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Abstract—Traffic sign classification plays a vital role in au-
tonomous vehicles for its powerful capability in information
representation. However, the low-quality data of traffic signs
captured by in-vehicle cameras often inevitably bring inher-
ent challenges to the one-shot classification task. Apart from
the problem of data degradation, learning-based classification
techniques of real traffic signs also come across the challenges
of intra-class and inter-class data imbalance from the training
data. To overcome the aforementioned problems, we propose
an end-to-end degradation robust deep model, termed PcGAN,
to classify traffic signs in a manner of few-shot learning. The
proposed PcGAN models the joint distribution between the de-
graded traffic signal data and the corresponding prototypes from
both degradation removal and generation perspectives by two
alternating optimized modules, which ensures the generalization
of the learned embedding of latent space for novel tasks. A
multi-task loss function is designed to improve the robustness
of PcGAN. Numerous experiments comprehensively demonstrate
that the accuracy of our proposed PcGAN is improved by 5%
compared with other state-of-the-art (SOTA) approaches in few-
shot classification.

Index Terms—One-shot Learning, Generative Adversarial Net-
work, Prototypical Data, Traffic Signs, Intelligence Transporta-
tion Systems.

I. INTRODUCTION

T raffic signs are the road facilities that convey guidance,
restriction, warning, or instruction information in the

form of words or symbols, which are significant for traffic
driving. Compared to the accessible word form, the symbol
form tends to be isolated from any specific language and can
only be mastered by those familiar with the prior conventions,
e.g., shape similarity. This is a tremendous challenge for
drivers in the case of the considerable number of symbol-
based traffic signs [1]. Fortunately, with the rapid development
of intelligent transportation systems (ITS) [2], traffic signal
techniques have been widely applied in autonomous vehicles
[3]–[5], which can both provide accurate judgment for various
traffic signs to human drivers and adaptively correct their
autonomous driving behavior.
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In order to achieve the optimal environment sensing quality,
[6] presented a novel framework combining fractal constraint
with group sparsity. Different from the multi-modality-based
data fusion strategies, traffic sign techniques can only be
implemented by a single sensor, i.e., a visible camera, for its
original design intention being friendly to the human visual
system [7], which is no wonder sensitive to the surround-
ing environments, variable illumination conditions, complex
weathers [8], [9]. Furthermore, the camera imaging system can
bring some degradation, such as the hardware-induced noises
and the in-camera pre-processing distortion [10].To overcome
the aforementioned challenges, many noise-robust approaches
are proposed both in traditional and learning-based methods.
Traditional methods mainly rely on the handcrafted feature op-
erators to suppress degradation, e.g., local entropy [11], local
gradient constraint [12]. [13] proposed a novel target-aware
method based on a non-local low-rank model and saliency
filter regularization to suppress the noise from the background
and enable joint target saliency learning in a lower dimensional
discriminative manifold. Although these methods suppress the
degradation to a certain extent, the problem is that the design
of the feature operator must not only ensure that it is easy
to implement but also have a certain degree of adaptability
to the degradation, which is not easy. In deep learning-based
methods, Tian et al. [14] adopt a recurrent attention mechanism
to attenuate the effect of background noise in traffic signs.
However, the existing target noise can also influence the
accuracy of subsequent processing, and the attention map can
be interfered with by the data degradation. A deep learning-
based framework for robust traffic sign detection (DFR-TSD)
[15] exploited a challenge classifier to classify the degradation
condition of the input data, e.g., lens blur, snow, haze, etc.,
which effectively delivered targeted reconstruction techniques
for different types of degradation. Nevertheless, this work is
time-consuming and is highly dependent on the precision of
the challenge classification, which consistently fails to present
a high-quality reconstruction in case of misclassification.

Apart from the image degradation from real captured traffic
signs, the recovered high-quality data of traffic signs can have
a significant visual gap with the prototypical data. Because the
prototypical data is the most standard data in the corresponding
class and is not explicitly designed for the input, which can
cause visual domain discrepancy between the input data and
the prototypical data. For this challenge, some works like
Temel et al. [16] were dedicated to publishing a novel dataset,
which can alleviate the domain discrepancy to some extent.
[17] proposed a bilateral weighted regression ranking model
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Fig. 1. The framework of the proposed PcGAN, where (a) is the real data of traffic sign in the same class, (b) is the corresponding prototype and the initial
degradation operator, (c) is the reconstructed data processed by data reconstruction module, (d) is degraded by degradation generation module, and (e) is the
concat for ease of the approximation of joint distribution p(t, r).

termed BWRR to solve the loss from data fidelity term. The
recently published public datasets [16], [18], [19] inevitably
have problems with intra-class and inter-class data imbalance.
Therefore, the pure data-driven deep network often comes
across issues caused by data imbalance.

To overcome the challenges mentioned above, we propose a
degradation robust conditional generative adversarial network
with prototypical data, termed PcGAN, to classify traffic signs
by few-shot learning. As shown in Fig. 1, the proposed
PcGAN is an end-to-end model to simulate the degradation
process, which formulas the implicit joint distribution between
real traffic sign data and its corresponding prototypes instead
of forcing the reconstructed traffic signs to be similar to
their prototypes by two alternating update modules, i.e., data
reconstruction module and degradation generation module.
To further improve the robustness of PcGAN, a multi-task
loss function is proposed to joint constrain the degradation
removal and generation. The contributions of PcGAN can be
summarized as follows:

• To the best of our knowledge, it is the first time to
introduce the dual adversarial strategy to approximate
the implicitly joint distribution in the field of one-shot
learning of traffic sign classification, which can simul-
taneously simulate the process of degradation removal
and generation. Therefore, the proposed PcGAN can
comprehensively learn the latent relationship between real
traffic signs and their prototypical data.

