robability.
In this context, we identify three major sources of aggregation error: (1) aggregation weights, (2)

fine scale variation, and (3) finite population variation. By aggregation weights we mean the weights
used to take a weighted integral or average of point level estimates to produce areal estimates.
These weights may involve population density, for example, or the proportion of population in the
urban or rural part of an area. Fine scale variation is variability occurring at the finest modeled
spatial scale, such as the scale of the response. Fine scale variability could be induced by unmodeled
nonspatial or discrete spatial covariates, for example, or other local conditions. Finite population
variation is variability caused by the finite size of the target population, and is the cause of variation
in prevalence about the underlying risk.

Geostatistical models applied to, for example, neonatal mortality, women’s secondary education,
child growth failure, and vaccination coverage, routinely do not completely account for aggregation
error when aggregating from point level predictions to the areal level (Paige et al., 2022b; Dong
and Wakefield, 2021; LBD and others, 2020, 2021), as referenced in Fig. 1. For example, LBD and
others (2020) and LBD and others (2021) do not include finite population variation, and include
fine scale variation at the pixel level, which causes inference to depend on the grid resolution of
the model. Also, Paige et al. (2022b) does not account for finite population variation and similarly
only partially accounts for fine scale variation. Dong and Wakefield (2021) bases predictions on a
single simulated population, which does not account for the full distribution of possible aggregation
weights and target populations. We show in Section 5 that not (or even only partially) accounting
for these sources of aggregation error can lead to poor predictive performance in some contexts.

We propose a spatial aggregation model where we combine a response model for the data with a
sampling frame model that expresses uncertainty about the population distribution. The response
model is a Bayesian hierarchical model with a data model, a process model, and a parameter
model specifying priors. The sampling frame model by contrast describes the population distribution
that is used when producing population aggregates. The term ‘‘sampling frame’’ is borrowed from
survey statistics, and refers to the full list of the individuals and associated auxiliary information
such as spatial locations and covariate values. The spatial aggregation model generalizes models
2
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Fig. 1. Common geostatistical approach to spatial aggregation with respect to a population distribution (in black), with
roposed additions (in dashed blue). While population data is sometimes used aggregating from point to areal level
n common approaches, this procedure is ad hoc and does not account for several sources of aggregation error. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

roposed in Paige et al. (2022b) and Dong and Wakefield (2021), and is essential to account for
ggregation error in the aggregate estimates. While some information about the sampling frame
ay be unknown, such as the exact number of unobserved individuals and their locations, external

nformation such as population density maps provide a strong prior. Our proposed workflow is given
n Fig. 1, which shows both the common geostatistical workflow as well as our proposed method
or spatial aggregation with respect to a population.

We apply our proposed spatial aggregation model to neonatal mortality rates (NMRs), which is
he prevalence of mortality among neonatals—children within 28 days of live birth. Data on NMR
nd neonatal mortality burden, the total neonatal mortality count, is observed from a Demographic
nd Health Surveys (DHS) survey. In DHS surveys, observations are made by selecting small areal
nits and sampling a subset of the individuals within. These areal units are called enumeration
reas (EAs) and, e.g., the sampling frame in Kenya is divided into 96,251 EAs. We will treat the
bservations as point-referenced observations of clusters. The cluster level is a natural place to
nclude the nugget effect and the spatial aggregation model should be constructed based on this
hoice. DHS surveys are conducted under complex survey designs where inference on population
verages and totals in a given set of areas is of primary interest. However, producing estimates at
ultiple areal resolutions is also of interest. While parts of the design will be acknowledged in the
roposed spatial model, as discussed in Paige et al. (2022b), survey statistics will not be a focus of
his paper.

The observation of small areal units with the goal of making aggregate estimates for larger
reas connects to the idea of basic areal units (Nguyen et al., 2012; Zammit-Mangion and Cressie,
017) and the modifiable areal unit problem (MAUP) (Gehlke and Biehl, 1934; Openshaw and
aylor, 1979). The MAUP is still not well understood (Manley, 2014), and we are not proposing a
3
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general solution, but a practical way to address it in small area estimation based on cluster surveys,
particularly in cluster surveys exhibiting fine scale variation.

Section 2 introduces the 2014 Kenya demographic health survey (KDHS2014), the dataset
otivating this work. In Section 3 we define the statistical problem of interest along with common
pproaches of estimation, and discuss how they relate to the three considered major sources of
ggregation error when aggregating point level predictions to the areal level for a population.
e introduce a number of sampling frame models in Section 4, and show how the robustness of
ifferent aggregation models can depend on their ability to carefully account for aggregation error
n Section 5. In Section 6, we conduct a simulation study to investigate the relative importance
f different sources of aggregation uncertainty at different spatial scales. Then we investigate the
ractical implications for the analysis of NMR data from KDHS2014 in Section 7. In Section 8 we
onduct a sensitivity analysis where we assess how changes in the population information used in
he application affect the results of the analysis. The paper ends with discussion and conclusions in
ection 9.

. Neonatal mortality in 2010–2014 in Kenya

The 2014 KDHS provides information on a number of important health and demographic
ndicators including NMR. It consists of 1,582 clusters selected out of 96,215 EAs, where EAs are
elected with probability proportional to the number of contained households. Within each selected
A, 25 households selected with simple random sampling from the associated cluster. The centroids
f the sampled clusters are known up to a small amount of jittering, but the locations of the other
As are unknown. Due to the stratification of the 2014 KDHS, the total number of urban and rural
As is known within each ‘Admin1’ area, the administrative areas immediately below the national
evel.

Our aim is to estimate NMR and the burden of neonatal mortality in 2010–2014 for Kenya’s
7 Admin1 and 301 Admin2 areas defined by Global Administrative Areas (GADM), where Admin2
reas are the administrative areas defined just below the Admin1 level. Of the 301 Admin2 areas
riginally defined, we combine the bordering ‘unknown 8’ and Kakeguria areas due to the small size
nd estimated population density of ‘unknown 8’. We are also interested in the relative prevalence
n Admin1 and Admin2 areas, which we define as the prevalence in the urban part of the area
ivided by the prevalence in the rural part.
Population density estimate maps are available from WorldPop (Stevens et al., 2015; Tatem,

017) at 1 km resolution, and we produce urbanicity (adjusted population density) maps by
hresholding (normalizing) population density to match the urban/rural population proportions
totals) at the Admin1 level based on the 2009 census (Kenya National Bureau of Statistics, 2014;
DHS, 2009), as in Paige et al. (2022b). More information on population density calculations and
djustments are provided in the supplement in Section S.2. Sampled NMRs are pictured for the
,582 clusters in Fig. 2 along with the estimated 2014 population density. General population totals
t the stratum (Admin1 × urban/rural) level are fixed at the 2014 estimates as given by the 2014
DHS.

