
Predicting Pigment Color Degradation with Time Series Models
Irina-Mihaela Ciortan 1 ,Tina Grette Poulsson 2, Sony George 1 , Jon Yngve Hardeberg 1 ; 1NTNU - Norwegian University of
Science and Technology, Gjøvik, Norway; 2National Museum of Norway, Oslo, Norway

Abstract
The colors of pigments and dyes are affected by light ex-

posure. Light-induced color change has an impact on various
industrial and artistic applications where colored materials are
frequently exposed to light throughout their life-cycle. For this
reason, it is beneficial to understand the fading behaviour of pig-
ments and simulate future degradation. In this article, we are
proposing a method to forecast color change of pigments based
on time series analysis. To begin with, we collect fading data from
real objects with a microfadeometer, which records the color co-
ordinates after every second of light exposure. Then, we treat this
data as a time series, test for its stationarity and fit it with auto-
regressive integrated moving average (ARIMA) models. Finally,
using a train-test split, we validate the accuracy of the ARIMA
models in predicting color degradation of pigments and dyes.

Introduction
While there are many biological, physical and chemical fac-

tors that contribute to the aging of pictorial materials, exposure to
light is one of the most important. The reason to this is twofold.
Firstly, light-induced damage is affecting the color attributes and
so it has an immediate impact on the visual appearance. Secondly,
light exposure is very difficult to avoid when a colored material is
being utilized. If we take the cultural heritage field as an example
application, there are centuries old paintings and drawings that
have already been exposed to light so far and as a consequence,
have an already deteriorated color. A famous example here are the
paintings of Vincent van Gogh who used to a great extent red lake
pigments that are known to be highly sensitive to light [5, 26].
The only way to completely protect artworks from light would
imply to keep them out of public display and perhaps store them
in a dark room. However, this doesn’t stop the other aging mech-
anisms provoked by factors other than light. In addition, it might
seem like a rather extreme measure, especially in today’s age run
by principles such as open access and art democratisation. To this
purpose, museum curators, art conservators and conservation sci-
entists have dedicated a lot of work in the recent years to design
policies more suited to the individual objects or object groups, in
order to protect the most sensitive artworks, but allow for longer
display periods for artworks that are less sensitive.

The microfading measurement technique has played an es-
sential role in the understanding of pigment color degradation
which is, in its turn, crucial for developing the adequate light-
ing policies in museum exhibitions. In microfading, concentrated
light is cast on points of submilimetric size and the colorimet-
ric data is collected after every second of exposure. Given the
small size of the measurement, microfading is considered a micro-
destructive technique, which enables its use for real artworks.
While microfading has a direct application on assessing the light-

fastness of pigments, another relevant application can be the pre-
diction of future change of the pigments beyond the measured
data.

In this article, we investigate the fading behavior of pig-
ments from a 19th century pastel painting based on microfading
colorimetry. Furthermore, we treat the temporal-varying color
observations as a time series from a statistical perspective and
use univariate auto-regressive integrated moving average models
(ARIMA) to simulate the future change for each L*, a*, b* color
coordinate individually.

Related Work
Microfading. Chan et al. [7] studied the lightfastness of

pigments in Edward’s Munch “The Scream (1910)” with a mi-
crofadeometer and discovered that the sky region painted with
vermilion was the most sensitive to light. Their research served
as motivation to enforce a new display strategy for the painting,
where the painting is kept inside a black case that opens every
several hours a day, on rotation with other paintings of similar
sensitivity. Grimstad et al. [12] carried out a batch microfading
measurement, collecting 176 data points from 27 paintings. The
authors then used the Blue Wool Scale ISO standard [9] to qual-
itatively characterize the fading rate of all the pigments. They
discovered that 5 points had a color change rate faster than Blue
Wool 1, which is the most sensitive sample from the standard.
The qualitative comparison with the Blue Wool standard is a de
facto practice in fading analysis and is widely used by the scien-
tific community [1, 13, 22]. Nevertheless, microfaded data may
also be used directly without referring to the Blue Wool standard,
as the measurement gives a concrete indication of the color dif-
ference in relation to light exposure.