• To achieve a more accurate classification performance, we
propose a multi-task loss function to joint constrains the
network training, including the reconstruction of real data
of traffic signs and the degradation of the corresponding
prototypes.

• Numerous experiments comprehensively illustrate the
superiority of our PcGAN in comparison with other
state-of-the-art (SOTA) techniques in both qualitative and
quantitative analysis.

The main structure of the paper is as follows. Section I is

the Introduction of this paper. Section II introduces the related
works. Section III introduces the framework of PcGAN. Then
Section IV introduces the related experimental results. Finally,
Section V provides a brief conclusion of our work.

II. RELATED WORK

Few-shot learning, which aims to recognize new classes by
adapting the learned knowledge with extremely limited few-
shot (support) examples, remains a significant open problem
in computer vision. It learns patterns with a set of data (base
classes) and adapts to a disjoint set (new classes) with limited
training data. Data imbalance can be effectively solved by
few-shot learning for its powerful generalization capability
with a few prototypical data of novel classes, by which the
generic prior knowledge of data can be learned in the latent
space. In [20], the existing few-shot learning methods were
divided into two categories which are data-augmentation-based
methods and prior-knowledge-based techniques according to
the principles of whether the number of available labeled sam-
ples for the target classes increases is increased. The former
uses transformation operations, simulation, or deep generative
models to generate samples without actually collecting new
data, which can improve the generalization ability of the model
and suppress the risk of overfitting. While the latter mainly
focuses on learning with limited labeled data, which means
making full use of prior knowledge and experience to guide
the learning progress of new tasks. The pioneering working
of few-shot learning, i.e., Li et al. [21], assumed that prior
knowledge facilitates people with more efficient learning. Li et
al. [21] explored the latent and generic prior information with
a bayesian strategy. The results demonstrate that the learned
prior can be easily adjusted to other problems with small data.
This solves the problem of data imbalance to a particular
extent and shows a certain generalization ability. In [22], a
low-rank representation of samples in the feature space is
exploited by the label distribution learning for the classification
task. Xing et al. [23]–[25] had proposed to combine the auto-
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Fig. 2. The examples of prototypes and their real traffic signal data from
GTSRB and TT100K datasets, where (a)-(e) correspond to prototypes, over-
darkness, blur, overexposure, occlusion, respectively.

encoder with the generative adversarial network for the zero-
shot cross-modal retrieval task, which leveraged the shared
latent space learning, knowledge transfer, and feature synthesis
within the distribution alignment.

In addition, few-shot image classification is the one with
the most focus and research. To tackle this problem, two
actions can be taken as follows. One is optimization-based
methods [26], [27], which firstly train a network with base
class data, then fine-tune the classifier or the whole network
with support data from unseen classes. On the other hand,
few-shot learning is solved by applying an existing or learned
metric to the extracted features of images in the metric-
based method. MatchingNet [28] adopts a memory module
to merge the information in each task and cosine distance
as the metric to classify unseen data. ProtoNet [29] proposes
the prototype as a simple representation of each category and
adopts euclidean distance as the metric. In [30], a dual stream
neural network is proposed to reconstruct the original infrared

spectroscopy, which effectively strengthens the capability to
represent the feature of the infrared spectrum.

Moreover, some of the recent approaches, e.g., Lake et al.
[31] paid attention to the procedure of the generation, which
also explored a few examples with hierarchical Bayesian.
Under this strategy, the extracted procedures can also be
generalized to new tasks, even though the number of exam-
ples drops to one. It is worth noting that few-shot learning
is a continuously challenging task regardless of the rapid
development of deep learning-based algorithms, which tend
to be lower than some handcrafted methods. The reasons
mainly lie in that the quite limited data can result in the
problem of over-fitting. In this case, recent learning-based
algorithms mainly focus on embedding learning and meta-
learning strategies. The variational prototyping-encoder(VPE)
[32] is a one-shot learning-based approach with the former
strategy, which classified traffic signs by nearest neighbor
classification in a variational auto-encoder (VAE) structure and
achieved an advanced performance in both data classification
and image retrieval. However, VPE forced the generated output
of real traffic signs to be similar to their prototypes, which
are the most standard traffic signs. It seems unreasonable to
learn common space directly from a mapping relationship
under several challenging cases, which are shown in Fig.
2. Moreover, this method seems to be very challenging to
implement.

