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A B S T R A C T

With increasing trends to move fish farms to more exposed locations engineers need quick and accurate tools
for creating initial design proposals. In this paper, a simplified analytical model for estimating the axial force
in the ropes supporting the fish net is presented. Hydrodynamic loads acting on the net are calculated using a
state of the art screen model. The simplified analytical model is a quasi-static solution based on the principle of
virtual displacements. The assumed mode shape in the calculations is a simplification of the actual quasi-static
displacement shape under combined wave and current loading in view of the high natural frequencies of
pre-tensioned ropes compared to wave frequencies. The results from the simplified calculations are compared
to numerical simulations performed in RIFLEX. The simplified method is extremely efficient with regard to
computation time compared to the numerical simulations and is well suited for preliminary design of fish nets.
1. Introduction

Farming of salmon is one of Norway’s largest industries. As of 2019
the annual value of export was 75 billion NOK. In recent years, fish
farms have become larger and they are being placed in more exposed
locations. Moving to harsher environments will increase the importance
of wave loads. In addition, the current velocities are expected to
increase. Jusoh and Munshi (2018) presents a design current of 1.5 m/s
in the southern north sea compared to 1.0 m/s at an exposed fish farm
location, (Bore and Amdahl, 2017).

Currently, the design of fish nets and the supporting structure is
mainly based on empirical methods, (Standards Norway, 2009). These
methods may not be accurate when the environment changes drasti-
cally by moving to harsher areas. For these novel cases, methods based
on physical considerations are needed to ensure that the confinement
system is sufficiently robust to avoid failure and prevent fish from
escaping.

Structural failure is pointed out to be the largest contributor to fish
escape, (Jensen et al., 2010). Structural failure is not an event that has
occurred frequently, but is related to a large number of escaped fish for
each event. Failure of aquaculture nets is by far the dominating means
of reported escape, (Jensen et al., 2010).

There are in general, two different methods that may be used to
estimate the viscous forces on fish nets, namely Morrison type models
and screen type models, (Bore et al., 2017). The Morrison type of model
has either constant coefficients or coefficients depending on Reynolds
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number (Re) and the net’s solidity ratio (Sn). See for example Faltinsen
and Timokha (2009). The Reynolds number is calculated based on the
twine diameter and the solidity ratio is defined as projected area of
the net in the normal direction divided by the total area spanned by
the panel. Screen models such as, Loland (1991) and Kristiansen and
Faltinsen (2012) depend additionally on the angle of the flow. Thus,
screen type models have the advantage that they estimate the force
more accurately when the flow has an angle compared to the normal of
the net. A challenge is however that the screen models are not available
in many commercial software. Recently, model tests in uniform current
were performed by Moe Føre et al. (2020) and Moe-Føre et al. (2021)
to further improve the accuracy of the force estimation on fish nets.

Lader et al. (2007) and Dong et al. (2019) show that the normal
forces acting on fish net panels in regular waves are well estimated
using formulas based on constant flow. Zhao et al. (2008) shows from
experimental results that the drag force acting on a fish net panel in
waves is constant for Keulegan–Carpenter, (KC) numbers in the range
150–400 and Dong et al. (2019) indicates that the drag coefficient
changes very little for a KC number above 50. Due to the large KC
number in physical wave conditions, the flow may be assumed to be
quasi-steady, (Kristiansen and Faltinsen, 2015). Force models devel-
oped for steady current conditions are therefore considered applicable
also for oscillating current due to waves.

The forces acting on the net structure can be accurately calculated
using non-linear finite element programs. Examples are presented for
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Nomenclature

𝛼 Location parameter for maximum displace-
ment

�̄� Fatigue constant for steel
�̄� Mass per unit length
�̄� Rope amplitude
𝛥𝜎 Stress range
𝛿𝑊𝑒 External virtual work
𝛿𝑊𝑖 Internal virtual work
𝜔 Wave frequency
𝜌 Density of sea water
𝜎 Stress
𝜀 Strain
𝜁 Wave amplitude
𝐴 Cross section area
𝑎𝑡 (𝑇 ) Temperature dependency for creep model
𝐶𝑁 Normal viscous force coefficient
𝐶𝑇 Tangential viscous force coefficient
𝐶𝑠𝑡𝑟𝑎𝑖𝑛 Constant for creep model
𝑑 Diameter
𝐸 Young’s Modulus
𝑓𝑁 Viscous normal force
𝑓𝑇 Viscous tangential force
𝐾 Initial stiffness
𝑘 Wave number
𝐾𝑎 Axial Stiffness
𝐿 Length
𝑚 Slope of SN and creep curve
𝑁 Number of cycles
𝑅 Motion ratio
𝑆 Tension in rope
𝑆0 Pretension in rope
𝑆𝑁 Tension in rope from normal loading
𝑆𝑇 Tension in rope from tangential loading
𝑆𝑛 Solidity ratio
𝑇 Temperature
𝑇0 Natural period
𝑢𝑐 current velocity
𝑢𝑤 wave particle velocity
𝑢𝑟𝑒𝑙 Relative velocity
𝑢𝑟𝑜𝑝𝑒 Rope velocity
𝑢𝑤𝑎

wave particle velocity amplitude
𝑤 Rope displacement
𝑧𝑏 Bottom coordinate of rope
𝑧𝑡 Top coordinate of rope

ure current conditions in Moe-Føre et al. (2016) and Mjåtveit et al.
2021) and for both current and waves in Kristiansen and Faltinsen
2015). Mohapatra et al. (2021) presents results from numerical and
nalytical analysis of flexible net cages. The accuracy of the results
sing NLFEA is usually high but the computation time is large, which
ay be acceptable for design verification. In early design stages it

s however, desirable to have simpler and faster methods, with a
easonable accuracy.

In the present paper a simplified method to calculate the force
esponse in the vertical ropes supporting aquaculture nets is proposed
nd compared to numerical simulations. The estimated fatigue life of
he rope is used as the main comparison parameter to investigate the ac-
uracy of the simplified method. The main contribution of the current
2

Fig. 1. Ocean farm 1 at inspection draft.

paper is to present a rational method for fast and reliable assessment
of the force response in the ropes supporting the aquaculture nets. The
objectives of developing the simplified method are twofold; 1. It can be
used in the design phase, 2. To check the results of complex analyses
such as NLFEA. This is not yet a formal requirement for aquaculture
structures. It may therefore be useful to consider requirements in other
industries. For example, for oil and gas installations on the Norwegian
Continental shelf the NORSOK standard N-001 concerning ‘‘Integrity
of Offshore Structures’’ specifies among others in Section 5.3 ‘‘General
requirements relating to personnel qualifications, quality assurance and
organization’’: ‘‘structural engineers qualify their own analysis by self
checking using simplified models and by alternative calculations of
relevant structural part where faults can entail major consequences.
Documentation for these simplified calculations shall be available’’. In
addition, the simplified method gives a good overview of the contribu-
tion from different hydrodynamic effects acting on the moving net and
thereby increases our knowledge of the response.