. Sources of aggregation error in common practice

If the locations of each EA in area A with index i = 1, . . . ,M were known along with the
number of members of the target population that were born, Ni, and died Zi in the time period,
the prevalence and burden in A could be calculated as

p(A) =

M∑
i=1

Ni

N
Zi
Ni

, and b(A) =

M∑
i=1

Zi (1)

respectively, where N =
∑M

i=1 Ni.
Since the locations of the EAs and since the Ni and Zi are unknown, a number of methods have

been used to estimate prevalence that avoid the formulation in (1). Typically, these methods begin
4
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Fig. 2. Neonatal mortality rates in 2010–2014 as observed in 2014 KDHS sampled clusters (left), and estimated population
density in people per km2 in 2014 (right). Admin1 and Admin2 boundaries are shown as black and gray lines respectively.

with the following standard geostatistical prevalence sampling model with notation based on Diggle
and Giorgi (2016):

yc | rc, nc ∼ Binomial(nc, rc)

logit(rc) = d(sc)Tβ + u(sc) + ϵc, c = 1, . . . , n. (2)

Here, the cluster level response yc and cluster locations sc are indexed by the cluster index c for
n clusters in total. The cluster level risk is given by rc , and the number of individuals in the target
population in cluster c is given by nc . The vector d(sc) contains the spatial covariates (possibly
including an intercept) at the location of cluster c with associated effect sizes given by β, and
ϵc ∼ N(0, σ 2

ϵ ) is independent and identically distributed (iid) variation at the level of the response,
or the spatial nugget. The spatial effect u = {u(s) : s ∈ R2

} is a centered stationary Gaussian random
field with marginal variance σ 2

S .
There are various approaches for how to choose u, some of which are summarized in Paige

et al. (2022b). For example, it is sometimes assumed that u follows a reparameterization of
he Besag York Mollié model known as the BYM2 model (Riebler et al., 2016), a solution to a
tochastic partial differential equation (SPDE) (Lindgren et al., 2011), or an extended LatticeKrig
ELK) model (Paige et al., 2022a). We will assume u is stationary with an isotropic Matérn covariance
unction Cov(u(s), u(s′)) = C(|s − s′

|) (Matérn, 1986), and will approximate it using the SPDE
pproach, and will represent the effective spatial range as ρ.
Since (2) is only a model for the response, a second model is required for estimating areal

revalence. Slightly modifying notation from Keller and Peng (2019), a population quantity of
nterest (such as risk) for a spatial region A is sometimes estimated as,

r(A) =

∫
A
r(s) dQ (s), (3)

reating r(s), the quantity of interest at location s, as a spatial function, and where Q (s) is a spatial
istribution of interest. For example, the spatial density q(s) = dQ (s)/ds is typically chosen as:

• q(s) = 1 for areal totals,
• q(s) = 1/|A| for areal averages,
• population density for population totals, or
• population density normalized to have unit integral over A for population averages (such as

for risk).
5
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In the context of estimating population averages, sometimes areal averages are used to approximate
population averages (e.g. Diggle and Giorgi 2016 and Giorgi et al. 2018), and population density is
based on estimates that may oversmooth in urban areas unless this effect is corrected (Leyk et al.,
2019), such as based on census population totals. Using areal averages in lieu of population averages,
and not correcting for potential oversmoothing in population density are examples of potential
‘aggregation weight errors’, errors due to the choice in spatial distribution of interest Q or in its
ensity q. An incorrect choice for Q and its density q results in biased estimates and larger mean
quared error as discussed (and quantified under simplifying assumptions) in Section S.1 in the
upplement.
Typically, (3) is approximated using a numerical integration/aggregation grid, although the

esolution of the grid is not consistent. Models in this context may, for example, produce estimates
t the 20 km (Lessler et al., 2018), 5 km (Osgood-Zimmerman et al., 2018; Graetz et al., 2018),
km (Utazi et al., 2018), or 100 m (Tatem, 2017) resolution, and the effects of grid resolution
n model estimates is not always well understood. In fact, in Osgood-Zimmerman et al. (2018)
nd Graetz et al. (2018) a single nugget effect is included in each grid cell when aggregating to the
real level, weighted by the normalized population density. In that case, the number of nugget
ffects averaged over in an area’s population average is equal to the number of grid points in
he area, but the response model is the same regardless of the aggregation resolution. Hence, the
ariance of the population average depends arbitrarily on the aggregation grid resolution. We refer
o that as the ‘gridded’ sampling frame model, with predicted risk and expected burden in area
denoted by rgrid(A) and bgrid(A) respectively. We call this source of aggregation error ‘fine scale
ariation’ since it relates to fine scale variation in the context of the MAUP, and the nugget effect,
hich is sometimes interpreted as fine scale variation.
If the ultimate goal is to estimate the population prevalence in (1), it should be emphasized that

3) is only an approximation in practice, since it typically takes the form of a continuous integral
ith respect to the spatial density q rather than summing over the inherently discrete individuals in
he population, and since r(s) is the risk rather than prevalence at a point, and so does not include
ll the variation of prevalence. We call this source of aggregation uncertainty ‘finite population
ariation’. Despite the inherent difference between risk and prevalence, the terms are often used
nterchangeably (Giorgi et al., 2018; Dwyer-Lindgren et al., 2019; Osgood-Zimmerman et al., 2018),
erhaps due to an unstated assumption that finite population variation is negligible.

. Spatial aggregation with respect to a population distribution

Our goal will be to estimate NMR in 2010–2014 using the 2014 KDHS across a set of areas,
ith a generic area being denoted A. The number of EAs in A or in an area containing A is known,
nd the number of houses and neonatals born in the time period in A or in an area containing

A is also approximately known based on census data. We will also assume each EA has at least
25 households, since 25 households are sampled in each cluster. Although it is not too difficult to
relax these assumptions, we make them for the sake of simplicity. Since the totals in the urban
and rural parts of each Admin1 area are known, we can think of area A as the urban or rural part
of an Admin1 area, or the urban or rural parts of an Admin2 area. Given this information and the
aggregation model, the joint distributions for the prevalence and burden in any set spatial region,
such as for Admin2 areas or their urban or rural parts, is directly implied, even if the total target
population, number of households, and number of EAs in those particular regions are all unknown.

