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Abstract
The microvoid based Gurson-Tvergaard-Needleman (GTN) model is a powerful tool for predicting ductile fracture
behavior, and application of such model to steels and welds needs the identification of microvoid related damage pa-
rameters. Currently, there is no standard damage parameter identification method available. In this study the previously
proposed complete Gurson model (CGM) where a physical void coalescence mechanism is incorporated into the GTN
model is revisited. According to the CGM, the void nucleation process dictates ductile fracture. By adopting the cluster
nucleation model with an effective initial void volume fraction as the only controlling parameter, a method is proposed to
explicitly determine the effective initial void volume fraction from the strain at maximum load and strain at fracture of a
specially designed notched tensile specimen. The proposed equation has been experimentally verified by applying to three
high strength materials, including a X80 pipeline steel and associated weld metal, and a 15CrMo steel. A general procedure
for damage parameter identification is also suggested. It is argued that the obtained effective initial void volume fraction can
be treated as a type of material ductility indicator.
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Introduction

Structural components made of high strength steels may
fail by ductile fracture. It is well recognized that ductile
fracture of steels results from the nucleation, growth and
coalescence of microvoids. The most widely used model
for ductile fracture was originally developed by Gurson
(1977), and further modified and improved by Tvergaard
and Needleman (Tvergaard, 1981, 1982; Tvergaard and
Needleman, 1984). The application of this ductile damage
model, also well-known as the GTN model, needs the
identification of as many as 17 parameters (Zhang et al.,
2018), including the material-specific void (nucleation and
coalescence) parameters, constitutive parameters, charac-
teristic length parameter(s) as well as other material-
independent model parameters. It is a common practice
to calibrate the parameters of the GTN model through a
combination of experiments and numerical simulations
(Sun et al., 1989; Springmann and Kuna, 2005; Abendroth
and Kuna, 2006; Seupel et al., 2020; Miloud et al., 2019).
Smooth and notched tensile specimens where the stress/

strain gradients were not strong and finite element mesh
size does not play a significant role, are often used to
determine the void parameters (Zhang et al., 2000). When
the GTN model is applied to cracked components where
severe stress gradient exists in the vicinity of crack tip, the
predicted failure becomes mesh size dependent. In such
cases, a so-called non-local characteristic length parame-
ter(s) should be considered (Zhang et al., 2018). Fracture
mechanics specimens such as compact tension (Acharyya
and Dhar, 2008; Dotta and Ruggieri, 2004) single edge
notched tension (Chen and Lambert, 2003), single edge
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notched bending (Qiang and Wang, 2019; Sarzosa et al.,
2016), drop weight tear testing (Scheider et al., 2014; Nonn
and Kalwa, 2012) have been used for the calibration of both
the void and characteristic length parameters either sepa-
rately or simultaneously. It is interesting to note that ma-
chine learning methods have also been recently applied to
the identification of GTN parameters (Chen et al., 2021;
Ouladbrahim et al., 2021). In order to limit the scope, this
study will focus only on the void parameters.

As far as void parameters concerned, it has been noted
by Zhang (1996) more than two decades ago that when
comparing with a set of experimental results, the fitted
GTN damage parameters are not unique. This non-
uniqueness problem implies that different combinations
of void nucleation and coalescence parameters may lead to
indistinguishable macroscopic responses. This non-
uniqueness problem may not have severe consequence if
the purpose is to simulate the macroscopic behavior of a
specific structural component. However, it does have se-
rious implications in terms of the physical interpretation,
transferability of the void parameters and classification of
materials deformation and fracture behavior based on
damage parameters.

