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Abstract—Wind farms are typically located at high latitudes,
resulting in a high risk of blade icing. Data-driven approaches
offer promising solutions for blade icing detection, but they
rely on a considerable amount of data. Data exchange between
multiple wind farms would improve the performance of detection
models, due to the spatio-temporal dependencies capable of
reflecting different meteorological conditions. The traditional
centralized approach for icing detection faces many challenges,
including the requirement of high storage and computational ca-
pacity of the server, vulnerability to cyberattacks, and operators’
reluctance of sharing data for commercial reasons. To address
these challenges, this paper proposes a heterogeneous federated
learning (FL) model for wind turbine blade icing detection.
The structures of the server and client models in the presented
method are different, in contrast to the traditional FL of sharing
the same structure. In addition, this paper addresses the class
imbalance problem in the training data. Last, this paper conducts
comprehensive experiments to evaluate the proposed method
using real-world data from 20 turbines in two wind farms, and
compares it with two state-of-the-art FL models and five well-
known class imbalance methods. The experimental results verify
the effectiveness and superiority of the proposed method.

Index Terms—Wind Turbine, Blade Icing Detection, Federated
Learning, Imbalanced Learning, Heterogeneous Structure

I. INTRODUCTION

W IND energy technology has developed rapidly, along-
side the more mature technology of wind turbines.

However, blade icing considerably limits system performance,
especially when turbines are installed in high-latitude areas. In
severe cases, blade icing can reduce worldwide annual power
generation by nearly 30% [1].

Traditionally, human observations, passive and active meth-
ods have been the three main means of detecting blade icing.
Human observation relies heavily on observers’ expertise.
Passive methods use special materials such as black paint

Corresponding author: Xiufeng Liu, Lizhen Huang, (e-mail:xiuli@dtu.dk,
lizhen.huang@ntnu.no.). Xu Cheng and Fan Shi are equal contribution.

Xu Cheng, Yongping Liu, and Lizhen Huang are with the Department
of Manufacturing and Civil Engineering, Norwegian University of Science
and Technology, Gjøvik, 2815, Norway e-mail: xu.cheng@ieee.org, yong-
ping.liu@ntnu.no, lizhen.huang@ntnu.no.

Xiufeng Liu is with Department of Technology, Management and Eco-
nomics, Technical University of Denmark, Produktionstorvet, 2800, Denmark
e-mail: xiuli@dtu.dk.

Fan Shi is with the Key Laboratory of Computer Vision and System of
Ministry of Education, School of Computer Science and Technology, Tianjin
University of Technology, Tianjin, 300384, China.

Jiehan Zhou is with the Network Information Systems, Faculty of Informa-
tion Technology and Electrical Engineering, University of Oulu, Oulu, TS352,
Finland.

Server model

Local model 1

Windy and snowy weather

Windy and rainy weather

Local model 2

Local model 3

Fig. 1. Illustration of the proposed BiFL for blade-icing detection under
different weather conditions

and coating for anti-icing purposes [2], but prevention through
coating alone is not realistic. Active methods require additional
power and mechanical replacement, which can damage the
turbines [1]. To complement these traditional methods of blade
icing detection, mathematical and data-driven approaches are
receiving increased attention. Mathematical methods predict
blade icing using mathematical or numerical models [3]. How-
ever, the disadvantages are obvious. First, they depend heavily
on certain assumptions that can misidentify icing conditions.
Second, they require external experimental tools such as wind
tunnels to create accurate models. Finally, they often require
domain knowledge to understand the icing process [4]. In
recent years, with the increased use of Internet of Things
technologies for monitoring purposes, a large amount of data
has been generated that can be used to build data-driven
models for detecting blade icing. A key advantage is that such
models are not dependent on prior domain knowledge, but
rather on available data, which can be more efficient and cost-
effective [5]. Thus, such models are becoming increasingly
popular in academia and industry, and in particular, end-to-
end solutions based on deep neural networks have attracted
significant research interest.

Data-driven models, such as deep neural networks, require
a large amount of data and high computing capacity for
training. Data from different wind farms help to improve
the performance of the detection model, due to the spatio-
temporal dependencies reflecting different weather conditions
at different locations [6]. The traditional approach usually
collects data from different sources to a central server and
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then trains the model. This has several drawbacks. First, it
requires intensive computing resources, including large data
storage space and high computing capacity; second, transfer-
ring data from source systems to the central server requires
large network bandwidth and additional communication cost;
third, the data in the network communication and in the central
storage are vulnerable to cyber-attacks. Most importantly,
most wind farms are unwilling to share their data, mainly
due to commercial competition. The sensor data of wind
farms often contain valuable information that helps maintain a
competitive position in the market, such as the key parameters
for tuning and controlling wind turbines for better health
and improved performance. This situation has resulted in
the so-called “data island” problem. To address the above
challenges, it has become necessary to build a distributed
learning model to maximize the value of the data and improve
collaboration among farms. Federated learning (FL) could be
an ideal solution [7]. An FL approach obtains a global model
by combining multiple local models trained distributively at
different physical locations, meaning that no raw data have to
be transferred to a central server or shared with others.