We introduce three sampling frame models in Sections 4.1–4.3, for which the associated
aggregation model is constructed by linking the sampling frame model to the response model. The
link is formed by relating the logit risk of EA i (not necessarily observed) to (2) with logit(ri) =

logit(r(si)) = d(si)Tβ+u(si)+ϵi (with slight modifications in the case of one sampling frame model)
for each i, and where ϵi is iid N(0, σ 2

ϵ ). Given the aggregation models share the same response
model, they have the same central predictions, varying only in their uncertainty, with the empirical
aggregation model having the highest predictive variance and the smooth latent model having the
lowest (see Section S.3 in the supplement for details). Fig. 3 provides an illustration summarizing
how difference sources of uncertainty are incorporated into the main three considered aggregation
models introduced in this section and their estimates of prevalence/risk.
6



J. Paige, G.-A. Fuglstad, A. Riebler et al. Spatial Statistics 52 (2022) 100714

n
p
d
f
o
e
t
p
c
W
r

i
p
i
f
t
v

4

a
a
‘

Fig. 3. Summary of how different sources of uncertainty are incorporated into the three main aggregation models
considered: smooth latent, latent, and empirical. Model estimands for prevalence/risk along with the sections in which
the models are introduced are also given.

4.1. Empirical model

Rather than approximating (1) with (3), it is possible to model the terms in (1) directly. Since the
umber of EAs in A is known, we will assume that the locations of the EAs, {si}Mi=1, follow a Poisson
rocess with a possibly fixed number of points, M , and with rate proportional to the population
ensity. Since N , the total target population and number of households in A, is approximately known
rom census data, we assume (as above) there are at least 25 households per EA, and that the rest
f the total, known from census data, are distributed according to a multinomial distribution with
qual probability per EA. If hi is the number of households in EA i for each i, we distribute the
otal number of neonatals among EAs in A, {Ni}

M
i=1, according to a multinomial distribution with

robability hi/
∑

i hi of being in EA i for each i. Lastly, we assume Zi|Ni, ri ∼ Binomial(Ni, ri). We
an then calculate the population prevalence and burden conditional on the Zi and Ni with (1).
e will denote the prevalence and burden according to the empirical model as pemp(A) and bemp(A)

espectively.
We call this the ‘empirical’ sampling frame model, since it directly models the quantities of

nterest, prevalence and burden, and since prevalence unlike risk is directly observable. Since
opulation density is used in the point process model for the EA locations, and since census
nformation is used to set the number of EAs, households, and neonatals in A, it correctly accounts
or aggregation weights when producing the population estimate. Further, the nugget is included at
he level of the EA, and Ni and Zi is modeled directly for each EA, so fine scale and finite population
ariation are both accounted for as well.

.2. Latent model

In this case, we make nearly all the same assumptions as in the empirical model, except we
pproximate the population prevalence with the risk, and so it is no longer necessary to assume
ny distribution for Zi|Ni, ri. To calculate the population risk and the ‘expected burden’ with the
latent’ sampling frame model, we use:

rlatent(A) =

M∑
i=1

Ni

N
ri, and blatent(A) =

M∑
i=1

Niri. (4)

We call this the latent sampling frame model since it only models prevalence indirectly through
the risk, which is a latent quantity and cannot be directly observed. The latent model accounts for
population weights and fine scale variation for the same reasons as the empirical model, but it only
7
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partially accounts for finite population variation, since it includes variation in each Ni but not each
i (except through ri). This is somewhat similar to the model in Dong and Wakefield (2021), except
t proposes a full distribution for the EA locations and population denominators rather than fixing
single draw from the distribution for the EA locations and setting Ni ≈ N/M for each Ni, rounding
o the nearest integer.

.3. Smooth latent model

The ‘smooth latent’ sampling frame model is the same as the sampling frame model used in Paige
t al. (2022b). The integral in (3) is approximated numerically on a grid using spatial density q equal
o the normalized population density. Further, the ‘smooth risk’ at any each grid point is calculated
y integrating out the nugget (i.e. the fine scale variation) as:

rsmooth(s) =

∫
∞

−∞

expit
{
d(s)Tβ + u(s) + ϵ

} φ(ϵ/σϵ)
σϵ

dϵ, (5)

where φ is the standard Gaussian density. This is fundamentally different from setting the nugget
to 0 as would be the case if it were interpreted as measurement error, since the mean is shifted due
to the nonlinear logit link function. The smooth risk for an area, rsmooth(A), integrates rsmooth(s) with
respect to population density normalized to have unit integral over A, and the ‘smooth burden’,
bsmooth(A), can be calculated by integrating rsmooth(s) with respect to the unnormalized population
density.

We call this the smooth latent model because, rather than summing over discrete risks as in
the latent model, the smooth risk, a continuously indexed (although possibly discontinuous) spatial
function, is integrated continuously. Since the smooth latent model accounts for population density,
which can be scaled to match population totals using census data as in Paige et al. (2022b), this
sampling frame model does account for aggregation weight error. By integrating out the nugget
effect, the smooth latent model ensures its central predictions account for fine scale variation even
if it does not fully account for fine scale variation, as described in detail in Section S.3 in the
supplement. Since smooth risk is a risk rather than a prevalence, the smooth latent model does
not account for finite population variation.

5. Importance of aggregation assumptions: Grid resolution test

We run a simple simulation study of Nairobi County NMRs based on the KDHS2014 and using
a continuous spatial response model based on Paige et al. (2022b) to illustrate how different areal
aggregation assumptions can yield substantively different areal predictive distributions, and to show
that sampling frame models that are not chosen carefully can lead to poor properties in their
predictions. We do this by comparing areal predictions of four different aggregation models that
share a response model, but differ in their sampling frame model and therefore in their method of
producing areal estimates.

We take d(s) = [1 I(s ∈ U)]T where I(s ∈ U) is an indicator that is 1 when s is in an urban
area and 0 otherwise. We choose Nairobi County since Nairobi is the capital of Kenya, and so it
is especially important to estimate its neonatal mortality prevalence accurately. In addition, it is
one of the smallest and most densely populated counties in Kenya, so it is possible to increase the
integration grid resolution with less computational expense.

