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A recent proof of concept showed that cavity photons can mediate superconducting (SC) signatures to a
ferromagnetic insulator (FI) over a macroscopic distance [A. T. G. Janssønn et al., Phys. Rev. B 102, 180506(R)
(2020)]. In contrast with conventional proximity systems, this facilitates long-distance FI–SC coupling, local
subjection to different drives and temperatures, and studies of their mutual interactions without proximal
disruption of their orders. Here we derive a microscopic theory for these interactions, with an emphasis on
the leading effect on the FI, namely, an induced anisotropy field. In an arbitrary practical example, we find an
anisotropy field of 14–16 µT, which is expected to yield an experimentally appreciable tilt of the FI spins for
low-coercivity FIs such as Bi-YIG. We discuss the implications and potential applications of such a system in
the context of superconducting spintronics.
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I. INTRODUCTION

Enabling low-dissipation charge and spin transport, su-
perconducting spintronics presents a pathway to reducing
energy costs of data processing, and provides fertile ground
for exploring new fundamental physics [1–3]. Conventionally,
superconducting and spintronic systems are coupled by the
proximity effect, with properties of adjacent materials trans-
ported across an interface. The superconducting coherence
length thus limits the extent to which superconducting prop-
erties can be harnessed in proximity systems, to a range of
nm-µm near interfaces [4–8].

By contrast, cavity-coupled systems offer mediation across
macroscopic distances [9–13]. They also offer interaction
strengths that relate inversely to the cavity volume [14,15],
which is routinely utilized experimentally to achieve strong
coupling in, e.g., GHz-THz cavity setups [16–20]. Further-
more, research on the coupling of magnets and cavity photons
shows that the effective interaction strengths scale with the
number of spins involved [9,20–28], which has been utilized
experimentally to achieve effective coupling strengths far ex-
ceeding losses [11,13,20,26–36].

Theoretically, a number of methods have been employed
to extract mediated effects in cavity-coupled systems. This
includes, but is not limited to, classical modeling for coupling
two ferromagnets [37], and a ferromagnet to a supercon-
ductor [10]; application of Jaynes-Cummings–type models
for coupling a ferromagnet and a qubit [12,13,32,38], and
two ferromagnets [39]; perturbative diagonalization by the
Schrieffer-Wolff transformation for coupling a ferromagnet
and antiferromagnet [9,21,28], and a normal metal to itself
[14,20]; and perturbative evolution of the density matrix, as
well as perturbative diagonalization by the nonequilibrium
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Keldysh path-integral formalism, for coupling a mesoscopic
circuit to a cavity [40].

In this paper, we will employ the Matsubara path-integral
formalism [41–45] to derive a microscopic theory for the
cavity-mediated coupling of a ferromagnetic insulator (FI)
with a singlet s-wave superconductor (SC). In particular, we
consider the Zeeman coupling to the FI, and the paramagnetic
coupling to the SC. We show that with this approach, we may
exactly integrate out the net mediated effect by the cavity
photons. This is in contrast to the Schrieffer-Wolff approach,
which would limit the integrating out of the cavity to off-
resonant regimes [21]. For instance, a pairing term analogous
to the one found via the Schrieffer-Wolff transformation in
Ref. [14] also appears in our calculations, without the lim-
itation to an off-resonant regime. Furthermore, unlike many
preceding works which single out the coupling to the uniform
mode of the magnet [9,10,13,22,29,30], we retain the influ-
ence of a range of modes in our model. Their non-negligible
influence when the magnet exceeds a certain size relative to
the cavity, has been emphasized by both experimentalists [30]
and theorists [22].

The Matsubara path-integral approach was very recently
applied to construct a general effective theory of cavity-
coupled material systems of identical particles [45], highlight-
ing some of the same advantages of this approach as above. By
contrast, we consider the cavity-mediated coupling of lattices
of two distinct classes of quasiparticles, specifically magnons
and SC quasiparticles.

By a careful choice of cavity dimensions and the placement
of subsystems, we couple the insulator to the momentum de-
grees of freedom of the superconductor. In this case, the cavity
acts as an effective spin-orbit coupling. Here, we emphasize
the leading effect of the superconductor on the insulator,
namely, the induction of an anisotropy field. In an arbitrary,
practical example, we achieve a field of 14–16 µT, which is
expected to yield an experimentally appreciable tilt of the FI
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FIG. 1. Illustration of the setup. A thin ferromagnetic insulator
and thin superconductor are placed spaced apart inside a rectangular,
electromagnetic cavity. The FI is subjected to an aligning external
magnetic field Bext. The cavity is short along the z direction, and
long along the perpendicular xy directions, causing cavity modes to
separate into a bandlike structure. The FI and the SC are, respectively,
placed in regions of maximum magnetic (z = Lz) and electric (z =
Lz/2) cavity field of the �z = 1 modes, as defined in Sec. II B 1 and
illustrated above by the colored field cross section on the right wall.

spins for an insulator of sufficiently low coercivity such as
Bi-YIG. Since the cavity facilitates coupling across uncon-
ventionally long distances, it enables the FI and SC to be held
at different temperatures, be subjected separately to external
drives, and have them interact without the same mutual dis-
ruption of their orders associated with the proximity effect
[2,10], such as the breaking of Cooper pairs by magnetic fields
from the FI. In practical applications, our system may be used
to bridge superconducting and other spintronic circuitry.

The paper is organized as follows. In Sec. II A we present
the setup: a cavity with an FI and SC film placed at magnetic
and electric antinodes as shown in Fig. 1, with no overlap in
the xy plane. In Sec. II B we cover theoretical preliminaries:
the quantized gauge field, the magnon-basis Hamiltonian for
the insulator, and the Bogoliubov quasiparticle-basis Hamil-
tonian for the superconductor. The system Hamiltonian is
subsequently constructed. In Secs. II C–II E, we construct an
effective magnon theory using the path-integral formalism.
Here we exactly integrate out the cavity, and perturbatively the
superconductor. In Sec. III, we extract from the effective the-
ory the leading effect of the superconductor on the insulator,
namely, the induced anisotropy field. In a practical example,
we calculate this field numerically, and find here an induced
field on the order of µT in magnitude. Finally, in Sec. IV,
we give concluding remarks, discussing the results and their
significance, and an outlook. In the Appendixes, we affirm
the mathematical consistency of the effective theory with an
alternative derivation, explore a variation of the setup with the
SC placed at the opposite magnetic antinode, and elaborate on
the interpretation of certain quantities in the effective action as
an effective anisotropy field.

II. THEORY

A. Setup

Our setup is illustrated in Fig. 1. We place two thin layers,
one of a ferromagnetic insulator (FI) and one of a supercon-
ductor (SC), spaced apart inside a rectangular electromagnetic
cavity. The dimensions of the cavity are Lx, Ly � Lz, with Lz

on the µm-mm scale, and Lx, Ly on the cm scale. The aspect
ratios render photons more easily excited in the xy directions.
The FI is placed at the upper magnetic antinode of the �z = 1
modes (cf. Sec. II B 1), and the SC at the corresponding elec-

tric antinode, as illustrated in Fig. 1. Because the layers are
thin in comparison to Lz, the sinusoidal variation of the cavity
modes along the z direction is negligible locally across the
layers.

The FI is locally subjected to an aligning and perpendicular
uniform, external magnetostatic field, which vanishes across
the SC. This was achieved experimentally with external coils
and magnetic shielding in Tabuchi et al. [13]. Furthermore,
the SC is subjected to an in-plane supercurrent. This may be
realized by passing a direct current (DC) through small elec-
tric wires, entering the cavity via small holes in the walls and
connecting along the sides of the SC, similarly to Ref. [46].
Provided the wires and holes are sufficiently small, their influ-
ence on the cavity modes is negligible. Provided the sample
width does not exceed the Pearl length λ2/dSC [46–48], the
leading effect of the DC is to induce an equilibrium supercur-
rent with a Cooper pair center-of-mass momentum 2P, with
the magnitude of P determined by the current. Here λ is the
effective magnetic penetration depth, and dSC is the sample
depth. For Nb thin films, we expect the Pearl length criterion
to be met at widths of up to 0.1 mm for a dSC down to 1 nm
[49].

B. Hamiltonian

In the following, we deduce a Hamiltonian

H ≡ HFI + Hcav
0 + HSC (1)

for the system illustrated in Fig. 1. We begin by quantizing
the cavity gauge field, and introducing the cavity Hamiltonian
Hcav

0 . Following this, we deduce a Hamiltonian HFI for the
FI in the magnon basis, including the Zeeman coupling to the
cavity. Finally, we deduce a Hamiltonian HSC for the SC in
the quasiparticle basis, including the paramagnetic coupling
to the cavity.