III. PCGAN FRAMEWORK

In this section, we introduce the proposed PcGAN model,
which is analogous to metric-based learning solutions with
the purpose of learning a generalizable embedding. Unlike
traditional generative adversarial network (GAN), our model
is applied in a few-shot learning task which focuses on the
generalization capability of the model and the embedding
versatility of the latent space with only one support data.
Therefore, the training phase of PcGAN aims to construct a
generic embedding space with a large amount of training data,
and the learned embedding space will be utilized for nearest
neighbors classification between the tests with new classes
and their prototypical data in the testing phase. Furthermore,
compared with the metric-based learning approaches that con-
struct embedding space with a selected metric, the embedding
construction process of PcGAN is assisted with a meta task,
i.e., learning a mapping from real data to prototypical data,
which means that our PcGAN can achieve more valid prior
than the manually selected metric. In this paper, the pro-
posed PcGAN is applied to handle the few-shot classification
problem by single prototypical data, whose framework is
presented in Fig. 1 with the following modules, including data
reconstruction module Dr, degradation generation module Dg ,
and discriminative module D.

In the process of PcGAN network model design, first of
all, we respectively carry out relevant mathematical derivations
on the joint distribution formulas of the Data Reconstruction
Module and Degradation Generation Module in the network
structure. Then, based on the above derivation, we conduct
relevant analysis on the design of the loss function for
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network optimization. In addition, we introduce the network
architecture of the data reconstruction module and degradation
generation module in detail. Finally, we train and test our
PcGAN network.

A. Problem Formulation and our proposed PcGAN

We make a definition of the one-shot classification problem
as a conditional GAN with two generators, which corresponds
to the encoder-decoder structure in the data reconstruction
module and noise generation module. Given an aligned pair
of real degradation image r captured by a vehicle camera and
its prototypical image t, the problem of our task is formulated
by solving the joint distribution p(r, t) instead of forcing the
generator to learn a mapping from r to t [32]. In the following,
we describe the principles of the aforementioned modules and
the discriminative module in detail.

Data Reconstruction Module. The data reconstruction
module Dr focuses on reconstruct a recovered image in the
case where the degradation image r is known, i.e., learning
a implicit distribution pDr

(t | r) to approximate p(t | r) ,
where the approximated recover data t̂ = Dr(r). In this case,
the recovered joint distribution is defined as follows:

pDr (t, r) = pDr (t | r)p(r), (1)

where p(r) is the distribution of the captured degradation
image r, which is a fixed value. From the equation men-
tioned above, it is evident that the performance of the data
reconstruction module D(r) is proportional to the degree of
approximation between pDr (t, r) and p(t, r).

Degradation Generation Module. Traffic signs can only
be captured by camera sensor in autonomous technique, which
can bring a few hardware-induced noises and some in-camera
pre-processing distortion [10]. In this case, we import a latent
vector zd to denote the aforementioned degradable condition,
where the distribution of the real degradation process from
prototypical data t to real distorted data r can be represented
by p(r | t, zd) and that generated by degradation generation
module Dg can be depicted by pDg (r | t, zd). Therefore, the
degraded data r̂ follows:

r̂ = Dg (t, zd) ∼ pDg
(r | x, z). (2)

Then the degraded joint distribution can be achieved by:

pDg
(t, r) =

∫
zd

pDg
(r | t, zd) p(t)p (zd) dzd, (3)

the above equation can be simplified by [33]:

pDg
(t, r) ≈ 1

K

K∑
k

pDg
(r | t, zdk

) p(t), (4)

where p(t) is the distribution of the prototypical data t and
K is the number of samples in latent vector zd. The K is the
number of samples. Similar with data reconstruction module,
a better Dg can contribute to more accurate approximation in
pDg

(t, r).

B. Loss Function

For the recovered joint distribution pDr
(t, r) and the de-

graded joint distribution pDg
(t, r), we further describe how to

approximate the two fake distributions to the real distribution
p(t, r), i.e., how to train data reconstruction module Dr and
degradation generation module Dg productively. To gradually
and smoothly update pDr

(t, r) and pDg
(t, r) towards the

ground truth p(t, r), we train the framework adversarially for
the tractability of equations (1) and (4). Inspired by [34], the
basic loss function of our PcGAN is formulated as follows:
LGAN = min

Dr,Dg

max
D

L (Dr, Dg, D) = E(t,r)[D(t, r)]

−
{
λE(t̂,r)[D(t̂, r)] + (1− λ)E(t,r̂)[D(t, r̂)]

}
,

(5)

where D denotes the discriminator of PcGAN, whose aim is to
distinguish the real data pair against the generated ones (t̂, r)
and (t, r̂). λ is a trade-off parameter that keeps a balance be-
tween data construction and degradation generation. To portray
the discrepancies more clearly, Wasserstein-1 distance [35]
was applied to characterize the above distribution differences.

As discussed in [36], the commonly used loss functions
can ensure the stability of the adversarial training. In this
case, referring to [37], the loss function of the data recon-
struction task and degradation generation task is formulated
by L2 − norm, i.e., mean square error (MSE). However,
considering the randomness of the latent vector zd in the
degradation generation module, we pay more attention to the
statistical information of degraded data r̂. Therefore, the total
loss function of PcGAN is presented as follows:

Lt = LGAN + Ltradition

= min
Dr,Dg

max
D

L (Dr, Dg, D)

+ αMSE(t̂, t) + βMSE(f(r̂ − t), f(r − t)),

(6)

where f(·) denotes the extracted statistic information, e.g.,
Gaussian filter, Prewitt operator, etc. α and β are the trade-off
parameter.