The simplified method is a closed form solution and will gener-
ally be quicker than a NLFEA solution where the equation of motion
must be solved. For problems such as fish nets, NLFEAs generally
require a very small time step to be stable and have therefore a rather
large computation time. For the simple method there is no time step
limitation.

2. Description of the problem

Inspired by novel offshore farm designs such as the Ocean Farm 1
shown in Fig. 1, we consider a plane net panel connected to a rigid
frame as shown in Fig. 2. Only waves propagating perpendicularly to
the net panel are considered in the present paper.

Structurally, the net’s load bearing system is constructed similar to a
stiffened panel. The net itself is supported by a number of vertical ropes
with even spacing. The ropes have generally a larger stiffness than the
net itself, see Section 2.1. In addition, the ropes are under pretension
which further increases the initial stiffness. A hypothesis is therefore
postulated that it is possible to estimate the response of the net similar
to that of a stiffened panel by only considering a single rope/(one
stiffener with plate flange) rather than accounting for the whole panel.
The problem is then simplified to solve for the rope response under the
action of the hydrodynamic loads on the rope itself and that transferred
from the net, (ref. Fig. 2). The validity of considering the response of a
single rope to represent the response of a panel is verified and discussed
using numerical simulations in Section 5.1.
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Fig. 2. To the left, Half of the analysis model of a complete panel. Vertical ropes are
shown with numbers. Fish net elements with thin horizontal black lines. Thick black
lines are beams supporting the net panel. The shaded area represents the net. To the
right; Simplified model of one rope used in the analyses in the present paper. Model
is clamped at both ends.

Table 1
Properties of the fish net and supporting rope.

Rope Net

Diameter, D [mm] 30 1.84

E-modulus, E N
mm2

7.96e10 1.62e9

Spacing/Halfmesh, L [mm] 1650 23.3

mass
kg
m ,

kg
m2

0.71 0.59

2.1. Net properties

The net and rope properties are shown in Table 1. The pretension
acting on the rope is 100 kN.

The axial stiffness of the rope and net per unit width, 𝐾𝑎 is calcu-
lated using the following equation:

𝐾𝑎 =
𝜋𝐸𝑑2

4𝐿
(1)

For the net, the stiffness is 1.8e5 N/m and for the rope, the stiffness
is 3.4e7 N/m. The net is hence approximately 100 times softer than
rope.

3. Fatigue failure

The authors are not able to identify any published work on fatigue
of aqua culture nets or the supporting structure (the vertical ropes)
other than in Wang et al. (2020) where results from material tests for
copper nets are presented. The reason for the lack of work is likely to be
three-fold; 1. environmental loads have been limited since traditional
sites are generally rather sheltered. 2. ‘‘Dimensioning of net pens has
traditionally been empirical design’’ (Standards Norway, 2009). 3. the
fish nets are often taken on shore after every production cycle for
disinfection at a service station, (Føre et al., 2019). According to Soares
et al. (2011) a production cycle varies between 54 and 124 weeks. If
necessary, the nets can be recertified or replaced while they are on
shore.

When moving to larger structures and to more exposed areas, it is
desirable to avoid disassembling the net between production cycles.
One such structure is the Ocean Farm 1 where the net is disinfected
on site by raising the platform to the inspection draft. With increasing
dynamic loads from the increased wave heights and current velocities
3

and a more challenging inspection/certification process, it is reasonable
to require that the capacity of the nets be better documented than
before.

Calculation methods for fatigue failure of ropes are not as well
established as for steel. The models that exist for estimating the fatigue
life depend on the material of the rope. The OF1 ropes used to support
the net are made from a material called Dyneema DM20. There is strong
evidence that the failure of such ropes is dominated by creep failure
rather than failure due to cyclic loading, (Vlasblom et al., 2017, 2019)
and DSM (2008).

The fatigue life of the OF1 ropes can be estimated using creep
calculations. Humeau et al. (2018) presents a model for estimating the
lifetime expectany for tension fatigue of HMPE-ropes (High Modulus
PolyEthylene). The dynamic strain 𝜀 as a function of time, t, can be
calculated according to:

𝜀 = ∫

𝑡

0
�̇�𝑝𝑙−𝑑𝑑𝑡 (2)

Once the plastic strain reaches a critical value, 𝜀𝑝𝑙−𝑐𝑟𝑖𝑡, the rope will
fail. The dynamic plastic strain rate, �̇�𝑝𝑙−𝑑 , as a function of stress 𝜎 and
temperature, 𝑇 can be calculated using Eq. (3).

̇ 𝑝𝑙−𝑑 (𝜎, 𝑇 ) = 𝐶𝑠𝑡𝑟𝑎𝑖𝑛𝑎𝑡 (𝑇 ) 𝜎𝑚 (3)

The parameters needed for the creep calculations are however trade
secretes and are therefore not available for public use. Consequently,
Eq. (3) is simplified in the present paper by,

̇ 𝑝𝑙−𝑑 (𝑆) = 𝐶∗
𝑠𝑡𝑟𝑎𝑖𝑛𝑆

𝑚 (4)

𝑆 is the axial force in the rope.
Without access to proper constants the actual fatigue damage cannot

be calculated. The results can however be normalized and compared
to each other. Based on Humeau et al. (2018) using 𝑚 = 4.0 and
𝜀𝑝𝑙−𝑐𝑟𝑖𝑡 = 0.26 seems reasonable. The value of 𝐶∗

𝑠𝑡𝑟𝑎𝑖𝑛 will not affect how
different loads contribute since it is only a constant and will disappear
during normalization.