We simulate 100 neonatal populations with associated mortality risks and prevalences down
to the EA level across all of Kenya, generating one simulated survey per population, and basing
simulation parameters and the survey design on the KDHS2014. This procedure is repeated for 4
grid resolutions: 200 m, 1 km, 5 km, and 25 km. In each case, we generate predictions for all 17
Admin2 areas (constituencies) in Nairobi, Kenya, calculating 95% credible interval (CI) widths and
associated empirical coverages. For prediction, we fix the response model parameters to the true
values given in Fig. 4, where β0 and βURB are the intercept and urban effect respectively. We also
assume for simplicity that there are exactly 25 households and neonatals per EA. Predictions are
generated for the gridded, smooth latent, latent, and empirical aggregation models, which share
8
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Fig. 4. The response model used throughout the analysis along with the parameters used for simulation or estimated.
Each response model is linked with a sampling frame model to form an aggregation model with aggregate predictions.
The 2.5th, 50th, and 97.5th percentiles of the posterior are denoted by Q0.025 , Q0.5 , and Q0.975 respectively. In Section 5
arameters are fixed to the truth when predicting, in Section 6 they are estimated for each simulated dataset, and in
ections 7 and 8 they are estimated from 2014 KDHS NMR data.

Table 1
95% credible interval (CI) widths in neonatals per thousand, and empirical coverages in percent for considered sampling
frame models as a function of aggregation grid resolution, with σ 2

S = 1/27 and standard errors given in parentheses.

Model Units 200 m 1 km 5 km 25 km

95% CI width Empirical (per 1000) 9.8 (0.1) 9.8 (0.1) 9.8 (0.1) 9.9 (0.1)
Latent 8.2 (0.1) 8.2 (0.1) 8.2 (0.1) 8.3 (0.1)
Smooth Latent 7.7 (0.1) 7.7 (0.1) 7.7 (0.1) 7.7 (0.1)
Gridded 8.5 (0.1) 19 (0.3) 56.5 (1.0) 60.1 (1.0)

95% CI coverage Empirical (Percent) 96 (1.0) 96 (1.0) 96 (1.0) 96 (1.1)
Latent 91 (1.5) 91 (1.6) 91 (1.5) 91 (1.6)
Smooth Latent 89 (1.7) 89 (1.7) 89 (1.6) 89 (1.6)
Gridded 92 (1.4) 100 (0.1) 100 (0.0) 100 (0.0)

the same response model, and vary only in their sampling frame model. This process is repeated
for three different values of σ 2

S : 1/27, 1/9, and 1/3.
Table 1 (and Table D.6 in the supplement) show how 95% (and 50%) CI width and empirical

overage estimates and their standard errors change as a function of integration grid resolution
or each model when σ 2

S = 1/27. Tables D.5–D.10 in Section S.4 in the supplement provide these
results for all values of σ 2

S considered, although coverages do not substantially depend on σ 2
S , so in

his section we discuss only the case of σ 2
S = 1/27, which has the highest precision estimates of

overage and CI widths.
Despite the spatial response model being identical in all aggregation models, the differences in

he CI widths and coverages as a function of grid resolution show how using the gridded sampling
rame model can lead to problematic results: a 1 km analysis will yield very different CI widths and
overages from a 5 km analysis. At 200 m resolution the gridded risk 50% CIs achieved 45% coverage,
9
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but as resolution increased, so did the overcoverage, which rose to 99% at 25 km resolution. This is
made more problematic by the fact that there is no standard resolution at which to perform spatial
aggregation, and the lack of guarantees that a given resolution that may work well predicting some
areas will also achieve good coverage in other areas.

Unlike the gridded aggregation model, the empirical, latent, and smooth latent models are highly
obust to the grid resolution, achieving consistent CI widths and coverages near the nominal level
or all resolutions. The empirical sampling frame model achieved coverages closest to the nominal
ate at 95% significance, and at both 95% and 50% significance the empirical sampling frame model
as never significantly different from the nominal rate. The coverage of the empirical model in all
ases was higher than that of the latent model, which was in turn higher than the smooth latent
odel. The latent and smooth latent aggregation models consistently exhibited undercoverage
t the 95% level. This difference in coverage is due to the different levels of aggregation error
ccounted for by the models. The main difference between the latent and empirical models is that
he empirical model accounts for uncertainty in the outcome, which is part of finite population
ariation. Differences in coverages between these models in turn suggests that finite population
ariation can be an important source of aggregation error.
It is worth noting that, as the grid resolution increases, the gridded sampling frame model

erforms more similar to the smooth latent model. In fact, we show in Section S.3.3 in the
upplement that the gridded aggregation model converges to the smooth latent as their resolutions
oth increase. Since the smooth latent model accounts for fine scale variation in a more principled
ay, and since it is more robust to the grid resolution, we advocate for using the smooth latent in

ieu of the gridded aggregation model, and using the empirical sampling frame model in lieu of the
mooth latent.
Overall, the at times considerable differences in the empirical coverages of the aggregation

odels can be attributed entirely to the differences in the sampling frame models. This suggests
hat the assumptions made when aggregating from point level predictions to the areal level matter
hould be considered carefully.

. What factors influence aggregation error?

.1. Simulation setup

To test the performance of the aggregation models under various conditions, and identify what
actors influence aggregation error, we simulate from 54 different population × survey scenarios,
ach with a different set of simulation parameters. For each population × survey scenarios, we use
he empirical aggregation model to simulate 100 populations, and then generate 100 associated
urveys under a sample design intended to mimic the KDHS2014. We calculate prevalence, burden,
nd the relative prevalence in urban versus rural parts of areas from the simulated populations
i.e., the prevalence in the urban part of an area divided by the prevalence in the rural part). These
uantities are calculated at the Admin1 and Admin2 levels as well as for the urban and rural parts
f each Admin2 area when defined, and relative prevalence is only calculated at the Admin1 and
dmin2 levels since it can only be calculated for areas with both urban and rural parts.
Some parameters used for the simulation study are held fixed, since they are not the focus of the

imulation study. All parameter choices are given in Fig. 4. We fix some response model parameters
n order to approximately match parameters estimated for an equivalent response model as fit in
ection 7. We also set the urban effect to be βURB

= −1 in order to add stratification by urbanicity to
nsure that predictions are able to account for stratification. We choose ϕ ≡ σ 2

S /σ 2
ϵ ∈ {1, 1/3, 1/9}

to be the signal to noise ratio of the response model.
For the sampling frame model we choose rpop ∈ {1/5, 1, 5} to be the number of EAs (and

the number of members of the population) included in the simulated population per EA in Kenya
compared to the number in the KDHS2014 survey frame, and rsamp ∈ {1/3, 1, 3} to be the number
of clusters included in the simulated survey per cluster included in the KDHS2014. For example, if
rpop is 1/5, then we assume the simulated population and the simulated number of EAs are only
a fifth that in the KDHS2014 sampling frame. Similarly, if r is 1/3, then the simulated survey
samp