Digital restoration and forecasting of color degradation.
A couple of methods were proposed to predict future changes or
to reconstruct the original color appearance of an artwork with or
without accelerated light-induced aging experiments. A general
drawback of these methods is given by the lack of a fully visual
ground-truth. In most cases, there is no photographic documen-
tation of a painting immediately after it was created and before
the fading process occurred. Likewise, future simulations have
not yet been attained to facilitate a direct comparison. Even so,
the lack of perfect ground-truth is sometimes accounted for by
art experts’ validation [15, 4, 3] and by using existing knowledge
of the artists’ materials, obtained either from scientific analysis
and/or from written records [17, 15]. For instance, Kirchner et
al. [17] used both Vincent van Gogh’s letters and knowledge of
the painter’s pigment palette to reconstruct the original colors of
“Field with Irises near Arles”. The authors created a mockup of
base pigments using historical recipes similar to van Gogh’s tech-
nique. Then, they computed concentration maps for every base
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pigment in the painting using Kubelka-Munk theory. Finally, they
recovered the color appearance of the original painting by com-
bining the concentration maps with the pigment properties derived
from the unaged mockup.

Another body of works implements artistic color change pre-
diction by manipulating digitized versions of artworks in a com-
mercial image editing software [15, 3, 4]. The manipulations are
done at various degrees and then psycho-physical experiments are
conducted where art historians, museum curators and conserva-
tion scientists rank the digital simulations according to their fea-
sibility from a perceptual point of view. Hendriks et al. [15] em-
ployed this approach towards virtually restoring the unaged colors
of van Gogh’s “The Bedroom”. With a related processing method,
Brokerhof et al. [3] simulated future fading of a collection of
maps to investigate the threshold for critical change awareness
with a perceptual experiment. In a similar way, Brokerhof et al [4]
operated a commercial image editing software to simulate fading
of a series of Japanese woodblock prints for a psycho-physical
experiment. As input to the digital simulations, they used color
differences of prints on-display relative to prints kept in darkness.

There are few attempts in the literature that use the micro-
fading data for predicting future changes beyond measured obser-
vations. Thomas et al. [25] applied classical regression on the
color difference time series and simulate changes for both ends
of history: past and future. They compensated for the lack of
ground-truth visualizations, by closely working with art and con-
servation experts and through a vast knowledge of the pigment
palette. Riutort et al. [21] proposed an interpolation method based
on Gaussian process that achieves a spatio-temporal extension of
the microfaded colorimetric data collected from rock art paintings
in Spanish prehistoric caves. For the temporal dimension, they en-
forced two constraints by including the first derivative information
in their model: long-term stabilization and monotonicity. The for-
mer is based on the assumption that color change will eventually
plateau, when the pigments have become stable to light exposure
and thus no further fading happens. The latter restriction refers to
the observed behaviour of the authors that color changes will be
either sequentially increasing or decreasing, without being able to
bounce to a reverse direction. Cross-validation is used to test the
performance of their approach [21].

ARIMA. Auto-regressive integrated moving average
(ARIMA) model was proposed in 1970 by Box and Jenkins [2]
as an effective statistical technique for analyzing time-series and
forecasting future data. ARIMA is a generalized expression of
many forecasting models, including exponential models, random
walk and stationarized regression models [18]. For this reason, it
has the advantage of being applicable to a wide range of temporal
distributions. Indeed, ARIMA models were successfully used
for predicting data in numerous applications of economical,
environmental and civil nature. For instance, ARIMA is used
by Zhang et al. [27] to simulate GDP growth of Sweden, and
by Jere et al. [16] to assess the trend of second-car imports in
Zimbabwe. Similarly, ARIMA were shown to be a good fit
for simulating daily transportation habits in the United States
by Pavyluk et al. [19] and for estimating the carbon dioxide
emissions in Bangladesh by Rahman et al. [20]. In addition, there
are several studies on using auto-regressive models for predicting
the incidence of criminal activities [8, 6].

While the list of applications mentioned here is by far non-

exhaustive, it is important to highlight that, to the best of our
knowledge, there is no other work that analyzes colorimetric data
with ARIMA models.

Materials and Method
In this work, we collected colorimetric data of real objects

with a microfadeometer, characterized their fading behaviour and
searched for a good fit with ARIMA models towards predicting
future alteration.

