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Abstract
Nonregular two-level designs are attractive screening designs due to their good
projection properties and flexible run sizes. In particular, the 12-run Plackett–
Burman (PB) design has become quite popular. However, existing methods
struggle with the identification of active factors when the number of active fac-
tors exceeds the projectivity of the designs. This is especially the case when
interactions are present, the variance is high and the number of runs is small.
In this paper, we propose a method for analysing nonregular two-level designs
that particularly addresses the issues above. It exploits the projection proper-
ties of designs and is here applied on the 12-run PB design and the 16-run
no-confounding (NC) designs. In the construction of the method, the use of
test- and penalty-based procedures are avoided. Instead, the number of allowed
terms in a model is restricted. The effectiveness of the method and comparison
between designs are evaluated by simulations for different scenarios. Ways to
evaluate the reliability of the screening procedure are pointed out. An example
with real data is given to demonstrate how one might perform the analysis in
practice.
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1 INTRODUCTION

In the first stage of an experiment, a large number of factors may have to be considered as potentially active. At that
point, the main goal is to identify the ones that really influence the response. This is called factor screening. In most cases,
the subspace of active factors is considerably smaller than the space of all factors. Box and Meyer1 suggest 0.25 to be a
reasonable prior probability for a factor to be active. Factors not identified to have an impact on the response are normally
not considered afterwards. Good and reliablemethods for determiningwhich factors are influential are, therefore, crucial.
Whilst screening often is considered a part of physical experimentation, it has also found its way into machine learning
in order to reduce the dimension of the hyperparameter space (Lujan-Moreno et al.2).
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4100 HAMRE and TYSSEDAL

The traditional choice of screening designs has been two-level fractional factorials, also called regular designs. They have
orthogonal columns and exist for 1

2𝑝
, 𝑝 = 1, 2, … 𝑘 − 1 fractions of 2𝑘 factorial designs, where 𝑘 is the number of factors

included in the design. The drawback of these designs is that effects may be fully aliased, making it difficult to separate the
active effects from the rest. Nonregular two-level designs, in particular those introduced by Plackett and Burman,3 have,
therefore, become increasingly popular. Compared to regular designs, they have two particularly desirable properties.
First, they project well onto lower dimensions.4–6 Second, they seem to exist for all 𝑛 that fulfil 𝑛 mod 4 = 0, 𝑛 ≥ 12,
thus they are far more flexible with regard to run sizes than regular designs. The alias structure may be complex, but
the aliasing is often partial, making it possible to separate effects from each other. However, the partial aliasing between
effects makes traditional analysis methods such as Lenth’s method and normal and half-normal plots fall short, as they
rely on the ability to totally separate contrasts from each other. Thus there is a need for other methods for factor screening
when using nonregular designs.
There are two main strategies for analysing nonregular designs, effect-based and factor-based searches. Effect-based

methods aim at identifying the significant effects. A linear model that can provide estimates of main effects and interac-
tions is assumed to be an adequate approximation of the response. Strong or weak heredity is often a precept for choosing
models, and also used to restrict the search. The strong heredity principle only allows a two-factor interaction in the
model if both the main effects associated with the interaction are included. Weak heredity relaxes this requirement by
only demanding that at least one of the main effects associated with the two-factor interaction is included. Examples
of effect-based methods are the stepwise regression procedure proposed by Hamada and Wu,7 the Bayesian stochastic
search variable selection,8 the modified least angle regression9 and the simulated annealing model search.10 The non-
convex penalized least square described in Jin and Li11 originally proposed by Fan and Li12 and the Dantzig selector13
represent effect-based methods that do not depend on the heredity principle.
A factor-based search aims at identifying the active factors, followed by an examination of the nature of the factor

activity. A factor-based search is less-dependent on model assumptions, heredity included. The disadvantage of doing
a factor-based search is a vulnerability for noise, as too much noise may lead to several candidate sets of active factors
explaining the variation in the response equally well. Different factor-based search approaches have been suggested. Box
andMeyer1 proposed a Bayesian analysis with prior probabilities on factors being active, while Tyssedal and Samset14 sug-
gested a projection-based factor search, see also Kulachi and Box15 and Tyssedal et al.16 Tyssedal and Hussain17 combined
a projection-based factor search with forward selection, testing out the Akaike’s Information criterion (AIC), the F-test
and a particular criterion based on the change in the coefficient of determination, Δ𝑅2.
Both effect- and factor-based search methods have shown good performances when applied to specific examples. How-

ever, the proposed methods are often not tested out on more than a few models, and more frequently for three active
factors than for four. Various success criteria have been used in simulations, among those the percentage of selected mod-
els being correct or partially correct. For a more complete list of such criteria, we refer to Tyssedal and Hussain.17 The
proposed procedure in this paper has similarities both to the one in Tyssedal and Hussain17 and the one in Wolters and
Bingham.10 Like in Tyssedal and Hussain,17 the objectives are to investigate how the amount of noise, the number of fac-
tors screened and the number of active factors affect the screening. But there are also important differences. Rather than
using a panel, we will try out our procedure on a much wider range of models, and we will also avoid the use of stopping
criteria. Instead, we will put restrictions on the number of allowed terms in the model, like Wolters and Bingham.10 For
comparison, their procedure is effect-based, our is factor-based. They use heredity to limit their search. We use projection
models (to be explained later). Common in our and the two other procedures is that instead of focusing on identifying
‘one correct model’, for which experience has shown a rather low success probability, we will rather suggest reducing the
number of possibly active candidate sets in several steps. An important feature of our procedure is that an evaluation of
its reliability can be performed. This will be discussed in Section 5.
The designs used in the simulation studies are the 12-run Plackett–Burman (PB) design and the 16-run no-confounding

(NC) designs for 6–8 factors introduced by Montgomery and Jones.18 These are all orthogonal nonregular two-level
designs having in common that only partial aliasing exists between main effects and interactions as well as between two-
factor interactions. Also, they have similar projection properties onto three and four factors and hence are competitive
alternatives to be considered for a screening when identifying up to four active factors is of interest.
We start this paper by introducing some concepts and the strategy for our factor-based search in Section 2. The proposed

screening algorithm will be described in Section 3 and applied to a model from Tyssedal and Hussain17 in Section 4. In
Section 5, we present the results of a simulation study over a wide range of models followed by an application on real data
in Section 6. Some concluding remarks are given in Section 7.
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HAMRE and TYSSEDAL 4101

2 IMPORTANT CONCEPTS AND STRATEGY

To ensure having a high chance of finding the correct active factors when only a few factors are assumed to be active, it is
important that the screening design projects well onto lower dimensions. This property can by described by the projectivity
of the design, as defined by Box and Tyssedal4:

A 𝑛 × 𝑘 design with 𝑛 runs and 𝑘 factors each at two levels is said to be of projectivity 𝑃 if the design contains
a complete 2𝑃 factorial in every possible subset of 𝑃 out of the 𝑘 factors, possibly with some points replicated.

If a design is of projectivity 3, all main effects and interactions corresponding to any choice of three factors can be esti-
mated without bias if the remaining factors are inactive. If it can be assumed that main effects and low-order interactions
can adequately model the response, estimating higher-order interactions may not be needed. A useful concept in such
cases is generalized projectivity,19 defined as:

A 𝑛 × 𝑘 designwith 𝑛 runs and 𝑘 factors each at two levels is said to be of generalized projectivity 𝑃𝛼, if for any
selection of 𝑃 columns of the design all factorial effects including up to 𝛼-factor interactions are estimable.