Nevertheless, applying a conventional FL framework to
blade icing detection has the following limitations. First, an
FL model usually has the same neural network architecture on
both the server and client sides. In this study, wind turbines
are located in remote areas, either onshore or offshore, and
have very limited computing resources, making it difficult to
train a neural network model. If a shared small neural network
is applied to each client and the server, the learning ability
of the FL model will be compromised, and the blade icing
detection capabilities will be impaired. If a larger model is
applied to each client and server, this would be constrained
by the computing resources of clients. Therefore, applying the
same neural network architecture to both server and clients
is impractical. Second, the sensor data collected from each
client is class-imbalanced. In other words, the class distribution
is highly skewed between icing and non-icing (i.e., normal)
samples, as wind turbines usually operate most of the time.
In addition, sensor data are not independent and identically
distributed, which can significantly affect the performance of
the common model. Third, blade icing is closely related to
the specification of wind turbines. For example, if there are
two turbines with different sizes (e.g., one is 30kWh while
the other is 1MW) at the same location under slight icing
conditions, the small-sized turbine will be iced, while the
bigger one may remain clean. Therefore, models should be
constructed specifically for different types of wind turbines.
In this case, the traditional FL model, where the server and
all clients share the same architecture, becomes no longer
applicable.

To address the above challenges, we propose a novel het-
erogeneous FL model for collaborative blade icing detection,
called BiFL (blade icing federated learning), which can be
applied to different types of wind turbines under various
weather conditions, as illustrated in Fig. 1. Compared to
conventional FL, the model structures between the clients and
the server in BiFL are allowed to be different. Clients have a
small deep neural network model, while the server has a large

model to fit all models to their available computing resources.
Unlike the traditional FL model, where model gradients are
transferred between clients and the server, the proposed BiFL
only transfers the hidden features learned. To address the data
imbalance problem, we introduce a novel class imbalance
method using prototypes. Based on the extracted features, a
prototype is first learned for each class, and then a classifier
is built from it. In addition, BiFL incorporates the concept of
transfer learning implemented by knowledge distillation (KD)
to enhance knowledge transfer between the clients and the
server and the robustness and generalization of the detection
model.

In summary, the contributions of this paper are three-fold:
1) We propose BiFL, an FL-based method for blade-icing

detection of wind turbines. This is the first work to
leverage FL for blade-icing detection to the best of our
knowledge. BiFL uses a heterogeneous structure between
the clients and the server to learn a global model, which
allows generating a model by maximizing the use of data
from different data owners.

2) We propose a new method to solve the class imbalance
problem by a prototype-based approach. Instead of sam-
pling the raw data or tuning the learning algorithm, it bal-
ances the features extracted by a neural network. We also
propose an information protection mechanism to avoid
data breaches without compromising the performance of
the model.

3) We comprehensively evaluated BiFL by comparing it
with two state-of-the-art FL models and five well-known
class imbalance methods. The results demonstrate the
superiority of our model in blade icing detection. An abla-
tion study validated the effectiveness of each component
of BiFL, and a sensitivity study evaluated the influence
of key parameters.

The rest of the study is structured as follows. Section II
reviews the literature of wind turbine blade icing detection and
FL. Section III describes the proposed BiFL model. Section IV
conducts the evaluation. Section V concludes the paper and
presents the future research directions.

II. RELATED WORK

A. Blade icing detection

The literature has proposed passive and active de-icing
systems and model- and data-driven methods for blade icing
detection in wind turbines. Passive methods use special mate-
rials such as liquid-infused surfaces [8] and porous superhy-
drophobic/polyvinylidene fluoride coatings [9], while active
methods employ external sensors or tools [10]. In model-
driven methods, mathematical model draws the relationship
between weather-related parameters (such as temperature,
humidity, and wind speed) and blade icing according to
physical characteristics of blade icing [11], [12]. There are
two typical mathematical models for blade icing: the empirical
statistical model (ESM) and ice growth model (IGM). ESM is
established based on long-term monitoring data of a specific
area. And the frequency and quantity of ice can be estimated
based on the analysis of a large number of historical data. It
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is obvious to know that the ESM is not accurate. IGM regards
blade icing as a complex which combines aerodynamics, gas-
liquid two-phase hydrodynamics, and heat transfer. IGM is
good to understand the icing process, but it highly depends
on the domain knowledge and external experiment tools, such
as wind tunnels [4]. In recent years, data-driven methods have
received increasing attention, especially with the emergence
of deep learning, which has the robust ability to extract
features not based on prior knowledge. Jiménez et al. used
machine learning algorithms, including decision trees and
support vector machines, to implement a classifier to identify
the presence and thickness of blade ice on wind turbines from
ultrasonic signals [13]. Liu et al. proposed an ensemble depth-
learning model to extract multilevel features directly from
SCADA data [14]. Yuan et al. presented a wavelet-based CNN
model [15] that can achieve competitive performance over
traditional machine learning models. Cheng et al. introduced
a novel temporal CNN for blade-icing detection [5]. In all
of the above studies, data were collected from geographically
distributed wind farms, stored in a central location (such as
the Cloud), and then used to create blade icing detection
models. However, this centralized modeling approach requires
not only large computational sources but also a large storage
facility, which can be prohibitively expensive in many cases.
In addition, transferring data over the network may lead to
communication overhead and is vulnerable to cyberattack. For
business reasons, wind farms may not wish to share their data
[6]. This paper addresses these challenges by proposing an
FL-based framework for wind turbine blade icing detection,
which can fully utilize the wind farm SCADA data at different
geographical locations. With the FL framework, the model
is trained distributively across the physical locations of wind
farms. To the best of our knowledge, this is the first attempt
to address the problem of blade icing detection with the FL
framework.