Moreover, the degradation generation module is the focus
of PcGAN and is more difficult to generate than the data
reconstruction module in the traffic sign classification task for
the perturbation robust of the prototypical data. In this case,
the structure of the data reconstruction module in PcGAN
is different from the traditional generation model in GAN
and is more similar to the variational autoencoder (VAE)
structure despite the presence of prototypical data. To ensure
the accuracy of encoder-decoder architecture and perturbation
robust of the embedding latent vectors, we propose an adaptive
consistency loss, which only constrains the internal parameters
of the degradation generation module, as shown in Fig. 1:

Lgene
AC = Lϕ,ϑ(r, t) =

1

M

M∑
m=1

− log pϕ

(
t | z(m)

r

)
+DKL [qϑ (zr | r) ‖pϕ (zr)] ,

(7)

where qϑ (zr | r) and pϕ (t | zr) corresponds to the probability
encoder and decoder, which are both modeled by a network

structure, and latent vectors
{
z
(m)
r

}M

m=1
are sampled from

qϑ (zr | r) with a reparameterization trick [33].
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C. Training and Testing Strategy

Training Phase. There are three modules to be updated in
PcGAN, i.e., data reconstruction module Dr, degradation gen-
eration module Dg , and discriminative module D. We follow
the training strategy in [35], where the three modules are co-
trained and alternatively updated. Furthermore, to overcome
the turbulent situation in the training of GAN, the Lipschitz
constraint is applied to D with the penalty strategy of gradient
[38].

Test Dataset

Prototypes

Dr

Encoder

Latent Space

Dg

Prototypes

Fig. 3. The illustration of the test phase, where the encoder is a part of the
data reconstruction module. The prototypes are degraded by Dg , embedded
with the encoder of Dr , and classified with the nearest neighbor method
between the high-level features encoded from the test dataset by Euclidean
distance.
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Fig. 4. The network architecture of data reconstruction module Dr and
degradation generation module Dg , where Conv(j,k,l) denotes the kernel size
j×j, stride k, and padding l, respectively, and LReLU and FC layer are short
for LeakyReLU and fully connected layer.
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Fig. 5. The network architecture of discriminator module D, where
Conv(j,k,l) denotes the kernel size j×j, stride k, and padding l, respectively,
and FC layer is short for fully connected layer.

Testing Phase. Considering the complexity of the driv-
ing condition, the data captured by the camera sensor can

be disturbed in various conditions, thus resulting in serious
degradation. Therefore, compared to the manner that calcu-
lates the similarity between processed data, it is desirable to
complete the classification task from a clustering perspective.
As shown in Fig. 3, we initially input the novel classes with
the prototypical data and extract the features by the encoder
from degradation generation module Dg . In subsequent, when
the real data are input, the corresponding features encoded
by data reconstruction module Dr will be retrieved by the
nearest neighbor technique with Euclidean distance. Finally,
the input data is categorized as the class whose prototypical
data is nearest to the input in Euclidean distance.

D. Network Architecture

Deep networks are adept in the three aforementioned mod-
ules, i.e., data reconstruction module Dr, degradation gener-
ation module Dg , and discriminator module D. Note that Dr

and Dg share the same backbones with a encoder-decoder
structure, as shown in Fig. 4. The encoder of Dr and Dg are
constructed with three convolution layers followed by batch
normalization and LeakyReLU, whose kernel size, stride, and
padding are 3 × 3, 2, and 1, and a fully connected layer,
which is used to offer a feature map into the latent space. The
structure of the decoder is symmetric to that of the encoder
concerning the latent space zr. As presented in Fig. 5, t The
discriminator module D consists of four convolution layers
followed by LeakyReLU, which share the same kernel size,
stride, and padding with that in Dr, and one fully connected
layer.

IV. EXPERIMENT

In this section, the performance of our proposed PcGAN
is in comparison with the other three SOTA methods on the
two commonly used datasets. In the following content, we
will describe the experiment settings, datasets, and comparison
methods in detail. In addition, the experiments of the one-shot
classification task and data retrieval test are implemented on
the German Traffic Sign Recognition Benchmark (GTSRB)
[39] and Tsinghua-Tecent 100K (TT100K) [19].

A. Datasets and Comparison Methods

Datasets. Two commonly used datasets are selected for
the experiments, which are GTSRB and TT100K. In traffic
sign recognition, GTSRB is the most popular dataset with
an enormous scale, consisting of three categories, includ-
ing forbidden, dangerous, and compulsory, with forty-three
specific classes. In these datasets, the captured real traffic
signal data are degraded by surrounding environments, terrible
illumination, complex driving condition, and variable weather,
as shown in Fig. 6. Furthermore, the aforementioned problem
of intra-class and inter-class data imbalance is occurring in
GTSRB, although the scale of the training set and testing
set is up to over thirty-nine thousand and twelve thousand
images, respectively. Different from GTSRB, TT100K was
initially proposed for traffic signal detection tasks with over
two hundred classes. Therefore, we exclude the data without
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Fig. 6. The reconstruction performance of the challenging data from GTSRB
dataset, where (a) represents the prototypes and every two lines of (b)-(e)
represent the challenging data and the corresponding recovered data.

clear annotations. Referring to [32], thirty-six classes with
more than twenty thousand images are picked out for the traffic
signal classification task, which has four overlapping classes
with GTSRB.