Figure 1: The points in the painting measured with the micro-
fadeometer, corresponding to five colour groups: pink, red, green,
orange, violet blue.
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Figure 2: The ISO Blue Wool Standard used for material lightfast-
ness assessment. The standard is made of blue-dyed wool stripes,
presenting an 8-level scale of light sensitivity, where 1 indicates
higher sensitivity.

Measured objects
The first real world object in our study is represented by the

pastel painting “A Japanese Lantern” by Oda Krohg, from the
collection of the National Museum of Norway (inventory num-
ber NG.M.00879). The painting dates back to the second half
of the 19th century and is made on canvas. In this article, only
a fragment of the painting is studied (displayed in fig. 1). The
second object in our study is the ISO Blue Wool Scale (BWS)
standard[14, 9] (see fig. 2), which is used as reference for assess-
ing the fading rate of the samples in the painting.



Microfading experiment
A total of 18 points (15 in the paintings and 3 for the BWS,

stripe 1, 2, 3), highlighted in fig. 1 and 2, were acquired with
a microfadeometer provided by Instytut FotoNowy [10]. The in-
strument has a 5500 K white LED source and an aperture size of
0.5 mm. The measurements were gathered at a 0◦/45◦ geometry
(see fig. 3), for a light dosage of 12.585 Mlux and 0.0034 Watts.
The L*, a*, b* color coordinates were recorded after every second
of light exposure for D65 illuminant and the CIE 1931 2◦ standard
observer. The accelerated aging experiment was terminated once
the ∆E00 reached 2 units or after 600 iterations in order to make
sure that the actual damage on the painting is kept to a minimum.
Therefore, after the microfading experiment, 54 time series were
obtained, i.e. the individual alterations of the L*, a*, b* coordi-
nates for all samples.

Figure 3: Microfading measurement setup. Light is incident on
the surface at 0◦ and the colorimeter is collecting the signal at
45◦.

ARIMA modelling
ARIMA gathers instances of several forecasting models into

a single, generical formulation, and is suitable for stationary time
series. Mathematically, it is represented by a sum of two sub-
models: auto-regressive (AR) and moving average (MA) [24].
The principle of AR models is that given a stationary time series,
we can predict future values of the dependent variable as a linear
combination of its past observations. Similarly, the MA compo-
nent assumes that the residuals also linearly depend on previous
errors. The integrated (I) feature of the ARIMA method refers to
the order of the derivative operation required to be applied on the
original data to enforce stationarity.

A stationary time series is the one where no strong increasing
or decreasing trend is visible over time, implying temporally con-
stant mean and variance. In order to assess the stationarity of the
time series in a quantitative way, statistical tests, such as the aug-
mented Dickey Fuller (ADF) [11] test can be verified. The null
hypothesis of the ADF test is that the series is non-stationary. The
output of the test, called the ADF statistic should be negative and
the more negative it is, the better the interpretation, as it means
that the time series is stationary. The test includes reference crit-
ical values, that can be checked against the output statistic. The
critical values slightly increase with the number of observations

in the time series. For the cardinality of our dataset, the critical
values vary between -3.58 and -3.43 at 99% confidence level, and
between -2.93 and -2.87 at 95% confidence level. Moreover, a
p-value lower than 0.05 indicates stationarity as it significantly
rejects the null hypothesis. If an original time-series is not sta-
tionary, there are several operations that could remove an existing
trend in the data, such as the first derivative, also known as first-
order differencing.

Thus, an ARMA (AR + MA) model without an I component
is a model that can be applied where the original time-series is
stationary and needs no differencing operation. Given a station-
ary time series yt with t total data points, by modelling it with
ARMA(p,q) we are solving the following equation:

yt = c+α1yt−1 +α2yt−2 + ...+αpyt−p
+β0εt +β1εt−1 +β2εt−2...+βqεt−q (1)

order p is the number of past observations of y that are input to
the model and order q the number of previous residuals that influ-
ence the error ε at the current time step (also called lag) t. c, the
constant term, together with α and β are the polynomial coeffi-
cients that are estimated during the fitting process, using an iter-
ative maximum loglikelihood method. More precisely, the condi-
tional sum of squares likelihood is maximized and its values are
used to initialize the model.