10
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has only a third of the observed clusters as in the KDHS2014. The possible values of rpop (1/5, 1,
nd 5) are chosen to roughly match the variation in the number of EA in low and middle income
ountries, where, for example, Nigeria has 664,999 EAs and Malawi has 12,569 EAs (NDHS, 2019;
DHS, 2017). The possible values of rsamp (1/3, 1, and 3) are chosen since DHS surveys sometimes
ave fewer than 400 clusters, such as in the 2010 Burundi DHS, which contains only 376 EAs (BDHS,
012), and supplementing DHS data with other sources of data is possible and is an area of active
esearch (Godwin and Wakefield, 2021; Burstein et al., 2018). Overall, there are 2× 3× 3× 3 = 54
ifferent combinations of parameters, and therefore 54 different scenarios.
Throughout this work, we set a joint penalized complexity (PC) prior (Simpson et al., 2017) on

he spatial parameters (ρ, σ 2
S ) based on Fuglstad et al. (2019) so that the median prior range is

pproximately a fifth of the spatial domain diameter, and so that P(σS > 1) = 0.05. We also set a
C prior on the cluster variance satisfying P(σϵ > 1) = 0.05. We use INLA’s default priors on the
ixed effects, placing an improper N(0, ∞) prior on the intercept, and an uninformative N(0, 1000)
rior on the urban effect.
The response models are fit to the simulated surveys, and then used in conjunction with one of

hree aggregation models (smooth latent, latent, and empirical) to produce estimates of prevalence,
urden, and relative prevalence. Posteriors of the quantities are produced at Admin1, Admin2, and
dmin2 × urban/rural levels when defined, and compared with the true population using a number
f scoring rules and metrics.

.2. Areal prediction performance measures

We evaluate the aggregation model performance via continuous ranked probability score
CRPS) (Gneiting and Raftery, 2007), 95% interval score (Gneiting and Raftery, 2007), 95% fuzzy
mpirical CI coverage (Paige et al., 2022a), 95% fuzzy CI width (Paige et al., 2022a), and total
omputation time in minutes including fitting the response model to a single survey as well as
enerating all associated predictions using the aggregation model. CRPS is a strictly proper scoring
ule, whereas interval scores are proper scoring rules (Gneiting and Raftery, 2007). For (strictly)
roper scoring rules, the expected score of incorrect models are (strictly) larger than the expected
core of the correct one, and lower scores are better. ‘Fuzzy’ CI’s (Geyer and Meeden, 2005), are used
o make empirical coverage more precise under discrete outcomes. When predicting prevalence,
cores are produced on a probability scale rather than being for unnormalized population counts.
iven na areas at a given areal level, we calculate a given score as the average of the individual area
cores,

CRPS(y∗, F1(y∗), . . . , Fna (y
∗)) =

1
na

na∑
i=1

∫
∞

−∞

(
F (y) − I(y ≥ y∗

i )
)2

dy

Intα(y∗, l1, u1, . . . , lna , una ) =
1
na

na∑
i=1

[
(ui − li) +

2
α
(li − y∗

i )I(y
∗

i < li)

+
2
α
(y∗

i − ui)I(y∗

i > ui)
]
, (6)

where y∗
= (y∗

1, . . . , y
∗
na ) is a vector of quantities we wish to estimate (a possibly normalized version

of the response), ŷ∗
= (ŷ∗

1, . . . , ŷ
∗
na ) is the vector of associated model estimates, F1(y∗), . . . , Fna (y

∗)
re the associated predictive distribution cumulative distribution functions, and l1, . . . , lna and
1, . . . , una are the lower and upper ends respectively of the predictive distribution α-significance
evel CIs. We will take y∗ to be the areal prevalences, burdens, or relative prevalences at the given
areal level.

We also calculate relative scores. Given a proposed model, a reference model, and their respec-
tive scores SP and SR, we calculate the relative score Srel = 100%×(SP −SR)/SR. In particular, we will
alculate the CRPS and 95% interval scores of the proposed empirical aggregation model relative to
he smooth latent aggregation model when predicting Admin2 prevalence. We also provide other
elative scores in the supplement in Section S.5.
11
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Table 2
Mean percent change in CRPS of the empirical aggregation model relative to the smooth
latent aggregation model, where the response is Admin2 ×stratum prevalence. Yellow–
green values are better, while indigo values are worse. Results most representative of the
application in Section 7 are outlined in red.

rpop 1/5 1 5

rsamp
β0

1/9 1/3 1 1/9 1/3 1 1/9 1/3 1

3 0 -14.6 -12.1 -9.4 -7.6 -5.9 -4.3 -2.7 -1.9 -1.4
-4 -17.1 -14.5 -11.5 -8.5 -6.7 -5.2 -2.9 -2.0 -1.4

1 0 -11.6 -9.0 -6.8 -5.3 -3.7 -2.4 -1.5 -0.8 -0.6
-4 -12.6 -11.1 -9.0 -5.7 -4.4 -3.5 -1.5 -1.3 -0.8

1/3 0 -7.6 -5.7 -4.6 -2.7 -2.1 -1.4 -0.8 -0.4 -0.3
-4 -8.9 -7.7 -5.8 -3.0 -2.5 -1.9 -0.6 -0.5 -0.3

Table 3
Mean percent change in 95% interval score of the empirical aggregation model relative to the
smooth latent aggregation model, where the response is Admin2 ×stratum prevalence. Yellow–
green values are better, while indigo values are worse. Results most representative of the
application in Section 7 are outlined in red.

rpop 1/5 1 5

rsamp
β0

1/9 1/3 1 1/9 1/3 1 1/9 1/3 1

3 0 -68.5 -62.9 -55.8 -49.9 -43.0 -34.3 -24.4 -18.4 -13.5
-4 -68.4 -63.8 -56.8 -50.6 -43.5 -36.5 -24.8 -18.9 -13.1

1 0 -61.3 -54.5 -46.6 -39.5 -30.8 -22.5 -14.5 -9.7 -6.2
-4 -58.1 -55.1 -47.9 -37.3 -31.4 -25.5 -13.6 -11.8 -7.8

1/3 0 -48.1 -41.3 -35.3 -23.9 -19.5 -13.6 -7.3 -4.5 -3.7
-4 -44.5 -40.3 -33.4 -22.0 -18.2 -13.1 -5.0 -4.6 -2.7