Comparison Methods. Apart from our proposed PcGAN
and VPE [32], QuadNet [40], MatchNet [28], and VPE++
[41] are also added into comparison for one-shot classification
task and data retrieval test, where the configuration is in
accordance with the publicly available code online without
any manual modification. QuadNet [40] is composed of two
Siamese networks, the weights shared within each pair. One
part embeds features from template images and the other part
for real images. Quadruple images from each domain are fed
into the corresponding Siamese networks. While MatchNet
[28] is not a single network, but about 3 to 4 in the specific im-
plementation of a sequential collection of multiple networks.
MatchNet is a fast learning network that combines the more
popular attention structure and memory network. In order
to quickly learn and train the network, it trains by showing
only a few examples of each class, just like how to test
when providing some examples of new tasks, switching the
task from minibatch to minibatch. For our proposed method,
the corresponding features encoded by the data reconstruction
module Dr will be retrieved by the nearest neighbor technique
with Euclidean distance for the testing phase. Finally, the input
data is categorized as the class whose prototypical data is
nearest to the input in Euclidean distance.

B. Experimental Settings

As discussed above, GTSRB was initially conceived for
the traffic signal recognition task, while TT100K requires
some specific filters. Therefore, GTSRB is divided into two
partitions for seen classes and unseen classes in cross-dataset
evaluation to further estimate the generalization ability of
the learned latent space. In specific, twenty-two classes are
selected as seen classes and the rest are unseen classes, i.e., our
PcGAN is trained with the training set with twenty-two known
classes and is evaluated by testing set with all of the classes.
Therefore, the twenty-two unseen classes can constitute a
validation set for model optimization.

TABLE I
THE ACCURACY (%) OF ONE-SHOT CLASSIFICATION, I.E., ONE NEAREST

NEIGHBOR, ON GTSRB AND TT100K DATASETS, WHERE THE BEST
VALUES ARE MARKED WITH BOLD.

GTSRB TT100K
21 unseen classes All classes 32 unseen classes

QuadNet [40] 45.2754 42.3428 N/A
MatchNet [28] 26.0332 53.1671 49.5355
VPE [32] 56.9861 55.5882 53.0437
VPE++ [41] 70.2461 65.1567 65.7863
PcGAN 75.7749 68.2207 66.1562

In the training phase, the initial weights of data recon-
struction module Dr and degradation generation module Dg

are set in accordance with the strategy of [42]. Besides, the
initial weights of discriminator D follow a normal distribution.
The average value and standard deviation are 0 and 0.02,
respectively. We apply ADAM optimizer [43] to train the three
modules with momentum terms (0.5, 0.9) for Dr and Dg , and
(0.9, 0.999) for D. In addition, the learning rates of the three
aforementioned modules are 2×10−5, 1×10−4, and 2×10−4,
respectively. The mini-batch size is set as 128 with the size
64 × 64 for inputs. λ, α, and β are set to be 0.5, 1000, and
10 across the entire experimental section. As for the gradient
penalty strategy, the coefficients are set as default, followed
by [38]. All the experiments in this paper are conducted on a
laptop computer with an Intel Core i5-6300 CPU and 16GB
RAM using PyTorch on an Nvidia 1080 GPU.

C. One-shot Classification

In this subsection, we offer quantitative analysis between
our PcGAN and the aforementioned methods on three con-
ditions from GTSRB and TT100K datasets with the metric
of accuracy, which is the twenty-one unseen classes in GT-
SRB, all classes in TT100K, and thirty-two unseen classes
in TT100K. For all unseen classes, we randomly select one
sample as a representative of the novel class. As mentioned in
Testing Phase, our PcGAN completes the classification task in
a clustering manner. Therefore, our network is only trained on
the base class, and the samples from novel classes are encoded
by PcGAN and stored in the support set.

As shown in Table I, the classification accuracy of the pro-
posed PcGAN is much higher than other methods in the unseen
classes in GTSRB, which fully demonstrates the generalization
of the implicit embedding space of our PcGAN. Furthermore,
the metric values in cross-dataset evaluation, i.e., TT100K,
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Fig. 7. The average of the top 50 data retrieved by the nearest neighbor, where the prototypical data are presented in the first line, and the average of the
retrieved data is presented from the second line to the fifth line. (a)-(d) are the unseen classes from GTSRB dataset, and (e)-(h) are those from TT100K
dataset.

also outperform the existing SOTAs both in all classes and
thirty-two unseen classes, which can be attributed to the
degradation robust structure, including the two alternating
optimized modules of degradation generation and removal, to
resist the subtle variations of the input data. In Table I, the
poor classification performance of MatchNet [28] mainly lies
in that the attention-based kernel is sensitive to the seen classes
and fails to generate the proper relationship between the real
inputs and the unseen prototypes.

TABLE II
THE AUC OF DATA RETRIEVAL TEST, WHERE THE BEST VALUES ARE

MARKED WITH BOLD.