The 12-run PB design is a 𝑃 = 3 design, but Wang and Wu20 pointed out that it is possible to estimate the main effects
and their two-factor interactions for any four factors, hence it is also a 𝑃 = 42 design. By sacrificing the opportunity to fit
the three-factor interaction, an additional factor is allowed to be included. The 16-run NC designs for six to eight factors
share the same projectivity properties. A model including all main effects and interactions up to its projectivity either 𝑃
or 𝑃𝛼 will be called a full projection model, or FP-model for short. In the case of fitting a full projection model for the PB12
design assuming four active factors, the design will contain an intercept, four main effects and 6 two-factor interactions.
Nearly all degrees of freedom are spent when fitting the full model, making it hard to assess the model fit and significance
of each term. Having a procedure for selecting the subset of terms that should be included in the model without relying
on significance tests would, therefore, be useful.
The term candidate set is used to denote a set of factors that potentially may be active. If, for instance, 11 experimental

factors are included in the screening design, but only three are assumed to be active, there are
(11
3

)
= 165 candidate sets of

active factors before the screening. If the number of candidate sets can be reduced to 5 or 10 with the correct set of active
factors included, standard regression techniques can be used to reduce the number further. In this process, the experi-
menter may look for the most parsimonious representation, use subject matter knowledge and the heredity principle. If
there is still ambiguity, follow up runs can be added.
For a successful screening, it is important that when the number of candidate sets is reduced to a number 𝑟, the correct

set of active factors is among those. The set consisting of 𝑟 candidate sets of factors with the purpose of containing the
correct set of active factorswill be called the capture set of size 𝑟. To have ameasure of howoften this happens, we introduce
the concept capture frequency 𝐶𝐹𝑟(𝑖), defined as the number of simulations out of 𝑖 in which the correct candidate set of
factors is found in a capture set of size 𝑟 selected by some criterion, see also Tyssedal and Hussain.17 With the response

values 𝑦𝑖, 𝑖 = 1, … , 𝑛, we have used the mean square error MSE=
∑𝑛

𝑖=1(𝑦𝑖−𝑦𝑖)
2

𝑛−𝑝
, where 𝑦𝑖 is the 𝑖th fitted response value and

𝑝 is the number of terms in the model, intercept included. In this paper, a rate of 95% will be considered acceptable.
One of the most common strategies for doing variable selection is forward selection. The method starts with a minimal

model, and a new term is added if it is the best among all candidates for which a test statistic exceeds a given threshold, or
according to a chosen criterion. One challenge, in particular when using a F-test, is that in the beginning, the variation in
the response caused by important terms that are not yet included will enlarge the error variance. The large error variance
may hinder the inclusion of important effects, and in some cases, this might cause the algorithm to stop at an early stage.
Wolters21 reports on problems with criterion-based methods, among these is overfitting, see also Miller and Sitter22 for
a discussion about finding the appropriate penalty for such criteria. Another challenge is that spurious effects may be
chosen to enter the model due to nonorthogonal effect columns.
Having too few terms or wrong termswill make theMSE a biased estimate of the response variance, and toomany terms

in a model may lead to some of the wrong candidate sets being able to explain the variation in the response equally well
as the correct one. The method proposed in this paper tries to avoid these problems by using a selection strategy where
for each estimated FP-model, one selects a predefined number of the effects with the largest coefficients in absolute value
to be in a model that is then refitted to the data. Then all terms have an equal chance of entering the model, as they are
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4102 HAMRE and TYSSEDAL

chosen simultaneously. This predefined number of effects, 𝑙, should be large enough for the reduced model to include all
active effects in the candidate set with the correct active factors. The correct value for 𝑙 is of course not known in advance.
However, several values can be tried, and inherent in the procedure is a form of self-correction in that every candidate set
in the capture set can be checked for their number of active terms. We think that the best way of doing this is to start with
a low value of 𝑙 and then gradually increase it by one in each step. This will be illustrated on a real example in Section 6.
It is difficult to see how any test based or penalty-based procedure can offer the same opportunity. Another advantage is
that the procedure is scale invariant. If all the response values are multiplied by a constant 𝑐 all the estimated coefficients
and the estimated 𝜎 will also be multiplied by 𝑐. Any ranking between coefficients and the MSEs of the candidate sets
will be unchanged. No assumption about heredity is taken into account in this procedure. The heredity principle is not
guaranteed to be valid, and we think it is better to see which candidate sets that are able to explain the variation in the
response before we eventually discard some. The algorithm will be described in detail in Section 3.

3 THE PROPOSED SCREENING ALGORITHM

The basic idea of the screening algorithm is to first do a rough selection of terms, utilizing the assumption that most
often, only a small number of terms is needed to explain the response. The proposed screening algorithm is given by the
following steps:

1. Given a set of 𝑛𝑡 experimental factors, assume that 𝑛𝑎 are active. Find all possible sets of 𝑛𝑎 active factors, in total
𝑘 =

(𝑛𝑡
𝑛𝑎

)
.

2. For all 𝑘 sets, fit the full projection model given the current design and 𝑛𝑎. The intercept is also included in the model.
3. Select the 𝑙 terms corresponding to the largest coefficients in absolute value in the FP-model.
4. Refit the model with the selected terms and the intercept only. The refitted model will be referred to as the reduced

model.
5. Store the MSE =

∑𝑛

𝑖=1(𝑦𝑖−𝑦𝑖)
2

𝑛−𝑙−1
for each reduced model.

6. Find the sets of active factors corresponding to the 𝑟 smallest MSE.

As a result, the original 𝑘 candidate sets of 𝑛𝑎 active factors are reduced to 𝑟. To consider a set, a candidate set for 𝑛𝑎 active
factors is not affected by how many factors that are included in the reduced model. In practice, one will likely inspect the
selected models to see which factors were actually chosen. As the algorithm assumes that the coefficients with the largest
absolute value are the most important, it will from now on be referred to as the ‘size-based method’. The emphasis will be
to investigate for which values of 𝑟 the active factors are among the final candidates in at least 95% of the cases.
It is our belief that starting with a coarse sorting in the beginning and proceeding with fine-tuning of the model is a

rational approach, as reducing the number of candidate models makes it easier to compare and select a final model.

4 AMOTIVATIONAL EXAMPLE

To have some impression of how well the algorithm suggested in Section 3 performs, it was first tested out on a model
given by 𝑌 = 2𝑥1 + 4𝑥3 + 2𝑥2𝑥3 + 2𝑥3𝑥4 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2). This is a commonly used test model for screening procedures,
see for example Hamada andWu7 orWolters and Bingham.10 It is also thoroughly investigated in Tyssedal and Hussain,17
as their model 8 in the panel. The model has four active factors and four terms and obeys the weak heredity principle.
Tables 1 and 2 show the capture frequencies for the active factors when using the new size-based method, choosing the

number of terms 𝑙 = 4, 6 and 7, respectively. This is in line withWolters and Bingham,10 who suggest that 𝑛

3
is a reasonable

estimate for the number of effects in the model, and that between 𝑛

3
+ 2 and 𝑛

3
+ 4 effects should be chosen in order to

ensure finding the correct effects. Tables 1 and 2 showCF𝑟(1000) for 𝑟 =1, 5 and 10. The choice of 𝑖 = 1000mimics Tyssedal
and Hussain.17 The results were found by using the design in Table 3, creating the responses based on themodel, and then
adding normally distributed noise with different variances. The proposed size-based method was used to test all possible
candidate sets of four active factors having 𝑛𝑡 experimental factors. The design used consists of the 𝑛𝑡 first columns of the
PB12 design in Table 3.
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HAMRE and TYSSEDAL 4103

TABLE 1 CF𝑟(1000) obtained from model 8 in Tyssedal and Hussain17 varying 𝜎2, the size of the capture set, 𝑟, and the number of
experimental factors, 𝑛𝑡 , using 𝑙 = 4 number of terms