6.3. Simulation study results

Tables 2 and 3 give the Admin2 × stratum CRPS and 95% interval relative scores respectively
or prevalence, and relative scores for other target quantities and/or at other areal levels are given
n the supplement in Section S.5. Overall, the empirical aggregation model performs as good as or
etter than the smooth latent model for nearly all considered scoring rules and parameters at all
real levels and for all target quantities. In particular, the empirical model performed best when
aking predictions in areas with small populations, as evidenced by its improvement in CRPS and
5% interval score being largest when rpop = 1/5.
In addition, the relative performance of the empirical aggregation model improved as the

redictive spatial variance decreased relative to the nugget variance, such as when the sample size,
sample, increased, and when the signal to noise ratio, ϕ, decreased from 1 to 1/9. This is expected,
ince under these circumstances, the sources of aggregation error will have large variance relative
o the predictive variance of the smooth latent model, particularly fine scale and finite population
ariability.
Differences between the smooth latent and empirical aggregation models were nearly always

arger for the interval score than for CRPS, which is expected since their central predictions are
dentical for prevalence and burden. The largest improvement in scores from smooth latent to
mpirical sampling frame models consistently occurred when rsamp = 3, rpop = 1/5, and ϕ = 1/9.

This is because predictive spatial variability is minimized when rsamp = 3 (due to having more data
in the survey), populations are smallest when rpop = 1/5 (resulting in less fine scale and finite
population being averaged out), and fine scale variability is highest compared with smooth spatial
variability when ϕ = 1/9 (resulting in larger fine scale variability). For example, the smallest (most
negative) relative 95% interval score, −79.2%, occurred under these conditions, and when predicting
Admin2 relative prevalence for β = −4. Hence, the empirical model 95% interval score was nearly
0
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80% better than that of the smooth latent due to its ability to account for aggregation uncertainty.
The equivalent relative CRPS was −27.1%, indicating a substantial but smaller improvement from
he smooth latent to the empirical aggregation model.

Relative scores for parameters most similar to the application indicate smaller but clear per-
ormance gain, particularly at the Admin2 and Admin2 × urban/rural levels. For example, we
bserve relative 95% interval (and relative CRPS) scores of −31.4% (−4.4%), −4.9% (−0.5%), and
0.7% (−0.1%) at the Admin2 × stratum, Admin2, and Admin1 levels respectively when predicting
revalence. Relative scores for relative prevalence are typically more negative than for prevalence
nd burden, indicating a larger improvement. That is particularly the case for CRPS, since the central
rediction for relative prevalence of the three considered aggregation models differ.

. Application to 2014 KDHS neonatal mortality

We apply the empirical aggregation model, in conjunction with the response model introduced
n Section 5, to 2014 KDHS 2010–2014 NMR data. Unlike for the simulation study, we use an
ntegration grid with 5 km rather than 25 km resolution for generating areal predictions, since we
nly need to apply the model to 1 survey rather than 5,400. In addition to generating estimates and
5% CIs for the prevalence, burden, and relative prevalence at the Admin1, Admin2, and Admin2 ×

rban/rural levels when defined, we also generate smooth risk estimates and CIs at the 5 km pixel
evel.

It is important to acknowledge that pixel level smooth risk and smooth burden uncertainties
re underreported since they do not account for sources of aggregation error that are especially
mportant at such small spatial scales. While pixel level prediction of the latent and empirical
ggregation models is technically possible, their interpretation breaks down at the pixel level due to
he fact that EA boundaries can span multiple pixels. In addition, burden estimates are inherently
ifficult due to the unknown level of uncertainty in the population totals, and the challenge of
alidation at the areal level when using DHS data since reported DHS survey weights are normalized.
The response model parameter central estimates and other summary statistics are given in Fig. 4.

entral estimates of prevalence along with CIs for EAs are given at the 5 km pixel, Admin2, and
dmin1 level in Fig. 5, whereas predictions and CIs for burden and relative prevalence are given in
igure F.3 and F.4 respectively in the supplement in Section S.6.
Fig. 4 gives little evidence of an urban effect, and the estimated nugget variance is 0.44, which

s over twice the spatial variance of 0.20. The estimated spatial range of 411 km is somewhat
igh compared to the diameter of the spatial domain, which is approximately 1,169 km. The long
patial range indicates a large degree of spatial smoothing and a decrease in the spatial variance in
he predictive distribution due to increased ‘borrowing of strength’ from observations across long
istances.
We also find evidence that the sampling frame models make a difference when producing

MR estimates. Fig. 6 shows how the relative posterior standard deviation (SD) of the empirical
o the smooth latent model varies with the number of EAs in an area, calculated as 100% ×

ŜD(pemp(A))− ŜD(rsmooth(A)))/ ŜD(rsmooth(A)) for counties, constituencies, and the urban/rural portion
f constituencies. The relative standard deviations in Fig. 6 are averaged within each area level and
ach quantity of interest in Table 4, which shows that the empirical model results in 8% larger
ncertainties in prevalence at the Admin2 level, and 31% larger uncertainties at the Admin2 ×

tratum level. The associated relative uncertainties tend to be larger for burden and for relative
revalence.
As in the simulation study, we find that the relative SD increases as the size of the area, in terms

f the number of EAs, decreases. We find the relationship to be approximately linear on a log–log
cale for both prevalence and burden, although the relationship is less clear for relative prevalence.
reas with fewer than 300 EAs in this application are especially impacted by the sampling frame
odel, with posterior SDs that are typically 10 percent higher or more for the empirical aggregation
odel as opposed to the smooth latent aggregation model. We therefore recommend using the
mpirical aggregation model for areas finer than the Admin2 level, and for areas with fewer than
00 EAs for this application when estimating prevalence or burden, and we recommend using the
13
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Table 4
Mean percent increase in posterior standard deviation (SD) of the empirical versus smooth latent
aggregation models for prevalence, burden, and relative prevalence and for each considered areal
level.
Area level Mean percent increase SD

Prevalence Burden Relative prevalence

Constituency ×stratum 31 44 –
Constituency 8 13 132
County 2 2 21

Fig. 5. Central predictions (top row) and 95% credible interval widths (bottom row) of neonatal mortality rates in Kenya
in 2010–2014. Observation locations are plotted as black dots, provinces as thick black lines, and counties as thin gray
lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

empirical aggregation model when estimating relative prevalence even at the Admin1 level for the
considered application. The sampling frame model used matters less, however, when estimating
prevalence and burden at the Admin1 level in this case.