If we apply ARIMA model, then a new order d is intro-
duced, which refers to the order of the derivative transforma-
tion, required to stationarize the original data, yt . For example,
an ARIMA(p,d,q) model with d = 1 considers the difference be-
tween a time step and the one before it:

yt = c+α1(yt − yt−1)+α2(yt−1 − yt−2)+ ...
+αp(yt−p+1 − yt−p)+β0εt +β1εt−1 +β2εt−2...+βqεt−q (2)

Orders p,d,q are positive, integer numbers. When defin-
ing an ARIMA model for a stationary time series, the order d is
chosen as 0. If the series is non-stationary, then d is increased
with increments of 1, where an order higher than 1 indicates a
quadratic behaviour of the series. One systematic way to find the
p and q orders is through graphical examination of the autocor-
relation function (ACF) and partial autocorrelation (PACF) func-
tions [24], which also carry the name of correlograms. Whereas
ACF captures the self-correlation of the time series with itself,
PACF captures the self-correlation after removing intermediate
lags. In principle, the number of consecutive significant lags that
exceed the 95% confidence level is chosen from ACF and PACF
as the orders q and p, respectively.

Results
One straightforward result of the microfading experiment is

the plot of the number of iterations as an indicator of lightfastness.
Fig. 4 shows the samples ordered by the total number of seconds
of exposure to light. It is easy to observe that Pink 1, 5, 4, and 2
are the samples most rapidly fading, with a sensitivity higher than
BWS 1. On the other hand, the Green and Orange samples seem
to be the most resistant, similar to BWS 3. However, in order to
better perceive the rate of change, fig. 5 presents the evolution of
∆E00 color difference with respect to the original, unfaded sample
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Figure 4: Light sensitivity of the pigment samples and the first 3
Blue Wool stripes (BWS1, BWS2, BWS3) quantified as number
of seconds of exposure to light. In ideal experimental conditions,
the smaller the bar size, the higher the sensitivity to light.
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Figure 5: ∆E00 as a function of time for selected samples, which
shows the rate of color change. The measurement of sample Vio-
let 2 was unexpectedly interrupted, before 2 units of color change
were reached, and before 600 iterations.

after every second of light exposure. In this plot, we can also
notice that due to experimental errors, the measurement of the
Violet 2 sample was unexpectedly stopped, even though the limits
of 2∆E00 units, nor the cap of 600 iterations was reached. So
in this case, the number of iterations is not a good clue for the
fugitivity of the sample, and Violet 2 seems to have a lightfastness
comparable to BWS3 rather than BWS1 or BWS2.

Because our samples have a wide range of light-induced sen-
sitivities, we applied the ADF test to check for the stationarity of
each time series. We treated each set of values of the three col-
orimetric L*, a*, b* coordinates as univariate time series. Table
1 reports the p-value and ADF statistic for the stationarity test.
For several series, the p-value was higher than 0.05 and so, the
null hypothesis (the time series is non-stationary) could not be
rejected. In these cases, the first derivative was computed and
another instance of the ADF test was run. After the first deriva-
tive transformation, all the original non-stationary series became
stationary, as it can be observed from the results in Table 2. It
is interesting to note that the sensitivity to light as characterized
by the rate of color degradation, ∆E00, is not immediately trans-

lated to the concept of stationarity. This is understandable, since
the ∆E00 color difference is a global aggregate of the L*, a*, b*
colorimetric attributes, but when taken individually, these coordi-
nates might manifest a different degradation pattern.
Table 1: Stationarity check for the L*, a*, b* coordinates using
Augmented-Dickey Fuller test. A p-value lower than 0.05 and a
negative test statistic (adf stat) lower than approximately -3 mark
stationarity (S) of the time series, while the opposite indicates
non-stationarity (NS).

L* a* b*

p-val adf stat p-val adf stat p-val adf stat
Pink 1 p<0.001 -5.92 S p<0.001 -6.47 S 0.002 -3.89 S
Pink 2 p<0.001 -6.97 S p<0.001 -6.44 S p<0.001 -4.69 S
Pink 3 p<0.001 -7.51 S p<0.001 -9.04 S 0.001 -4.06 S
Pink 4 0.42 -1.71 NS p<0.001 -4.12 S p<0.001 -4.28 S
Pink 5 0.004 -3.70 S p<0.001 -7.44 S p<0.001 -4.94 S
Red 1 p<0.001 -5.11 S p<0.001 -4.79 S 0.09 -2.62 NS
Red 2 p<0.001 -5.70 S p<0.001 -6.95 S 0.17 -2.31 NS
Red 3 p<0.001 -5.03 S p<0.001 -7.47 S 0.24 -2.12 NS