𝝈𝟐

𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
l = 4, 𝑛𝑡 = 7

1 1000 1000 1000 1000 999 999 993 991 976 971 951
5 1000 1000 1000 1000 1000 1000 1000 1000 998 997 998
10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

l = 4, 𝑛𝑡 = 9
1 1000 1000 1000 999 998 996 986 973 945 911 888
5 1000 1000 1000 1000 1000 1000 1000 997 998 991 988
10 1000 1000 1000 1000 1000 1000 1000 999 1000 998 999

l = 4, 𝑛𝑡 = 11
1 1000 1000 1000 998 999 993 980 952 903 884 850
5 1000 1000 1000 1000 1000 1000 999 996 992 989 974
10 1000 1000 1000 1000 1000 1000 1000 1000 998 996 991

TABLE 2 CF𝑟(1000) obtained from model 8 in Tyssedal and Hussain17 varying 𝜎2, the size of the capture set, 𝑟, the number of
experimental factors, 𝑛𝑡 , and the number of terms, 𝑙

𝝈𝟐

𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
l = 6, 𝑛𝑡= 7

1 1000 648 675 630 639 658 646 593 614 592 582
5 1000 1000 1000 1000 1000 998 999 992 989 986 970
10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999

l = 6, 𝑛𝑡 = 9
1 1000 658 656 641 670 604 632 568 541 551 468
5 1000 1000 1000 1000 998 992 989 973 951 943 905
10 1000 1000 1000 1000 1000 999 999 997 988 991 972

l = 6, 𝑛𝑡 = 11
1 1000 528 529 526 527 487 470 486 425 398 403
5 1000 1000 1000 996 990 978 949 915 891 856 835
10 1000 1000 1000 1000 1000 997 982 972 953 947 932

l = 7, 𝑛𝑡 = 7
1 0 531 542 534 522 500 500 516 512 463 455
5 1000 1000 1000 1000 1000 993 994 985 978 968 948
10 1000 1000 1000 1000 1000 1000 1000 1000 998 995 991

l = 7, 𝑛𝑡 = 9
1 0 400 382 417 380 361 352 367 358 335 290
5 1000 897 877 886 851 854 830 829 806 793 748
10 1000 1000 1000 1000 998 988 978 964 944 928 917

l = 7, 𝑛𝑡 = 11
1 0 238 271 242 250 248 228 220 222 193 214
5 0 657 693 651 716 671 660 645 619 579 578
10 0 884 908 891 913 872 871 846 831 788 791
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4104 HAMRE and TYSSEDAL

TABLE 3 The 12-run PB design with 11 factors

A B C D E F G H I J K
1 1 −1 1 1 1 −1 −1 −1 1 −1

−1 1 1 −1 1 1 1 −1 −1 −1 1
1 −1 1 1 −1 1 1 1 −1 −1 −1

−1 1 −1 1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 −1 1 1 1 −1
−1 −1 −1 1 −1 1 1 −1 1 1 1
1 −1 −1 −1 1 −1 1 1 −1 1 1
1 1 −1 −1 −1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1 1 1 −1

−1 1 1 1 −1 −1 −1 1 −1 1 1
1 −1 1 1 1 −1 −1 −1 1 −1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

F IGURE 1 Plots of 𝐶𝐹10(1000) against variance for comparison of the proposed size-based method and the methods from Tyssedal and
Hussain,17 for different numbers of experimental factors, 𝑛𝑡 , and number of terms, 𝑙. The y-axis is different for each plot, but the black dashed
lines show the 95% limit in all cases. (A) Seven factors in the design, (B) nine factors in the design, (C) 11 factors in the design

What is apparent from Tables 1 and 2 is that, at least for this model, our procedure may perform extremely well when
𝑙 = 4 and also for 𝑙 = 6 and 𝑟 = 10. For 𝑙 = 4, we obtained higher capture frequencies using 𝑟 = 1 than Tyssedal and
Hussain17 obtained with 𝑟 = 10. As expected, the number of experimental factors affects the performance. Even for 𝑙 = 6

and 𝑟 = 5, the results are good for quite high variances. For 𝑙 = 7, the performance declines remarkably. In Figure 1,
𝐶𝐹10(1000) is plotted against variance for comparing the size-based procedure with different 𝑙-values with the results
obtained in Tyssedal and Hussain17 with the Δ𝑅2-method and the F-test. It is easily seen that our proposed procedure
outperforms the Δ𝑅2-method and the F-test method in all cases when 𝑙 = 4 and 6. However, when 𝑙 = 7, the Δ𝑅2-method
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HAMRE and TYSSEDAL 4105

TABLE 4 The 16-run NC design with six factors

A B C D E F
−1 −1 −1 −1 1 −1
1 −1 −1 −1 −1 −1

−1 1 −1 −1 −1 1
1 1 −1 −1 1 −1

−1 −1 1 −1 −1 1
1 −1 1 −1 1 1

−1 1 1 −1 1 1
1 1 1 −1 −1 −1

−1 −1 −1 1 −1 1
1 −1 −1 1 1 1

−1 1 −1 1 1 −1
1 1 −1 1 −1 1

−1 −1 1 1 1 −1
1 −1 1 1 −1 −1

−1 1 1 1 −1 −1
1 1 1 1 1 1

and the F-test have slightly higher capture frequencies for small values of 𝜎2. What is also apparent is that our procedure
is more robust to increasing the variance than the Δ𝑅2-method and the F-test. As expected, the number of experimental
factors affects the performance. The more experimental factors, the higher 𝑟 should be used.
One problem appeared when choosing seven terms in the case of zero variance. The model with the correct factors was

never the best, and when considering 11 experimental factors, it was not even among the 10 best. But the MSEs of the
top 20 models were very similar, indicating that several sets of factors can explain this response equally well. Equivalent
models sometimes occur when using the PB12 design due to the complex alias structure, making it more likely that some
linear combinations are equivalent to the true model the more terms that are included. Therefore, only testing a small
panel of models is not advisable, as the results may be strongly affected when such equivalent cases exist.

5 A SIMULATION STUDY OF THE OVERALL PERFORMANCE

To assess the overall performance of our procedure, we have tried it out on a wide range of models. The designs used are
six or more design columns from the 12-run PB design and the three 16-run NC designs given in Tables 4–6. For designs
with 12 runs and 𝑛𝑡 experimental factors, the 𝑛𝑡 first columns from Table 3 will always be used. Note that the 12-run PB
design has two different projections onto 5 and 6 dimensions. Table 3 is written in a form that contains the one preferred
by Wang and Wu20 in the first six columns. For all other dimensions, the projections are isomorphic.
The 16-run designs were chosen to examine how much gain in capture frequency that is obtained by using four more

experimental runs. Also, their performance in a screening situation is, to our knowledge, not well tested out. The three
NC designs presented in Tables 4–6 are for each number of factors just one out of several options. For six experimental
factors, the designwith the highest numbers of full 24 projections was chosen. It ismade up of a 25−1 designwith generator
E = ABCD and an additional factor column F generated as F =

1

2
(AD+ABD−CD+BCD), and can be found in Table 4.

For seven and eight experimental factors, we use designs that are isomorphic to the ones proposed by Montgomery and
Jones.18 They can be found in Tables 5 and 6.