1. Cavity gauge field

We begin by presenting the expression for the quantized
cavity gauge field Acav [15]. Starting from the Fourier de-
composition of the classical vector potential, we impose the
transverse gauge and quantize the field. We employ reflecting
boundary conditions at the cavity walls in the z direction,
and periodic boundary conditions at the comparatively distant
walls in the xy directions. The gauge field is thus

Acav ≡
∑
Qς

√
h̄

2εωQ
(aQς ūQς + a†

Qς ū∗
Qς ). (2)

Above,

Q ≡ (Qx, Qy, Qz ) ≡
(

2π�x

Lx
,

2π�y

Ly
,
π�z

Lz

)
(3)

are the momenta of each photonic mode, with �x, �y =
0,±1,±2, . . . and �z = 0, 1, 2, . . . . The discretization of Qz

differs from that of Qx and Qy due to the different bound-
ary conditions in the transverse and longitudinal directions.
Furthermore, ς = 1, 2 labels polarization directions, ε is the
permittivity of the material filling the cavity, and

ωQ = c|Q| (4)
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FIG. 2. Illustration of the 123 coordinate system. Q is the photon
momentum vector, and q is its component in the xy plane. θ (single
line) is the polar and ϕ (double line) the azimuthal angle associated
with Q in relation to the xyz basis. The 123 axes result from a rotation
of the xyz axes by an angle θ about the y axis, followed by a rotation
by an angle ϕ about the original z axis. In the illustration, the 1
axis points somewhat outwards and downwards, the 2 axis points
somewhat inwards and is confined to the original xy plane, and the 3
axis aligns with Q.

is the cavity dispersion relation, with c the speed of light.
a†

Qς and aQς are photon creation and annihilation operators,
satisfying

[aQς , a†
Q′ς ′ ] = δQQ′δςς ′ , (5)

where the factors on the right-hand side are Kronecker delta
functions.

Lastly, the mode functions

ūQς ≡
∑

D

êDOQ
ςDuQD (6)

encapsulate the spatial modulation of the modes. Here, êD is
the unit vector in the D = x, y, z direction. OQ

ςD are elements
of a matrix that rotate the original xyz basis of unit vectors to
a new basis labeled 123, with the 3 direction aligned with Q
(see Fig. 2): ⎛

⎜⎝êQ
1

êQ
2

êQ
3

⎞
⎟⎠ = OQ

⎛
⎝êx

êy

êz

⎞
⎠, (7)

OQ ≡
⎛
⎝cos θ cos ϕ cos θ sin ϕ − sin θ

− sin ϕ cos ϕ 0
sin θ cos ϕ sin θ sin ϕ cos θ

⎞
⎠. (8)

Here θ = θQ and ϕ = ϕQ are the polar and azimuthal angles
illustrated in Fig. 2. OQ originates from the implementation
of the transverse gauge, which amounts to neglecting the
longitudinal 3 component of the gauge field. Finally, uQD are
the mode functions in the xyz basis, given by

uQx = uQy =
√

2

V
eiQxx+iQyyi sin Qzz, (9)

uQz =
√

2

V
eiQxx+iQyy cos Qzz, (10)

where V is the volume of the cavity.1

Our setup facilitates coupling to the �z = 1 band of cav-
ity modes, as the FI and SC are placed in field maxima as
illustrated in Fig. 1. We will only consider variations of the
in-plane part q of the general momenta Q, defined via

Q ≡ q + π êz/Lz. (11)

For this reason we will use the subscript q for functions of Q
where the z component is locked to the �z = 1 mode, e.g.,

ωq ≡ ωQ|Q=q+π êz/Lz = c

√(
π

Lz

)2

+ q2. (12)

The cavity itself contributes to the system Hamiltonian
with the term

Hcav
0 ≡

∑
qς

h̄ωqa†
qςaqς , (13)

where we have disregarded the zero-point energy since it does
not influence our results.

2. Ferromagnetic insulator

The Hamiltonian of the FI in the cavity is

HFI ≡ Hex + Hext + HFI-cav, (14)

with

Hex ≡ −J
∑
〈i, j〉

Si · S j, (15a)

Hext ≡ −gμB

h̄
Bext

∑
i

Siz, (15b)

HFI-cav ≡ −gμB

h̄

∑
i

Si · Bcav(ri ). (15c)

The first term is the exchange interaction: J > 0 is the ex-
change interaction strength for a ferromagnetic insulator, Si is
the spin at lattice site i, and only nearest-neighbor interactions
are taken into account, as indicated by the angle brackets. The
next two terms are Zeeman couplings: g is the gyromagnetic
ratio, μB is the Bohr magneton, Bext is a strong (i.e., |Bext| �
|Bcav|) and uniform external magnetostatic field aligning the
spins in the z direction, and Bcav(ri ) is the magnetic com-
ponent of the cavity field at lattice site i. The corresponding
position vector is ri.

It is convenient to transition from the spin basis
{Six, Siy, Siz} to a bosonic magnon basis {ηi, η

†
i }. This is

achieved with the Holstein-Primakoff transformation [50],
which is covered in detail in Refs. [21,51].

Each FI lattice site carries spin S. The aligning field Bext

regulates the excitation energy of magnons [cf. Eq. (21)],
hence a sufficiently strong field implies few magnons per

1We have neglected a prefactor
√

w�z wz of uQz which is incon-
sequential to us. The function wx = 1

2 when x = 0, and wx = 1
otherwise. This prefactor follows from the reflecting boundary con-
ditions combined with requiring that the Fourier transformation be
unitary.
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lattice site, i.e.,

〈η†
i ηi〉 	 2S. (16)

We can therefore Taylor expand the Holstein-Primakoff trans-
formation, leading to the relations

Siz = h̄(S − η
†
i ηi ), (17)

Sid ≈ h̄
√

2S

2
(νdηi + ν∗

dη
†
i ), (18)

where d = x, y and {νx, νy} = {1,−i}.
Now, upon Fourier decomposing the magnon operators

ηri ≡ 1√
NFI

∑
k

ηkeik·ri , (19)

we obtain the conventional expression for Hex + Hext in the
magnon basis [51]:

Hex + Hext ≈ HFI
0 ≡

∑
k

h̄λkη
†
kηk, (20)

where we have introduced the magnon dispersion relation

λk ≡ 2h̄JNδS

(
1 − 1

Nδ

∑
δ

eik·δ
)

+ gμB

h̄
Bext. (21)

Above, NFI is the total number of FI lattice points,
Nδ = 6 is the number of nearest-neighbor lattice sites on
a cubic lattice (neglecting edges and corners), and δ =
±aFIêx,±aFIêy,±aFIêz are nearest-neighbor lattice vectors.
The magnon momenta are

k ≡
(

2πmFI
x

lFI
x

,
2πmFI

y

lFI
y

, 0

)
≡ (kx, ky, 0), (22)

where mFI
d = −�NFI

d −1
2 �, . . . , NFI

d − 1 − �NFI
d −1
2 � covers the

first Brillouin zone (1BZ), with NFI
d the number of FI lattice

points in direction d , and �·� the floor function. Here we
neglect the kz component; only the kz = 0 modes enter our
calculations due to the thinness of the FI film [cf. Eq. (26)].
Note that the set of magnon momenta generally does not
overlap with that of photon momenta in Eq. (3). Observe
furthermore that the magnon energies (21) can easily be regu-
lated experimentally by adjusting Bext.

Proceeding to the interaction term, we deduce the magnetic
cavity field Bcav(ri ) across the FI, which is the curl of the
gauge field at z ≈ Lz:

Bcav(ri )|FI = ∇ × Acav(ri )|FI

= −
∑
qd

iν2
d qd̄ êd sin θq

√
h̄

εωqV
eiq·ri

× cos
πzi

Lz
(aq1 + a†

−q1). (23)

Above, d̄ “inverts” d such that x̄ = y and ȳ = x, and zi is the
z position of lattice site i. Note that the photon momentum
component qd̄ enters the sum with an inverted lower index.
Observe that only the 1 direction enters the expression be-
cause Acav at z ≈ Lz points purely along the z direction. The

2 direction is by definition locked to the xy plane, and does
therefore not contribute at z ≈ Lz.

Inserting Eqs. (17)–(19) and (23) into Eq. (15c), we find

HFI-cav ≈
∑
kd

∑
qς

gkq
d (νdη−k + ν∗

dη
†
k )(aq1 + a†

−q1), (24)

and hence a complete FI Hamiltonian HFI ≈ HFI
0 + HFI-cav.