Green 1 p<0.001 -4.44 S 0.91 -0.41 NS 0.96 0.04 NS
Green 2 p<0.001 -5.10 S 0.56 -1.45 NS 0.03 -3.02 S
Violet 1 p<0.001 -5.30 S 0.80 -0.86 NS 0.22 -2.16 NS
Violet 2 p<0.001 -6.53 S 0.29 -2.00 NS 0.70 -1.15 NS

Orange 1 p<0.001 -7.24 S 0.10 -2.57 NS p<0.001 -5.46 S
Orange 2 p<0.001 -9.45 S p<0.001 -5.16 S 0.001 -4.03 S
Orange 3 0.002 -3.90 S p<0.001 -5.01 S 0.003 -3.83 S

BWS 1 p<0.001 -6.45 S p<0.001 -5.38 S 0.07 -2.70 NS
BWS 2 p<0.001 -6.76 S p<0.001 -6.38 S 0.02 -3.22 S
BWS 3 0.94 -0.15 NS 0.98 0.38 NS p<0.001 -6.19 S

Table 2: Augmented Dickey Fuller test for the L*, a*, b* co-
ordinates after applying the first derivative transformation on the
original non-stationary series. Now, the previously non-stationary
series pass the stationarity test.

1st derivative L* 1st derivative a* 1st derivative b*
p-val adf stat p-val adf stat p-val adf stat

Pink 4 0.01 -3.34 S
Red 1 p<0.001 -9.78 S
Red 2 p<0.001 -11.27 S
Red 3 p<0.001 -15.04 S

Green 1 p<0.001 -9.84 S p<0.001 -6.22 S
Green 2 p<0.001 -9.97 S
Violet 1 p<0.001 -10.60 S p<0.001 -11.67 S
Violet 2 p<0.001 -7.77 S p<0.001 -9.17 S

Orange 1 p<0.001 -10.28 S
BWS 1 p<0.001 -4.16 S
BWS 2
BWS 3 p<0.001 -11.16 S p<0.001 -10.90 S

After this initial step, the d order of the ARIMA(p,d,q) as
expressed in eq. 2 was defined as either 0 (for the originally sta-
tionary data, in which case eq. 1 is applied) or 1 (for the originally
non-stationary data), for each color coordinate. Subsequently, we
checked the patterns in the ACF and PACF to identify the p and
q orders. For the series where the ACF showed many significant
lags slowly declining to zero and a PACF with only few p sig-
nificant lags, the q was identified as 0, because this is typical of
a auto-regressive model, with no moving average component as
explained in [24]. Fig. 6 displays an example of such pattern,
representing Pink 1 L* time series. Arguably, such ACF pattern,
showing many positive correlations, could also be interpreted as
a clue for non-stationarity still contained in the data [18]. While
Pink 1 L* time series passed the ADF stationarity test, in future
work, it can be explored whether a model that considers a first
derivative transformation would give a better fit. For the rest of
the series, where the ACF shows only one significant lag, we are
dealing with a mixed auto-regressive and moving average model,
with q = 1 and p equal to the number of spikes in the PACF plot.
For instance, the correlograms of Violet 2 b* sample indicate a
p = 5, as it can be seen in fig. 7.

This same procedure was followed to identify the orders of
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Figure 6: Correlograms for Pink 1 L* time series, where x-axis
corresponds to time steps/lags and y-axis to correlation magni-
tude. Blue area depicts the 95% confidence interval. ACF exhibits
many spikes slowly declining to zero, while PACF shows only one
time step as significant. This is characteristic of an autoregressive
model, in this case, an ARIMA (1,0,0) model.
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Figure 7: Correlograms for Violet 2 b* time series, where x-axis
corresponds to time steps/lags and y-axis to correlation magni-
tude. Blue area depicts the 95% confidence interval. The original
data was transformed to its first derivative to achieve stationarity.
In ACF, only the first lag exceeds the confidence level, while in
PACF we can count 5 consecutive significant lags. This indicates
an ARIMA (5,1,1) model.

the ARIMA models (listed in Table 3) for all color coordinates
corresponding to the 18 microfaded samples. It can be observed
that in the case of Pink 4 L* and BWS 1 b*, no autoregressive
and no moving average components were identified because of
the lack of significant lags in the ACF and PACF. ARIMA(0,1,0)
is an instance of a random walk model [18], i.e. the forecast of
a variable equals its previous value in the time-series, which in-
dicates a plateau of the data. The plateauing may be physically
relevant, given that color change of pigments has previously been
found [21] to reach a maximum point followed by no increment
in value.