5.1 A general procedure for testing the size-based method

The procedure was tested out through simulations for cases with both three and four active factors, using several model
formats and various levels of noise. The models selected were submodels of the FP-models. Given the format and the
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4106 HAMRE and TYSSEDAL

TABLE 5 The 16-run NC design with seven factors

A B C D E F G
−1 −1 −1 −1 1 −1 −1
1 −1 −1 −1 −1 −1 1

−1 1 −1 −1 −1 1 1
1 1 −1 −1 1 −1 −1

−1 −1 1 −1 −1 1 −1
1 −1 1 −1 1 1 1

−1 1 1 −1 1 1 −1
1 1 1 −1 −1 −1 1

−1 −1 −1 1 −1 1 1
1 −1 −1 1 1 1 −1

−1 1 −1 1 1 −1 1
1 1 −1 1 −1 1 −1

−1 −1 1 1 1 −1 1
1 −1 1 1 −1 −1 −1

−1 1 1 1 −1 −1 −1
1 1 1 1 1 1 1

TABLE 6 The 16-run NC design with eight factors

A B C D E F G H
−1 −1 −1 −1 −1 1 1 1
1 −1 −1 −1 1 1 −1 1

−1 1 −1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1

−1 −1 1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 1 −1

−1 1 1 −1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1
1 −1 −1 1 1 −1 1 −1

−1 1 −1 1 −1 −1 −1 1
1 1 −1 1 −1 1 −1 −1

−1 −1 1 1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 1

−1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

noise level, active factors and effects were drawn randomly, and the size of the effects drawn uniformly within specified
intervals in each of 10,000 simulations. The full description of the procedure for testing the size-based method proposed
in Section 3 is as follows:

1. Specify the format of the model: Number of active factors, 𝑛𝑎, number of candidate effects, 𝑛𝑒, number of main effects,
𝑛𝑚, minimum absolute value of the coefficients, 𝑏𝑚𝑖𝑛, maximum absolute value of the coefficients, 𝑏𝑚𝑎𝑥.

2. Specify the variance of the noise added to the response, 𝜎2.
3. Specify number of terms in the reduced model, 𝑙.
4. Draw the active factors, randomly distribute their effects between main effects and two-factor interactions. Draw the

corresponding coefficients from a uniform distribution on the interval [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥], multiply with −1 or 1, drawn
randomly with equal probability.
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HAMRE and TYSSEDAL 4107

F IGURE 2 The number of possible candidate sets for three and four active factors as a function of the number of experimental factors

TABLE 7 CF1(10, 000) for the 16-run NC-designs varying 𝜎2 in the case of three active factors. The simulated models have three main
effects and three interaction effects and an absolute effect size between 1 and 3. All terms in the FP-model were chosen for the reduced models.

CF𝟏(𝟏𝟎, 𝟎𝟎𝟎) for the 16-run designs
𝝈𝟐

𝒏𝒕 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
6 10,000 9982 9968 9979 9964 9948 9940 9920 9912 9915 9899
7 10,000 9979 9968 9939 9955 9919 9898 9871 9857 9831 9840
8 10,000 9963 9931 9901 9855 9819 9803 9749 9698 9678 9651

5. Using the design considered, simulate responses adding error terms drawn from a normal distribution with mean zero
and variance 𝜎2.

6. Apply the proposed algorithm and check if the correct set of active factors were used to construct any of the 𝑟 reduced
models with the smallest MSE.

In all cases, the CF𝑟(10, 000) for 𝑟 = 1, 5, 10 and 15 was recorded. When CF𝑟(10, 000) = 10, 000 for all levels of 𝜎2, it
is not presented in the result tables. Checking the performance for several levels of 𝜎2 is useful to give an indication of
the most suitable size of the capture set. It is important to be aware of that the number of possible sets of active factors
rapidly increases when the number of factors in the design increases. Figure 2 shows the number of sets as a function of
the number of factors. For instance, when considering six factors in the design, there are only 20 possible sets of three
factors, while if there are 11 factors in the design, there are 165. Thus being able to reduce the candidate set to 5, 10 or 15 is
relatively more useful for designs with many experimental factors.
An important point to note about the simulations is that 𝑏𝑚𝑖𝑛 was chosen as the value of the largest variance tested,

while 𝑏𝑚𝑎𝑥 was three times the value of the largest variance. If the response variance is much larger than the coefficients,
it is believed to be very hard to find the correct model when using as few runs as 12 or 16.

5.2 Identifying three active factors

First, the simplest case of three active factors was considered. As there are only seven terms in the full projection model, 𝑙
was set to 7 and the mean square errors of the full projection models were compared. The simulated models were chosen
to have three main effects and three interaction effects, all with coefficients with an absolute value between 1 and 3.
The results were very good for both the 12- and 16-run designs. For the 16-run NC designs, the capture frequencies were
almost always 10,000 when using 𝑟 = 5, 10 and 15. The only exception was in the case of eight factors in the design and
a variance of 1 when choosing the five best factors. Then the capture frequency was 9997. The results when choosing the
very best model were also highly satisfactory, as shown in Table 7. When having a 95% chance of finding the correct model
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4108 HAMRE and TYSSEDAL

TABLE 8 CF𝑟(10000) for the PB12 design varying 𝜎2, the size of the capture set, 𝑟, and the number of experimental factors, 𝑛𝑡 , in the case
of three active factors. The simulated models have three main effects and three interaction effects and an absolute effect size between 1 and 3.
All terms in the FP-model were chosen for the reduced models.

𝝈𝟐

𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑛𝑡 = 6

1 10,000 9886 9770 9684 9577 9485 9391 9250 9120 9031 8897
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9999 9997

𝑛𝑡 = 7
1 10,000 9822 9659 9430 9293 9144 8912 8763 8626 8453 8277
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9997 9996 9992 9992

𝑛𝑡 = 8
1 10,000 9655 9387 9048 8767 8588 8285 7981 7763 7599 7296
5 10,000 10,000 10,000 10,000 9999 9997 9994 9989 9983 9970 9939
10 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9999 9999 9998

𝑛𝑡 = 9
1 10,000 9522 9077 8652 8301 7953 7591 7306 6937 6670 6454
5 10,000 10,000 10,000 9997 9995 9988 9979 9947 9937 9915 9863
10 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9998 10,000 9990 9988
15 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9997 9999

𝑛𝑡 = 10
1 10,000 9370 8820 8271 7856 7407 7005 6629 6339 5967 5705
5 10,000 9997 9990 9993 9980 9961 9917 9886 9821 9730 9709
10 10,000 10,000 10,000 10,000 10,000 10,000 9998 9988 9987 9971 9969
15 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9998 9997 9991 9993

𝑛𝑡 = 11
1 10,000 9271 8606 8020 7448 6901 6599 6093 5749 5447 5101
5 10,000 9998 9980 9964 9930 9889 9805 9720 9639 9543 9408
10 10,000 10,000 10,000 10,000 10,000 9991 9994 9974 9956 9948 9924
15 10,000 10,000 10,000 10,000 10,000 9998 10,000 9995 9987 9988 9973

is considered good enough, selecting the best model in a search for three active factors is an acceptable strategy when
using a 16-run design.
The 12-run PB design did, naturally, not perform as well as the 16-run designs, but when using 𝑟 = 5, themodel with the

correct factors was almost always found in at least 95% of the cases. Thus being able to reduce the number of candidate sets
down to five, using the proposed size-based method, is likely for the 12-run PB design even with 11 experimental factors.
The results can be found in Table 8. To ease the comparison, the results corresponding to using 𝑟 = 1 and 𝑟 = 5 are plotted
in Figure 3, for all the cases tested. It is easily seen that the 16-run designs perform better than the PB12 design for the
same number of factors, and that the capture frequencies decrease with increasing number of experimental factors, as one
would expect. Note that as 16-run designs with more than eight factors were not tested, only designs with six, seven and
eight experimental factors can be fairly compared for 12 and 16 runs.