In addition to calculating the fatigue life of the rope, the fatigue
damage for the connection point of the rope, which is a steel structure,
is calculated based on methods in DNV (2014). The damage estimates
are based on the stress amplitudes and a single slope SN-curve. The
stress in the steel detail is estimated using an assumed stress concen-
tration factor between the axial force in the rope and the stress in the
steel detail. The accumulated damage, 𝐷, is calculated using the Miner
summation for the axial force range, 𝛥𝑆,

𝐷 = 1
�̄�
𝑁 (𝛥𝑆)𝑚 (5)

m = 3.0 and �̄� = arbitrary constant are used in the calculations for
the steel connection. 𝑁 is the number of cycles. The value of �̄� is not
very important since the results are normalized similar to that of the
rope.

There is a significant difference between the two fatigue calculation
methods presented above. Creep-fatigue, ref. Eq. (4), is dependent on
the total force while the cyclic fatigue, ref. Eq. (5), is dependent on
the change in force, i.e. the force amplitude. The rope could therefore
fail due to creep-fatigue without dynamic loading whereas without
dynamic loading damage to the steel connection will not occur.

4. Simple quasi-static response estimation of axial force in rope

The dynamic response of structures can generally be split into 3
domains: 1. inertia domain, 2. dynamic domain and 3. stiffness domain.
Due to the low mass and large stiffness of the supporting ropes, the
natural period is low. The response is therefore in the stiffness domain
and can be calculated quasi-statically. This assumption is verified and
discussed in Section 4.6.1.



Ocean Engineering 272 (2023) 113859M. Slagstad et al.
Fig. 3. The force components;drag 𝑓𝐷 , lift 𝑓𝐿, normal component 𝑓𝑁 and tangential
component 𝑓𝑇 .

4.1. Viscous forces acting on the fish net

The load model used to calculate the viscous loads is a state of the
art screen model. The specific model used in the analysis is the screen
model proposed by Loland (1991). The main reason for choosing this
model is that it is included in the numerical software RIFLEX (Ocean,
2020) which is used to generate numerical simulations. The force
components acting on the net is illustrated in Fig. 3. The screen model
proposed by Løland decomposes the total force to a drag compo-
nent, 𝑓𝐷, and a lift component, 𝑓𝐿. The drag coefficient, 𝐶𝑑 , and lift
coefficient, 𝐶𝑙, are defined as:

𝐶𝑑 (𝑆𝑛, 𝜃) = 0.04 +
(

−0.04 + 0.33𝑆𝑛 + 6.54𝑆𝑛2 − 4.88𝑆𝑛3
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐷0

cos (𝜃) (6)

𝐶𝑙 (𝑆𝑛, 𝜃) =
(

−0.55𝑆𝑛 + 2.3𝑆𝑛2 − 1.76𝑆𝑛3
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐿0

sin (2𝜃) (7)

In the simplified model these components will be transformed to a
normal force, 𝑓𝑁 , and a tangential force, 𝑓𝑇 using Eq. (8) to Eq. (10)
which yields the following coefficients.

𝐶𝑇 =
𝐶𝐷0𝑠𝑖𝑛 (𝜃) − 𝐶𝐿0𝑠𝑖𝑛 (2𝜃)
𝑡𝑎𝑛 (𝜃) 𝑠𝑖𝑛 (𝜃) + cos (𝜃)

(8)

between 0 < 𝜃 < 𝜋
2 , and

𝐶𝑁 =
𝐶𝐿0

𝑠𝑖𝑛 (2𝜃) +
(

0.04 + 𝐶𝐷0
𝑐𝑜𝑠 (𝜃)

)

𝑐𝑜𝑠(𝜃)
𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛 (𝜃) + 𝑐𝑜𝑠(𝜃)2

𝑠𝑖𝑛(𝜃)

(9)

between 0 < 𝜃 < 𝜋
2 , where 𝐶𝐷0

and 𝐶𝐿0
are defined in Eqs. (6) and (7)

respectively.
The expression for 𝐶𝑁 is simplified to

𝐶𝑁 ≈ 𝐶𝑁 (0) 𝑐𝑜𝑠 (𝜃) =
(

0.04 + 𝐶𝐷0

)

𝑐𝑜𝑠 (𝜃) (10)

The error of the approximation of 𝐶𝑁 is small as shown in Fig. 4.
The normal and tangential force components can be written:

𝑓𝑁 (𝑧) = 1
2
𝜌𝐴𝐶𝑁 (𝜃)𝑈 (𝑧) |𝑈 (𝑧)| (11)

𝑓𝑇 (𝑧) = 1
2
𝜌𝐴𝐶𝑇 (𝜃)𝑈 (𝑧) |𝑈 (𝑧)| (12)

where 𝑈 (𝑧) is the magnitude of the combined current and wave particle
velocities, 𝜌 the density of the sea water and A the projected area of
the net panel. In the present paper, the wave particle velocities are
calculated assuming regular waves and deep water conditions.
4

Fig. 4. Approximation of 𝐶𝑁 according to Eq. (10).

4.2. Simple quasi-static response for tangential loading 𝐶𝑇

The axial force in the rope due to the action of the viscous tangential
force, 𝑓𝑇 , is calculated assuming that the rope is in its initial position,
i.e. as a straight line. The tangential force is only balanced by the
stiffness of the rope and thereby changing the axial force in the rope.
Since the viscous load, 𝑓𝑇 , is distributed vertically along the rope, the
axial force in the rope will change as a function of the water depth.
Here we consider only the axial force at the top connection where it
reaches a maximum.

The axial force from the tangential force, 𝑓𝑇 , at the top connection
point is then found by solving Eq. (13) numerically.

𝑆𝑇 = 1
2
𝐶𝑇 (𝜃) 𝜌𝐴𝜔2𝜁2𝑎 ∫

𝜁

𝑧𝑏

𝑧 − 𝑧𝑏
𝐿

𝑒2𝑘𝑧𝑑𝑧 (13)

when it is assumed that the rope force transferred to the top connection,
𝑠𝑇 , from a point load, 𝑓𝑇 (𝑧), is given by

𝑠𝑇 (𝑧) = 𝐿 − �̄�
𝐿

𝑓𝑇 (𝑧) (14)

where �̄� is the distance from the end connection.
𝜔 is the circular frequency of the wave and 𝜁𝑎 is the wave amplitude.

𝑧𝑏 is the z-coordinate at the bottom of the rope.

4.3. Quasi-static deformation modes of a rope in regular waves

Before the calculation method for the axial force in the rope due
to the normal loading is shown, the analytical expression for the quasi
static deformation of a rope due to the normal load in a regular wave
is derived. The procedure can also be used to derive the shape for pure
current or combined wave and current.