The non-uniqueness problem partly attributes to the
lack of a physical void coalescence mechanism in the
GTN model which treats the void nucleation and coa-
lescence as two independent events. As a viable solution
to the problem, by incorporating a physical void coa-
lescence mechanism based on Thomason’s plastic limit
load model (Thomason, 1990) into the GTN model, a so-
called complete Gurson model (CGM) has been proposed
by Zhang (Zhang et al., 2000). The key feature of the
CGM is that the void coalescence is a natural result of the
plastic deformation of a material with nucleated voids,
and the so-called critical void volume fraction at the
beginning of coalescence fc, is thus not a material constant
and does not need to be fitted or settled beforehand. The
great advantage of the CGM is that in specimens where
the stress/strain gradients are not significant, ductile
fracture is solely controlled by the void nucleation pro-
cess. If the ductile fracture behavior of these specimens is
known experimentally, the void nucleation parameters
can be inversely determined from the measured load-
displacement curves.

In the literature, it has been a common practice to es-
timate the initial volume fraction f0, from the volume
fraction of primary particles such as MnS in steels (Tanguy
and Besson, 2002; Tanguy et al., 2005). However, the
problem is that normally not every particle, and only an
unknown fraction of these particles will nucleate voids
during the plastic deformation. In this study, we hypoth-
esize that the initial void volume fraction can be obtained
inversely through tests and simulations. By adopting the
cluster nucleation model and assuming that the void

nucleation is represented by an effective initial void volume
fraction, in this paper, the CGM is applied to study the
relationship between the inputted f0 and the tensile prop-
erties of a specially designed notched tensile specimen for
the purpose to develop a method for inversely determining
the f0.

In the following, Section 2 briefly revisits the CGM.
Section 3 describes the specially designed notched tensile
specimen used. In Section 4, the numerical simulation
procedure, the correlation data and the obtained equation to
explicitly calculate the f0 are presented. The proposed
equation is experimentally verified by applying to three
engineering materials with different plastic strain harden-
ing ability and ductility, including a high strength pipeline
steel X80, a X80 associated weld metal and a 15CrMo
steel. A recommended procedure for determining the f0 is
suggested. Potential to treat the obtained the f0 as a ductility
indicator and use the f0 to classify the deformation and
fracture behavior of steels and welds together with sug-
gested future work and main conclusions are presented in
Section 5.

Revisit of the complete Gurson model

The special feature of the complete Gurson model is the
introduction of a physically based coalescence criterion. In
the following the GTN (Gurson, 1977; Tvergaard, 1981,
1982; Tvergaard and Needleman, 1984) model will be
introduced first. The GTN model describes the homoge-
neous yielding and void growth behavior of a unit cell with
a void located in the centre. The yielding function is ex-
pressed as:

f
�
q, σ, f , σm

�
¼ q2

σ2
þ 2q1f cosh

�
3q2σh

2σ

�
� 1� ðq1f Þ2 ¼ 0 (1)

where q is the von Mises stress, σh is the mean stress, σ is
the flow stress, f is the current void volume fraction. q1 and
q2 are constants introduced by Tvergaard, 1981, 1982 to
modify the Gurson model. Fixed values of q1 ¼ 1:5 and
q2 ¼ 1:0 have been used in this study.

The application of the GTN model requires the infor-
mation about the void nucleation process. In general, void
nucleation can be cluster-based or of statistical nature
(Zhang et al., 2000). The cluster model which usually
assumes that the micro-voids are nucleated upon the onset
of plastic deformation, is one of the most commonly used
models to describe void nucleation for ductile metals. The
cluster nucleation model is adopted in this work. The
advantage of the cluster void nucleation model is that there
is only one controlling parameter, namely the initial void
volume fraction f0. The growth of existing voids can be
expressed by assuming that the matrix material is
incompressible,
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df ¼ ð1� f ÞdεP : I (2)

where εP is the plastic strain tensor, I is the second-order
unit tensor. When the void volume fraction f grows to a
critical value, fc, void coalescence occurs. Once the void
coalescence has started, Tvergaard and Needleman (1984)
introduced a function to simulate the process of void co-
alescence by accelerating the void growth:

f * ¼

8<
:

f for f ≤ fc

fc þ f *u � fc
fF � f

ðf � fcÞ for f > fc
(3)