5.3 Identifying four active factors

Besides some examples and the work of Tyssedal and Hussain,17 there is to our knowledge limited information of how
well the PB12 design performs when four factors are active. However, the above-mentioned work indicates that it is sub-
stantially more difficult to identify the right active factors when four are active compared to when three are. The first
simulated models were specified to have four main effects and 2 two-factor interaction effects, all with coefficients with
absolute values between 1 and 3. The reduced models included 𝑙 = 6 terms. Results using the 16-run NC designs are pre-
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HAMRE and TYSSEDAL 4109

F IGURE 3 Plot of CF𝑟(10, 000) against variance varying the size of the capture set, 𝑟, and the number of experimental factors, 𝑛𝑡 , for
both 12- and 16-run designs having three active factors. The simulated models have three main effects and three interaction effects, and an
absolute effect size between 1 and 3. All terms in the FP-model were chosen for the reduced models. R denotes the number of rows in the
design, and F the number of factors. Note that the y-axis is different for each plot, but the black dashed lines show the 95% limit in all cases.
(A) CF𝑟(10, 000) when 𝑟 = 1, (B) CF𝑟(10, 000) when 𝑟 = 5

TABLE 9 CF𝑟(10, 000) for the 16-run designs in the case of four active factors, varying 𝜎2 and the capture set size, 𝑟. The simulated
models have four main effects and 2 two-factor interaction effects and an absolute effect size between 1 and 3. The number of terms in the
reduced model is 𝑙 = 6.

𝝈𝟐

𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑛𝑡 = 6

1 10,000 9862 9809 9776 9731 9673 9644 9567 9555 9496 9466
𝑛𝑡 = 7

1 10,000 9788 9645 9606 9535 9437 9319 9290 9219 9138 8993
5 10,000 9999 9999 10,000 9999 10,000 9997 9995 9996 9994 9992

𝑛𝑡 = 8
1 10,000 9616 9367 9085 9020 8828 8720 8496 8338 8180 8003
5 10,000 9995 9985 9962 9976 9952 9944 9918 9913 9883 9859
10 10,000 10,000 10,000 10,000 9999 9997 9997 9996 9994 9989 9991
15 10,000 10,000 10,000 10,000 10,000 10,000 10,000 9999 9999 10,000 9999

sented in Table 9. The capture frequencies when considering 𝑟 = 1 decline quickly when the number of factors in the
design is increased. This is reasonable, given that there exists 15 ways to choose four active factors among six candidate
factors, and 70 ways to choose four active factors among eight candidate factors. Despite this, using 𝑟 = 5 is sufficient for
having a capture frequency well above 95% for all design sizes.
The results for the 12-run PB design with different numbers of factors in the design can be found in Table 10. In this

case, using 𝑟 = 1 for finding the active factors is not advisable, as the capture frequencies are then quite low. However,
for reducing the number of candidate sets, the method yields satisfactory results in many cases. Including up to eight
experimental factors in the design, using 𝑟 = 10 yields a capture frequency above 95% in all but two cases. For more than
eight factors in the design, 𝑟 = 10 yields satisfactory results for low levels of noise.When suspecting a rather high variance,
one may use 𝑟 = 15 to improve the chances that the correct active factors are included in the capture set. For instance,
when there are nine factors in the design, choosing 𝑟 = 15 instead of 𝑟 = 10 increases themaximal 𝜎2 for which the success
probability is above 95% from 0.5 to 0.7.
To compare the general difference in performance for the 12- and 16-run designs, the results were plotted for the case

of selecting the best and the five best models in Figure 4. When selecting the 10 best models, the results were very close to
10,000 for the 16-run designs, hence only results for the 12-run design were plotted in Figure 5. The plots leave little doubt
that using 16-run designs are recommendable whenever possible, but using the 12-run designs with the same number of
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4110 HAMRE and TYSSEDAL

TABLE 10 CF𝑟(10, 000) for the PB12 design in the case of four active factors with varying 𝜎2, capture set size 𝑟 and number of
experimental factors 𝑛𝑡 . The simulated models have four main effects and 2 two-factor interaction effects and an absolute effect size between 1
and 3. The number of terms in the reduced model is 𝑙 = 6.

𝝈𝟐

𝒓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑛𝑡 = 6

1 10,000 9214 8771 8344 7875 7626 7267 6919 6639 6387 6117
5 10,000 9996 9984 9985 9968 9950 9943 9913 9878 9829 9773
10 10,000 10,000 9999 10,000 10,000 9999 10,000 9999 9996 9991 9993

𝑛𝑡 = 7
1 10,000 8624 8053 7417 6920 6477 5873 5606 5168 4891 4594
5 10,000 9968 9930 9868 9825 9714 9622 9462 9302 9179 8989
10 10,000 9999 9999 9995 9985 9964 9957 9943 9904 9855 9822
15 10,000 10,000 10,000 10,000 10,000 9996 9996 9988 9982 9973 9970

𝑛𝑡 = 8
1 10,000 8246 7338 6644 5953 5398 4834 4529 4093 3700 3554
5 10,000 9897 9786 9608 9412 9194 8921 8706 8433 8097 7862
10 10,000 9989 9968 9928 9884 9820 9749 9620 9535 9362 9224
15 10,000 9996 9992 9984 9959 9943 9912 9851 9814 9762 9656

𝑛𝑡 = 9
1 10,000 7849 6738 5800 5106 4559 3986 3553 3233 2774 2609
5 10,000 9834 9594 9313 8977 8632 8206 7840 7434 6883 6644
10 10,000 9964 9889 9819 9658 9542 9320 9089 8856 8540 8313
15 10,000 9994 9971 9944 9886 9826 9706 9596 9436 9248 9064

𝑛𝑡 = 10
1 10,000 7489 6220 5169 4458 3835 3371 2952 2524 2224 1986
5 10,000 9748 9414 8975 8507 7960 7562 7058 6532 6043 5634
10 10,000 9927 9798 9613 9410 9114 8842 8433 8098 7692 7372
15 10,000 9971 9921 9814 9688 9560 9375 9080 8851 8568 8372

𝑛𝑡 = 11
1 10,000 7119 5665 4555 3883 3284 2736 2370 2024 1746 1564
5 10,000 9608 9147 8526 7925 7267 6803 6136 5685 5161 4731
10 10,000 9866 9663 9344 8967 8561 8235 7748 7287 6833 6441
15 10,000 9942 9817 9664 9426 9149 8882 8529 8129 7773 7442

factors can also yield good results if one selects several candidate sets of active factors for further investigation and the
variance is not too high.

5.4 Testing different model specifications

Having demonstrated that the method works well for a given format for four active factors, it is interesting to see if the
results are impacted by using different specifications for the simulatedmodels. Themodels used in the previous section all
had four main effects and 2 two-factor interactions. To check how the number and type of active effects affect the result,
a panel of model types with four active factors and different specifications was tested:

1. Six active effects (four main effects, two two-factor interactions)
2. Six active effects (three main effects, three two-factor interactions)
3. Six active effects (two main effects, four two-factor interactions)
4. Four active effects (two main effects, two two-factor interactions)
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HAMRE and TYSSEDAL 4111

F IGURE 4 Plot of CF𝑟(10, 000) against variance for the 12- and 16-run designs with different numbers of factors in the design, using
capture set size 𝑟 = 1 and 5, respectively. The simulated models have four main effects and 2 two-factor interaction effects, and an absolute
effect size between 1 and 3. The number of terms in the reduced model is 𝑙 = 6. R denotes the number of rows in the design, and F the number
of factors. The y-axis is different for each plot, but the black dashed lines show the 95% limit in all cases. (A) CF𝑟(10, 000) when 𝑟 = 1, (B)
CF𝑟(10, 000) when 𝑟 = 5

F IGURE 5 Plot of CF𝑟(10, 000) against variance for the 12-run PB design with different numbers of factors in the design, using capture
set size 𝑟 = 10 and 𝑟 = 15, respectively. The simulated models have four main effects and 2 two-factor interaction effects, and an absolute
effect size between 1 and 3. The number of terms in the reduced model is 𝑙 = 6. R denotes the number of rows in the design, and F the number
of factors. The y-axis is different for each plot, but the black dashed lines show the 95% limit in all cases. (aA) CF𝑟(10, 000) when 𝑟 = 10, (B)
CF𝑟(10, 000) when 𝑟 = 15