The change in angle due to the loading is equal to:

𝑑𝜃 =
−𝑓𝑁 (𝑧) 𝑑𝑧

𝑆
(15)

where 𝑓𝑁 (𝑧) is the normal force per unit length and S is the axial force.
Introducing the force amplitude in regular waves as:

𝑓𝑁 (𝑧) = 1
2
𝜌𝐴𝐶𝑁

⏟⏞⏟⏞⏟
𝐶

𝑈2 = 𝐶𝜔2𝜁2𝑒2𝑘𝑧 (16)

the angle of the catenary, 𝜃, is found:

𝜃 = ∫
−𝑓𝑁 (𝑧)

𝑆
𝑑𝑧 = −

𝐶𝜔2𝜁2

2𝑘𝑆
𝑒2𝑘𝑧 +

𝐶𝜔2𝜁2

2𝑘𝑆
− 𝜃𝑡0 (17)

where 𝐶 is defined in Eq. (16). when 𝜃 (0) = −𝜃𝑡0. The horizontal
displacement, 𝑥 is found from

𝜃 = 𝑑𝑥
→ 𝑥 = 𝜃𝑑𝑧 (18)
𝑑𝑧 ∫
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Fig. 5. Analytical and assumed deformation mode for quasi-static analysis.
Applying the boundary condition: 𝑥 (0) = 𝑥0 yields the following
expression:

𝑥 = −
𝐶𝜔2𝜁2

4𝑘2𝑆
𝑒2𝑘𝑧 +

(

𝐶𝜔2𝜁2

2𝑘𝑆
− 𝜃𝑡0

)

𝑧 +
𝐶𝜔2𝜁2

4𝑘2𝑆
+ 𝑥0 (19)

where

𝜃𝑡0 =
𝐹𝑡𝑜𝑝

𝑆
= −𝐶𝜔2𝜁2

𝑧𝑏
2𝑘

(

1 − 𝑒2𝑘𝑧𝑏
)

− 1
4𝑘2

(

−1 − 𝑒2𝑘𝑧𝑏
(

2𝑘𝑧𝑏 − 1
))

𝑆
(

𝑧𝑡 − 𝑧𝑏
) (20)

𝑥0 = 𝜃𝑡0𝑧𝑡 (21)

The quasi-static deformation shapes for two different wave periods
are shown in Fig. 5 together with the shape of the velocity profiles.
Long periods yield a relatively uniform load, small periods yield a more
concentrated load and the deformation pattern approaches a triangle.

4.4. Simple quasi-static estimation of axial force for normal loading, 𝐶𝑁

In this section a simplified model for estimating the axial force in
ropes supporting the fish net due to the loads acting normally to the
net is proposed. The derivation is based on the virtual work principle.

It is assumed that the net deforms in the triangular shape shown
in Fig. 5(b). The displacement along the rope can then be written
as 𝑤 (𝑧) = 𝜙 (𝑧) �̄�. The mode shape, 𝜙 (𝑧), is a simplification of the
complicated quasi-static solution shown in Fig. 5(a) and is of course
best for small wave periods. The location of maximum deformation,
𝛼𝐿 matches the location based on the solution of the actual quasi-static
deformation of the net. The shape of the net is assumed to be constant
for each wave period. This is not true in practice since the location
of the maximum displacement will be different for the maximum and
minimum wave particle velocity when current is present. The location
for the maximum amplitude is calculated using the case with the largest
force which occurs when the current and fluid particle velocity act in
the same direction. The relative velocity between the net and the fluid
particle velocity is not considered here or in further derivations.

Using Taylor expansion around �̄� = 0 the following expression is
obtained for the total length,

𝐿𝑡𝑜𝑡 = 𝛼𝐿 + 1
2
�̄�2

𝛼𝐿
+ (1 − 𝛼)𝐿 + 1

2
�̄�2

(1 − 𝛼)𝐿
(22)

For a virtual displacement 𝛿�̄�, the virtual elongation, 𝛿𝐿𝑡𝑜𝑡, is given by

𝛿𝐿𝑡𝑜𝑡 =
�̄� 𝛿�̄� (23)
5

𝛼 (1 − 𝛼)𝐿
When the net is deformed, the axial force, S, will increase due to
elongation given by

𝜀 =
𝐿𝑡𝑜𝑡 − 𝐿

𝐿
= �̄�2

2𝐿2𝛼 (1 − 𝛼)
(24)

and the total force becomes

𝑆𝑁 = 𝑆0 +
𝐸𝐴�̄�2

2𝐿2𝛼 (1 − 𝛼)
(25)

where 𝑆0 is the pretension.
Inserting 𝑆𝑁 into the expression for internal virtual work we get the

following expression:

𝛿𝑊𝑖 = 𝑆𝑁𝛿𝐿𝑡𝑜𝑡 =
𝑆0�̄�

𝛼 (1 − 𝛼)𝐿
𝛿�̄� + 𝐸𝐴�̄�3

2𝛼2 (1 − 𝛼)2 𝐿3
𝛿�̄� (26)

The external virtual work is calculated by

𝛿𝑊𝑒 = 𝐹𝑁𝛿�̄� = ∫

𝜁

𝑧𝑏
𝑓𝑁𝜙𝛿�̄�𝑑𝑧 = −∫

𝜁

𝑧𝑚
𝑓𝑁

(

𝑧 − 𝑧𝑡
) 𝛿�̄�
𝛼𝐿

𝑑𝑧

+ ∫

𝑧𝑚

𝑧𝑏
𝑓𝑁

(

𝑧 − 𝑧𝑏
) 𝛿�̄�
(1 − 𝛼)𝐿

𝑑𝑧 (27)

where the force, 𝑓𝑁 , ref. Eq. (11), is multiplied with the virtual dis-
placement shape, 𝜙, and integrated over the wetted length of the rope.
𝑧𝑡 and 𝑧𝑏 are the z-coordinates of the top and bottom of the rope,
respectively. 𝑧𝑚 is the vertical coordinate where the mode shape has its
maximum displacement. Eq. (27) is most easily solved using numerical
integration.

