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Abstract

Location information is often used as a proxy to infer the performance of a wireless communication

link. Using a very simple model, this letter unveils a basic statistical relation between the location

estimation uncertainty and wireless link reliability. First, a Cramér-Rao bound for the localization error

is derived. Then, wireless link reliability is characterized by how likely the outage probability is to be

above a target threshold. We show that the reliability is sensitive to location errors, especially when the

channel statistics are also sensitive to the location. Finally, we highlight the difficulty of choosing a rate

that meets target reliability while accounting for the location uncertainty.

I. INTRODUCTION

User localization and ultra-reliable low-latency communications (URLLC) are ubiquitous

concepts in 5G networks [1]. Reliability of wireless transmission is related, among others, to

the behavior of the propagation channel, which is inherently correlated with spatial location.
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Consequently, exploiting this relation is envisioned as a promising direction in mobile networks,

e.g., using location information to assist millimeter-wave communications [2], the generation of

channel maps for increased reliability and predictive resource allocation [3], [4], and channel

charting for user localization [5]. The standardization by 3rd Generation Partnership Project

(3GPP) of minimization of drive tests (MDT) [6] is an additional motivation, allowing the

operators to utilize end-user devices measurements for the previously mentioned tasks.

In contrast to more conventional approaches where samples are acquired over time to estimate

channel statistics and thus reliability [7], the relation between channel and location brings

forward the idea of using location to infer channel statistics and, ultimately, as a proxy for

guaranteeing reliability in URLLC. Considering the latency introduced by estimating channel

statistics, a communication system that predicts reliability based on localization using only a

few measurements, is an attractive alternative. However, these reliability-guaranteeing methods

would rely, among other aspects, on the ability to estimate location accurately, which raises the

question: How can the accuracy of the localization procedures impact the wireless reliability

guarantees?

This letter will analyze a simplified framework to reveal the fundamental relations between

location uncertainty and reliability guarantees, neglecting other sources of uncertainty such as

channel estimation. A user equipment (UE) is intended to communicate with a base station (BS),

and to isolate the impact of location uncertainty on reliability, the UE is assumed to perfectly

know the statistics for channel propagation at all locations around the BS. If the location were

perfectly known, the UE would correctly allocate resources to guarantee some level of reliability.

However, given the uncertainty of the estimated location, the predicted reliability is also uncertain,

and the UE must account for scenarios where, e.g., the signal level is weaker at the true location

than at the estimated location.

In this letter, we investigate the impact of location uncertainty in reliability by modeling a

system in the physical communication layer with the additional simplification of only considering

one dimension for localization. This allows us to extract important conclusions without dealing

with the complexity inherent to higher dimensional and higher layer cases. The localization

performance is characterized through Fisher information analysis [8], and reliability is statistically

characterized following the probably correct reliability (PCR) approach in [7].

Notation: R(z) and I(z) are the real and imaginary parts z, and ȷ is the imaginary unit.

(·)T and (·)H are the matrix transpose and conjugate transpose, and ∥·∥ is the ℓ2-norm. For
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matrix A, the submatrix with row i to j and column k to p is denoted Ai:j,k:p. N (µ, σ2) and

CN (µ, σ2) denote Gaussian and complex circular symmetric Gaussian distributions with mean

µ and variance σ2. Finally, E[·] and Var[·] denote, respectively, the expectation and the variance

operators.

II. SYSTEM MODEL

A. Communication system and channel model

We consider a simple 1-D framework with two BSs at locations x1, x2 ∈ R which communicate

with a UE at location x ∈ R. Both BSs and the user are equipped with a single antenna. An

orthogonal frequency division multiplexing (OFDM) modulation scheme is considered, with

bandwidth W and N subcarriers spaced ∆f = W/N .