where f *u ¼ 1=q1. When f > fc, f is replaced by f * in
equation (1). When f reaches the failure volume fraction fF ,
the void coalescence ends. It has been shown that the
minimum value of fF is close to 0.15 and an approximation
fF ¼ 0:15þ 2f0 has been proposed by (Zhang et al., 2000).
In most of the literature, an arbitrary or fitted constant fc has
been used and no physical coalescence criterion is con-
sidered. (Thomason, 1990) proposed a physically-based
plastic limit load model to describe void coalescence. Once
the void coalescence mechanism is implemented, the void
coalescence is thus a result of the competition between the
homogeneous deformation mode described by the GTN
model and localized deformation mode governed by the
plastic limit load model (Zhang and Niemi, 1994a).

By incorporating the GTN model for void growth and
Thomason’s plastic limit load model for void coalescence,
the CGM is obtained. It is called “complete” in a sense that
once the void nucleation process is known, the CGM now
can physically capture the complete void growth and co-
alescence process without a need of using any artificial void
coalescence criterion or constant (Zhang and Niemi, 1994a,
1994b). It is worth emphasizing that in the CGM void
coalescence is not determined by the so-called critical void
volume fraction fc. With the CGM and in the absence of
stress/strain gradient, ductile failure is intrinsically con-
trolled by the void nucleation. The CGM has been im-
plemented into the ABAQUS using a user subroutine
UMAT developed by Zhang with dedicated efficient nu-
merical integration algorithms (Zhang, 1995a, 1995b;
Zhang and Niemi, 1995), a free copy of the UMAT source
code for the implementation can be obtained from the
corresponding author.

It must be noted that the CGM treats the voids from the
nucleation to the end of coalescence as spherical and the
void shape change during the plastic deformation is not
considered. The interaction between the voids is also ne-
glected. Thomason’s plastic limit load model is not the only
one which can be used for describing void coalescence.
Other sophisticated coalescence models which consider
both plasticity and void anisotropy can be found in
(Benzerga and Leblond, 2010).

The “magic” notched tensile specimen for
determining both the stress-strain curve
and damage parameters

Standard tensile bar specimen used for determining materials’
stress-strain curve has several limitations in terms of the size of
specimen required, unpredictable necking position and the need
to perform Bridgman correction (Zhang et al., 2002). Notched
round bar tensile specimens are good alternatives to the con-
ventional smooth tensile specimen for characterizing material
tensile properties. Notched tensile specimens possess several
advantages compared with the smooth one. Firstly, unlike the
smooth specimen where necking often occurs in a random
manner, the necking in the notched specimens always appear at
the intended location. This is especially appealing for the case
when the volume of the material to be tested is too small for
machining a standard tensile specimen, for example the heat
affected zone or weld metal in a steel weldment. Secondly,
recent studies show that material’s plastic flow stress-strain
curve can be conveniently obtained from notched tensile
specimens. In particular, there exists a “magic” notched tensile
specimen (Tu et al., 2017), from which the load-minimum
cross-sectional area reduction curve recorded can be directly
converted to material’s equivalent stress-strain or plastic flow
stress-strain curve without the need of performing the non-
trivial Bridgman correction (Tu et al., 2017, 2018, 2019, 2020).

For a general notched round bar tensile specimen sketched
in Figure 1(a),L andD0 are the initial length and diameter, a0 is
initial radius of minimum cross section, R0 is initial radius of
the notch. ZoneWand Zone B are used to distinguish the weld
and base metal of a weldment, and H is the width of the weld
metal. Early studies have shown that when H is larger than
0.5 D0, the properties of the Zone B will not influence the
results of the measured weld metal properties (Tu et al., 2017,
2018, 2020). The average true strain of a notched tensile bar
specimen is calculated from the reduction in the minimum
cross-sectional area: εt ¼ 2lnða0=aÞ, where εt is the average
true strain, a is the current radius of minimum cross section.
The average engineering stress and true stress of a notched
tensile specimen are calculated by the applied load divided by
the respective initial and current minimum cross-sectional area,
σe ¼ P=ðπa02Þ and σt ¼ P=ðπa2Þ where σe is the engi-
neering stress, σt the true stress, P is applied load. The en-
gineering stress at the maximum load is marked as σm, and the
true stress at fracture is denoted as σf . The true strains cor-
responding to σm and σf are marked as εm and εf , respectively.