The first specification is the one used in the previous section. The third is motivated from machine learning. When
design of experiments is used for tuning of hyperparameters in algorithms like random forests, experience has shown that
many two-factor interactionsmay appear in the screening phase, see Vatnedal.23 All specificationswere tested for different
numbers of factors in the design, choosing 𝑙 = 6 terms for the reduced models. The results for the 12-run designs can be
found in Figure 6. In the plots, results are shown when choosing 𝑟 = 1, and when choosing the 𝑟 one would typically use
for that model size (either 5, 10 or 15, depending on the capture frequency). The results seem to vary more when using
𝑟 = 1 than when 𝑟 = 5, 10 or 15. This is reassuring, as one would typically not choose only the best model. In general, the
smallest model with only four active effects yields slightly better results than the models with six active effects, suggesting
that sparse models make the active factors easier to find than large models. For the models with six active effects, the
results are slightly worse for the models with three main effects and three two-factor interactions than the others.
The same panel of specifications was also tested for the 16-run nonregular NC design, using 𝑙 = 6 in the reducedmodels,

and the results can be seen in Figure 7. In this case, the sparsestmodels with only four active effects gave poor results when
choosing 𝑟 = 1. This might seem strange as this specification performed well in the 12-run case, and now it did not even
yield a capture frequency above the 95% limit when the variance was zero. This is due to the aliasing pattern of the 16-run
design. For the six and seven factor design both E = ABCD and F =

1

2
(AD+ABD−CD+BCD) are generators. When only
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4112 HAMRE and TYSSEDAL

F IGURE 6 Plot of CF𝑟(10, 000) against variance for different model specifications using a PB12 design. 2M2IBest does for instance
denote two main effects, 2 two-factor interactions and 𝑟 = 1. In all cases, there were four active factors, and the absolute effect size was
between 1 and 3. The number of terms in the reduced models is 𝑙 = 6. (A) Six factors in the design, (B) seven factors in the design, (C) eight
factors in the design, (D) nine factors in the design, (E) 10 factors in the design, (F) 11 factors in the design

four effects are active, but more effects are chosen for the reduced models, it is possible to construct alternative models,
which are linearly equivalent to the true model.
For instance, if the true model has the active effects C, D, BC and DF. Then a linearly equivalent model can be con-

structed using the effects A, C, D, BC and AB. This is because DF =
1

2
(A+AB−C+BC). But the plots also show that the

correct model is found among the five best models almost equally often when there are four active effects as when there
are six active effects. This effectively demonstrates that one should always consider choosing a candidate set of models for
further investigation when using nonregular designs. Then one may proceed the analysis by testing reduced models with
different values of 𝑙. If a small model has only a slightly higher MSE than a larger one with different active factors, it could
indicate that the larger model is just another representation of the small one.
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HAMRE and TYSSEDAL 4113

F IGURE 7 Plot of CF𝑟(10, 000) against variance for the 16-run design using different model specifications. 2M2IBest does for instance
denote two main effects, 2 two-factor interactions and 𝑟 = 1. In all cases, there were four active factors, and the absolute effect size was
between 1 and 3. The number of terms in the reduced model is 𝑙 = 6. (A) Six factors in the design, (B) seven factors in the design, (C) eight
factors in the design

TABLE 11 Factors and levels for investigating the possible size of error variance in order to have a capture frequency of 95%

Symbol Factor Levels
A Size of capture set, 𝑟 5, 10, 15
B Number of excess terms in reduced model, 𝑙 − 𝑛𝑒 0, 1, 2
C Number of experimental factors, 𝑛𝑡 7, 9, 11
D Number of terms in the model, 𝑛𝑒 4, 5, 6

5.5 Evaluating the screening performance

From what is observed, factors like the size of the capture set, 𝑟, the number of terms in the reduced model, 𝑙, the number
of experimental factors, 𝑛𝑡, and the number of terms in the truemodel, 𝑛𝑒, will affect the outcome of a screening. To inves-
tigate the effect of these factors for the 12 run PB design, a 34 experiment was conducted using the largest error variance for
which a capture frequency above 95% can be obtained, from now on called the capture variance, as the response. Factors
and levels are given in Table 11.
Capture frequencies based on 1000 simulations were used in the experiment. The models had four active factors and

the number of terms, 𝑛𝑒, in the models was chosen to be 4, 5 and 6, always including 2 two-factor interactions. The
data were analysed using the alternative analysis method given in Wu and Hamada,24 page 287. Linear and quadratic
effects were estimated by setting low, medium and high levels to (−1, 0, 1) and (1, −2, 1), respectively. No scaling to unit
length was performed. A logarithmic transformation is often employed for variance modelling. However, in this case, the
square root gave residuals better approximated to a normal distribution. Following the notation in Wu and Hamada,24
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4114 HAMRE and TYSSEDAL

TABLE 1 2 Values of estimated capture standard deviations varying the size of the capture set, 𝑟, and the number of experimental
factors, 𝑛𝑡 . 𝑙 = 𝑛𝑒 = 4. The models have four active factors.

𝒓∖𝒏𝒕 7 9 11
5 1.02 0.73 0.60
10 1.43 0.92 0.72
15 1.85 1.11 0.85

the following model was estimated for the capture standard deviation with all terms being significant at a 5% level: �̂� =

0.766 + 0.263𝐴𝑙 − 0.114𝐵𝑙 − 0.366𝐶𝑙 − 0.134𝐷𝑙 + 0.055𝐶𝑞 + 0.012𝐷𝑞 + 0.018𝐴𝐵𝑙𝑙 − 0.147𝐴𝐶𝑙𝑙 − 0.023𝐶𝐷𝑙𝑙 + 0.022𝐴𝐶𝑙𝑞 .
The subscripts 𝑙, 𝑞, 𝑙𝑙 and 𝑙𝑞 are used to denote linear, quadratic, linear-by-linear and linear-by-quadratic effects, respec-

tively. The linear effects dominate together with the linear by linear interaction AC and the quadratic effect of C. As
expected, the capture standard deviation is higher if 𝑟 is high and if we have few experimental factors. It is an advantage
that 𝑙 is equal to 𝑛𝑒, and that the model has few terms. The linear-by-linear AC interaction has as a consequence that the
effect of increasing 𝑟 will decline when 𝑛𝑡 increases. Table 12 gives capture standard deviation for different values of 𝑟 and
𝑛𝑡 with 𝑙 = 𝑛𝑒 = 4. Since the effect of increasing 𝑙 − 𝑛𝑒 and 𝑛𝑒 is mainly linear, it is rather easy to adjust for other values
of these parameters.
We notice that the negative effect on the capture standard deviation of increasing 𝑛𝑡 decreases when 𝑛𝑡 increases. Over-

all, the results show that for the 12-run PB design, even with 𝑛𝑡 = 11 and four active factors, it is in many cases possible to
reduce the number of candidate sets down to 5. Only 𝑛𝑡 is known in the beginning of the screening, but once performed,
one will have values for 𝑙, and estimates for 𝑛𝑒 and 𝜎. The suitability of 𝑙 can be checked against the models in the cap-
ture set. Since the procedure is scale invariant as pointed out in Section 2, the value of �̂�

̂𝑏𝑚𝑖𝑛

can be used to check against
the numbers in Table 12 and should, together with the model for �̂�, provide useful information about what 𝑟 to use in
order to have a reasonable certainty that the ‘correct’ candidate set is captured. In this way, the reliability of the screening
performance can be evaluated even if several important parameters are unknown from the beginning.
However, all the calculation are performed under the assumption that 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

= 3. It is meant to constitute a normal situa-

tion, but obviously this is not always true. In Figure 8, the capture frequencies are plotted for 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

= 𝑣 for 𝑣 = 1.5, 2.0, … , 4

in steps of 0.5, and for two models with four active factors. One of the models has four active effects and one has six. We
notice that the capture frequency is decreasingwith increasing 𝜎2 and 𝑛𝑡. For 𝑣 = 2, the reduction in the estimated capture
standard deviation compared to when 𝑣 = 3 will be about 20%–30% for the model with four terms and 30%–40% for the
model with six terms. For 𝑣 = 1.5 these intervals are about 30-40% and 45%–70%. However, when running simulations
with a given 𝑣, the ratio between the largest and smallest coefficient will most likely be smaller than 𝑣 in absolute value.
Therefore, numbers like the ones above and in Table 12 are a little pessimistic. We notice that for up to eight experimental
factors, the method performs reasonably well even for quite high variances.
Figure 9 explains why the problem of identifying active factors is much harder when the effect range is small. Response

values are simulated from a model with four active factors and six terms. No noise is added. Our procedure is then used
to find the MSE of all the 126 candidate sets for nine experimental factors. The average of the nine candidate sets with a
MSE closest to zero is plotted against 𝑣. The smaller the 𝑣 the smaller the average, making it easier for other candidate sets
than the correct one to be in the capture set. Increasing 𝑙 − 𝑛𝑒 makes the problem of identifying the active factors harder.