Above, we defined the coupling strength

gkq
d ≡ −gμBqd̄ iν2

d sin θq

√
Sh̄NFI

2εωqV
DFI

kqeiq·rFI
0 . (25)

DFI
kq quantifies the degree of overlap between magnonic and

photonic modes. An analogous quantity appears in the cavity-
SC coupling in Sec. II B 3, so we define it via the general
expression

DM
lM q ≡ ei(lM−q)·rM

0

NM

∑
i∈M

e−i(lM−q)·ri

×
{

− cos πzi
Lz

, M = FM
sin πzi

Lz
, M = SC

}

≈ δlM,z0

∏
d

sinc

[
πNM

d

(
mM

d

NM
d

− �d aM

Ld

)]
. (26)

Here M = {FI, SC} is a material index, lM represents either a
magnon or an SC quasiparticle momentum, rM

0 is the center
position of lattice M relative to the origin, and the photon
momentum numbers �d = �x, �y were defined under Eq. (3).
The latter, along with other SC quantities, are defined in
Sec. II B 3. The sum over i is taken over either FI or SC
lattice points, as indicated by M, and the last equality holds
for NM

d � 1.
DFI

kq reduces to a Kronecker delta δkq only when Ld = ld =
aFINFI

d , i.e., when the FI and the cavity share in-plane dimen-
sions.2 At the other end of the scale, when the FI becomes
infinitely small, DFI

kq reduces to δk0, implying all cavity modes
couple exclusively to the uniform magnon mode, which is
often assumed in cavity implementations [9,10,13,29]. We
assume this uniform coupling only in the z direction, hence
the factor δlM,z0 in Eq. (26) (thus kz = 0); the condition is that
πdM/2Lz 	 1, with dM the thickness of film M.3

2More precisely, DFI
kq equals an infinite sum of Kronecker delta

functions when the FI and the cavity share in-plane dimensions:
one for each q that is equivalent to k up to an FI Brillouin zone.
We are anyhow only concerned with the first Brillouin zone since
the interaction strengths decrease rapidly with increasing |q| due to
factors ω−1

q entering the coupling strengths.
3More generally, up to an overall sign, the condition is that

πdM�z/2Lz 	 1 with �z odd; even �z cavity modes do not have
in-plane electric field components at the location of the SC, leaving
them uninteresting for our purposes. This condition is seen to require
increasingly thin films with higher �z. However, higher �z cavity
modes enter interactions at increasingly great energy costs, leaving
�z = 1 modes the predominant modes entering our interactions ow-
ing to the geometry and configuration of our setup.
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3. Superconductor

The SC Hamiltonian is

HSC = Hsing + HBCS + Hpara, (27)
with

Hsing ≡
∑

p

ξpc†
pσ cpσ ′ , (28a)

HBCS ≡ −
∑

p

(�pc†
p+P,↑c†

−p+P,↓ + �∗
pc−p+P,↓cp+P,↑),

(28b)

Hpara ≡
∑

d

∑
j

jd (r j )Ad

(
r j+Id + r j

2

)
, (28c)

Hsing is the single-particle energy, where ξp is the lattice-
dependent electron dispersion, and cpσ and c†

pσ are fermionic
operators for an electron of lattice momentum p and spin σ .
The momenta are discretized as

p ≡
(

2πmSC
x

lSC
x

,
2πmSC

y

lSC
y

,
2πmSC

z

lSC
z

)
≡ (px, py, pz ), (29)

where mSC
d and mSC

z are defined analogously to mFI
d [see below

Eq. (22)], covering the 1BZ of the SC with NSC
d (NSC

z ) the
number of SC lattice points in direction d (z).

HBCS is the BCS pairing term, with �p the pairing po-
tential. The leading-order effect of applying an in-plane DC
across the SC is to shift the center of the SC pairing po-
tential from p = 0 to P, where 2P is the generally finite
center-of-mass momentum of the Cooper pairs [46,52,53].
The maximum value of P is limited by the critical current of
the superconductor.

Hpara is the paramagnetic coupling. jd (r j ) is the d compo-
nent of the discretized electric current operator at lattice site j
with the position vector r j , and is defined as [14]

jd (r j ) ≡ iaSCet

h̄

∑
σ

(c†
j+Id ,σ c jσ − c†

jσ c j+Id ,σ ). (30)

The z component jz does not contribute to our Hamiltonian
because the cavity gauge field is in plane at z ≈ Lz/2. Above,
aSC is the lattice constant, e is the electric charge, t is the
lattice hopping parameter, and c jσ and c†

jσ are real-space
fermionic operators for electrons with spin σ at lattice site
j. They relate to cpσ and c†

pσ via

c jσ = 1√
NSC

∑
p

cpσ eip·r j , (31)

with NSC the total number of SC lattice points. Furthermore, Id
represents a unit step in the d direction with respect to lattice
labels. For instance, if j = (1, 1), then j + Ix = (1 + 1, 1) =
(2, 1).

Inserting Eqs. (2), (30), and (31) into Eq. (28c) yields

Hpara =
∑
pp′σ

∑
qς

gqpp′
ς (aqς + a†

−qς )c†
pσ cp′σ . (32)

Here, we have introduced the coupling strength

gqpp′
ς ≡ − aSCet

h̄

√
h̄

εωqV
DSC

p−p′,qeiq·rSC
0

×
∑

d

(e−i(p−q/2)·δd − ei(p′+q/2)·δd )Oq
ςd , (33)

where δd ≡ aSCêd are in-plane primitive lattice vectors.
DSC

p−p′,q is defined in Eq. (26), quantifying the degree of over-
lap between two electron modes and a photon mode. It reduces
to δp−p′,q only when the cavity and the SC share in-plane
dimensions, as is the case in Ref. [14].

As we move onto the imaginary-time (Matsubara) path-
integral formalism in the next sections, it becomes convenient
to eliminate creation-creation and annihilation-annihilation
fermionic operator products. To this end, we absorb the BCS
term (28b) into the diagonal term (28a) by a straightforward
diagonalization:

Hsing + HBCS

=
∑

p

(
cp+P,↑

c†
−p+P,↓

)†(
ξp+P −�p
−�∗

p −ξ−p+P

)(
cp+P,↑

c†
−p+P,↓

)

=
∑

p

(
γp0

γp1

)†(
Ep0 0
0 Ep1

)(
γp0

γp1

)
. (34)

Here we introduced the Bogoliubov (SC) quasiparticle basis
{γpm, γ †

pm}, with m = 0, 1 and dispersion relations

Epm = 1

2

[
ξp+P − ξ−p+P

+ (−1)m
√

(ξp+P + ξ−p+P )2 + 4|�p|2
]
. (35)

The elements up and vp of the basis transformation matrix are
defined through [48]

cp+P,↑ ≡ u∗
pγp0 + vpγp1, c†

−p+P,↓ ≡ −v∗
pγp0 + upγp1.

(36)

Inserting the above into Eq. (34), one finds the relations

�∗
pvp

up
= 1

2
[(Ep0 − Ep1) − (ξp+P + ξ−p+P )], (37a)

|vp|2 = 1 − |up|2 = 1

2

(
1 − ξp+P + ξ−p+P

Ep0 − Ep1

)
, (37b)

which determine up and vp. Recasting Hpara in terms of this
basis yields

Hpara =
∑
pp′

∑
qς

∑
mm′

gqpp′
ςmm′ (aqς + a†

−qς )γ †
pmγp′m′ , (38)

where the coupling strength is now

gqpp′
ςmm′ ≡

(
gq,p+P,p′+P

ς upu∗
p′ + gq,p−P,p′−P

ς vpv
∗
p′ gq,p+P,p′+P

ς upvp′ − gq,p−P,p′−P
ς vpup′

−gq,p−P,p′−P
ς u∗

pv
∗
p′ + gq,p+P,p′+P

ς v∗
pu∗

p′ gq,p−P,p′−P
ς u∗

pup′ + gq,p+P,p′+P
ς v∗

pvp′

)
mm′

. (39)

035147-5



ANDREAS T. G. JANSSØNN et al. PHYSICAL REVIEW B 107, 035147 (2023)

This concludes the derivation of the terms entering the system
Hamiltonian in terms of the various (quasi)particle bases. We
now turn our focus to the construction of an effective FI
theory.

C. Imaginary-time path-integral formalism

We now seek to extract the influence of the SC on the FI, in
particular the anisotropy field induced across the FI. Diagonal-
izing the Hamiltonian directly, as was done in Eq. (34), would
in this case be very challenging, as it couples many more
modes, and furthermore contains trilinear operator products.
Since the external drives (Bext and the DC) only give rise to
equilibrium phenomena in our system, the Matsubara path-
integral formalism of evaluating thermal correlation functions
is valid [41]. This translates the evaluation into a path-integral
problem, which is very convenient for our purposes. The
path-integral approach facilitates aggregation of the influences
of specific subsystems into effective actions, without explicit
diagonalization. On this note, for comparison, Cottet et al.
[40] analyze a scenario in which the nonequilibrium Keldysh
path-integral formalism is used to analyze the net influence of
a QED circuit on a cavity.

The starting point is the imaginary-time action

S ≡ SFI
0 + Scav

0 + SSC
0 + SFI-cav

int + Scav-SC
int

=
∫

dτ

[ ∑
k

η
†
k h̄∂τηk +

∑
qς

a†
qς h̄∂τ aqς

+
∑
pm

γ †
pmh̄∂τ γpm + H

]
. (40)

τ is a temperature parameter treated as imaginary time,
which relates to the thermal equilibrium density matrix
exp(−βH/h̄), with β ≡ h̄/kBT the inverse temperature T in
units of time, and H the system Hamiltonian. The dependence
of the field operators on temperature (τ ) is implied. In formu-
lating the path integral, the magnon, photon, and Bogoliubov
quasiparticle operators have been replaced by eigenvalues of
the respective coherent states [41]; i.e., the bosonic operators
have been replaced by complex numbers, and the fermionic
operators by Graßmann numbers. The magnons, photons, and
Bogoliubov quasiparticles are furthermore taken to be func-
tions of τ [41]. The integral over τ is taken over the interval
(0, β]. Note that we assume the gap to be fixed to the bulk
mean field value, and therefore do not include a gap action or
integration in the partition function.