B. Federated learning

In recent years, data protection has received unprecedented
attention in the field of energy. As a result, researchers begin
exploring more efficient and effective learning approaches,
among which FL has proven to be a promising one [16]. Zhang
et al. proposed a novel federated probabilistic forecasting
scheme for solar irradiation. In this scheme, raw training data
were stored and computed locally at the clients; only the
trained forecasting models were shared [17]. Venkataramanan
et al. proposed a distributed machine learning approach to
forecast energy from distributed resources [18]. Wang et
al. [19] predict sociodemographic information of households
based on the FL framework. In addition, the FL framework
has been introduced to wind turbine systems for distributed
modeling in the European Horizon 2020 project, including the
Smart4RES [20] and PHOENIX [21]. The performance of the
blade icing detection model is often related to local climatic
conditions, while the climatic factors in different regions are
often very different, such as humidity and light distribution.
Therefore, the modeling needs to take into account the dif-
ference in climatic conditions. Nevertheless, if the model is

created separately in different regions, its generalization will
be poor (due to the use of only local data for training). The
FL framework comes into effect, which trains local models
separately but aggregates them to obtain a global model.

In the classical FL framework, each client first trains a local
model based on its own data to obtain a global model. Then,
each client sends its model parameters, Wl, to the server.
Finally, the server obtains a global model by aggregation,
e.g., by computing the weighted averaging of the model
parameters, i.e., W ←

∑L
l=1

Nl

N Wl. There are two main
kinds of heterogeneity in FL: data heterogeneity and model
heterogeneity [22]. Data heterogeneity is also known as the
non-independent and identically distributed (IID) problem.
Different wind turbines may work under different weather
conditions, resulting in the distribution of the collected sensor
data being non-IID. Li et al. introduced the FedProx to
overcome the data heterogeneity by using a local regularization
term in each client model [23]. Arivazhagan et al. presented a
personalized FL model, in which the local model is designed
with the shape of base + personalization layer [24]. Similar
works also can be found from [25]. There are also some
other attempts for generating global models by clustering
local models [26], [27]. To overcome the model heterogeneity,
KD-based are gained more attention by distilling knowledge
from the server model to client models, which have different
model structures [28], [29]. Some researchers are integrating
the network structure search and FL to discover customized
models for clients with different computational capabilities
[30], [31]. However, most of the methods above focused on
a single heterogeneous challenging scenario of FL, and did
not fully consider the available computing capability of each
client. To address this challenge, we propose a heterogeneous
collaborative FL method where the clients and the server can
have different model structures. More specifically, each client
will have a small model, while the server will have a large
model, which can better fit the specific configuration of the
clients and the server.

III. BIFL FOR BLADE ICING DETECTION OF WIND TURBINE

A. Overview

Wind farms are usually located in remote areas and do
not have powerful computing capabilities, such as computing
devices with GPUs and big memory. If the traditional FL
model is applied to wind turbines for blade icing detection,
it is necessary to upgrade the computing facilities, resulting
in additional costs. Therefore, this paper proposes a heteroge-
neous FL model for blade icing detection for different types of
wind turbines under different weather conditions. Inspired by
[32], we propose a class-imbalanced heterogeneous federated
learning method, BiFL. As illustrated in Fig. 2, BiFL has K
local client models and a global server model. The clients
at different locations (in different climate zones) can use
their data to train their local models. The knowledge gained
from each client model is then uploaded to the central server
to obtain a global model through aggregation. The global
knowledge is sent back to each client to help improve the
local model. Due to the different environmental conditions in
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Fig. 2. Structure of the proposed BiFL

which the wind turbines are located, the sensor data collected
by the SCADA system is usually characterized by a high
level of non-linearity and non-stationary. In this paper, we
use a convolutional neural network (CNN) on both the client
and server sides to extract useful features. Due to the limited
computational capacity of each client, the local models of the
clients are usually much simpler than the global model of the
server. Therefore, we train a small CNN on each client and a
large specially designed CNN in the central server. The local
client and global server models can then exchange knowledge
periodically.