6 AN EXAMPLEWITH REAL DATA

Phoa et al.25 reanalysed three real chemical experiments where the PB12 design was used, in order to demonstrate
shortcomings of the traditional analysis approach. Here, their third example, an experiment regarding chemical char-
acterization of grapes originally taken from Dopico-Garcia et al.,26 will be considered. The response was the extraction of
phenolic compounds, measured in area divided by amount of sample (see the original paper for details). Table 13 shows
the factors and levels considered in the experiment, while Table 14 shows the experimental design and the corresponding
responses. Note that the columns in the PB12 design in Table 14 are written in a different manner than the ones in Table 3.
Phoa et al.25 found that the active factors were A, C and D. They proposed the following model: Ŷ= 5.51+ 1.11C− 1.03D

+ 1.73AD. Using the size-based method, assuming four active factors and including four, five and six terms in the reduced
models yielded the same active factors, and factor F in addition. Using three terms in the reduced models was also tested,
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HAMRE and TYSSEDAL 4115

F IGURE 8 Plots of capture frequencies when testing different effect ranges. The minimum effect size was always 1, while the upper (U)
was varied from 1.5 to 4. F is the number of factors in the design, while A is the number of active effects. There were always two active
two-factor interactions. 𝑙 = 𝑛𝑒 and 𝑟 = 10. Note that the scale of the y-axis is different for each row. (A) Seven factors in the design, (B) eight
factors in the design, (C) nine factors in the design, (D) 10 factors in the design, (E) 11 factors in the design

in which case the factors A, C and D were included in all candidate sets in accordance with the model chosen in Phoa
et al.25
The active factors and the MSE for the five best reduced models when assuming three and four active factors can be

found in Tables 15 and 16. Assuming three active factors, the factors A, C and D were always chosen. Note that for models
with four, five and six terms, theMSE of the supposedly correct model is about half the size or less than the next best MSE.
In the case of selecting three terms and assuming four active factors, the factors A, C and D are always included in the
candidate sets, and all models yield the same MSE. It seems like a model with the same three factors is always chosen,
despite the possibility of including an additional factor as long as there are only three terms. To consider whether there
are three or four active factors, the models should be more thoroughly investigated.
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4116 HAMRE and TYSSEDAL

F IGURE 9 The average MSE of the nine best candidate models for different effect ranges. The values are based on 1000 iterations, using
a design with nine factors, a minimum effect size of 1, and 0 variance. The simulated models had three active main effects and three active
two-factor interactions.

TABLE 13 Factors and levels in the compound extraction experiment from Dopico-Garcia et al.26

Symbol Factor Unit Low factor level (−) High factor level (+)
A Extraction solvent Acid water MeOH
B Extraction volume ml 50 250
C Extraction time min 5 20
D Temperature ◦C 40 50
E Extraction type Ultrasonic Stirring
F Sorbent type EC NEC
G Elution solvent EtOH MeOH
H Elution volume ml 20 150

TABLE 14 Design matrix and responses for the real data from Dopico-Garcia et al.26

Run A B C D E F G H Response Y
1 1 −1 1 −1 −1 −1 1 1 6.98
2 1 1 −1 1 −1 −1 −1 1 5.31
3 −1 1 1 −1 1 −1 −1 −1 9.67
4 1 −1 1 1 −1 1 −1 −1 6.45
5 1 1 −1 1 1 −1 1 −1 5.23
6 1 1 1 −1 1 1 −1 1 5.34
7 −1 1 1 1 −1 1 1 −1 4.03
8 −1 −1 1 1 1 −1 1 1 3.76
9 −1 −1 −1 1 1 1 −1 1 2.10
10 1 −1 −1 −1 1 1 1 −1 2.65
11 −1 1 −1 −1 −1 1 1 1 7.40
12 −1 −1 −1 −1 −1 −1 −1 −1 7.14

Different models assuming three and four active factors are given in Table 17, along with a list of terms having a p-
value above 0.01, and the adjusted AIC, AIC𝑎 = 𝑛 ln

SSE
𝑛

+
2𝑝(𝑛+1)

𝑛−𝑝
. Here the sum of squared errors, SSE, is given by SSE=

∑𝑛

𝑖=1
(𝑦𝑖 − 𝑦𝑖)

2. The difference between AIC and the AIC𝑎 is that AIC𝑎 punishes the addition of new terms more heavily
than the AIC, for which the penalty is only 2𝑝. AIC𝑎 is in particular considered suited for small sample sizes. In the case
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HAMRE and TYSSEDAL 4117

TABLE 15 The active factors and their corresponding MSE for the five best models, when assuming three active factors and choosing 3,
4, 5 and 6 terms in the reduced models, respectively

(a) 𝒍 = 𝟑 (b) 𝒍 = 𝟒

Rank Factors MSE Rank Factors MSE
1 A C D 0.314364 1 A C D 0.243252
2 B C F 0.838144 2 B C F 0.553700
3 A D E 0.937919 3 A D E 0.599666
4 A D F 1.100919 4 E G H 0.817199
5 D E H 1.126051 5 A D F 0.894516

(c) 𝒍 = 𝟓 (d) 𝒍 = 𝟔

Rank Factors MSE Rank Factors MSE
1 A C D 0.162919 1 A C D 0.121591
2 A D E 0.523941 2 A D E 0.492138
3 B C F 0.531299 3 B C F 0.521731
4 E G H 0.560616 4 E G H 0.523125
5 A D F 0.723891 5 C E H 0.543581

TABLE 16 The active factors and their corresponding MSE for the five best models, when assuming four active factors and choosing 3,
4, 5 and 6 terms ion the reduced models, respectively

(a) 𝒍 = 𝟑 (b) 𝒍 = 𝟒

Rank Factors MSE Rank Factors MSE
1 ABCD 0.314 1 ACDF 0.123
2 ACDH 0.314 2 ACDG 0.243
3 ACDF 0.314 3 ACDE 0.243
4 ACDE 0.314 4 ABCD 0.283
5 ACDG 0.314 5 ACDH 0.283

(c) 𝒍 = 𝟓 (d) 𝒍 = 𝟔

Rank Factors MSE Rank Factors MSE
1 ACDF 0.055 1 ACDF 0.023
2 ABCD 0.163 2 ACDG 0.061
3 ACDH 0.163 3 ACDE 0.082
4 ACDE 0.177 4 DEGH 0.090
5 ABCF 0.190 5 ABCD 0.115

TABLE 17 Evaluation of different models with three and four active factors for the grapes data from Dopico-Garcia et al.26 The intercept
is not counted in the number of terms (T), as it is always included.