We now replace the integral over τ by an infinite sum over
discrete frequencies by a Fourier transform of the magnon,
photon, and Bogoliubov quasiparticle operators with respect
to τ . The conjugate Fourier parameters are Matsubara fre-
quencies:

�n = 2nπ

β
(41)

for bosons, and

ωn = (2n + 1)π

β
(42)

for fermions, with n ∈ Z. The transforms read as

ηk = 1√
β

∑
�m

η−�m,ke−i�mτ , (43a)

aqς = 1√
β

∑
�n

a−�n,qςe−i�nτ , (43b)

γpm = 1√
β

∑
ωn

γ−ωn,pme−iωnτ . (43c)

To avoid clutter, we introduce the 4-vectors

k ≡ (−�m, k), (44a)

q ≡ (−�n, q), (44b)

p ≡ (−ωn, p), (44c)

and the generally complex energies

h̄λk ≡ −ih̄�m + h̄λk, (45a)

h̄ωq ≡ −ih̄�n + h̄ωq, (45b)

Epm ≡ −ih̄ωn + Epm. (45c)

The actions in (40) then become

SFI
0 =

∑
k

h̄λkη
†
kηk, (46a)

Scav
0 =

∑
qς

h̄ωqa†
qς aqς , (46b)

SSC
0 =

∑
pm

Epmγ †
pmγpm, (46c)

SFI-cav
int =

∑
kd

∑
qς

gkq
dς

(νdη−k + ν∗
dη

†
k )(aqς + a†

−qς ), (46d)

Scav-SC
int = 1√

β

∑
qς

∑
pm

∑
p′m′

gqpp′
ςmm′ (aqς + a†

−qς )γ †
pmγp′m′ ,

(46e)

where we introduced the coupling functions

gkq
dς

≡ gkq
d δς1δ�m,�n , (47)

gqpp′
ςmm′ ≡ gqpp′

ςmm′δωn′ ,ωn−�n . (48)

We additionally introduced a redundant Kronecker delta
function δς1 to the coupling (47), which will facilitate the
gathering of interaction terms in Eq. (51). We will use the
notation gη and gγ for the magnitudes of the FI-cavity and
cavity-SC coupling, respectively.

We are now equipped to construct effective actions by in-
tegrating out the photonic and fermionic degrees of freedom,
to which end we will consider the imaginary-time partition
function [41,43]

Z ≡ 〈vac, t = ∞|vac, t = −∞〉

=
∫

D[η, η†]
∫

D[a, a†]
∫

D[γ , γ †]e−S/h̄, (49)
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FIG. 3. Feynman diagrams [54] of the bare cavity coupling to
the FI and SC, and the resulting terms in the FI and SC effective
actions after integrating out the cavity photons, where Gcav is the
photon propagator.

where, e.g., ∫
D[γ , γ †] ≡

∏
pm

∫
D[γpm, γ †

pm] (50)

is to be understood as the path integrals over every Bogoliubov
quasiparticle mode.

D. Integrating out the cavity photons

The order in which we integrate out the cavity and the SC is
inconsequential. We will begin with the cavity, which can be
integrated out exactly. We show that interchanging the order
of integrations leads to identical results in Appendix A.

We gather the interactions between the cavity and FI and
SC,

Scav
int =

∑
q,ς

[Jqς aqς + J−qς a†
−qς ], (51)

where we have defined

Jqς =
∑

ks

gkq
dς

(νdη−k + ν∗
dη

†
k ) + 1√

β

∑
pp′

∑
mm′

gqpp′
ςmm′γ

†
pmγp′m′ .

(52)

These interaction terms are illustrated by the diagrams in the
top panel of Fig. 3. Integrating out the cavity modes [41], we
therefore get the effective action

Seff = −
∑
qς

Jqς J−qς

h̄ωq
. (53)

Inserting the expression for Jqς we get three different terms,
Seff = SFI

1 + SSC
1 + Sint, shown diagrammatically in the bot-

tom panel of Fig. 3. The first term,

SFI
1 = −

∑
qkk′

∑
ςdd ′

gkq
dς

gk′−q
d ′ς

h̄ωq

× (νdη−k + ν∗
dη

†
k )(νd ′η−k′ + ν∗

d ′η
†
k′ ), (54)

is a renormalization of the magnon theory due to interactions
with the cavity, resulting in a nondiagonal theory. The second
term,

SSC
1 = − 1

β

∑
qpp′
oo′

∑
ςmm′

nn′

gqpp′
ςmm′g

−qoo′
ςnn′

h̄ωq
γ †

pmγp′m′γ †
onγo′n′ , (55)

is an interaction term coupling four quasiparticles, similar
to the term found in Ref. [14] for a normal metal coupled
to a cavity, leading to superconducting correlations. Note
that unlike the pairing term found in Ref. [14] via the
Schrieffer-Wolff transformation, the term above is not limited
to an off-resonant regime. In principle, it could also lead to
renormalization of the quasiparticle spectrum and lifetime.
Since we are here concerned with the effects of the cavity
and SC on the FI, we will neglect this term as it only leads to
higher-order corrections.

Finally, we have the cavity-mediated magnon-quasiparticle
coupling

Sint = − 1√
β

∑
kpp′

∑
dmm′

V kpp′
dmm′ (νdη−k + ν∗

dη
†
k )γ †

pmγp′m′ , (56)

where we have defined the effective FI–SC interaction

V kpp′
dmm′ =

∑
qς

gkq
dς

g−qpp′
ςmm′

[
1

h̄ωq
+ 1

h̄ω−q

]
. (57)

This term is generally nonzero, and we therefore see that the
cavity photons lead to a coupling between the FI and SC,
potentially over macroscopic distances. This means that the FI
and SC will have a mutual influence on each other, possibly
leading to experimentally observable changes in the two mate-
rials. We therefore integrate out the Bogoliubov quasiparticles
and calculate the effective FI theory below. We reiterate that
the interaction is exact at this point, not a result of a perturba-
tive expansion.

E. Integrating out the SC quasiparticles: Effective FI theory

The full effective SC action comprises the sum SSC
0 +

SSC
1 + Sint . The second term is second order in gγ , but does not

contain FI operators, and will therefore only have an indirect
effect on the effective FI action. In a perturbation expansion of
the effective FI action, the term SSC

1 will therefore contribute
higher-order correction terms compared to Sint. We therefore
neglect this term in the following, leading to the SC action

SSC ≈ −
∑
pp′

∑
mm′

γ †
pm(G−1)pp′

mm′γp′m′ , (58)

where we have defined G−1 = G−1
0 + �, with(

G−1
0

)pp′

mm′ = − Epmδpp′δmm′ , (59)

�
pp′
mm′ = 1√

β

∑
kd

V kpp′
dmm′ (νdη−k + ν∗

dη
†
k ). (60)
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Integrating out the SC quasiparticles results in the effective
FI action [41]

SFI = SFI
0 + SFI

1 − h̄ Tr ln(−βG−1/h̄). (61)

The Green’s function matrix G−1 contains magnon fields, and
will be treated perturbatively in order to draw out the lowest-
order terms in the effective FI theory. We expand the logarithm
to second order in the FI–SC interaction,

ln

(
−βG−1

h̄

)
≈ ln

(
−βG−1

0

h̄

)
+ G0� − 1

2 G0�G0�, (62)

where G0 is the inverse of G−1
0 . This expansion is valid

when |G0�| 	 1, meaning |gηgγ /h̄ωqEpm| 	 1, where we
use shorthand notation for the couplings gη and gγ between
cavity photons and η and γ fields. respectively. The first term
in Eq. (62) does not contain magnonic fields, and therefore
does not contribute to the FI effective action.4 The third term
contains bilinear terms in magnonic fields, and gives a cor-
rection to the magnon dispersion of order |[gηgγ /h̄ωq]2/Epm|,
a factor of |(gγ )2/h̄ωqEpm| smaller than the corrections con-
tained in SFI

1 , and will therefore also be neglected. Keeping
only the second term, and using the fact that G0 is diagonal in
both quasiparticle type m and momentum p, we therefore get
the effective FI action to leading order,

SFI =
∑

k

h̄λkη
†
kηk − gμB

∑
kd

hk
d

√
S

2
(νdη−k + ν∗

dη
†
k )

+
∑

kk′dd ′
Qkk′

dd ′ (νdη−k + ν∗
dη

†
k )(νd ′η−k′ + ν∗

d ′η
†
k′ ), (63)

where we have defined the anisotropy field due to the coupling
to the superconductor,

hk
d = − h̄

gμB

√
2

Sβ

∑
pm

V kpp
dmm

Epm
, (64)

and a function

Qkk′
dd ′ ≡ −

∑
qς

gkq
dς

gk′−q
d ′ς

h̄ωq
(65)

describing the cavity-mediated self-interaction in the ferro-
magnetic insulator.

III. RESULTS

The main result of our work is the effective magnon action
(63). The interaction with the cavity and the SC gives rise to
linear and bilinear correction terms to the diagonal magnon
theory, corresponding to an induced anisotropy field and cor-
rections to the magnon spectra.