The channel between the UE and the BS i ∈ {1, 2} is assumed to follow a two-path model

with complex channel coefficient ai,k and associated delay τi,k for path k. The first path (k = 1)

characterizes the line-of-sight (LoS) link, being thus deterministic and geometrically-dependent

as [9], [10]

ai,1 =

√
λ2

16π2d2i
e−ȷ2πdi/λ =

√
PL(di)e−ȷϕ(di), (1)

where λ is the wavelength and di = ∥x− xi∥. Naturally, it follows that τi,1 = ∥x− xi∥ /c with

c the speed of light. The second path (k = 2) represents the contribution of the scattered paths,

which cannot be mutually resolved and hence ai,2 ∼ CN (0, σ2
i (∆τi)) with variance according

to an exponential power delay profile [11]:

Var[ai,2] = σ2
i (∆τi) =

PL(di)

ρ
exp

(
−∆τi

ρ

)
, (2)

where ∆τi = τi,2 − τi,1 is the excess delay and ρ > 0 controls how fast the power fades as a

function of ∆τi. Note that the choice to model ai,2 statistically, unlike, e.g., the deterministic

geometric models in [10], is made to allow for statistical analysis of the communication reliability.

Given a modulated symbol s ∈ CN , the received baseband signal in the frequency domain

from BS i across the different subcarriers, ỹi ∈ CN , is given by1 [10]

ỹi,j =
√
Ptxh̃i,jsj + ñi,j (3)

1We assume identical uplink and downlink channels.
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TABLE I

SYSTEM SETTINGS.

Symbol Description Value[
x1, x2

]
BS locations

[
0, 1000

]
m

Ptx Transmit power per sub-carrier 10 dBm

σ2
n Noise variance −70 dBm

W Bandwidth 10 MHz

fc Center frequency 2.1 GHz

N Number of sub-carriers 600

∆τi Excess delay (same for i = 1, 2) 50 ns

ρ Parameter for power delay profile 2

for j = 0, . . . , N − 1, where Ptx is the transmit power per sub-carrier, ñi,j ∼ CN (0, σ2
n) is the

noise term with variance σ2
n and h̃i,j = ai,1dj(τi,1) + ai,2dj(τi,2) is the Fourier transform of the

channel with dj(τ) = exp (−ȷπ2j∆fτ) .

The system settings used in the examples throughout this letter are summarized in Table I.

Note that some of the values are chosen to produce results that clearly show the effect of location

uncertainty on reliability with less emphasis on modeling a realistic scenario.

B. Localization and communication protocol

The following simple two-step protocol is assumed:

1) When the UE turns on for the first time, it estimates its location using a ping — a single

OFDM symbol as in (3) with sj = 1 ∀ j — from each BS. To that end, time of arrival (TOA)

estimation is employed. Moreover, the pings are used to select the BS with which the UE will

communicate based on the received power, i.e., BS i ∈ {1, 2} is chosen such that ∥ỹi∥2 is

maximized.

2) Once the UE has estimated its location and the target BS, it starts the communication with

the chosen BS by sending data (power normalized E[|sj|2] = 1) using the OFDM channel with

rate R. It is assumed that the channels used in steps 1 and 2 are independent.

To inform rate selection, we introduce the maximum achievable rate (MAR) Rmax as an

information-theoretic bound, and the UE should select R such that it only exceeds Rmax with

low probability (explained further in Sec. III-B). Following the Sec. I, it is assumed that a

mapping between location x and the statistics of Rmax is available to the UE. We then analyze
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how localization errors affect the reliability and throughput of the system when the UE selects

R using different location-based rate selection schemes.