B. Feature extractor for client and server model

Since the clients and the server usually have different
computational capabilities, their models must have different
complexities. In this paper, a single-layer CNN (SLCNN) is
proposed for the client model, and a specially designed densely
connected CNN is proposed for the server model. Figure 3 and
4 describe the structures of the two models, respectively.

The Φc client model directly uses the raw data and sends the
encoded features to the server model for protecting the data.
The client model consists of a convolution layer (Conv1D),
an attention layer (SE) [33], a batch normalized layer (BN),
and an activation layer (LeakyReLU). Note that the encoded
features sent to the server are the output of the LeakyReLU
layer. Given the raw input Xraw ∈ <T×d, d and T are the
input dimension and the sample window size, respectively.
The outputs of the SLCNN are represented by:

Xc = Conv1D(XT
raw)

XSE = SE(Xc)

XSLCNN = LeakyReLU(BN(XSE))

(1)

where Xc, XSE and XSLCNN are the outputs of the Conv1D, SE,
and LeakyRe layers, respectively. The outputs have the same
shape, <F×L, where F is the number of filters in the CNN, L
is the length of encoded feature map. To achieve knowledge
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Fig. 3. Neural network architecture of client model.
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Fig. 4. Neural network architecture of server model.

transfer, BiFL sends the extracted features, XSLCNN, predicted
labels, Yp, and true labels, Yt, to the server.

The inputs to the server model, Φs, are the local features
extracted from the client models. Since the number of client
models can be many, we use a densely connected CNN as the
server model to capture the information from the client models.
The server model consists of three convolutional blocks, X1,
X2, and X3, each of which is identical to the convolutional
block in the client model. This structure allows for hierar-
chical information learning through convolutional operations
and dense connections. The output of the server model is
presented as Xs = [Xf , X1, X2, X3], where [·, ·] represents
concatenation and Xf represents the features extracted from
the client models.

C. Prototype method for class imbalanced data

Class imbalance in the training data can compromise the
performance of the resulting models, and in particular, affect
the classification ability of minority classes. The imbalance
problem can be addressed at two levels: at the data level
and at the algorithm level. Data-level approaches, as the
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name implies, require some preprocessing of the raw data,
such as resampling and data enrichment, to increase the
number of minority classes or reduce the number of majority
classes [34]. Data-level approaches also require additional
information in the modeling, such as the data distribution.
Since this may violate data privacy requirements, they are not
suitable for the FL framework [35]. In contrast, algorithm-
level approaches focus on improving the training algorithm
or tuning the training parameters [36], [37]. Algorithm-level
approaches require no (or less) data preprocessing. Therefore,
algorithm-level approaches are more suitable for FL, although
many hyperparameters are needed for tuning. In this paper,
we propose a prototype-based method to address the data
imbalance problem in LF. Instead of sampling the raw data,
the idea is to balance the features through a neural network and
adjust its hyperparameters. Since the raw data is imbalanced in
this study, the latent features extracted by the neural network
are also imbalanced. To balance the features/classes, we first
learn a prototype for each class to the latent space, which is
obtained by feature extraction. We then build a classifier based
on the obtained prototypes. Therefore, the proposed method
does not require information about the distribution of the raw
data, and thus effectively preserves privacy. In this study, we
adopt the attention-oriented prototype learning method [38],
which makes use of important information while ignoring
irrelevant information.

The prototype is a vector presenting each class. The simplest
way to compute the prototype is to average all features in the
latent space:

Ci =
1

ni

ni∑
k=1

Xi,k, (2)

where Ci ∈ R1×H is the prototype for a class, i ∈ [1, · · · , nc],
nc is the total number of the classes, ni is the number of
instances in the deep latent space for class i, and X represents
the features of the samples in the deep latent space.

Although the calculation of the prototype based on Equation
(2) is effective, it is necessary to focus on the important
features while ignoring the irrelevant ones. Therefore, we
employ an attentional prototype (AP) [38], defined as follows.
Let Xk = [x1, . . . , xm] ∈ <m×dl be a matrix of latent features
for k, m is the total number of data samples with class label
k, and dl is the output dimension of the client and the server
models.

ek = sigmoid(UTk tanh(VkX
T
k )), (3)

where Uk ∈ <w×1 and Vk ∈ <w×dl are the trainable parame-
ters of the prototype attention module; w is the dimension of
the two attention parameters.