Equating the internal and the external virtual energy we achieve a
3rd degree equation

𝛿𝑊𝑖 = 𝛿𝑊𝑒 →
𝐸𝐴𝛿�̄�

2𝐿3𝛼2 (1 − 𝛼)2
�̄�3 +

𝑆0𝛿�̄�
𝛼 (1 − 𝛼)𝐿

�̄� = 𝐹𝑁𝛿�̄� (28)

which can be written on the form:

�̄�3 + 𝑝�̄� + 𝑞 = 0 (29)

with the solution

�̄� =
3

√

−
𝑞
2
−
√

( 𝑞
2

)2
+
( 𝑝
3

)3
+

3

√

−
𝑞
2
+
√

( 𝑞
2

)2
+
( 𝑝
3

)3
(30)

The axial force in the deformed rope is found by inserting �̄� into
Eq. (25).

4.5. Total simplified quasi-static response of the rope supporting the net

The total response can be calculated by combining the tangential
and normal response of the net. Due to the damping for the case
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Fig. 6. Phase angle for different critical damping ratios according to linear second
rder differential equations.

ith normal loading, which is not accounted for in the simplified
alculations, a phase shift occurs for the axial force compared to the
ncoming wave. This phase shift does not occur for the tangential force.
o achieve a correct response the phase shift for the normal response
ust be accounted for before summing the two contributions.

The damping can be estimated by considering the maximum exci-
ation force which is drag-dominated.

𝑚𝑎𝑥 = 𝐶𝑁 (0)
(

𝑢𝑐 + 𝑢𝑟𝑒𝑙
)2 = 𝐶𝑁 (0)

(

𝑢2𝑐 + 2𝑢𝑐𝑢𝑟𝑒𝑙 + 𝑢2𝑟𝑒𝑙
)

(31)

Extracting the dynamic part of the equation we get an approxima-
ion for the damping:

𝑑𝑦𝑛𝑚𝑎𝑥 = 𝐶𝑁 (0)
(

2𝑢𝑐𝑢𝑟𝑒𝑙 + 𝑢2𝑟𝑒𝑙
)

= 𝐶𝑁 (0)
(

2𝑢𝑐 + 𝑢𝑟𝑒𝑙
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐

(

𝑢𝑤 − 𝑢𝑟𝑜𝑝𝑒
)

(32)

Considering 𝑢𝑟𝑒𝑙 to be a constant, it is seen the dynamic force
onsists of an excitation force proportional to 𝑢𝑤 and a damping force
roportional to 𝑢𝑟𝑜𝑝𝑒.

𝑑𝑦𝑛𝑚𝑎𝑥 = 𝑐𝑢𝑤
⏟⏟⏟
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛

− 𝑐𝑢𝑟𝑜𝑝𝑒
⏟⏟⏟
𝐷𝑎𝑚𝑝𝑖𝑛𝑔

(33)

As an upper bound estimate for the damping we may use 𝑢𝑟𝑒𝑙 equal
o the wave particle velocity, 𝑢𝑤. The damping constant must be trans-
ormed to the system defined by the principle of virtual displacements:

̄ = ∫

0

𝑧𝑏
𝜙2𝐶𝑁 (0)

(

2𝑢𝑐 + 𝑢𝑤
)

𝑑𝑧 (34)

The phase angle for a linear second order differential equation is
sed to estimate the phase angle in the current problem. The damping
atio is given by:

= �̄�
2𝑀𝑤𝑛

(35)

where 𝑀 is the mass and 𝑤𝑛 is the natural period. The phase angle is
calculated from

𝜃 = arctan

⎛

⎜

⎜

⎜

⎝

2𝜉 𝜔
𝜔𝑛

1 − 𝜔2

𝜔2
𝑛

⎞

⎟

⎟

⎟

⎠

(36)

The phase angle for different critical damping ratios is shown in
ig. 6. For the current problem, the frequency ratio is between 0.02
nd 0.20 and the estimated critical damping ratio, 𝜉 varies between
.01 and 12.0.

Once the phase shift is included in the time history for the normal
esponse, the total tension force in the rope is calculated from:

𝑡 = 𝑆 𝑡 + 𝑆 𝑡 (37)
6

( ) 𝑇 ( ) 𝑁 ( )
.6. Validity range of the calculation method — normal loading

Two main forces are neglected when the simplified quasi-static
ethod is used; the inertia force and the damping due to the rela-

ive velocity. The effect of neglecting these contributions is discussed
eparately in the following two sections.

.6.1. Inertia force
If the loading period is much larger than the natural period of the

tructure, the inertia force can be neglected. The modal period of the as-
umed deformation modes can be estimated using the equivalent mass
nd stiffness terms. The stiffness is already calculated. The equivalent
ass is derived from the virtual work of the inertia forces

𝑊𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = −∫

0

𝑧𝑏
�̄� ̈̄𝑤𝜙𝜙𝛿�̄�𝑑𝑧 = ∫

0

𝑧𝑏
𝜙2�̄��̄�𝜔2𝛿�̄�𝑑𝑧 (38)

and becomes

𝑀 = �̄�
3𝛼2𝐿2

[

−𝑧3𝑡 −
(

𝑧𝑚 − 𝑧𝑡
)3
]

+ �̄�
3 (1 − 𝛼)2 𝐿2

(

𝑧𝑚 − 𝑧𝑏
)3 (39)

To estimate the modal periods we need to assume that the response
s harmonic. The linear stiffness in Eq. (28) is used to determine the
atural period, 𝑇0 = 2𝜋

√

𝑀∕𝐾, where 𝐾 = 𝑆0
𝛼(1−𝛼)𝐿 .

The unit mass per meter of rope, including the net, is 1.68 kg/m.
The density of the rope is very close to 1000 𝑘𝑔

𝑚3 which is close to the
density of the sea water. It is reasonable to assume that the density
of the net is similar. Since both the net and the rope have a circular
cross section, the added mass will be equal to the mass of the displaced
volume. The total mass of the rope and net including added mass is
therefore estimated to be 2 times the dry mass, i.e. 3.36 kg/m.

With 𝑆0 = 105 N and 𝑚 = 3.36 kg/m, the modal periods are between
.26 s and 0.34 s depending on the assumed deformation shape, which
epends on the wave period. According to Patel and Park (1991) the
atural period for a freely vibrating string is given by

0 = 2𝐿
√

�̄�
𝑆

(40)

The natural period using Eq. (40) is 0.38 s. This is in line with the
calculations using the principle of virtual displacements.

For our case relevant loads occur for periods greater than 2.0 s. This
is more than five times the natural period including added mass. Hence
disregarding the inertia effects should be acceptable.