QuadNet MatchNet VPE VPE++ PcGAN
GTSRB N/A 54.29 64.32 65.27 68.47
TT100K N/A 41.32 41.31 46.23 47.25

D. Data Retrieval Test

To vividly illustrate the embedding performance among
the compared methods, we further provide the data retrieval
test both qualitatively and quantitatively. We retrieve the data
by querying prototyping data in the embedding space with
the encoded real inputs under the 50-nearest neighbor (NN)
algorithm, the clustering metrics of which are referring to the
compared techniques [28], [32], [40], e.g., we select Euclidean
distance as the NN metric in our PcGAN, and the final outputs
of the test are the average of the 50 nearest retrieved data
of compared methods. As shown in Fig. 7, it is evident that
our retrieval results outperform the compared methods for the
clearer outputs, which is due to the degradation robust module
to resist the perturbation of the inputs and classify them to the

correct classes. The quantitative experiment is presented in
Table II with AUC as the evaluation metric, which further
demonstrates the superiority of the proposed PcGAN. The
mediocre retrieval performance of VPE [32] mainly lies in that
VPE forces the real inputs to learn the implicit distribution of
their prototypes without any anti-degradation strategy, which
can result in the far distance between the embedding of inputs
and their prototypical data in the learned latent space.

E. Real Data Reconstruction Task

As mentioned in Fig. 2, the real captured traffic data can
be challenging to post-processing for the variable surround-
ing environments, complex weather, etc. Therefore, Fig. 6
is presented to demonstrate the degradation robustness of
our proposed PcGAN. It is worth noting that we only test
the reconstruction performance in GTSRB under both seen
and unseen classes to demonstrate the anti-degradation and
generalization of PcGAN without the cross-dataset evaluation
for the intra-class and inter-class data imbalance [32]. Con-
sidering that most of the compared techniques are metric-
based learning strategies, which only focus on the high-level
features of the input data rather than the reconstruction task,
we only compare them in a quantitative manner, i.e., Table
III, and the quantitative analysis, i.e., Fig. 8, contains the
rest thirty-nine classes apart from the four classes mentioned
in Fig. 6. As shown in Table III, both PSNR and SSIM of
our PcGAN are much higher than the compared method in
the test set of GTSRB for over twelve thousand real data,
which comprehensive demonstrate the degradation robustness
and texture fidelity of our proposed PcGAN for the specific
designed alternating update structure and the multi-task loss
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Fig. 8. The output of PcGAN in GTSRB dataset apart from the classes mentioned in Fig. 6, where the seen classes are presented from the first line to the
seventh line and the unseen classes are exhibited from the eighth line to the thirteenth line.

function. Figs. 6 and 8 further vividly illustrate the aforemen-
tioned arguments. In Fig. 8, there are remaining twenty-one
seen classes and eighteen unseen classes showing with their
real challenging data from the test set and the corresponding
reconstruction images. It is evident that although the inputs
are degraded from one to even all of the aforementioned
challenging conditions, i.e., over-darkness, blur, overexposure,
occlusion, the corresponding outputs of seen classes are quite
high-quality and very similar to the prototypes and those of
unseen classes can also explicitly convey most of the semantic
information of the input traffic sign, which can be attributed

to the degradation robustness module and the multi-task loss
function.

TABLE III
THE AVERAGE VALUES OF TWO METRICS ON THE GTSRB DATASETS.

QuadNet MatchNet VPE VPE++ PcGAN
PSNR 6.2763 7.6095 8.7687 10.7443 14.2146
SSIM 0.2087 0.3192 0.5263 0.6885 0.7421
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TABLE IV
ABLATION STUDIES OF DIFFERENT COMBINATIONS OF LOSS FUNCTIONS IN THREE DISTINCT EXPERIMENTS, WHERE GTSRB(21), TT100K(ALL), AND

TT100K(32) CORRESPOND TO 21 UNSEEN CLASSES IN GTSRB, ALL CLASSES IN TT100K, AND 32 UNSEEN CLASSES IN TT100K.

LGAN Ltradition Lgene
AC

One-shot Classification Retrieval Experiment Reconstruction Test
GTSRB(21) TT100K(all) TT100K(32) GTSRB TT100K PSNR SSIM

! # # 70.27 62.83 61.75 64.63 42.87 12.26 0.668
! ! # 73.12 67.35 65.24 66.71 46.13 13.54 0.716
! ! ! 75.77 68.22 66.16 68.47 47.25 14.21 0.742

F. Ablation Study

In Table IV, we present the ablation studies of different
combinations of loss functions in three distinct experiments,
i.e., one-shot classification, retrieval experiment, and recon-
struction test. As shown in Table IV, the proposed PcGAN
with the complete combination of loss functions achieves
the best performance in all the experiments, which fully
demonstrates the superiority of the multi-task loss function.

V. CONCLUSIONS

In this paper, we propose a novel traffic sign classifica-
tion method based on the conditional generative adversarial
network for intelligent transportation systems. The proposed
PcGAN is an end-to-end network, which has the alternative
update modules, i.e., the data reconstruction module and the
degradation generation module, and introduces the dual adver-
sarial strategy to approximate the implicitly joint distribution
in the field of one-shot learning of traffic sign classification,
which can simultaneously simulate the process of degradation
removal and generation. This approach solves inevitable in-
herent challenges to one-time classification tasks due to the
low quality of traffic sign data captured by in-vehicle cameras
and the challenge of imbalanced data from training data within
and between classes. In the network framework, we propose
a multi-task loss function to jointly constrain the network
training, including a basic GAN loss, a task-based loss, and an
adaptive consistency loss, to implement the reconstruction of
real data of traffic signs and the degradation of the correspond-
ing prototypes so as to achieve a more accurate classification
performance. However, our work has a small visual gap with
the prototypical data in recovering high-quality data of traffic
signs because the prototypical data is the most standard data in
the corresponding class and is not explicitly designed for the
input. Sufficient experiments on publicly available databases
with other three states-of-the-art fusion algorithms (QuadNet,
MatchNet, and VPE) comprehensively illustrate the superiority
of our proposed method both in a one-shot classification task
and data retrieval task. In the future, others in the field can
utilize this method to overcome the aforementioned problems
and achieve more accurate classification performance.