Then, the attention weight can be calculated as follows:

αk =
exp(ek)∑m
j=1 exp(e

j
k)
, (4)

When the attention weight is calculated, the attentional proto-
type of the class k can be obtained by:

Ck = αk ∗Xk, (5)

Algorithm 1 The training process of the server model
Input: Training epoch Es, communication rounds R, the

number of clients K, server model Φs
Server:

Initialize the model parameters Ws of the server model Φs
for each communication round r to R do

for each client k to K do
Xk
c , ykt ← Client(r, k)
F [k]← Xk

c

Yt[k]← ykt
end
for e = 0; e < Es; e = e+ 1 do

for each client k to K do
Xk
s ← Φs(F [k]) . features of the k-th client

for each class i do
Xk
i ← Xk

s (idx = i) . matrix for class i
eki ← sigmoid((Uki )T tanh(V ki (Xk

i )T ))

αki ←
exp(eki )∑m

j=1 exp((e
k
i )j)

Cki ← αki ∗Xk
i . prototypes

end
pks ←

exp(−dist(Φs(X),Ck
i ))∑

n exp(−dist(Φs(X),Cn)) . probability
Sending pks to the k-th client
l s← LCE(Yt[k], pks) . CE loss (Eq. (6))
Ws ←Ws − ηs∇ls(Ws) . parameter update

end
end

end

In this paper, we use separate parameters, Uk and Vk, for
each class because different classes may have different levels
of attention in their feature spaces. The imbalanced features
are compensated for by Equation (5).

D. Knowledge transfer enhanced by KD

To train the classifier, we use the binary cross-entropy loss
defined as:

LCE = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)),

(6)
where yi is the true value for the i-th class; p(·) is the estimated
probability for the i-th class; and N is the number of samples.

To estimate the probability for the i-th class, we use the
squared Euclidean distance between the i-th class and a time
series, defined as:

p(yi) =
exp(−dist(Φ(X), Ci))∑
k exp(−dist(Φ(X), Ck))

, (7)

where Φ is the neural network (i.e., the neural network of the
client and server models) and Ci is the prototype of the i-th
class.

In this paper, all clients send their learned knowledge to the
server, and the server sends the aggregated information back to
each client. KD enhances knowledge transfer from the server
model to each client model. Since the number of clients can
be very large, the knowledge transfer from clients to the server
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Algorithm 2 The training process of the client model
Input: Training epoch Ec, α, client model Φc
Client(r, k):

Initialize model parameters Wc of model Φc
for e = 0; e < Ec; e = e+ 1 do
Xc ← Φc(Xraw) . features from raw sensor data
for each class i do

Xi ← Xc(idx = i) . matrix for class i
ei ← sigmoid(UTi tanh(ViX

T
i ))

αi ← exp(ei)∑m
j=1 exp(e

j
i )

Ci ← αi ∗Xi . prototype for each class
end
pc ← exp(−dist(Φc(X),Ci))∑

k exp(−dist(Φc(X),Ck)) . probability
lce ← LCE(yt, pc) . classification loss (Eq. (6))
l kd← LKD(pc, p

k
s) . KD loss (Eq.(8))

lc ← α ∗ l ce+ (1− α)l kd . total loss (Eq. (9))
Wc ←Wc − ηc∇lc(Wc) . parameter update

end
return Xc, yt

does not use KD, unlike to other methods, such as [39] that
require a public dataset. KD is implemented directly using the
predicted value of each client model and the predicted value
of the server model.

LKD = KL(pc||ps) =
1

K

N∑
i

pclog(
pc
ps

), (8)

where pc and ps are the predicted values of a client model
and the server model, respectively.

BiFL uses the following loss function that combines the
above two losses for the training:

Lall = αLCE + (1− α)LKD, (9)

where α is the hyperparameter for balancing the cross-entropy
loss and the KD loss, and set to 0.9 in our experiments.

Algorithm 1 and 2 describe the training process of the client
and server models, respectively.
E. Knowledge protection mechanism

As mentioned earlier, it is necessary to exchange the learned
feature maps and labels between clients and the central server
over the network, which is vulnerable to cyber-attacks and
leads to data leakage. To address this, we introduce the
knowledge protection mechanism, as shown in Figure 2. This
knowledge protection mechanism can generate obfuscated fea-
ture maps and labels that are less correlated with the original
feature maps to prevent adversary reconstructions [40].

Given K client models (i.e., data owners) l1, l2, · · · , lK
and a global server model S, each client uses its own data
Xi

raw(i ∈ {1, · · · ,K}) to train a local deep neural network
Ωi(i ∈ {1, · · · ,K}). Xi

raw ∈ <n×Ti×di has n training
samples, and the shape of each sample is determined by
each client. To speed up the training, the n training sam-
ples are reorganized into Bi batches. Note that the Ti, and
di (i ∈ {1, · · · ,K}) are confidential to other participants.
Assuming that the raw learned feature map of the i-th client
is Xi

h ∈ <Bi×F×L, where F and L are the same to all clients,

the knowledge protection mechanism can be mathematically
formulated as follows:

Xi
Enc = Enc(· · ·Enc(Enc︸ ︷︷ ︸

e−1

(Xi
h, X

i
h1, β1), Xi

h2, β2), Xi
h3, β3),

· · · , Xi
he, βe)

(10)
Y iEnc = Enc(· · ·Enc(Enc︸ ︷︷ ︸

e−1

(Y i, Y i1 , β1), Y i2 , β2), Y i3 , β3),

· · · , Y ie , βe)
(11)

where Xi
hj and Y ij (j ∈ {1, · · · , e}) are the encrypted feature

map and the corresponding label. βj ∼ Beta(1, 1) is the
encoding factor. The Enc operation is defined by:

Enc(X1, X2, β) = β ·X1 + (1− β) ·X2 (12)

With this data protection mechanism, each client sends the
encoded feature map securely to the server. Note that the
feature maps sent to the server must have the same shape,
which may be the output of an arbitrary hidden layer. Due
to the heterogeneity of client models (their structures may be
different) in BiFL, we can assume that all participants have
no information about each other’s model structures, further
protecting the data from feature-based inference attacks. In
this paper, the knowledge exchange between clients and the
server occurs only during the training phase. Therefore, the
risk of data reconstruction becomes difficult because the
attacker’s access can only be limited to the evolving and
untrained feature maps, rather than the fully trained feature
maps that represent the raw data [32]. The feature maps will
be eliminated once the server has generated the global model.

BiFL’s design can help prevent peer inference attacks be-
tween clients. This is because BiFL adopts a non-sharing
architecture, in which each client keeps its data secure. How-
ever, if one client can perform inference attacks and pattern
memory attacks on other clients, then protection methods, such
as secure multi-party computation, homomorphic encryption,
blockchain, or differential privacy, can be applied to improve
data security.

F. Computational complexity analysis

The computational intensive components of the client and
the server models include the Conv1D layer, SE layer and
prototype learning module, and their computational com-
plexity can be defined as O(F · k · d · T ), O(F 2) and
O(w · dl · m), where F is the number of filters, k is the
size of the filter, d is the number of features, and T is the
length of the time series data. The w, m, and dl are three
parameters for the attentional prototype, where w is the size
of these two trainable parameters, m is the number of feature
samples, and dl is the feature dimension. The computational
complexity of the knowledge protection mechanism is O(e),
and it can be ignored due to e is small (< 4). The combined
complexity of the server and client models can then be defined
as: O(ns · (Fs · ks · ds · Ts + F 2

s ) + ws · dls · ms) and
O(Fc · kc · dc · Tc + F 2

c + wc · dlc · mc), where ns is the
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number of layers in the server model and the subscripts s and
c represent the client and the server, respectively. Given the
data size D for each client, the overall complexity of the BiFL
becomes: O[R · (Es ·K ·D · ((ns · (Fs ·ks ·ds ·Ts+F 2

s ) +ws ·
dls ·ms) +Ec ·K ·D · (Fc ·kc ·dc ·Tc +F 2

c +wc ·dlc ·mc)))],
where R is the communication round between the server and
all clients, K is the number of the clients, and Es and Ec are
the training epochs of the server and the clients, respectively.

IV. EXPERIMENT

We use Pytorch (v.1.8.0) to implement the models. All
experiments were performed on a server with a 16GB Tesla
T4. The following hyper-parameters are used for training:
the learning rate of the Adam optimization is 1e − 3; the
learning epochs of the client and the server are Ec = 5
and Es = 10, respectively; the number of the communication
rounds between clients and the server, R, is 20.

A. Experimental settings and data
The experimental data are from two wind farms in China’s

Shanxi and Henan Provinces, located in northern China, about
700 kilometers apart. We simulated 20 wind turbines as clients,
10 per wind farm, and a central server for aggregation. The
data were collected from 11 February 2019 to 26 February
2019 for one wind farm and from 12 February 2019 to 26
February 2019 for the other. The resolution of the data is 30
seconds.

Wind turbine experts identified 16 variables related to blade
icing, as shown in Table I, and labeled the data as icing or
normal. The raw data quality includes noise, outliers, and
missing values, cleaned up prior to modeling. The data were
normalized to scalar values to minimize the impact of unity,
and the raw time series data were segmented into a fixed-length
(or window size).

TABLE I
SCADA DATA SPECIFICATION

No. Variable name Description

1 wind speed Wind speed
2 wind direction Wind direction
3 generator speed Generator speed
4 power Active power
5 yaw position Yaw position
6 pitch1 angle Angle of pitch 1
7 pitch2 angle Angle of pitch 2
8 pitch3 angle Angle of pitch 3
9 pitch1 speed Speed of pitch 1
10 pitch2 speed Speed of pitch 2
11 pitch3 speed Speed of pitch 3
12 environment temp Environment temperature
13 internal temp Internal temperature of nacelle
14 pitch1 moto tmp Temperature of pitch motor 1
15 pitch2 moto tmp Temperature of pitch motor 2
16 pitch3 moto tmp Temperature of pitch motor 3

60% of the data were used for training for each client, and
the remaining 40% for testing. To assess the robustness of
the global model, we tested three different imbalance ratios,
i.e., the ratio between the number of normal classes and the
number of icing classes. The imbalance ratio ρ is defined as
ρ = Nnormal

NIcing
, where Nnormal and NIcing are the number of

samples labeled with the normal and icing class, respectively.
The imbalance ratio of the test data is 10:1.