If the pretension is reduced, the natural period will increase. Reduc-
ing the pretension with a factor of 10 will increase the natural period
including added mass to 0.82–1.08 s. With such a low pretension the
inertia may affect the response for periods less than approximately 3.5
s. It should be noted however, that mode shapes for the smallest wave
periods have the smallest period. I.e., the net has a modal period equal
to 0.82 s for 𝑆0 = 104 N if the wave period is equal to 2 s.

4.6.2. Relative velocity
The relative velocity is not accounted for in the simplified formu-

lation. In some cases, the velocity of the net may become large and
can have significant effect on the axial force in the net. Disregarding
the relative velocity will result in a conservative result since the forces
acting on the net will be overpredicted. A physical limit is that the
motion of the net should be smaller than the motion of the fluid
particles. To compare these values a transformation to the coordinate
system used for the PVD is needed. The transformation is performed
considering the linearized forces shown in Eq. (33).

The virtual work from the linearized damping force is written

𝛿𝑊𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝑐 ∫

0

𝑧𝑏
𝜙2𝜔𝑤𝛿𝑤𝑑𝑧 (41)

and for the linearized excitation force,

𝛿𝑊𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑐
0
𝜙𝜔𝜁𝑒𝑘𝑧𝛿𝑤𝑑𝑧 (42)
∫𝑧𝑏
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Fig. 7. Time series of the axial force in different lines on the panel for different line numbers.
The ratio suggesting the accuracy of neglecting the relative velocity
can be expressed by the ratio of the virtual work for the damping and
excitation forces

𝑅 =
𝛿𝑊𝑑𝑎𝑚𝑝𝑖𝑛𝑔

𝛿𝑊𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛
(43)

Although the ratio is a energy or force ratio, it is referred to as a
motion ratio since it represents the ratio of the net motion compared to
the wave motion. If the ratio is over 1.0, the results will be conservative
since it is not physical to have a response greater than the excitation
for the present case.

5. Results and numerical simulations

Numerical simulations are preformed to investigate the accuracy of
the simplified calculation. First, the set-up of the numerical analyses
used to confirm the hypothesis of the single rope compared to panel
modeling of the fish net is presented in Section 5.1. This is followed
by the description of the numerical model used for the comparison
with the simplified calculation method in Section 5.3. The numerical
analyses are all performed in SIMA/RIFLEX (Ocean, 2020) which is
a non-linear finite element program capable of simulating the time
domain response of structures exposed to wave loading.

5.1. Single rope model vs panel model of aquaculture net

The hypothesis of modeling the net response by considering a single
rope is checked through numerical simulations. The responses of each
rope of a panel, see Fig. 2, is compared to the response of a single free
line shown to the right of the panel. Here the viscous force is modeled
7

using the fish net element in RIFLEX which is based on Lølands screen
model, (Loland, 1991). In the complete panel model, the load carrying
fish net elements are horizontal. In addition to the fish net elements,
vertical bar elements are added to the model to represent the vertical
stiffness of the supporting rope. The distance between each of the lines
is approximately 1.7 m both in the horizontal as well as in the vertical
direction.

There are in total 17 lines on the panel shown in Fig. 2. Line no. 1 is
next to the steel pipe, and line no. 9 is in the center of the panel. Fig. 7
shows the force time histories of 5 of the lines on the panel in addition
to the force history of the free line which is located to the right in Fig. 2.
It is seen that the free line conservatively estimates the axial force for
all lines. For line 1 and 2 the results are overly conservative, but for
the rest the force estimate is reasonable or slightly conservative. Based
on the results in Fig. 7 it is concluded that it is relevant to estimate the
response using a single rope since it provides a reliable estimate for 13
out of the 17 lines.

5.2. Validation of assumed displacement shape

The quasi-static net shape from Eq. (19) is compared to the dynamic
shape of the rope from non-linear analyses in SIMA/RIFLEX in regular
waves in Fig. 8 . In general it is seen that the largest deviation between
actual and estimated shape occurs for steep waves, low pretension and
for low periods. The assumed shape is generally less accurate when the
deformation is large compared to the wave amplitude.

For a pretension equal to 105 N, Fig. 8 shows that the quasi-static
shape is almost identical to the simulated shape for all periods. For the
softest case with a pretension of only 104 N, it is seen that there is a
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Fig. 8. Comparison of deformation shape. Dashed line is semi-empirical solution, solid line is from RIFLEX. Results from both methods are scaled to identical amplitudes.
significant deviation for the smaller periods. The shape at maximum
displacement is however well estimated for all cases.

5.3. Analyses in regular waves and current

Numerical simulations are performed in RIFLEX for comparison
with the simplified calculations. The rope supporting the fish net is
modeled in a simplified manner as described in Section 2. i.e. as a single
line pinned at both ends. The loads acting on the rope are calculated by
the Fish net elements which uses Lølands screen model up to the exact
free surface. The loads from the fish net are lumped to the rope similar
as for the simplified model. The rope is modeled with 100 bar elements.
The mass including added mass is set equal to 3.36 kg/m. Deep water
conditions are assumed. To ensure that the results are representative for
the steady state case, the analysis is run until convergence is achieved,
which is for all cases was less than 8 wave periods. All analyses are
therefore run for 8 wave periods.

Due to numerical issues a stiffness proportional damping factor on
the material stiffness equal to 0.05 was introduced. Without damping
the analysis was unstable in some cases.

The stiffness of the rope is defined using a linear force elongation
curve. The force at zero elongation is equal to the pretension.

A series of numerical simulations are performed for different combi-
nations of wave period and wave height for different current velocities.
The periods and wave amplitudes are listed in Table 2 and the current
velocities in Table 3. All wave conditions in Table 2 are combined with
each current in Table 3.

To test the limits of the simplified method, a case with a reduced
pretension equal to 104 N is analyzed in addition to the realistic case
with a pretension equal to 105 N. The analyses with reduced pretension
is used to investigate the accuracy of the simplified method when
dynamics are of greater importance.