III. STATISTICS OF LOCALIZATION AND COMMUNICATION

A. Localization

In TOA localization, location is estimated based on the propagation delay of the LoS path,

although the accuracy of this method suffers when the UE and BS clocks are not perfectly

synchronized [12]. We introduce the effect of clock bias B in the localization uncertainty, i.e.,

the measured delay is τ̃i,1 = ∥x− xi∥ /c+B. Then, given the received signals ỹ1, ỹ2 from (3),

we use the Cramér-Rao inequality to characterize the variance of any unbiased estimator of x

as

Var[x̂(ỹ1, ỹ2)] ≥ J−1(x), (4)

where J−1(x) is the Fisher information corresponding to the location x [13]. To find J(x), we

first derive the Fisher information with respect to the unknown parameters

ηi =
[
τ̃i,1 τ̃i,2 R(ai,1) I(ai,1) R(ai,2) I(ai,2)

]T
(5)

for i = 1, 2. For fixed channel coefficients, the normalized received signal ỹi/
√
Ptx follows a

circular symmetric, complex Gaussian distribution with mean µ(ηi) = ai,1d(τ̃i,1) + ai,2d(τ̃i,2)

and covariance σ2
n

Ptx
IN×N . Therefore [13]:

J(ηi) =
2Ptx

σ2
n

N−1∑
j=0

R

(
∂µj

∂ηi

(
∂µj

∂ηi

)H
)
, (6)

whose closed form expression is omitted here due to space limitation. In ηi, the LoS delay τ̃i,1

contains information about the location x, so we continue with the equivalent Fisher informa-

tion [8]

JE(τ̃i) = J(ηi)1,1 − J(ηi)1,2:6J
−1(ηi)2:6,2:6J(ηi)2:6,1 (7)

where the second term is interpreted as the information loss from the unknown variables.

Due to independence of the TOA signals, JE(τ̃1,1, τ̃2,1) is the diagonal matrix with entries

JE(τ̃1,1), J(τ̃2,1) and the Fisher information with respect to (x,B) is obtained using the trans-

formation [13]

J(x,B) = TTJE(τ̃1,1, τ̃2,1)T, T =

∂τ̃1,1
∂x

∂τ̃1,1
∂B

∂τ̃2,1
∂x

∂τ̃2,1
∂B

 . (8)
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Fig. 1. Statistics for localization and MAR. The inverse CDF F−1(ϵ;x, i) is the ϵ-quantile for Rmax at location x when

communicating with BS i. Here, ϵ = 10−3. σ2(x) is the localization variance σ2(x;ϕ) averaged over ϕ; the figure shows the

standard variation σ(x).

Finally, J−1(x) = (J(x,B)−1)1,1 gives the Cramér-Rao lower bound, which is assumed for the

variance of x̂. Additionally, we assume the asymptotic result in which the location estimator x̂

follows a Gaussian distribution [14], that is x̂ ∼ N (x, J−1(x)). The variance J−1(x) contains the

random channel coefficients from the scatter paths, a1,2, a2,2, and it turns out that only the phases

of these, ϕ1,2, ϕ2,2, affect the variance while the magnitudes cancel. Denoting σ2(x;ϕ) = J−1(x)

and using that ϕ =
[
ϕ1,2 ϕ2,2

]T
is uniform on [0, 2π)2, we get the hierarchical model for the

output of the localization algorithm

x̂ |ϕ ∼ N (x, σ2(x;ϕ)), ϕ ∼ uniform([0, 2π)2). (9)

For the sake of illustration, Fig. 1 shows localization uncertainty for different locations x.

B. Rate and Communication Reliability

At the physical layer, we assess the system’s reliability by its ability to choose a rate R that

does not exceed the MAR. From (3), the instantaneous MAR for the channel between the UE

at location x and BS i is given by [9]

Rmax(x, i) =
N−1∑
j=0

log2

(
1 +

Ptx|h̃i,j|2

σ2
n

)
. (10)

Fig. 1 shows statistics for Rmax as a function of location x. Reliability is characterized by the

outage probability

P (R > Rmax(x, i)) = F (R;x, i), (11)
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Fig. 2. Meta-probability statistics with backoff rate selection function Rϵ,i(x̂) = 0.25 · F−1(ϵ; x̂, i) (see Sec. IV-A). The

location probability density function (PDF) p(x̂) is the marginal PDF of p(x̂,ϕ) according to (9). The UE location is 300 m

with ϵ-outage capacity F−1(ϵ;x, 1) = 70 bits/s/Hz and the resulting outage region is S(x, 1) = [−136.2, 136.2] m.