To extract a specific quantity, we consider the leading-order
effect of coupling the FI to the SC via the cavity, namely,
the linear magnon term. Physically this can be understood

4For the same reason the term SSC
1 in the SC action would only

contribute when paired with �, leading to terms two orders higher in
gγ compared to the terms containing � only.

as a contribution from an additional magnetic field trying to
reorient the FI in a direction other than along the z axis.
We can see this explicitly if we Fourier transform the linear
magnon term back to real space and imaginary time,

SFI
lin = − gμB

h̄

∫
dτ

∑
ri

∑
d

hd (ri, τ )Sid (τ ), (66)

where we have used the definition of the in-plane spin compo-
nents in Eq. (18), and defined the real-space anisotropy field
components due to the interaction with the superconductor

hd (ri, τ ) = 1√
NFIβ

∑
k

hk
d eik·ri . (67)

Above, we introduced the 4-vector

ri ≡ (τ, ri ). (68)

In the derivation leading to Eq. (66), we used the Holstein-
Primakoff transformation and assumed a square lattice for
the FI. However, since the Zeemann coupling between the
spins and cavity modes does not depend on the FI lattice
specifically, we expect the result to hold also for other lattice
geometries and continuum spin models.

In order for the anisotropy field components to be real,
we require hk

d = (h−k
d )∗. Inserting the expressions for Epm and

V kpp
dmm from Eqs. (57) and (45c) into Eq. (64), and performing

the sum over the Matsubara frequencies [41], we get the
following expression for the Fourier-transformed anisotropy
field components:

hk
d = −

√
NFIβδ�m0

∑
q,d ′

4πaSCet

h̄εω2
qV Lz

qd̄ qd ′

|Q|2 ν2
d eiq·(rFI

0 −rSC
0 )

× DFI
k,qDSC

0,−qe−iqd ′ aSC/2�Pd ′ , (69)

where the dependence on the supercurrent comes in through
the factor

�Pd =
∑

p

{sin[(pd + Pd )aSC]|up|2

+ sin[(pd − Pd )aSC]|vp|2} tanh
βEp0

2h̄
. (70)

Notice that the field is finite only for zero Matsubara fre-
quency, meaning that it is time independent (magnetostatic).
It is possible to show that hk

d = (h−k
d )∗ by letting q → −q in

the sum in Eq. (69), and using DFI
k,q = (DFI

−k,−q)∗, DSC
0,−q =

(DSC
0,q)∗ from the definition in Eq. (26). Observe that in the

case of no DC (i.e., P = 0), the summand in Eq. (70) is odd
in p, and the sum therefore zero, i.e., �Pd = 0 if Pd = 0.
Hence, there is no anisotropy field induced across the FI in
the absence of a supercurrent. This stresses the necessity of
breaking the inversion symmetry of the SC in order to induce
an influence on the FI.

A. Special case: Small FM

The anisotropy field (67) generally gives rise to compli-
cated, local reorientation of the FI spins. However, there are
special cases in which it takes on a simple form. In partic-
ular, assume the FI to be very small relative to the cavity,
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FIG. 4. Illustration of the setup used in the example given in
Sec. III A. A small, square FI and SC are placed spaced apart in the
y and z directions inside a comparatively large cavity. Only a small
portion of the cavity length in y is utilized as the contributions by the
various mediating cavity modes add constructively only over short
distances. The FI and SC are nevertheless separated by hundreds
of µm, 2–5 orders larger than typical effectual lengths in proximity
systems.

i.e., �xlFI
x , �ylFI

y 	 Lx, Ly. In this case, the FI sum (26) be-
comes highly localized around k = 0 for the relevant ranges
of �x and �y, which are limited by the other factors DSC

0q and
(ωq|Q|)−2 found in Eq. (69). We may therefore set k = 0.
For a specified set of material parameters and dimensions, the
validity is confirmed numerically. In this case, Eq. (67) thus
reduces to

hd = h0
d√

NFIβ
, (71)

representing a uniform anisotropy field across the FI. In this
limit we can simplify the expression for the anisotropy field
components

hd = −
∑
q,d ′

2πaSCet

h̄εω2
qV Lz

ν2
d DFI

0,qDSC
0,−q�Pd ′

qd̄ qd ′

|Q|2

× [
cos qxLsep

x cos qyLsep
y − sin qxLsep

x sin qyLsep
y

]
, (72)

where we have assumed e−iqd ′ aSC/2 ≈ 1, which is a good ap-
proximation as long as the cavity dimensions far exceed the
lattice constant and only low |q| contribute to the sum, and
used the fact that DM

0,q [Eq. (26)] is an even function in q. We
have also defined the separation length Lsep

d = (rFI
0 − rSC

0 ) ·
êd . Assuming a finite separation between the FI and SC only
in one direction, the last term in the above equation vanishes,
making every remaining factor even in qd , except the product
qd̄ qd ′ for d̄ �= d ′. The sum over q therefore picks out terms
such that d̄ = d ′. In order to get a finite hd we must, therefore,
have �Pd̄ �= 0, i.e., the supercurrent momentum must be finite
in the direction d̄ . Hence, in the case that the separation
between the FI and SC is finite in only one direction, applying
a supercurrent in the x direction can only induce an anisotropy
field in the y direction, and vice versa.

We consider the specific case of a small, square FI and SC
displaced along y and z (Fig. 4). In Fig. 5 we show numerically
how the effective anisotropy field varies with the supercurrent
momentum in this special case, using YIG and Nb as material
choices for the FI (lFI

x = lFI
y = 10 µm) and SC (lSC

x = lSC
y =

50 µm, dSC = 10 nm) films, respectively (see Table I). We
use Python with the NUMPY and MATPLOTLIB libraries for the

FIG. 5. The magnitude and direction (arrows) of the effective
anisotropy field [Eq. (72)] at T = 1 K as a function of the super-
current momentum P, for the simple case of a small FI (lFI

x = lFI
y =

10 µm) relative to the cavity (Lx = Ly = 10 cm, Lz = 0.1 mm). The
SC dimensions are lSC

x = lSC
y = 50 µm, with a depth of dSC = 10 nm.

The FI and SC center points are separated by (a) Lsep
y = 140 µm and

(b) nothing (placed directly over each other). Observe the change in
both the strength and direction of the anisotropy field. The plots were
produced using Python with the NUMPY and MATPLOTLIB libraries.

numerics. We furthermore use the interpolation formula [55]

� = 1.76kBTc0 tanh(1.74
√

Tc0/T − 1) (73)

TABLE I. Table of numerical parameter values.

YIG (FI) Nb (SC)

aFI 1.240 nm [56] aSC 0.330 nm [57]
Tc0 6 K [49]
t 0.35 eVa

Pc 3.1 × 107 m−1b

EF 5.32 eVc [57]

aBased on the tight-binding expression t = h̄2/2ma2
SC [14], with m

the effective electron mass.
bBased on Pc = jcm/h̄ens [46], with an estimated critical current
jc = 4 MA/ cm2 [58], and a superfluid density ns = m/μ0e2λ2 [48]
with a penetration depth λ = 200 nm [49].
cFermi energy for Nb. Does not appear explicitly in Eq. (72), but is
used in the electron dispersion.
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for the superconducting gap, and a simple cubic tight-binding
electron dispersion. With the FI and SC center points sepa-
rated by 140 µm in the y direction (meaning they are separated
edge to edge by 115 µm in plane), we find an anisotropy
field with a magnitude of �14 µT [Fig. 5(a)]. This magnitude
reduces by about one order of magnitude at a greater sepa-
ration of Lsep

y = 240 µm in the y direction, or Lsep
x = 200 µm

in the x direction (with Lsep
y = 140 µm as before). Hence, for

these particular parameter values, the tolerances for misplace-
ment are about 200 and 100 µm in the x and y directions,
respectively. The tolerance to misplacement relative to the
cavity dimension is higher in the z direction due to the slow
z-dependent variation of the relevant cavity modes close to the
magnetic and electric antinodes.

If the constraint on separating the FI and SC in plane
is eased, the maximum magnitude increases to 16 µT in our
specific example [Fig. 5(b)]. We discuss the latter case in the
concluding remarks.

Two factors determine the inhomogeneous distribution of
the responses seen in Fig. 5. First, the anisotropy field is nearly
linear in the components Pd of the supercurrent momentum,
which is seen by expanding the anisotropy field [see Eq. (70)]
around Pd aSC = 0 (note that PcaSC ≈ 0.001). This generally
makes the response stronger for larger |P|, which is as ex-
pected since it relies on breaking the p-inversion symmetry.
This dependency is evident in Fig. 5.