Time histories of the axial force are compared in Fig. 9 for a
pretension equal to 105 N and Fig. 10 for a pretension equal to 104 N. It
is seen that the time history is well predicted when using the simplified
8

Table 2
Wave amplitudes and heights of regular waves.
Case Wave amplitude[m] Period [s]

1 0.25 2
2 0.25 3
3 0.25 4.5
4 0.25 6.5
5 0.25 9
6 0.25 11.5
7 0.5 3
8 0.5 4.5
9 0.5 6.5
10 0.5 9
11 0.75 3.5
12 0.75 6
13 1.0 6
14 1.5 6

Table 3
Current velocities.
Current velocity [m/s]

0.0 0.1 0.5 1.0

calculation when the pretension is 105. When the pretension is reduced
to 104 N it is observed that the simplified method overestimates the
axial force. The accuracy is considered acceptable in the initial design
stage in view of the significantly reduced computation time from
55 min in the numerical simulations to seconds with the simplified
method.

The results from the numerical simulations as well as from the
simplified calculation are presented in Fig. 11, for rope fatigue and
Fig. 12, for fatigue of a steel connection point. The fatigue life is
normalized to 1.0 for each sea condition when the current velocity is
equal to zero. The damages from the different sea states are thus not
comparable. The results from the numerical simulations are shown as
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Fig. 9. Time series of the axial force in different current velocities for a pretension equal to 105 N.
solid lines and the results from the simplified calculations are shown as
solid dots.

Figs. 11 and 12 shows that the accuracy of the simplified cal-
culations is reasonable for many cases. There are however several
cases where the error is quite large. This is especially true when the
pretension is reduced to 104. The actual pretension in the ropes on the
OF1 is close to 105 N. Hence, for realistic cases, the accuracy of the
results should be in line with the results for S = 105 N presented herein.
The reduction of the pretension to S = 104 N is performed to show
that the method is less accurate for some cases. For all the cases we
can see that neglecting the effect of current would lead to a significant
overestimation of the fatigue life.

The comparisons of the time histories in Figs. 9 and 10 and the
comparison of the estimated fatigue life in Figs. 11 and 12 show both
that the simplified method is in good agreement with the numerical
simulations. The accuracy of the simple method is the largest for the
cases where the pretension is 105 N because the velocity of the rope,
which is not included in the simplified method is small.

The results of the fatigue life calculations displayed in Figs. 11 and
12 show that the current velocity has a major affect on the fatigue life.
For the rope the current increases the total load which gives a reduced
fatigue life due to an increase in the total tension level. For the steel
connection the fatigue life is reduced due to an increase of the dynamic
tension from the cross coupling of the wave and current in the non-
linear load formulation. The effect is much greater for the fatigue life
of the steel connection than it is for the ‘‘fatigue’’ of the rope which
is determined by creep. The reason is that the creep model uses the
total stress level as input whereas the cyclic fatigue calculations uses
the stress range as input. The current affects the stress range much more
9

than the total stress level since the system is under pretension. It is
seen that the reduction of the fatigue life from the current for the steel
connection is the greatest for a large pretension. For the fatigue life of
the rope however, the reduction due to current becomes much larger
when the pretension is decreased. The results show that the influence
the current has on the fatigue life varies depending on the fatigue
model as well as the stiffness of the system. It is therefore difficult to
generalize how much current affects the structure.

6. Discussion

6.1. Basic assumptions

The simplified computation model is based on some idealized as-
sumptions which are not always in line with reality. In the following
sections some of the assumptions are discussed.

6.1.1. Single rope model
The hypothesis to model the response of the panel with a single

rope is verified according to the results presented in Fig. 7. This type
of simplification is commonly used in engineering for both stress as
well as buckling analyses of stiffened panels with great success. The
results from the free rope analyses are conservative for all the ropes
in the panel since the calculated force for each of the ropes in the
panel is either smaller or equal to the force in the free rope. This is
similar to that of the single stiffener including plate flange compared
to a stiffened panel. Hence, the simplification can be used for design
cases. It should be noted that only waves propagating normally to the
net are considered in the present paper.
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Fig. 10. Time series of the axial force in different current velocities for a pretension equal to 104 N.
Fig. 11. Change in fatigue life as a function of current velocity for different wave periods and wave heights. Solid lines are numerical analyses. Dots are simple hand calculations
based on PVD. Fatigue calculations based on creep.
6.1.2. Splitting of response — normal and tangential
The viscous loads are in the simplified calculations method di-

vided into a normal contribution and a tangential contribution and
the responses are calculated separately before they are added together.
This type of splitting is commonly used in linear analysis, but is not
generally possible for non-linear analyses. The splitting is considered
admissible even though both the loading and the response is non-linear
10
since the responses have a very small effect on each other. The tangen-
tial load changes the axial force in the rope, but the change is small
compared to the pretension and can therefore be disregarded when
calculating the response from the normal load. Also, the horizontal
displacement caused by the normal load is small compared to the length
of the rope and has therefore only a minor effect on the vertical stiffness
which is important when calculating the axial force from the tangential
load.
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Fig. 12. Change in fatigue life as a function of current velocity for different wave periods and wave heights. Solid lines are numerical analyses. Dots are simple hand calculations
based on PVD. Fatigue for steel detail with m = 3.0.
Table 4
Damage and force errors for extreme cases from Fig. 14.

Case
𝐿𝑖𝑓𝑒𝑠𝑖𝑚𝑝𝑙𝑒
𝐿𝑖𝑓𝑒𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

𝐷𝑠𝑖𝑚𝑝𝑙𝑒

𝐷𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

𝐹𝑠𝑖𝑚𝑝𝑙𝑒

𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

S=104 N 0.28 3.6 1.53
S=105 N 2.00 0.50 0.79
S=105 N 1.50 0.67 0.88

Before adding the responses together it is essential that the phase
shift of the response from the normal load is accounted for. In the
present method an upper limit of the damping is used when the phase
shift is estimated based on linear second order differential equations.
The effects of using a different estimate of damping is not investigated
since the predicted phase shift is in line with the numerical simulations.

6.1.3. Mode shape for normal loading
The assumed deformation shape is a simplification of the actual

deformation shape and introduces inaccuracies in the estimation of
the axial force. For cases with zero current and for cases with large
current velocities compared to the wave particle velocity, the assumed
deformation shape is reasonable. See Figs. 13 (c) and (d) for a com-
parison of deformation shape for cases with large current velocities.
For intermediate current velocities, the resultant velocity may change
sign when the current and wave acts against each other at a certain
depth. The quasi-static shape and also the dynamic shape of the net
will then be a deformed ‘‘S’’ as seen in Fig. 13(a) for which the
assumed triangular shape is not good. Nevertheless, the accuracy of
the fatigue life estimation is reasonable for these cases. The reason
may be that the ‘‘S’’ shape and hence the inaccurate mode shape can
only occur for negative amplitudes. The assumption of the triangular
deformation shape is reasonable for the positive amplitudes as seen in
Fig. 13(b), where the current and wave particle velocity act in the same
direction. For fatigue calculations the largest amplitudes in the time
series contribute the most and the accuracy of the estimated fatigue
damage remains high even though the mode shape is not good for the
minimum amplitude.