The urban and rural parts of constituencies with a very small number of average EAs tend to
have very high relative SD. For example several Admin2 × stratum areas have relative SDs of
over 500% when predicting prevalence, and one such area has a relative SD of over 1000% when
predicting burden. This highlights just how much of a difference the sampling frame model can
make in some areas, regardless of their average behavior. Moreover, this also indicates that the
smooth latent model would likely produce estimates that drastically underestimate uncertainty in
very small areas, such as those with fewer than approximately 30 EAs in this application.

8. Sensitivity to population information

The analysis in Section 7 depends on a combination of population density and census informa-
tion. WorldPop population density estimates in Kenya have no estimated uncertainty, we will see
14
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Fig. 6. Percent increase in posterior standard deviation (SD) of the empirical versus smooth latent models for prevalence
(left), burden (middle), and relative prevalence (right). Dashed black lines at 300 mean EAs give a simple threshold for
when aggregation error is significant.

that population density estimates from Meta differ considerably from those of WorldPop. Censuses
typically occur no more often than once every decade, and they may therefore be outdated for the
time period being analyzed. If one wishes to estimate finite population quantities, however, such
potentially imprecise population information is necessary, and finite population quantities are often
desired. It is therefore important to assess how robust model predictions and uncertainties are to
such population information.

In order to assess how the considered aggregation models’ posterior means and SDs are influ-
enced by population information, we perform a sensitivity analysis by observing how they change
under a number of scenarios. First, we test whether results are influenced by changes in population
information at fine spatial scales using population density estimates by Meta (Tiecke et al., 2017)
in lieu of the WorldPop population density data. Second, we test whether results are robust to
systematic changes in population information using Kenya’s latest census, conducted in 2019 (Kenya
National Bureau of Statistics, 2019), instead of the 2009 census. Lastly, we test how results are
impacted by asystematic errors in census EA and household totals by considering a scenario where
there is 5% error in the 2009 census EAs and households per stratum. We included this last scenario
in order to assess how robust the empirical and latent models are to their assumptions on the
distributions of EAs and households.

8.1. Setup

Using the original 2009 census information, we adjust Meta’s population density estimates by a
scalar factor in each to match the population totals in each stratum in what we call the ‘Meta’
scenario. Since Meta’s population density estimates are uniformly zero in 3 Admin2 areas with
GADM names Turkana East in Turkana County, Unknown 1 in Mandera County, and Unknown
7 in Machakos County, we set the population density in those to be uniform in those areas
before adjusting them to match the census stratum totals. The resulting adjusted version of Meta’s
population density estimates is given in Fig. 7 along with its ratio to those of WorldPop. After the
adjustments, we rerun the analysis from Section 7 with the resulting population density estimates.

To assess how sensitive our results in Section 7 are to the census data, we use 2019 census
information instead of the 2009 census in what we call the ‘2019 census’ scenario. However, the
number of EAs per stratum was not available, and we instead divided the 129,123 total EAs in the
2019 census among the strata proportionally to the 2009 census, which sampled from only 96,251
EAs in total. After adjusting WorldPop population density estimates based on the 2019 Census
15
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Fig. 7. Meta population density estimate (left) and its ratio over WorldPop (right) after adjusting the population densities
o match the estimated population totals.

opulation totals per stratum, we reran the analysis in Section 7. The total Kenyan population
hanged from approximately 43 to 48 million people after the adjustment.
It is important to note that, if population information changes systematically, such as from the

009 to 2019 census, predictions and uncertainties should be different. Hence, the 2019 census
scenario is specifically intended to check how census information can influence predictions. In
order to assess how sensitive the empirical and latent model distributional assumptions on EAs
and households are, we consider one additional scenario where census EA and household totals
per stratum are randomly varied by and uniformly distributed percentage between −5% and 5%,
hile holding the population per stratum the same. This ensures that predictions and smooth latent
odel uncertainties stay the same, while influencing empirical and latent SDs. We then combine the

esulting census information with WorldPop population density information, and rerun the analysis
f Section 7. We call this the ‘jittered census’ scenario.
For each scenario, areal level, model, and outcome, we calculate the mean absolute percent

ifference (MAPD) relative to the ‘standard’ scenario (i.e. the original data), calculated as:

MAPD(xscen) = 100% ·
1
NA

NA∑
i=1

⏐⏐⏐⏐ (xscen)i − (xstand)i
(xstand)i

⏐⏐⏐⏐ ,
where xscen is a vector of length NA, the number of areas at the specified level, of either posterior
means or SDs for the given scenario, aggregation model, and outcome, and xstand = ((xstand)1 . . .

(xstand)NA )
T is the equivalent vector for the standard scenario.

While the response model does not change among the scenarios, the new population information
does change the sampling frame models, and the aggregation models formed by linking them with
the response model. Their aggregate predictions and uncertainties may change as a result.

8.2. Results

Table 5 shows MAPD in the prevalence estimate and SD for each scenario, area level and model
outcome, while Tables G.25 and G.26 in the supplement show equivalent results for burden and
relative prevalence respectively.

We find that, for Kenya 2010–2014 NMR estimates, the proposed model’s prevalence and even
relative prevalence estimates are fairly robust to changes in population information, whereas

we find burden estimates to be robust at the Admin1 level under non-systematic changes in

16
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Table 5
Mean absolute percent difference of prevalence posterior mean and SD in sensitivity analysis scenarios compared to with
the original data.
Scenario Area level Mean Standard deviation

All models Smooth latent Latent Empirical

Meta
Constituency ×stratum 0.8 2.9 7.1 10.7
Constituency 0.6 3.0 3.5 4.1
County 0.9 2.7 2.6 2.4

2019 census
Constituency ×stratum 0.6 2.9 5.3 8.8
Constituency 0.5 2.9 2.9 2.9
County 0.4 2.7 2.7 2.7

Jittered census
Constituency ×stratum 0.4 2.3 2.5 2.3
Constituency 0.4 2.4 2.4 2.2
County 0.4 2.4 2.5 2.4

population information. In cases where burden estimates and their SDs are particularly influenced
by population information, they are influenced for all considered sampling frame models, including
the smooth latent model. Such changes are mainly due to large percentage changes in small
population totals as a result of large systematic or fine scale changes in populations.