In order to assess the performance of the ARIMA model,
the data was split into a training and test set using a 80%-20%
ratio. Table 3 reports the following indices of performance: the
Bayesian Information Criterion (BIC) [23] of the trained model
and the sum of squared residuals computed for the test data. A
lower value of both these metrics correspond to a better perfor-
mance. Overall, the BIC values are very low suggesting that the
trained models are a good fit for the input data. Similarly, the sum
of squared residuals is in most cases under unity. There are few
samples, such as Red 1 a*, Red 3 a* and BWS 2 b* that have high
sums of squared residuals. To improve the fit, more search could
be done in the p,d,q parameter space. However, the scope of this
article is not to find the best fit in absolute terms, as it is more to
prove the validity of ARIMA in modelling the temporal evolution
of colorimetric attributes.

Fig. 8 shows one the prediction of some of the models with
the best error metrics, corresponding to the Violet 2 color coordi-
nates. It is interesting to note that in case of the Violet 2 sample,

the predictions of the ARIMA models for the training set are less
noisy than the original data, especially for a* and b* series, show-
ing the capability of the model to learn the stable characteristics
of the data and to separate the unstable, erroneous component.
The smoothness is preserved for the forecasts of the test data as
well. A similar case is that of Green 1 sample, plotted in fig. 9,
where there is a lot of noise present in the measured time series of
the a* coordinate. Nevertheless, ARIMA(8,1,1) manages to dis-
card the noise and capture the essence of the change behaviour.
A particular good result is obtained for Green 1 b* coordinate
that has a very unstable temporal behaviour. Considering only 3
observations from the past, the ARIMA model learn well to the
degradation trend. Another result, similar in terms of instability
is that of Violet 2 a* (fig. 10). Actually, this sample is corrupted
by high instability as well as a big amount of noise. Both these
factors are surpassed by the ARIMA(5,1,0) model.

Fig. 11 visually describes the performance of the model in
predicting both the training and test observations for the Red 3
a* time series. While the residuals of the training set closely fol-
low the original values, the forecast converges to a constant value,
that even though potentially physically relevant [21], fails to cap-
ture the specific variation of the test set. From one perspective,
this suggests that the model is not over-fitting. Nonetheless, this
happens at the cost of higher residual values. In future analysis,
it would be relevant to add an extensive statistical investigation
of the residuals and the model coefficients towards improving the
currents fit.

Conclusion
In this article we showed the potential of ARIMA models

in predicting the temporal variation of pigment color coordinates
provoked by light exposure. We achieved good results by analyz-
ing each of the L*, a*, b* coordinates as univariate time series.
Nonetheless, as future work, it would be interesting to approach
this problem as a multivariate time series and forecast the change
of the three color dimensions simultaneously. Our work can be
useful for any application that requires future simulation of col-
orimetric temporal change. Specifically, in this paper, we proved
the direct application of ARIMA models for the cultural heritage
field, where the understanding and visualization of how an art-
work deteriorates with time is essential for its conservation and
preservation.
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BWS 2 1 0 0 -2046 1.20 2 0 0 -1550 0.76 1 0 0 -1516 6.34
BWS 3 4 1 1 -2744 0.08 5 1 1 -2084 0.18 2 0 0 -2131 2.54

Figure 8: Prediction of the change of the L* (left), a* (middle) and b* (right) coordinates for the Violet 2 sample. The ARIMA models
used for the forecast give very low sum of squared residuals for this sample.

Figure 9: Prediction of the change of the L* (left), a* (middle) and b* (right) coordinates for the Green 1 sample. The b* coordinate is
the very unstable. However, the ARIMA(3,1,1) model gives a smoother prediction, being able to discard the noise in the data.
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