6.2. Computation time

The computation time is greatly reduced with the simplified cal-
culation method compared to the numerical analyses. A series of 56
numerical simulations are performed using RIFLEX, taking a total
55 min to complete. The simplified calculation method performs the
same calculations in 10.3 s. This is only 0.3% of the time needed to
perform the analyses in RIFLEX. In a design process many more design
11
iterations can be performed using the simplified method which may
result in a better design. The main reason for the huge improvement
in computation time is due to the very small time step needed in the
numerical simulations to keep the analyses from failing.

6.3. Limitations of the simplified calculation method

The main error in the simple calculation method is that the relative
velocity is not accounted for as described in Section 4.6.2. Fig. 14 shows
the ratio of the fatigue life for the steel connection calculated using
the simplified method divided by the numerical fatigue life estimation
on the 𝑦-axis. On the 𝑥-axis, is the motion ratio, which is defined
as the rope motion amplitude divided by the fluid motion amplitude
calculated according to Section 4.6.2. It is seen that the fatigue life
ratio decreases for increasing motion ratio, i.e. the degree of fatigue
life underestimation increases with an increasing motion ratio. The
hypothesis that the results are conservative for a motion ratio greater
then 1.0 is in line with the results in Fig. 14.

It is seen that the motion ratio is below 1.0 for most cases when the
pretension is 105 N. There are only 8 cases where the motion ratio is
above 1.0 all with small wave periods (< 4𝑠) and large current velocities
(0.5 & 1.0 m/s). For the softer case when the pretension is 104 N there
are many more cases above the assumed limit of 1.0. Again these are
for the cases with small wave periods. All cases have periods equal to
or below 4.5 s. For the case with an artificially low pretension, the
largest damage ratio with a motion ratio less than 1.0 is 3.6. Hence, the
estimated lifetime is only 28% of the actual lifetime calculated using
NLFEA.

There are some cases in Fig. 14 that have non-conservative results.
See the dashed circle. For these cases the inaccuracy is due to the
calculation method which has trouble with small waves combined with
intermediate current velocities. In most cases these sea states will have
very little contribution to the total damage due to the small wave
amplitude. For the most extreme case, the fatigue life ratio is overes-
timated by 100%. However the actual fatigue damage from sea states
with such a small wave amplitude is small and therefore generally not
of importance. Not considering the sea states in the dashed circle, the
error in the fatigue life overestimation is smaller than 50%.

The fatigue lives shown in Fig. 14 are calculated using an SN-curve
with 𝑚 = 3. If it is assumed that the fatigue damage is from a constant
amplitude load, the error in force is found using:

𝐹𝑠𝑖𝑚𝑝𝑙𝑒

𝐹𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙
=
( 𝐷𝑠𝑖𝑚𝑝𝑙𝑒

𝐷𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

)1∕𝑚

(44)

Table 4 summarizes the magnitudes of the errors discussed in the
forgoing paragraphs. The error in force for the low pretension case is
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Fig. 13. Comparison of assumed deformation shape, solid, to RIFLEX results, Dashed. Results are scaled to equal amplitude.
Fig. 14. Scatter of the fatigue life for the steel connection from the simplified method divided by the numerical fatigue life versus the relative motion force ratio from Eq. (43).
(a) Solid circle shows cases with wave periods less than 4.0 s. Dashed circle shows cases with wave amplitude equal to 0.25 m.
up to a 53% overestimation. For the realistic case where the pretension
is 105 N, the underestimation of the force will generally be smaller
than 12%. For the worst case in Fig. 14 it is seen that the force was
underestimated by 21%.

With such a good accuracy the simplified method can be used in
a design phase to calculate initial estimates. The motion ratio can be
used to give an indication regarding the conservatism of the estimate.
In addition, the method is useful to verify the results of complex
simulations according to Norsok et al. (2021). Norsok et al. (2021) is
12
not a requirement for aquaculture structures, but it represents good
practice.

7. Conclusion

In the present paper a simplified model is presented to estimate
the axial forces in the fish net supporting ropes of an offshore fish
farm under waves and current. Quasi-static mode shapes are adopted
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considering the large rope stiffness and stiffness dominated rope re-
sponse. The resulting axial forces are used further for creep and fatigue
assessment of the rope and the steel connection. In the proposed model,
the viscous load is divided into a tangential contribution and a normal
contribution. The response to the loads are calculated individually and
summed together to achieve the time history for the axial force in the
rope.

The accuracy of the simplified method is evaluated by comparing
calculated fatigue damage to that obtained with numerical simulations
with the RIFLEX software. Good agreement is found for ropes with a
typical pretension, where the motion of the rope is of little importance.
With small pretension the motions of the rope becomes significant and
affects the fatigue damage. The simplified method is mostly conserva-
tive and may still be useful in early design. Based on the results herein,
the error of fatigue life estimation, is generally less than 50% on the
non-conservative side. This is equivalent to 12% underestimation of
the dynamic force. A parameter, ‘‘motion ratio’’ is proposed to give an
indication regarding the conservatism in the simplified method.

When the following conditions are met, it is expected that the
simplified method will produce results that are of acceptable for initial
design estimations as well as for analysis verification analogous to the
requirements in NORSOK N-001, (Norsok et al., 2021).

• Wave and/or current like loading
• Rope fixed at top and bottom
• Natural period of rope is small compared to the loading period
• The velocity of the rope is small compared to the fluid particle

velocity to avoid overly conservative results

he study shows that current has a strong effect on the fatigue life
f both the rope as well as the connection point fabricated in steel.
eglecting the current will in many cases produce unreliable and non-
onservative estimates of the fatigue life. The reduction in fatigue
ife due to current is the largest for the connection point with large
retension. Conversely, for the rope the change in fatigue life is the
reatest when the pretension is the lowest.

The proposed method is extremely efficient compared to current
alculation methods based on NLFEA. For a given set of cases the
implified method used 10.3 s to complete the calculation while the
ccurate NLFEA used 55 min. The simplified method is therefore highly
uitable for design when quick, conservative estimates are desired.
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