The ratio ofminimum cross section radius to notch radius,
a0=R0 is a key characteristic of the notched tensile specimen.
Our previous studies have shown that among all the notched
specimens, there is one “magic” notch geometry, a0=R0 ¼ 2,
which possesses a special feature. It was found that by
normalizing the true stress of the “magic” notched tensile
specimen by a geometry factor Gm ¼ �0:824nþ 1:6189,
where n is the plastic strain hardening exponent and can be
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approximated by the strain at the maximum load εm, the
normalized true stress – true strain curve outputted from the
notched specimen, σt

Gm � εt, represents the equivalent stress-
strain relation of the material. Details about the “magic”
notched tensile method can be found in (Tu et al., 2017,
2018, 2019, 2020). In this study, L = 180 mm, D0 = 16 mm,
a0 = 4 mm and R0 = 2 mm have been used in both the
numerical simulation and experiments.

Inversely determining the initial void
volume fraction

In the following we apply the CGM to analyze the “magic”
notched tensile specimen made of materials with different
plastic hardening exponents to generate the correlation data
between the fracture strain and inputted initial void volume
fraction. An explicit equation will be derived to inversely
calculate the initial volume fraction from the data points.
The obtained initial void volume fraction will then be
applied to compare the predicted fracture strains with the
experimental values. A recommended procedure to utilize
the method for parameter identification is also suggested.

The numerical procedure

In order to establish the correlation between the inputted
damage parameters and the predicted fracture strain, a
1/4 of the axisymmetric notched specimen was modeled
with CAX4 element in ABAQUS, as shown in Figure 1(b).
The fracture strain was calculated from the predicted cross-
sectional area reduction at failure using the CGM. A remote
homogenous displacement (clamped boundary condition)

was applied at the end of the specimens. The NLGEOM
option was activated to take the large-strain effect into
account. A general power-law plastic hardening model was
used in the parametric study:

σ ¼ σ0

�
1þ εp

ε0

�n

(4)

where σ is the flow stress, σ0 is the yield stress, εp is the
equivalent plastic strain, ε0 is the yield strain, n is the strain
hardening exponent. In all the analyses, Young’s modulus E ¼
210 GPa and Poisson ratio υ ¼ 0:3 have been applied. Strain
hardening exponent n from 0.02 to 0.2 and the initial void
volume fraction f0 in the range from 0.000,001 to 0.01 have
been analyzed. The yield stress σ0 varied from 400 to
1000MPa, however, it can be expected that the yield stress does
not have a remarkable influence on the predicted fracture strain.
Because the notch induces a stress concentration, the influence
of element size on the ductile fracture needs to be assessed.

The local element size along the middle section was set as
l0, and a transition mesh was used to bridge the fine and
coarse mesh. A range of finite element size from 0.05 mm to
0.5 mm was analyzed. Some preliminary analyses show that
the range of element size utilized does not have any visible
effect on the load-displacement curves of the notched tensile
specimen until the fracture point. It can also be noted that the
element size used does not noticeably influence the true
strain at the maximum load, εm. The general observation is
that the larger the element size, the larger the resulted fracture
strain. In order to better illustrate the effect of mesh size, the
fracture strain versus normalized element size is plotted in 2a
for constant f0 ¼ 0:0001 and Figure 2(b) for constant

Figure 1. (a) The geometry of the round notched bar specimen used in the numerical analyses and experimental verification, (b) The
finite element mesh and boundary conditions used.
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hardening exponent n. Figure 2 shows that when the element
size is large, the fracture strains in both cases with constant n
and constant f0 are an increasing function of the mesh size.
When the element size is small enough, for example, when
a0=l0 is larger than 20, the fracture strain is practically in-
dependent of the element size. Based on these observations,
a default value of a0=l0 = 40 (l0 ¼ 0:1 mm) has been used in
the following analyses unless indicated otherwise.