F T Model AIC𝒂 p-value > 0.01
3 3 5.51+1.11C−1.03D+1.73AD 33.88 None
3 4 5.51+1.11C−1.03D+1.73AD−0.27CD 37.09 CD(0.20)
3 5 5.51−0.30A+1.11C−1.03D+1.73AD−0.37CD 41.08 A(0.14),CD(0.08)
3 6 5.43−0.30A+1.11C−1.03D+1.73AD−0.37CD−0.22ACD 50.77 ACD(0.25), A(0.13),CD(0.08)
4 3 5.51+1.11C−1.03D+1.73AD 33.88 None
4 4 5.51+1.30C−1.19D+1.79AD−0.50AF 28.95 AF (0.01)
4 5 5.51+1.26C−1.19D−0.28F+1.69AD−0.48AF 27.95 F (0.03)
4 6 5.51−0.18A+1.26C−1.19D−0.28F+1.69AD−0.48AF 30.66 A(0.05), F(0.01)
4 7 5.51−0.18A+1.24C−1.14D−0.33F+0.13AC+1.67AD−0.46AF 43.52 A(0.03), AC(0.10)
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4118 HAMRE and TYSSEDAL

F IGURE 10 (A) An added variable Pareto plot for extending the model given in Phoa et al.25 by one factor. (B) An added variable plot
for the two-factor interaction AF. (A) All effects, (B) AF

of three active factors, AIC𝑎 has a minimum for the original model, thus it seems like the best choice in that case. When
allowing four active factors, AIC𝑎 has a minimum for the model with five terms in the model. This is rather surprising, as
it was not the model chosen by Phoa et al.25 The difference from the originally chosen model is that the factor F is added
through the main effect F and the interaction effect AF. Both effects are significant at a 5% level. In fact, the factor F is
present in one or several terms in all models with four active factors andmore than three terms. As shown in this example,
the proposed screeningmethod can be an effective start for performingmodel selection, as the candidate models are fitted
as a part of the procedure.
From Table 15, it is clear that the analysis of these data very well might have ended concluding that the three factors

A, C and D are the active ones. As a useful method for considering if additional factors should be added, we will now
introduce the added variable Pareto plot (AVPP). Assume our current model is described by the linear model 𝒀 = 𝑿𝜷 + 𝝐 ,
with corresponding hat matrix𝑯. Adding one regressor variable, 𝑢, with corresponding design column 𝒖, the newmodel
becomes 𝒀 = 𝑿𝜷+𝒖𝛽𝑢 + 𝝐 . The least squares estimator for 𝛽𝑢 is then given by 𝛽𝑢=

𝒖′(𝑰−𝑯)𝒀

𝒖′(𝑰−𝑯)𝒖
. Estimating 𝛽𝑢 for all terms 𝑢

that extend the number of active factors by 1may informus if it is worth looking formore active factors. The corresponding
estimated 𝛽𝑢s may be ranked according to their absolute values and plotted in a Pareto plot to see what terms (or factors)
thatmost likely should be added. Such anAVPP is shown in Figure 10A, where we have let 𝑢 in turn be all main effects and
two-factor interactions that extend the number of active factors by 1. The largest term in absolute value is the two-factor
interaction AF, telling us that F may be the most important factor to add to A, C and D.
Figure 10B shows an added variable plot, as described in Abraham and Ledolter.27 It works as follows: The residu-

als from the fitted model 𝒀 = 𝑿𝜷 + 𝝐 are given by 𝒆 = (𝑰 − 𝑯)𝒚. Fitting 𝒖 on 𝑿 gives the residuals 𝒆𝒖 = (𝑰 − 𝑯)𝒖. The
added variable plot is obtained by displaying 𝒆 on the y-axis and 𝒆𝒖 on the x-axis. A trend in the residuals would indi-
cate that the variable should be added to the model. It can be shown that the slope in the scatterplot of the residuals
is equal to the coefficient estimate of 𝛽𝑢 when including 𝑢 in the model, see Abraham and Ledolter27 chapter 6.2.2
for more details. In this case, it is very clear that the two-factor interaction AF is a candidate to consider for enter-
ing the model. An AVPP could of course have been constructed using all possible candidate regressors, but the main
point here is to illustrate a useful tool for knowing if all the important variables have been identified in a screening
procedure.

7 CONCLUDING REMARKS

In this paper, a new size-based approach for performing a factor-based search is proposed. The method is based on fitting
the largest FP-model possible, then selecting the terms corresponding to the largest coefficients in absolute value and
fitting a reduced model only including those. Then the subsets of factors in the reduced models yielding the 𝑟 smallest
MSE values are selected as candidate sets for being active. Using simulatedmodels, where model coefficients were chosen
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HAMRE and TYSSEDAL 4119

at random, themethodwas demonstrated to work well for the 12-run PB design and the 16-runNC designs assuming three
and four active factors. The proposed method has the advantage of not relying on significance tests or a chosen criterion.
However, an important parameter to decide upon and preferably vary is the number of terms chosen for the reduced
model. An appropriate value for 𝑟 can to some extent be chosen afterwards. Identifying four active factors turned out to
be considerable harder than identifying three, but depending on the error variance, number of experimental factors and
number of runs, a considerable reduction in all the possible candidate sets of factors being active was possible to obtain.
Selecting the 10models with the smallest MSE, the probability that the true set of active factors was included among these
was found to be above 95% in most cases, except when using the 12-run PB design for a large number of factors and high
levels of noise. Also, the problem of identifying active factors is considerable harder when the range of the coefficients
values is small than when it is large.
Admittedly our method also relies on the assumption of factor sparsity and good projection properties of the design

used. Being of both 𝑃 = 3 and 𝑃 = 42, the designs utilized in this paper guarantee the estimation of all main effects and
interactions for any set of three factors and all main effects and two-factor interactions for any set of four. Srivastava28
with his search designs also pointed out the necessity for a design to be able to discriminate among the estimated models
and in the noiseless case the discrimination should be perfect. This is a strict requirement. A factor-based search already
makes some restrictions on which models that can be fitted. However, any design found by choosing six columns from a
12-run PB design cannot guarantee the discrimination among models with three active factors having three main effects
and three two-factor interactions, since at least 13 runs will be needed (see Cheng29 and Morgan et al.30). Examples with
six and seven factor NC designs where two different models with four active factors gave identical fit in the noiseless
case is given in Section 5.4. This supports the arguments for reducing the number of possible active factors in several steps
when designs like the ones in this paper are used. In practice, one would typically review theMSE of the candidatemodels
after selecting the 𝑟 best models. If there is a large gap in the MSE at some point, it might indicate that the correct factors
can be found in a model, which is included in the subset of models corresponding to the smallest MSE values. These
models can then be chosen for further analysis or review of alias patterns. As a help to check if additional factors should
be considered active, we also suggested a method, the AVPP. An example with real data was included to demonstrate how
to use the method and the AVPP in practice.
The proposed method can also be used for three level designs. As the number of different types of effects that may be

included in the model then increases, one should consider carefully, which effects that are desirable to investigate and
thereby also which designs to use. Designs like definitive screenings designs introduced by Jones and Nachtsheim31 and
orthogonal minimally aliased response surface designs proposed by Ares and Goos32 allow the estimation of quadratic
effects in addition to main effects and two-factor interactions. If a model with these terms included is estimable for all
subset of factors of a given size, the method is straight forward applicable, see for instance Tyssedal and Chaudry33 where
several situations are simulated and the screening performance compared to two-level designs of similar size. For more
on three level designs and projections properties, we refer to Xu et al.34 and Alomair et al.35
Finally, we point out that when analysing nonregular two-level designs, it is always wise to use several methods in

companion. For that purpose, we will in particular point to the graphical method proposed in Tyssedal and Niemi.36 It
can also be used to verify if our final proposed model is reasonable. It does not put any restriction on the number of active
factors, though it works best on models with relatively few terms.
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