where F is the cumulative distribution function (CDF) for Rmax. Introducing ϵ > 0 as an upper

bound for the outage probability, the rate is ideally selected as R = F−1(ϵ;x, i), also known

as the ϵ-outage capacity. However, if F is not perfectly known, the outage probability is not

guaranteed to meet this constraint, and the concept of probably correct reliability measured by

the meta-probability arises as an approach to characterize the uncertainty [7].

Here, as stated in Sec. II-B, it is assumed that the CDF has been mapped for all locations

prior to transmission, i.e., given a location x, F−1(ϵ;x, i) is perfectly known. Therefore, after

estimating its location x̂, the UE selects the rate using some function Rϵ,i(x̂) (specific examples

are introduced in Sec. IV).

Given an estimated location x̂, the outage probability is

pout(x, x̂; i) = P (Rϵ,i(x̂) > Rmax(x, i) |x̂, i)

= F (Rϵ,i(x̂);x, i), (12)

and the meta-probability for the link between the UE and BS i is [7, Eq. (15)]

p̃ϵ(x; i) = P (P (Rϵ,i(x̂) > Rmax(x, i) |x̂, i) > ϵ)

= Px̂(pout(x, x̂; i) > ϵ). (13)
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Assuming block fading where Rmax(x, i) is drawn independently for each block, (13) gives

the probability that the outage probability exceeds ϵ for any of these blocks. Averaging over the

BSs we have

p̃ϵ(x) =
2∑

i=1

Px̂(pout(x, x̂; i) > ϵ)pi(i;x), (14)

where pi(i;x) is the probability of selecting BS i which is obtained through Monte-Carlo

simulation according to Sec. II-B2. In (14), the first factor is rewritten by introducing the outage

region

S(x, i) = {x̂ ∈ R|pout(x, x̂; i) > ϵ} (15)

such that

Px̂(pout(x, x̂; i) > ϵ) = Px̂(x̂ ∈ S(x, i)). (16)

The outage region is interpreted as the region of estimated locations x̂ where the rate selection

function chooses a rate that is too optimistic for the MAR at location x. Fig. 2 depicts various

statistics relevant for the meta-probability using one of the rate selection functions from Sec.

IV. It is observed that the UE will choose an overly optimistic rate if it thinks it is closer to

the BS than it actually is. The particular rate selection function shown in Fig. 2 is somewhat

conservative; therefore, the outage region is pushed away from the UE, and the meta-probability

is the probability mass from localization inside the outage region.

Together with the meta-probability, the other metric used to evaluate location-based rate

selection methods is the throughput ratio, defined as the ratio [7]

ωϵ(x) =
E [Rϵ,i(x̂)1{Rϵ,i(x̂) ≤ Rmax(x, i)}]
E[R∗

ϵ,i(x)1{R∗
ϵ,i(x) ≤ Rmax(x, i)}]

, (17)

between the throughput using Rϵ,i(x̂) and the optimal throughput using R∗
ϵ,i(x) = F−1(ϵ;x, i)

where 1 is the indicator function. The throughput ratio is expanded with repeated use of the law

of total expectation, yielding

ωϵ(x) =
Ei

[
Eϕ

[
Ex̂ |ϕ [Rϵ,i(x̂) (1− pout(x, x̂; i)) |i,ϕ] |i

]]
Ei[R∗

ϵ,i(x)](1− ϵ)
. (18)

2The estimated location x̂ and selected BS i are dependent since they use the same signal, but their dependence is neglected

for the reliability analysis.
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IV. LOCATION-AWARE RATE SELECTION

Location-based rate selection methods naturally depends on the rate function Rϵ,i(x̂), and the

ultimate goal would be to solve the optimization problem

sup
Rϵ,i

∫
ωϵ(x) dx, s.t. p̃ϵ(x) ≤ δ ∀x, (19)

where δ is the confidence parameter bounding the meta-probability. This section introduces

three examples of rate selection functions that account for uncertainty in the location estimate

by selecting a conservative rate compared to the optimal rate selection function, i.e., Rϵ,i(x̂) <

R∗
ϵ,i(x̂). We limit the search to functions that satisfy the inequality constraint in (19) and then

analyze the tradeoffs between reliability and throughput.