The correlation data and explicit equation

When the CGM is used, the fracture strain of the notched
tensile specimen depends on two key factors, the plastic
strain hardening exponent n and initial void volume
fraction f0. For the given notch geometry, the fracture strain
εf can be expressed as follows:

εf ¼ εf ðn, f0Þ (5)

where the fracture strain εf and the plastic hardening ex-
ponent (strain at the maximum load) n = εm can be obtained
directly from the notched tensile test.

Figure 3(a) shows the predicted fracture strain vs the
strain hardening exponent n for the cases with f0 in the
range 10�6–10�2, which should cover most of the engi-
neering materials. It is interesting to note that for a given
value of f0, fracture strain εf increases approximately in a
linear manner with the hardening exponent n. The rela-
tionship between the initial void volume fraction f0 and the
fracture strain εf is shown in Figure 3(b) with n in the range
from 0.02 to 0.2. As f0 increases from 10�6 to 10�3, the εf
decreases drastically, and the decrease slows down to a
nearly linear manner when f0 is larger than 10�3.

Figure 2. Influence of finite element size on the predicted fracture strain by CGM model, (a) for the cases with a fixed f0 ¼ 0:0001 and
varying degrees of strain hardening, and (b) for the cases with fixed hardening exponent n ¼ 0:075 and different initial void volume
fractions. The yield stress in both cases is fixed as σ0 ¼ 555MPa. The default element size, a0=l0 = 40 and the “magic” notched tensile
specimen were used.

Figure 3. Relationship between the fracture strain and (a) plastic strain hardening exponent n and (b) initial void volume fraction f0 of
the “magic” notched tensile specimen.
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For a given material the plastic hardening exponent n,
the initial void volume fracture f0 and fracture strain εf are
uniquely correlated, the equation (5) can be rewritten as:

f0 ¼ f0
�
εm, εf

�
(6)

Various forms of equations have been used to fit the
correlation data shown in Figure 3. It is found that the data
shown in Figure 3 can be best fitted by the following
equation:

f0 ¼ 1
�
exp

�
α � εf 2 þ β � εf þ γ

�
(7)

where α, β are functions of εm:

α ¼ �9:875 � expð�20:01 � εmÞ þ 0:659 (8)

β ¼ 24:18 � expð�13:39 � εmÞ þ 6:3 (9)

γ ¼ 17:7 � expð�0:165 � εmÞ � 14:73 (10)

Figure 4 compares the initial void volume fraction cal-
culated from equation (7) with the original data obtained

from the finite element analyses. As can be observed from
Figure 4, equation (7) fits the data points quite well. Even for
f0 in the range from 10�6 to 10�3, a reasonable agreement is
obtained. It should be noted that the applicability of equation
(7) is limited to εm ¼ 0:02∼ 0:2, εf ¼ 0:07∼ 1:3.

Application to high strength steels and weld metal

The proposed equation (7) for inversely calculating the
initial void volume fraction has been verified against three
engineering materials with different plastic hardening
ability and ductility. The three materials considered are:
X80 pipe steel (marked as Specimen 1#), X80 girth weld
(Specimen 2#) and 15CrMo steel (Specimen 3#). Specimen
1# and Specimen 2# were derived from a gas pipeline with
a diameter of 1016 mm and a wall thickness of 18.4 mm. A
total of 9 uniaxial tensile tests using the “magic” notch
geometry have been conducted.

The experimental setup is displayed in Figure 5. The
experiments were performed using a MTS 810-25 testing
machine. The displacement-controlled mode was adopted,
and loading speed was set to be 0.3 mm/min. The load-
cross head displacement curves of the 9 specimens are
presented in Figure 6. It can be seen that there are relatively
small deviations in the load -displacement curves of the
X80 steel and 15CrMo steel. As it can be expected, the
results of the X80 girth weld (Specimen 2#) shows larger
variation in both the load carrying capacity and fracture
strain.