B. Evaluation metrics

The following two metrics are used, Fβ for classification
and BA (balanced-accuracy) for imbalanced learning, defined
as follows:

Fβ =
(1 + β2)× Precision × Recall

β2Precision + Recall
(13)

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(14)

BA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(15)

where TP , FP , FN , and TN represent true positive, false
positive, false negative, and true negative, respectively. The
value of β in Fβ was set to 2 in the experiment.

For K client models, the average values of the metrics are:

mFβ =
1

K

K∑
i

F iβ mBA =
1

K

K∑
i

BAi (16)

To minimize the effect of randomness, we averaged the
values of all server training rounds in each communication.

C. Comparison with state-of-the-art FL methods

TABLE II
PERFORMANCE COMPARISON WITH FEDERATED LEARNING METHODS

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
mFβ mBA mFβ mBA mFβ mBA

FedAvg 45.56 70.01 38.64 64.37 37.95 63.74
FLGKT 80.14 91.05 61.28 80.70 58.02 76.43

Ours 77.72 90.25 65.76 84.77 64.76 83.82

We have introduced the following two FL frameworks
for our evaluation. 1) FedAvg (federated mean) [7], which
is a classic and standard FL framework. FedAvg consists
of multiple clients and a server. Clients use local data to
train their models and upload them to the server; the server
initializes the network at the start of training and aggregates
the client models using a weighted average method. FedAvg
requires that the server and clients share the same network
architecture. 2) FLGKT (FL as group knowledge transfer)
[32], which is a state-of-the-art FL framework for knowledge
transfer from clients to the server. The clients use a lighter
architecture model than the server to reduce the computing
workload.

The sampling window size is 128 (approximately 11 min-
utes). In BiFL, the number of CNN filters is set to 128. The α
is set to 0.9 and the m is 2. TABLE II shows the results where
the best value for each metric is in bold. The results show that
BiFL achieves the best performance, except for ρ = 20 : 1,
which ranks second, lower than FLGKT. However, FLGKT’s
client and server models were more complex than BiFL’s. This
is the main reason why it outperforms ours when ρ =20:1.
When ρ = 50 : 1, the mFβ and mBA of our model improves
by 41.24% and 24.07%, respectively, over FedAvg, and are
comparable to FLGKT. When ρ = 100 : 1, the mFβ and
mBA of our model reach 41.40% and 23.96% better than
FedAvg, respectively. Compared to FLGKT, our model shows
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an improvement of 10.41% and 8.82% for mFβ and mBA,
respectively. We can also observe that as the imbalance rate
increases, the accuracy of all three methods decreases.

D. Comparison with state-of-the-art class-imbalance methods
TABLE III

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART
CLASS-IMBALANCED METHODS

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
mFβ mBA mFβ mBA mFβ mBA

Focal 25.74 55.38 21.68 53.18 24.82 54.41
WCE 45.11 69.49 44.49 69.04 43.70 68.12
CB 44.55 68.88 43.91 68.37 43.09 67.42

GHMC 27.94 51.21 26.92 50.12 27.11 50.27
LDAM 18.96 52.35 16.73 51.38 16.31 50.86
Balance 72.15 88.83 65.66 85.04 62.22 82.36

Ours 77.72 90.25 65.76 84.77 64.76 83.82

We compare the proposed BiFL with the following six class-
imbalanced algorithms: 1) Focal (focal loss): It is an often-
used loss function for class-imbalanced learning. We set γ
= 1 and use the same weights as in [36] for each class. 2)
WCE (Weighted CE): This is an enhanced version of CE
for imbalanced learning by considering that different classes
have different weights. 3) CB (class-balance): It introduces the
concept of the effective number of samples, taking into account
data overlap. Based on the effective number of samples per
class, the class balance loss is calculated [37]. 4) GHMC (gra-
dient harmonizing mechanism classification): It is a newly pro-
posed method for the data imbalanced problem that conquers
the disharmony in imbalanced classification [41]. 5) LDAM
(label-distribution-aware margin): It can replace the standard
cross-entropy objective during training and be used with prior
class imbalance training strategies such as re-weighting and
resampling [42]. 6) Balance: It performs undersampling on
the majority class using a data-level algorithm [34].

As shown in TABLE III, our model has the best perfor-
mance in terms of mFβ and mBA, compared to Focal, WCE,
CB, GHMC, and LDAM. We can also observe that WCE ranks
second, and LDAM is the least in terms of mFβ in the three
cases. Our model improves mFβ and mBA by 41.96% and
23.00% over WCE when ρ = 20 : 1. When ρ = 50 : 1 and
ρ = 100 : 1, its performance increases by 18.56% and 18.73%
for mBA, and by 32.34% and 32.52% for mFβ compared to
WCE. Compared to the class balance method, our model is
competitive with mFβ , but inferior to mBA in the case of
ρ = 50 : 1. From the definition of mBA and mFβ , it is clear
that mBA focuses on the classification accuracy of all correct
samples, while mFβ computes the classification accuracy of
icing samples. In other words, our method performs better than
Balance for blade icing detection. In addition, balancing the
data requires the collaboration of all clients, which is time and
resource-consuming.