Second, the factor eiq·(rFI
0 −rSC

0 ) renders the anisotropy field
very sensitive to the separation of the FI and SC center points
in the in-plane directions. This factor expresses that cavity
modes associated with a range of different in-plane momenta
q (i.e., spatial oscillations) with a coherent amplitude at no
in-plane separation (rFI

0 − rSC
0 = Lz

2 êz ), become increasingly
decoherent with increasing separation. Eventually, this deco-
herence causes states in the SC to contribute oppositely, hence
destructively, to the effective anisotropy field. The destructive
addition at finite separation is limited by the range of low-q
cavity modes that contribute to the mediated interaction un-
til the coupling is suppressed by the factor DFI

0qDSC∗
0q /ω2

qQ2,
which in turn is determined by the dimensions of the three
subsystems. For sufficiently small separations (determined by
the contributing range of q), this oscillation is mild, and can
be used to change the polarity of the anisotropy field without
extinguishing the response. This is why the polarity of the
response component hx changes between Figs. 5(a) and 5(b).

It is furthermore clear by inspection of Eq. (70) that the
main contributions to the anistotropy field come from states
near the Fermi surface. Series expanding the expression in
P, most terms are seen to cancel due the odd symmetry in p
that was remarked below Eq. (70). The strongest asymmetry
caused by P is seen to originate from the factor sin[(pd ′ +
Pd ′ )aSC]|up|2 + sin[(pd ′ − Pd ′ )aSC]|vp|2 in the summand, due
to the steplike nature of |up|2 and |vp|2 near the Fermi surface.
This is as expected since we consider interactions involv-
ing the scattering of SC quasiparticles, hence the low-energy
events are concentrated near the Fermi surface.

IV. CONCLUDING REMARKS

In this paper, we have calculated the cavity-mediated cou-
pling between an FI and an SC by exactly integrating out

the cavity photons. The main result is the effective FI action
(63), in which linear and bilinear magnon terms appear in
addition to the diagonal terms. These respectively correspond
to an induced anisotropy field and corrections to the magnon
spectra. In contrast to conventional proximity systems, the
cavity mediation allows for relatively long-distance interac-
tions between the FI and the SC, without destructive effects on
order parameters associated with proximity systems, such as
pair-breaking magnetic fields. The separation furthermore fa-
cilitates subjection of the FI and the SC to separate drives and
temperatures. In contrast to common perturbative approaches
to cavity-mediated interactions involving the Schrieffer-Wolff
transformation [9,14,21] or Jaynes-Cummings–type models
[12,13,39], the path-integral approach allows for an exact in-
tegrating out of the cavity, without limitations to off-resonant
regimes. This carries the additional advantage of allowing for
magnon-photon hybridization; that is, we are not theoretically
limited to regimes of weak FI-cavity Zeeman coupling. We
furthermore take into account that the finite and different FI,
cavity, and SC dimensions enable interactions between large
ranges of particle modes, which is neglected in various pre-
ceding works [9,10,13,14,22,29,30], although its importance
has been emphasized by both experimentalists [30] and theo-
rists [22].

In an arbitrary practical example, we estimate numerically
the effective anisotropy field induced by leading-order in-
teractions across a small YIG film (FI) (lFI

x = lFI
y = 10 µm)

due to mediated interactions with an Nb film (SC) (lSC
x =

lSC
y = 50 µm, dSC = 10 nm). We find it is �14 µT, mediated

across 130 µm edge to edge accounting for both in-plane and
out-of-plane separation, inside a 10 cm × 10 cm × 0.1 mm
cavity [Fig. 5(a)]. With out-of-plane coercivities in nm-thin
Bi-doped YIG films reportedly as low as 300 µT [59], this
result is expected to yield an experimentally appreciable tilt
in the FI spins. The separation is 2–5 orders of magnitude
greater than the typical length scales of influence in proximity
systems, and facilitates local subjection to different drives and
temperatures. The main contributions from the SC originate
from a narrow vicinity of the Fermi surface determined by
the Cooper pair center-of-mass momentum 2P. The response
is very sensitive to the in-plane separation of the FI and SC
center points due to the spatial decoherence of the mediat-
ing cavity modes over distances, which in turn depends on
the dimensions of the FI, cavity, and SC. For this reason,
the in-plane separation of FI and SC was much smaller than
the cavity width.

In Appendix B we have included the calculation of the
anisotropy field when placing the SC at the magnetic antinode
at z = 0. Since the vector potential is purely out of plane in
this case, the paramagnetic coupling is zero, and we there-
fore couple the cavity to the SC via the Zeeman coupling.
As shown in this Appendix, this results in a much weaker
coupling and therefore much smaller anisotropy field. This
can be understood by comparing the effective fields the SC
couples to in the two cases. The strength of the Zeeman
coupling is proportional to q × A, which for the lowest cavity
modes gives a field strength proportional to |A|/L. However,
for the paramagnetic coupling, the effective field is propor-
tional to p · A. In both cases, the main contribution to the
anisotropy field originates from a narrow vicinity of the Fermi
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level, the extent of which is determined by the magnitude of
the symmetry-breaking supercurrent (electric antinode) or ap-
plied field (magnetic antinode). Thus, we have a paramagnetic
coupling proportional to pF|A|, where pF is the Fermi momen-
tum. A Fermi energy of 5.32 eV gives pF ∼ 1010 m−1 � 1/L
for cavities with lengths in the mm to cm range. Together with
the fact that the contributing components of A are larger for
low |q| at the electric antinode compared with the magnetic
antinode, the difference in length scales leads to a much larger
paramagnetic coupling between cavity and SC compared to
the Zeeman coupling, resulting in a much larger effective
FI–SC coupling and anisotropy field.

One important constraint in our model that can potentially
be eased is that the FI and the SC cannot overlap in plane.
In this case, we found a stronger response [cf. Fig. 5(b)].
This was assumed in order to enable the FI to be subjected to
the aligning magnetostatic field Bext without affecting the SC,
analogously to the experimental setup in Refs. [12,13]. Com-
bined with the eventually destructive contributions of various
cavity modes over finite in-plane distances that limited us to
using only a fraction of the cavity width in our example, this
leads to significant constraints on the dimensions and relative
placements of the FI and SC. However, Ref. [60] reports out-
of-plane critical fields of nm-thin Nb films of roughly 1–4 T,
while Ref. [59] reports out-of-plane coercivities in nm-thin
Bi-doped YIG films of roughly 3 × 10−4 T. An aligning field
can therefore be many orders of magnitude smaller than the
SC critical field with appropriate material choices. One would
then expect the effect of Bext on the SC to be negligible.
However, we have not considered here the subsequent effect
of the SC on the spatial distribution of Bext, which was taken
to be uniform across the FI.

Moreover, the Pearl length criterion, which greatly limits
SC dimensions, can potentially be disregarded if the odd-p
symmetry of the anisotropy field (64) is broken by other
means than a supercurrent. A candidate for this is taking into
account spin-orbit coupling on the SC and subjecting it to a
weak (non-pair-breaking) magnetostatic field.

Furthermore, in our setup, we have considered coupling to
the quasiparticle excitations of the SC. This has partly been
motivated by the prospect of using the FI to probe detailed
spin and momentum information about the SC gap, which
would require an extension of our present model. Another
interesting avenue to explore is coupling directly to the gap
by considering fluctuations from its mean-field value. This has
been explored for an FI–SC bilayer, where the Higgs mode of
the SC couples linearly to a spin-exchange field [61]. This has
a significant impact on the SC spin susceptibility in a bilayer
setup.

Despite coupling to the quasiparticles, we find that the
anisotropy field magnitude is nearly constant at low tem-
peratures, and rapidly decreases to zero near the critical
temperature. This can be understood from the fact that the
symmetry-breaking supercurrent momentum enters the sys-
tem Hamiltonian via the gap [cf. Eq. (28b)]. Hence, when the
gap vanishes, so does the quantity that breaks the symmetry.
On the other hand, for temperatures substantially below Tc0,
the gap varies little with temperature; the anisotropy field
becomes close to constant, with a magnitude depending on the

momentum associated with the inversion-symmetry-breaking
current P.

In the normal state, the DC through the SC induces a
surrounding magnetostatic field, by the Biot-Savart law. This
differs from the response in the superconducting state by
instead being appreciable above Tc0, and by its spatial distri-
bution; for instance, the magnetostatic field cannot reverse the
field direction as observed between Figs. 5(a) and 5(b).