REFERENCES

[1] F. Almutairy, T. Alshaabi, J. Nelson, and S. Wshah, “Arts: Automotive
repository of traffic signs for the united states,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 1, pp. 457–465, 2019.

[2] Y. Li, S. Yang, Y. Zheng, and H. Lu, “Improved point-voxel region con-
volutional neural network: 3d object detectors for autonomous driving,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–7, 2021,
doi=10.1109/TITS.2021.3071790.

[3] C. G. Serna and Y. Ruichek, “Traffic signs detection and classification
for european urban environments,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 10, pp. 4388–4399, 2019.

[4] Z. Wang, J. Wang, Y. Li, and S. Wang, “Traffic sign recognition
with lightweight two-stage model in complex scenes,” IEEE Transac-
tions on Intelligent Transportation Systems, pp. 1121 – 1131, 2020,
10.1109/TITS.2020.3020556.

[5] R. Yang, H. Ma, J. Wu, Y. Tang, X. Xiao, M. Zheng, and X. Li,
“Scalablevit: Rethinking the context-oriented generalization of vision
transformer,” arXiv preprint arXiv:2203.10790, 2022.

[6] G. Xu, X. Deng, X. Zhou, M. Pedersen, L. Cimmino, and H. Wang,
“Fcfusion: Fractal component-wise modeling with group sparsity for
medical image fusion,” IEEE Transactions on Industrial Informatics,
pp. 1–9, 2022, 10.1109/TII.2022.3185050.

[7] Y. Lu, C. He, Y.-F. Yu, G. Xu, H. Zhu, and L. Deng, “Vector co-
occurrence morphological edge detection for colour image,” IET Image
Processing, vol. 15, no. 13, pp. 3063–3070, 2021.

[8] J. Yan, H. Chen, K. Wang, Y. Ji, Y. Zhu, J. Li, D. Xie, Z. Xu,
J. Huang, S. Cheng et al., “Hierarchical attention guided framework
for multi-resolution collaborative whole slide image segmentation,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2021, pp. 153–163.

[9] M. Ju, C. Ding, W. Ren, Y. Yang, D. Zhang, and Y. J. Guo, “Ide:
Image dehazing and exposure using an enhanced atmospheric scattering
model,” IEEE Transactions on Image Processing, vol. 30, pp. 2180–
2192, 2021.

[10] Z. Yue, Q. Zhao, L. Zhang, and D. Meng, “Dual adversarial network:
Toward real-world noise removal and noise generation,” in European
Conference on Computer Vision. Springer, 2020, pp. 41–58.

[11] C. He, X. Wang, L. Deng, and G. Xu, “Image threshold segmentation
based on glle histogram,” in 2019 International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData). IEEE, 2019, pp. 410–415.

[12] G. Lu, C. He, L. Xu, J. Ren, G. Xu, and H. Zhao, “Infrared and visible
image fusion based on local gradient constraints,” in 2020 International
Conferences on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE
Congress on Cybermatics (Cybermatics). IEEE, 2020, pp. 571–575.

[13] H. Zhu, H. Ni, S. Liu, G. Xu, and L. Deng, “Tnlrs: Target-aware
non-local low-rank modeling with saliency filtering regularization for
infrared small target detection,” IEEE Transactions on Image Processing,
vol. 29, pp. 9546–9558, 2020.

[14] Y. Tian, J. Gelernter, X. Wang, J. Li, and Y. Yu, “Traffic sign detection
using a multi-scale recurrent attention network,” IEEE Transactions on
Intelligent Transportation systems, vol. 20, no. 12, pp. 4466–4475, 2019.

[15] S. Ahmed, U. Kamal, and M. K. Hasan, “Dfr-tsd: A deep learning based
framework for robust traffic sign detection under challenging weather
conditions,” IEEE Transactions on Intelligent Transportation Systems,
no. 6, pp. 5150 – 5162, 2021.

[16] D. Temel, M.-H. Chen, and G. AlRegib, “Traffic sign detection under
challenging conditions: A deeper look into performance variations and
spectral characteristics,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 21, no. 9, pp. 3663–3673, 2019.

[17] H. Zhu, H. Peng, G. Xu, L. Deng, Y. Cheng, and A. Song, “Bilateral
weighted regression ranking model with spatial-temporal correlation
filter for visual tracking,” IEEE Transactions on Multimedia, vol. 24,
pp. 2098–2111, 2021.

[18] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic
sign recognition benchmark: a multi-class classification competition,” in
The 2011 International Joint Conference on Neural Networks. IEEE,
2011, pp. 1453–1460.



10

[19] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-
sign detection and classification in the wild,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2110–2118.

[20] X. Sun, B. Wang, Z. Wang, H. Li, H. Li, and K. Fu, “Research progress
on few-shot learning for remote sensing image interpretation,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 14, pp. 2387–2402, 2021.