A. Backoff rate selection

The backoff rate selection function chooses the rate proportional to the ϵ-quantile for the MAR

at the estimated location:

Rϵ,i(x̂) = k · F−1(ϵ; x̂, i), (20)

where 0 < k ≤ 1 is the proportionality constant. The parameter k is interpreted as how

conservatively the system selects the rate relative to the optimal selection when the location

is perfectly known. Finding k such that the meta-probability is below the confidence parameter

δ requires knowledge of the system statistics, including location uncertainty, which may or may

not be available in practice. For the sake of illustration, we simply choose the maximum k ∈ (0, 1]

such that the meta-probability is below δ within a range of locations.

B. Confidence intervals rate selection

This approach considers a confidence interval for estimated location and then chooses the

minimum rate within that interval. Denoting CIα(x̂) as the confidence interval for x with

confidence level (1− α), the rate is selected as

Rϵ,i(x̂) = min
x

{
F−1(ϵ;x, i)|x ∈ CIα(x̂)

}
. (21)

Setting an appropriate confidence level and obtaining the confidence interval again requires

knowledge of the system statistics. Similarly to the backoff method, we find the appropriate
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α ∈ (0, 1) considering the constraint on the meta-probability. Specifically, we use the approximate

interval3

CIα(x̂) =
[
x̂− q1−α/2σ(x̂), x̂+ q1−α/2σ(x̂)

]
, (22)

where q are the quantiles of the standard Gaussian distribution and σ(x̂) is the standard deviation

for localization at x̂ according to (9), which is assumed to be known.

C. Oracle rate selection

Lastly, oracle rate selection is introduced, which attempts to solve (19) by exhaustive search

for the selected rate. This obviously requires a full statistical characterization of the system and

is not of much practical interest. However, it serves as an upper bound and importantly shows

that throughput suffers due to localization uncertainty even when the statistics of the system are

fully known.

For the three aforementioned rate selection functions, the outage region in (15) is evaluated

numerically. Interestingly, we observe that it reduces to a single interval for the considered 1-D

scenario, i.e., S(x, i) = [xmin,i, xmax,i]. Thus, according to the hierarchical model from (9), we

can expand (16) as

Px̂(x̂ ∈ S(x, i)) =
1

4π2

∫
[0,2π)2

Px̂ |ϕ(x̂ ∈ S(x, i) |ϕ) dϕ

=
1

4π2

∫
[0,2π)2

Q

(
xmin,i − x

σ(x;ϕ)

)
−Q

(
xmax,i − x

σ(x;ϕ)

)
dϕ, (23)

using the Q-function for the standard Gaussian distribution.

V. EVALUATION OF RELIABILITY AND THROUGHPUT

To get some intuition about the reliability of the system, we analyze the error-distance between

the UE and the outage region, denoted ∆x (see Fig. 2), in the case of just one subcarrier. The

fading power |h̃i,j|2 follows a Rician distribution whose tail can be modeled using a power-law

approximation [15] and the ϵ-outage capacity then reduces to F−1(ϵ;x, i) = log2(1 + x−2ϵψ),

where ψ depends on the system settings. From this, it follows that the simple relation ∆x ≈

x(1−
√
k) approximates the error distance for backoff rate selection with parameter k [16]. The

reader is kindly referred to the extended version in [16] for the details. Interestingly, the relation

3The confidence interval in (22) is only approximate since it assumes that x̂ is Gaussian, where in reality, it is only conditionally