Lastly, it is seen from Eq. (64) that the SC quasiparticle
modes uniformly affect the anisotropy field in our current
setup, as the sum over fermion momenta p can be factored
out from the sum over photon momenta q. This limits the
resolution of SC features in the anisotropy field, and by ex-
tension the FI. However, to higher order in the calculations,
the quantity Gqq′

ςς ′ defined in Eq. (A6) enters, with sums over
fermion momenta p and p′ that are inseparable from the cavity
momenta q and q′. This quantity is a candidate for extracting
more features of the SC via the FI.
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APPENDIX A: INTEGRATING OUT THE SC FIRST

The order in which we integrate out the cavity and the SC is
inconsequential. We show this here by integrating out the SC
first, starting from the partition function (49). We introduce
the interaction matrix G with elements

Gpp′
mm′ ≡ 1√

β

∑
qς

gqpp′
ςmm′ (aqς + a†

−qς ), (A1)

and furthermore the diagonal matrix E with elements

E pp′
mm′ ≡ Epmδpp′δmm′ . (A2)

Hence, the action involving the SC can be written as

SSC
0 + Scav-SC

int =
∑
pm

∑
p′m′

(E + G)pp′
mm′γ

†
pmγp′m′ . (A3)

The part of the partition function (49) which depends on the
SC is a Gaussian integral, and can now be written as [41]

ZSC ≡
∫

D[γ , γ †] exp

[
− 1

h̄

∑
pm

∑
p′m′

(E + G)pp′
mm′γ

†
pmγp′m′

]

≈ exp[Tr[E−1G − E−1GE−1G/2]]. (A4)

In the last line, we neglected a factor exp Tr ln(βE/h̄) that
is constant with respect to the integration variables, and ex-
panded another logarithm to second order in |E−1G|. Hence,
integrating out the SC to second order in the cavity-SC
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coupling yields an effective action

Scav
1 ≡ − h̄ Tr[E−1G − E−1GE−1G/2]

= − h̄√
β

∑
qς

∑
pm

gqpp
ςmm

Epm
(aqς + a†

−qς )

+
∑
qς

∑
q′ς ′

Gqq′
ςς ′ (aqς + a†

−qς )(aq′ς ′ + a†
−q′ς ′ ), (A5)

where we introduced the coefficient

Gqq′
ςς ′ ≡ h̄

2β

∑
pm

∑
p′m′

gqpp′
ςmm′g

q′ p′ p
ς ′m′m

EpmEp′m′
. (A6)

We now proceed to isolate the photonic terms and integrate
out the cavity, i.e., we will perform the integral

Zcav ≡
∫

D[a, a†]e−Scav/h̄, (A7)

where the effective cavity action is

Scav ≡ Scav
0 + Scav

1 + SFI-cav
int . (A8)

To this end, we introduce the current operator

Jqς ≡ −
∑
kd

Gkq
dς

(νdη−k + ν∗
dη

†
k ) + sqς , (A9)

and perform a shift of integration variables

aqς → aqς + J−qς/h̄ωq, (A10a)

a†
qς → a†

qς + Jqς/h̄ωq. (A10b)

The quantities Gkq
dς

(to be distinguished from Gqq′
ςς ′ ) and sqς are

coefficients of linear photon terms to be determined.
We now require that the shifts (A10a) and (A10b) absorb

the explicit linear photon terms in the action (A8), leaving
only bilinear and constant terms in the shifted variables. This
leads to self-consistency equations for Gkq

dς
and sqς . However,

to second order in |E−1G|, it can be shown that only the
lowest-order expressions for Gkq

dς
and sqς affect the anisotropy

field to be extracted at the end (cf. Sec. III). These are

Gkq
dς

= gkq
dς

, (A11)

sqς = h̄√
β

∑
pm

gqpp
ςmm

Epm
. (A12)

Hence, the action (A8) can be written as

Scav = Scav
bil + Scav

con, (A13)

where

Scav
bil ≡

∑
qς

h̄ωqa†
qςaqς

+
∑
qς

∑
q′ς ′

Gqq′
ςς ′ (aqς + a†

−qς )(aq′ς ′ + a†
−q′ς ′ ), (A14)

Scav
con ≡

∑
qς

Jqς J−qς

h̄ωq
+

∑
qς

∑
q′ς ′

Gqq′
ςς ′J−qς J−q′ς ′

[
1

h̄ωq
+ 1

h̄ω−q

]

×
[

1

h̄ωq′
+ 1

h̄ω−q′

]
. (A15)

Scav
bil contains all bilinear terms with respect to the shifted

variables, and Scav
con all constant terms.

Returning to the integral (A7), by Eq. (A13), we now have

Zcav =
∫

D[a, a†]e−Scav/h̄ = e−Scav
con/h̄

∫
D[a, a†]e−Scav

bil /h̄.

(A16)

The integrand is now independent of magnons, and therefore
inconsequential to the physics of the ferromagnetic insulator.
We can therefore neglect the integral, leaving only the expo-
nential prefactor. We are thus left with an effective FI partition
function

ZFI ≡
∫

D[η, η†]e−SFI/h̄, (A17)

where the effective FI action is

SFI ≡ SFI
0 + Scav

con. (A18)

Neglecting magnon-independent terms, SFI reads as, after
some rewriting,

SFI =
∑

k

h̄λkη
†
kηk +

∑
kd

∑
k′d ′

Qkk′
dd ′ (νdη−k + ν∗

dη
†
k )

× (νd ′η−k′ + ν∗
d ′η

†
k′ ) − gμB

∑
kd

hk
d

√
S

2
(νdη−k + ν∗

dη
†
k ).

(A19)

Above, we introduced

Qkk′
dd ′ ≡ −

∑
qς

[gkq
dς

gk′−q
d ′ς

h̄ωq
+

∑
q′ς ′

Gqq′
ςς ′

[
1

h̄ωq
+ 1

h̄ω−q

]

×
[

1

h̄ωq′
+ 1

h̄ω−q′

]
gkq

dς
gk′q′

d ′ς ′

]
, (A20)

hk
d = − h̄

gμB

√
2

Sβ

∑
pm

V kpp
dmm

Epm
, (A21)

which to leading order in the paramagnetic coupling are in-
deed the same as Eqs. (64) and (65).

APPENDIX B: SC AT MAGNETIC ANTINODE

To compare our results for the FI–SC coupling with the
SC placed at the electric antinode, we examine what happens
when we place the superconductor at a magnetic maximum at
z ≈ 0 (cf. Fig. 6). In this case the vector potential A points
purely in the z direction, and therefore does not couple to the
SC via the paramagnetic coupling term used above. We there-
fore couple the SC to the cavity via the Zeeman coupling, and
calculate the resulting anisotropy field across the FI. For the
setup considered in the main text, it was necessary to break the
inversion symmetry to get a finite anisotropy field, achieved,
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FIG. 6. Illustration of the setup with the SC placed at the mag-
netic antinode. The SC is subjected to an aligning external in-plane
magnetic field BSC

ext. This setup is otherwise identical to the one
illustrated in Fig. 1.

for instance, by applying a DC current. For the present setup,
it is necessary to break the in-plane spin-rotation symmetry,
which can be achieved by applying an in-plane magnetic
field to the SC. This becomes evident when considering the
coupling between the cavity and SC. Placing the SC at z ≈ 0,
the cavity magnetic field is purely in plane, pointing in the
opposite direction to the field at z = Lz [Eq. (23)], resulting in
a coupling term

SZeeman =
∑
qpp′

∑
σσ ′

gqpp′
σσ ′ (aq1 + a†

−q1)c†
pσ cp′σ ′ , (B1)

with interaction matrix

gqpp′
σσ ′ = δ�n,ωn−ω′

n

×
√

h̄μ2
B

εωqV
DSC

p−p′,qeiq·rSC
0 i sin θq(σ × q)σσ ′ · êz. (B2)

This interaction alone would lead to a SC-cavity coupling that
is off diagonal in quasiparticle basis. The anisotropy field,
corresponding to the diagram for Sint in Fig. 3 with connected
quasiparticle lines, will therefore be exactly zero unless one
breaks the spin-rotation symmetry by an in-plane magneto-
static field BSC

ext. The latter can, for example, be experimentally
realized using external coils, as suggested for Bext. In that case
the quasiparticle bands are spin split, resulting in the SC term

SSC
0 =

∑
pn

(−ih̄ωn + Epn)γ †
pnγpn, (B3)

with the four quasiparticle bands

Epn = (−1)�n/2�Ep + (−1)nH, (B4)

with Ep =
√

ξ 2
p + |�p|2, n ∈ [0, 1, 2, 3], and H = |μBBSC

ext|.
The bands are independent of in-plane direction of the field
BSC

ext, with the directional dependence entering through the
coupling between the quasiparticles and the cavity photons,

SSC-cav
int = 1

2
√

β

∑
qpp

∑
nn′

gqpp′
nn′ (aq1 + a†

−q1)γ †
pnγp′n′ , (B5)

where we have defined the interaction matrix in the Bogoli-
ubov quasiparticle basis

gqpp′
nn′ = − 1

2
gqpp′

↑↓ eiφ

(
[u†

pup′ + vpv
†
p′][σz + iσy] [u†

pvp′ − vpu†
p′ ][σ0 − σx]

[v†
pup′ − upv

†
p′][σ0 + σx] [v†

pvp′ + upu†
p′ ][σz − iσy]

)
nn′

− 1

2
gqpp′

↓↑ e−iφ

(
[u†

pup′ + vpv
†
p′ ][σz − iσy] [u†

pvp′ − vpu†
p′ ][σ0 + σx]

[v†
pup′ − upv

†
p′ ][σ0 − σx] [v†

pvp′ + upu†
p′ ][σz + iσy]

)
nn′

, (B6)

where σ0 is the 2 × 2 identity matrix, and φ is the angle of the
in-plane field relative to the x axis. We have also defined the
functions

up = eiθp

√
1

2

(
1 + ξp

Ep

)
, (B7a)

vp = eiθp

√
1

2

(
1 − ξp

Ep

)
, (B7b)

which satisfy |up|2 + |v2
p| = 1. Here 2θp is the phase of the

order parameter.
Following the same procedure of integrating out the cavity

photons and quasiparticles in the SC, we get an expression
identical to Eq. (63), with the only change coming in the
anisotropy field, which is now defined as

hk
d ≡ − h̄√

2SβgμB

∑
pn

V kpp
dnn

Epn
, (B8)

with

V kpp′
dnn′ =

∑
q

gkq
d1g−qpp′

nn′

[
1

h̄ωq
+ 1

h̄ω−q

]
. (B9)

The additional factor of 1
2 in the definition of hk

d is due to the
field integral resulting in the Pfaffian of the antisymmetrized
Green’s function in this case, which is the square root of the
determinant [62]. The reason for this is the necessity of an
expanded Nambu spinor, which contains both creation and
annihilation operators of both types of quasiparticles when
including an in-plane field [63].