[21] F. Li, Fergus, and Perona, “A bayesian approach to unsupervised
one-shot learning of object categories,” in Proceedings Ninth IEEE
International Conference on Computer Vision. IEEE, 2003, pp. 1134–
1141.

[22] Q. Zheng, J. Zhu, H. Tang, X. Liu, Z. Li, and H. Lu, “Generalized
label enhancement with sample correlations,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2021.

[23] X. Xu, J. Tian, K. Lin, H. Lu, J. Shao, and H. T. Shen, “Zero-
shot cross-modal retrieval by assembling autoencoder and generative
adversarial network,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 17, no. 1s, pp. 1–17,
2021.

[24] X. Xu, H. Lu, J. Song, Y. Yang, and H. T. Shen, “Ternary adversarial
networks with self-supervision for zero-shot cross-modal retrieval,”
IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2400–2413, 2019.

[25] H. Lu, M. Zhang, X. Xu, Y. Li, and H. T. Shen, “Deep fuzzy hashing
network for efficient image retrieval,” IEEE Transactions on Fuzzy
Systems, vol. PP, no. 99, pp. 1–1, 2020.

[26] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning
for few-shot learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 403–412.

[27] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning, vol. 70. PMLR, 2017, pp. 1126–1135.

[28] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” Advances in Neural Information Pro-
cessing Systems, vol. 29, pp. 3630–3638, 2016.

[29] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Advances in Neural Information Processing Systems, vol. 30,
pp. 4077–4087, 2017.

[30] L. Deng, G. Xu, Y. Dai, and H. Zhu, “A dual stream spectrum decon-
volution neural network,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 5, pp. 3086–3094, 2021.

[31] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[32] J. Kim, T.-H. Oh, S. Lee, F. Pan, and I. S. Kweon, “Variational
prototyping-encoder: One-shot learning with prototypical images,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9462–9470.

[33] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[34] C. Li, K. Xu, J. Zhu, and B. Zhang, “Triple generative adversarial nets,”
arXiv preprint arXiv:1703.02291, 2017.

[35] J. Cao, L. Mo, Y. Zhang, K. Jia, C. Shen, and M. Tan, “Multi-marginal
wasserstein gan,” Advances in Neural Information Processing Systems,
vol. 32, pp. 1776–1786, 2019.

[36] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1125–1134.

[37] T. Kaneko and T. Harada, “Noise robust generative adversarial net-
works,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 8404–8414.

[38] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

[39] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, vol. 32, pp. 323–332, 2012.

[40] J. Kim, S. Lee, T.-H. Oh, and I. S. Kweon, “Co-domain embedding
using deep quadruplet networks for unseen traffic sign recognition,” in
Thirty-Second AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[41] C. Xiao, N. Madapana, and J. Wachs, “One-shot image recognition
using prototypical encoders with reduced hubness,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 2252–2261.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026–1034.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Lizhen Deng (Member) received the B.S. degree in
electronic information science and technology from
Huaibei Coal Industry Teachers College, Huaibei,
China, in 2007, and the M.S. degree in communi-
cation and information systems from Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing,
China, in 2010. She received her Ph.D. degree in
electrical engineering from Huazhong University of
Science and Technology, China, in 2014. She is
currently Associate Professor with the Nanjing Uni-
versity of Posts and Telecommunications, Nanjing.

Her current research interests include computer vision.

Chunming He received the B.S. degree in com-
munication engineering from Nanjing University of
Posts and Telecommunications, Jiangsu Nanjing,
China in 2021. Now, he is pursing his master degree
in artificial intelligence, Tsinghua Shenzhen Inter-
national Graduate School, Tsinghua University. His
research interest includes computer vision.

Guoxia Xu (Member) received the B.S. degree in
information and computer science from Yancheng
Teachers University, Jiangsu Yancheng, China in
2015, and the M.S. degree in computer science and
technology from Hohai University, Nanjing, China
in 2018. Now, he is pursing his Ph.D. degree in com-
puter science with Department of Computer Science,
Norwegian University of Science and Technology,
Gjovik Norway. His research interest includes image
processing.

Hu Zhu (Member) received the B.S. degree in math-
ematics and applied mathematics from Huaibei Coal
Industry Teachers College, Huaibei, China, in 2007,
and the M.S. and Ph.D. degrees in pattern recog-
nition and intelligent systems from Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2009 and 2013, respectively. He is currently
Professor with the Nanjing University of Posts and
Telecommunications, Nanjing. His research interests
include pattern recognition.



11

Hao Wang (Senior Member) is an associate pro-
fessor in the Department of Computer Science in
Norwegian University of Science and Technology,
Norway. He received his Ph.D. degree and B.Eng.
degree, both in computer science and engineering,
from South China University of Technology in 2006
and 2000, respectively. His research interests include
big data analytics, industrial internet of things, high

performance computing, and safety-critical systems.
He has published 140+ papers in reputable interna-
tional journals and conferences. He served as a TPC

co-chair for IEEE CPSCom 2020, IEEE CIT 2017, ES 2017, and DataCom
2015, a senior TPC member for CIKM 2019, and reviewers/TPC members
for many journals and conferences. He is the Chair for Sub-TC on Healthcare
in IEEE IES Technical Committee on Industrial Informatics.