E. Impact of knowledge protection mechanism

This section will study the performance impact of the used
knowledge protection mechanism. We vary the m from 2 to
4 and compare it with the variant, No KPM, in which the
knowledge protection mechanism is removed from BiFL.

From TABLE IV, We can see that adding knowledge
protection mechanism causes a performance degradation for
both ρ = 20 : 1 and ρ = 50 : 1. When ρ = 100 : 1, the result
shows that adding the knowledge protection mechanism can
slightly improve the performance for m=3 and m=4. However,
when m is increased, the changes in the model performance
are irregular, i.e., it is difficult to identify the change patterns.
Moreover, there is no downward trend as expected with the
increase of imbalanced ratio ρ, when the knowledge protection
mechanism is added. The reason is that when the protection
mechanism has been added, the raw features are confused by
encoding, and the confusing information might impact the
prototypes. For example, it might lead to the deviation of
prototypes, which results in the change in final results.

TABLE IV
PERFORMANCE IMPACTS OF KNOWLEDGE PROTECTION MECHANISM

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
mFβ mBA mFβ mBA mFβ mBA

m = 2 77.72 90.25 65.76 84.77 64.76 83.82
m = 3 68.07 86.13 72.19 88.27 74.43 88.44
m = 4 65.21 84.85 71.78 88.42 72.01 87.86

No KPM 86.28 92.61 75.89 86.35 68.71 82.24

F. Ablation and sensitivity analysis

We now conduct an ablation study to evaluate the AP, SE,
and KD modules. The following four variants are derived from
BiFL: 1) No AP, in which the AP module is removed; 2)
No AttP, in which the attention module was removed from the
AP module (i.e., the prototype calculated based on Equation
(2)); 3) No SE, in which the SE module was removed.

TABLE V shows the results. We can observe that the
performance decreases the most when the AP module is not
used in all three cases. Specifically, the performance of mFbeta
decreases by 42.93%, 33.47% and 29.54% (absolute value);
the performance of mBA decreases by 29.90%, 27.43% and
23.68%. In all three cases, when the SE module is not used,
the performances decrease by 17.69%, 6.69% and 6.06% for
mFβ , and by 8.96%, 3.98% and 3.58% for mBA. Comparing
No AP and No AttP, an improvement is observed for all
three cases for both metrics, validating the effectiveness of the
proposed attention module in improving prototype learning.
Therefore, we can safely conclude that the proposed modules
and their combinations are effective based on the above
studies.

TABLE V
ABLATION STUDY

Method ρ = 20 : 1 ρ = 50 : 1 ρ = 100 : 1
mFβ mBA mFβ mBA mFβ mBA

No AP 34.79 60.35 32.29 57.34 35.22 60.14
No AttP 52.80 75.94 51.17 74.68 44.63 69.52
No SE 60.03 81.29 59.07 80.79 58.70 79.97
Ours 77.72 90.25 65.76 84.77 64.76 83.82

To evaluate the impact of the input window size and α, we
perform the following sensitivity analysis. We vary the window
size from 32 to 256, and increase α from 0.15 to 0.55, and their
results are shown in Fig. 5 and 6, respectively. From Fig. 5, we
can see that the performance is almost linearly proportional
to the window size for both metrics (mFβ and mBA), and
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it reaches its maximum value when the window size is 256.
From Fig. 6, we can see that the performance of both metrics
slightly decreases with increasing α when ρ = 20 : 1 and
ρ = 50 : 1. When ρ = 100 : 1, the performances fluctuate
slightly for both metrics, which means that the impact of α
is subtle. According to Equation (9), we can know that the
smaller α is, the smaller the influence of cross-entropy loss
and the larger the effect of KD. This result further verifies
the positive influence of knowledge transfer from the server
model to the client models.
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V. CONCLUSIONS AND FUTURE WORK

This study proposes a class imbalanced heterogeneous fed-
erated learning model, BiFL, for wind turbine blade icing
detection. Since blade icing is strongly related to the local
environment and wind turbine specifications, BiFL introduces
the concept of transfer learning to improve the robustness
and generalization of the model. This paper also proposed
a prototype-based method to address the problem of class
imbalance in the training data. Finally, this paper comprehen-
sively evaluated the proposed model by comparing it with two
classical FL models and five state-of-the-art class imbalance
learning methods. The experimental results demonstrated the
superiority of the proposed model. The ablation study also
validated the effectiveness of the BiFL modules, and the sen-
sitivity analysis accessed the impact of key hyperparameters.

There are several directions for future work. First, we would
like to reduce the risk of data breach further, as clients need to
upload the extracted features to the server to train the global
model. Differential privacy and blockchain can be applied
to the uploaded data and protect it from network attacks.
Second, we would like to identify the severity of icing on wind
turbine blades. Potential solutions may include interpreting
the output probability or labeling the icing severity based on
domain knowledge. Third, the depthwise convolution and other
operations can be used to design a lightweight convolutional
neural network with reduced calculations and a deeper network
to enhance the feature learning.
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