Inserting Eqs. (B9) and (B6) into Eq. (B8) and performing
the sum over fermionic Matsubara frequencies [41], we get

hk
d =

√
βδ�m0√
2SgμB

∑
qp

gkq
d

h̄ωq
[g−qpp

↑↓ eiφ + g−qpp
↓↑ e−iφ]

×
[

tanh
β(Ep + H )

2h̄
− tanh

β(Ep − H )

2h̄

]
, (B10)
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where we have used the fact that ωq is even in q. Here it is
clear that the anisotropy field is exactly zero when the in-plane
field is zero since the last two terms exactly cancel in that
case. Moreover, since the anisotropy field is independent of
the frequency �m, we define the time-independent anisotropy
field hk

d = ∑
�m

hk
d e−i�mτ /

√
β. Inserting the expressions for

gkq
d and g−qpp

σσ ′ from Eqs. (25) and (B2) we get

hk
d = − μB

√
NFI

εV

∑
q

eiq·(rFI
0 −rSC

0 )
DFI

kqDSC∗
0q sin2 θq

ω2
q

qd̄ν
2
d

× [qy cos φ − qx sin φ]
∑

p

[
tanh

β(Ep + H )

2h̄

− tanh
β(Ep − H )

2h̄

]
. (B11)

We focus on the anisotropy field averaged across the FI,
〈hd〉 = ∑

i hd (ri, τ )/NFI = ∑
i

∑
k hk

d eik·ri/N3/2
FI = h0

d/
√

NFI

[cf. Eq. (67)], rewrite the first sum such that it becomes
dimensionless, and transform the second sum into an integral
using a free-electron-gas dispersion ξk = h̄2p2/2m − μ.
Assuming cavity dimensions Lx = Ly = L and an s-wave gap,
we get

〈hd〉 = − μBVSC(m�0)3/2

√
2π2h̄3εc2V

∑
q

eiq·(rFI
0 −rSC

0 )DFI
0qDSC∗

0q

× �d̄ν
2
d [�y cos φ − �x sin φ]

[
�2

x + �2
y

]
[
�2

x + �2
y + (

L
2Lz

)2]2 ×
∫ ξmax/�0

−μ/�0

dx

×
√

x + μ

�0

[
tanh

1.764Tc
(√

x2 + |�/�0|2 + H/�0
)

2T

− tanh
1.764Tc

(√
x2 + |�/�0|2 − H/�0

)
2T

]
. (B12)

Here VSC and �0 are the volume and zero-temperature gap
of the superconductor, respectively, and m the electron mass.
�x and �y are integer indices corresponding to cavity momen-
tum q. From the above expression we expect terms even in
�d to dominate, resulting in the anisotropy field and expec-
tation values of the in-plane spin components to have a φ

dependence given by hk
x ∼ 〈Six〉 ∝ − cos φ and hk

y ∼ 〈Siy〉 ∝
− sin φ. This is in good agreement with numerical solutions of
Eq. (B12) in an arbitrary practical example, as shown in Fig. 7.
The results were obtained using the Python libraries NUMPY

and MATPLOTLIB, and subpackage scipy.integrate. No-
tice, however, that the magnitude of the anisotropy field is
very small, on the order of 10−9 T. This is several orders of
magnitude smaller than the previously considered setup, and
we do not expect this to be a measurable effect. Here we have
neglected the effect of an in-plane finite separation between
the SC and FI by placing them directly above each other. A
finite separation would further reduce the anisotropy field.

At zero temperature the two hyperbolic tangent functions
in Eq. (B12) are always equal to one, as long as H < �0.
Since the field must be below the critical field Hc0 = �0/

√
2

in the superconducting state, the two terms in the integral
always cancel exactly at zero temperature. On the other hand,

FIG. 7. Absolute value (contour plot) and direction (arrows) of
the averaged anisotropy field as a function of applied field strength
and direction. The anisotropy field points opposite the applied field
over the SC, following a cos φ and sin φ dependence for the x and
y component, respectively. The inset shows the absolute value of the
in-plane projection as a function of the field strength. The tempera-
ture is set to T = 0.5Tc0. The cavity dimensions are Lx = Ly = L =
10 cm and Lz = 1 mm, and the FI and SC have sides of length 0.001L
in the x and y directions, and are placed at the center of the cavity.
The thickness of the SC is dSC = 10 nm.

in the case of temperatures just above the critical tempera-
ture T � Tc, and μ, ξmax > H , we get the analytical result
4H

√
μ/�

3/2
0 for the integral, assuming that the main con-

tribution to the integral comes from energies close to the
Fermi level. Hence, we expect the anisotropy field to increase
from zero to the normal-state value as temperature increases
towards Tc, and that 〈hd〉 increases linearly with applied field
in the normal state. This is found to be in good agreement with
numerical results (see the inset in Fig. 7 for |H| > Hc). In the
numerical calculations we have assumed μ, ξmax � �0, and
that the gap’s dependence on temperature and applied field is
described by Eq. (73) multiplied with

√
1 − (H/Hc)2 [55,64],

and the critical field depends on temperature as Hc = Hc0[1 −
(T/Tc0)2] [48], where Tc0 is the critical temperature for zero
field. Below the critical temperature and field, the field de-
pendence of the anisotropy field is more complicated due to
the additional effect of reducing the superconducting gap (see
inset in Fig. 7). The difference in temperature and applied
field dependence of the anisotropy field between the normal
and superconducting states could therefore in principle be
a way of detecting the onset of superconductivity without
directly probing the superconductor, though the anisotropy
field calculated in this arbitrary example is too small to be
detectable.

APPENDIX C: LINEAR TERMS AS
AN ANISOTROPY FIELD

In this Appendix, we take a closer look at the interpretation
of the linear magnon terms as interactions with an effective
anisotropy field. Consider an FI in an inhomogeneous applied
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field

H = −J
∑
〈i, j〉

Si · S j −
∑

i

Hi · Si. (C1)

Above, Hi = (Hx
i , Hy

i , Hz ) is the inhomogeneous external
field, with Hz assumed homogeneous and much larger than
Hx

i , Hy
i . We therefore assume ordering in the z direction when

performing the Holstein-Primakoff transformation, resulting
in the Fourier-transformed Hamiltonian

H = E0 +
∑

k

[h̄λkη
†
kηk − hkη

†
k − h∗

kηk]. (C2)

Here h̄λk is the dispersion defined in Eq. (21), the classical
ground-state energy is

E0 = −h̄SNFI[Jh̄SNδ + Hz], (C3)

and the momentum-dependent in-plane magnetic energy

hk =
√

S

2NFI
h̄

∑
i

(
Hx

i + iHy
i

)
e−ik·ri . (C4)

Since the applied field has in-plane components, the z di-
rection is not the exact ordering direction in the ground state,
leading to a nondiagonal Hamiltonian with linear terms. To
get rid of these terms, we translate the fields according to

ηk → ηk + tk,

η
†
k → η

†
k + t∗

k , (C5)

and require that linear terms cancel. Translating the fields
leads to the Hamiltonian

H → E0 +
∑

k

{h̄λkη
†
kηk + [h̄λktk − hk]η†

k

+ [h̄λkt∗
k − h∗

k]ηk + h̄λkt∗
k tk − hkt∗

k − h∗
ktk}, (C6)

and we therefore require

tk = hk

h̄λk
. (C7)

The resulting diagonal Hamiltonian is

H = E0 +
∑

k

[h̄λkη
†
kηk − h̄λkt∗

k tk]. (C8)

The last term in the above equation results in a renormaliza-
tion of the classical ground state,

E0 → E0 −
∑

k

h̄λkt∗
k tk

= E0 −
∑
i, j,k

Sh̄2
(
Hx

i + iHy
i

)(
Hx

j − iHy
j

)2
eik·(r j−ri )

2NFI h̄λk
.

(C9)

In the case of constant in-plane components, this simplifies to

E0 = −h̄SNFI

{
Jh̄SNδ +

[
Hz + (Hx )2 + (Hy)2

2Hz

]}

≈ −h̄SNFI[Jh̄SNδ + |H|], (C10)

where the approximation in the last line is valid in the limit
|Hx|, |Hy| 	 |Hz|. This is as expected since the classical
ground state is generally oriented along H, not Hz. The
translation of magnon operators in Eq. (C5) can therefore
be understood as a local rotation of the spin-ordering ansatz
due to small inhomogeneous in-plane fields, valid in the limit
|Hx,y

i | 	 |Hz|.
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