Gaussian.
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Fig. 3. Meta-probability and throughput ratio of the different rate selection schemes for each UE location x ∈ [10, 990]. Backoff

rate selection uses k = 0.25 and confidence interval rate selection uses α = 1.6 · 10−5.

suggests that the distance to the outage region scales linearly with the distance to the to the

BS. As such, a larger localization error is allowed as the UE moves farther away from the BS,

which may result in increased reliability depending on how the localization error changes. The

general case with multiple subcarriers is now examined by evaluating the meta-probability in

(14) and throughput ratio in (18) under the different rate selection schemes from Sec. IV and

settings in Table I. The rate selection functions are calibrated such that the meta-probability with

ϵ = 10−3 is below δ = 10−3 for x ∈ [45, 955]. Fig. 3 depicts the results for the meta-probability

and throughput ratio. Both (18) and (23) are evaluated through numerical integration.

The results for the backoff and confidence interval methods in Fig. 3 show that the meta-

probability, i.e., the probability of selecting a rate that exceeds the MAR, tends to decrease
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when the UE is farther away from the BSs, which aligns well with the previous intuition. Two

effects contribute to this: the decreasing location uncertainty and the rapidly decreasing ϵ-quantile

for Rmax as the distance between the UE and the BS increases (see Fig. 1). To understand the

latter, note that the two methods select rates based on the ϵ-quantile. Therefore, even a small

localization error close to a BS can cause the UE to pick a much higher rate, whereas the

same error farther away causes a smaller change in the selected rate. In fact, considering that

the changes in the average location uncertainty are almost negligible compared to the rapid

variations in the ϵ-quantile (see Fig. 1), it is mainly the change in the quantile that causes the

meta-probability to decrease, hence reliability to increase, with the distance to the BS4. For oracle

rate selection, we see values close to the confidence parameter δ, as expected. Regarding the

throughput ratio in Fig. 3, it is interesting to see that for the backoff approach it is more or

less flat with ωϵ(x) ≈ k. In contrast, the throughput ratios for the confidence interval and oracle

approach have a strong dependence on x. For these methods, we also observe that the throughput

ratios increase farther away from the BSs, again explained by the ϵ-quantile for Rmax. To see

this, consider the extreme case where the distribution F (R;x, i) is constant for all locations x.

Here, the UE would choose R = F−1(ϵ; x̂, i), which is invariant to the estimated location; thus,

the meta-probability is zero, and the optimal throughput ratio is achieved. In our setup, when

the UE is far away from the BSs, it experiences a similar case where the distribution is almost

constant within the range of likely estimated locations (see Fig. 1), thus enabling the UE to be

less conservative and achieve higher throughput.

In summary, we observe degradation in the system when the UE is close to a BS and vice versa

due to how quickly the ϵ-quantile for Rmax changes for different x, leading to the conclusion

that lower but more spatially consistent channel statistics are desirable for location-based rate

selection. In fact, we arrive at the fundamental observation that the spatial variation of channel

statistics determines the quality of location as a proxy for reliability, which generalizes to other

channels, number of antennas, higher dimension for localization, etc.

VI. CONCLUSIONS

This letter has analyzed the impact of location uncertainty on communication reliability

through a rigorous statistical framework. By eliminating all other sources of uncertainty, we

4This has been numerically verified by computing the meta-probability under constant Var[x̂], where we see similar curves

as in Fig. 3.
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have shown that localization error alone considerably impacts the reliability, especially in areas

where channel statistics rapidly varies in space, e.g., close to the BSs. Conservative rate selection

schemes can avoid this at the expense of reduced throughput. Different rate selection functions

were considered, but ultimately this task requires accurate knowledge of channel statistics at

different locations to ensure a certain level of reliability. Thus, we have shown that it is not

straightforward to use uncertain location as a reliability proxy. This letter analyzed a simple set-

ting, and the followup work will consider extensions such as higher dimensions for localization.
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