Changes in population information will invariably affect areal population, household, and EA
otals—this is unavoidable in a geostatistical framework. Yet we find that estimates and estimate
Ds are not substantially influenced for any models or outcome, including burden, under moderate
ized asystematic errors in population information as in the jittered census scenario. For example,
APD of central estimates was at or below 0.4% for al outcomes and areal levels, while the MAPDs
f the SDs ranged between 2.2% and 2.5% over all models and area levels for prevalence and burden,
nd was between 3.8% and 6.3% for relative prevalence, with, perhaps surprisingly, the largest
nd smallest relative prevalence MAPDs occurring for the smooth latent and empirical models
espectively. The results therefore suggests that all considered sampling frame models are fairly
obust to asystematic errors in household and EA totals, despite their explicit use in the latent and
mpirical sampling frame models.
Changes in SDs were typically largest, as measured by MAPD, for the smallest areas. This is

xpected, since areas with small population and EA totals have the least precise estimates, and
o will be more affected by changes in the input population information.

. Discussion and conclusions

Typical geostatistical workflows for spatial aggregation with respect to a population distribution
nvolve the ad-hoc aggregation of point-referenced predictions to the areal level. We propose
ncluding a sampling frame model to such workflows. The combination of a response model for
he data and a sampling frame model that incorporates uncertainty in the distribution of the
opulation results in what we call a spatial aggregation model. By explicitly incorporating a sampling
rame model that includes uncertainty about the population, aggregation models can account
or three major sources of aggregation error: aggregation weights, fine scale variation, and finite
opulation variation. Including a sampling frame model also makes more transparent which types
f aggregation error are accounted for.
The three main considered sampling frame models are the smooth latent model, the latent

odel, and the empirical model, which is the model that we propose. The smooth latent model
ntegrates out the spatial nugget effect from the point level risk, creating a smoother risk surface
hat is integrated with respect to population density. The latent and empirical aggregation models,
n contrast, explicitly model how the population is distributed among the enumeration areas (EAs)
long with EA locations. This allows them to account for fine scale variability due to EA level effects.
he empirical model also accounts for finite population variation by modeling individual outcomes.
he empirical model is therefore the only considered sampling frame model that fully accounts for
ll three major sources of aggregation error.
17
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We have shown that aggregation uncertainty can substantially influence prediction uncertainty
n some cases, and so the aggregation procedure should be considered carefully. When the nugget
ffect in the sampling frame model does not correspond well to that of the response model
uch as in the ‘gridded risk’ sampling frame model, where a single nugget is included at each
patial aggregation grid point, we have shown that aggregation error can cause predictions to lack
obustness to the aggregation grid. If all parameters in the sampling frame model correspond well
ith those of the spatial response model, the predictions are more robust to the choice of the

ntegration grid, and the grid resolution can be reduced, improving computational performance.
Despite accounting for more sources of uncertainty, the empirical and latent aggregation models

equired an average of 12 min, while the smooth latent model required 44 min on average to
erform the aggregation in the application and the three scenarios considered in the sensitivity
nalysis. This speedup is due almost entirely to the empirical and latent models not needing to
umerically integrate the nugget effect out of the risk, unlike the smooth risk model.
The differences in the considered spatial aggregation models highlights the difference between

isk and prevalence, where risk is an expected prevalence, and therefore has less uncertainty. In
mall area estimation we are ultimately interested in information about an existing population,
o we advocate for inference on prevalence. Inference on prevalence results in more conservative
ncertainty estimates due to the additional variation of prevalence when compared to risk.
A potential benefit of inference on prevalence is that prevalence is observable while risk is not,

aking models for prevalence potentially able to be validated more directly. Validating estimates of
opulation averages based on point referenced data is an unsolved problem, but aggregation error
ay be an essential part of the solution, particularly when it comes to predicting averages of small,

eft out portions of the data.
While we only considered the effects of aggregation uncertainty in the context of geospatial

odels, it is possible fine scale and finite population variation may be equally or more important
or models with areal spatial effects, since reduced flexibility in the spatial effect could lead to
elatively more variance in the nugget. Extending the empirical aggregation model to space–time is
lso possible, although incorporating multiple age bands in space–time could add complication due
o needing to incorporate time and age information to the simulated population in the sampling
rame model. Fixing the number of target individuals per EA in each age band and time period to
n expected value rather than simulating counts through time could simplify such an extension.
Extending the model to include more geospatial covariates would also be useful if done carefully.

n particular, geospatial covariates that change significantly in a stratum could influence prediction
ncertainty in the context of EA location uncertainty. Although we do not focus on EA location
ncertainty here since we do not consider any spatial variables changing within strata, it is possible
t could be a major source of aggregation error when accounting for more geospatial covariates.
owever, including more covariates is an open question, and is complicated by the fact that
ositional uncertainty in the survey data makes interpretation of their effect sizes problematic.
hile urbanicity can be interpreted as a spatial variable and is also available at the sampled clusters,
ith population and EA totals available in each urban/rural × Admin1 area stratum, other covariates
sed in this context lack this luxury.
It is worth mentioning that accounting for survey designs and design weights in geospatial

odels and their estimates of population quantities is a difficult problem that we do not address. In
act, even in classical design-weighted estimators, estimating burden is nontrivial in some instances,
uch as the considered application, due to the renormalization of the reported design weights.
hile our proposed model does not preclude weights from being incorporated into the fitting
f the response model, it does model the population and sampling frame explicitly rather than
ncorporating design weights directly into the aggregation.

Ultimately, we find that aggregation uncertainty increases as areas decrease in population size.
e observe that aggregation uncertainty is sometimes larger for burden than prevalence due to
ncertainty in population totals, and it is often even larger when estimating the relative prevalence
etween two strata within an area. As a result, we recommend using the empirical or latent
ggregation models for small areas, particularly areas smaller than the Admin2 level, and the
mooth latent aggregation model for larger areas, such as at the Admin1 level, due to it being easier
18
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to implement. When estimating relative prevalence in the urban versus rural part of an area, we
recommend using the empirical aggregation model even at the Admin1 level, or the latent model
when estimating risk.

In a sensitivity analysis we show that prevalence estimates and uncertainties are much more
obust to changes in population information than burden for all considered aggregation models.
urden estimates were sensitive to changes in population densities and systematic changes in
opulation totals, while relative prevalence estimates were less so, and prevalence estimates were
specially robust. We therefore urge caution when interpreting burden estimates. Moderately sized
systematic errors in stratum EA and household totals did not substantially effect the estimates and
ncertainties of prevalence, burden, or relative prevalence for areas at least the population of the
rban or rural parts of Admin2 areas.
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