During the tensile testing, the deformations of notched
specimens were captured every second by using an in-
dustrial digital camera. A python code was developed to
retrieve the evolution of the minimum cross section di-
ameter, from which the engineering stress and true strain of
the notched tensile specimen can be evaluated. The en-
gineering stress versus true strain curves of the 9 specimens
are grouped into 3 figures shown in Figure 7. From these
results, the corresponding fracture strain and strain

Figure 4. Comparison of the initial void volume fraction
calculated from equation (7) and original data from Figure 3.
Curves are from equation (7) and dots are the data from Figure 3.

Figure 5. The experimental setup used for testing of the “magic” notched tensile specimens.

6 Advances in Structural Engineering 0(0)



hardening exponent can be identified, and the effective
initial void volume fraction is then calculated by applying
equation (7). The measured yield stress, hardening expo-
nent and fracture strain together with the calculated initial
void volume fraction are summarized in Table 1. It is
interesting to compare the X80 weld metal with the
X80 base metal. The hardening ability of the weld metal is
slightly higher than its base metal, however, the yield stress
of the weld metal is significantly lower than that of the base
metal and the weldment is a so-called undermatched
weldment.

Table 1 shows the inversely calculated average initial
void volume fractions for the three materials tested. The
X80 steel has the smallest initial void volume fraction, with
a mean value between 0.01% to 0.02%. It is interesting to
observe from Table 1 and Figure 7 that although the
fracture strain of the X80 weld metal is in the similar level
of the X80 base metal, the average initial void volume
fraction of the weld metal is much higher than, almost
3 times, those of the base metal. Figure 7 also shows that
the fracture strain of the 15CrMo steel is the lowest among
the three materials tested, and the average initial void
volume fraction is approximately 15 times larger than the
X80 steel. This finding indicates that the initial void vol-
ume fraction of a material is not solely determined by the
ductility but is strongly dependent on the plastic strain
hardening ability. For materials with identical fracture
strain, the material with higher hardening ability will yield
larger initial void volume fraction.

We note that the equation (7) was obtained based on the
analysis of the ideal power-law hardening materials. It is
interesting to verify that the application of the initial void
volume fraction calculated from equation (7) will result in
the same ductile fracture behaviour of the engineering
materials. The measured yield stress and plastic strain
hardening exponent and the initial void volume fraction
shown in Table 1 have been taken as inputs to the finite
element analyses, and the outputs from the finite element

analyses have been compared with the experimental results
in Figure 7. The comparison shows that the finite element
results are in well accordance with the test results, espe-
cially the prediction of fracture strain is captured quite

Figure 6. Load-cross head displacement curves of the
9 specimens made of three materials.

Figure 7. Comparison of the experimental engineering stress-
true strain curves with the ones from finite element analyses
using the data shown in Table 1. The points are from experiments
and solid lines from finite element analyses using the initial void
volume fraction fitted. (a) Specimen 1-1, 2-1, 3-1. (b) Specimen
1-2, 2-2, 3-2. (c) Specimen 1-3, 2-3, 3-3.
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accurately. The good agreement confirms that the validity
of equation (7).

Recommended procedures for identifying initial void
volume fraction

In this work an explicit equation, equation (7), for inversely
determining the initial void volume fraction for a given
material is obtained. It has been shown that the equation
possesses a good accuracy for the materials tested. Fol-
lowing recommended procedure is suggested.

(1) Prepare the “magic” notched tensile specimen as
shown in Figure 1(a). It is particularly important
that the notch geometry fulfils the requirement
a0=R0 ¼ 2. At least three parallel specimens
should be prepared for each material.

(2) Perform uniaxial notched tensile tests. Both the
applied load and the reduction of the minimum
cross section diameter should be measured. Unlike
the smooth tensile specimen, the elongation within
a gauge length is not useful for the notched tensile
specimen.

(3) Sketch the engineering stress-true strain curves of
the notched tensile specimen (σe � εt) to identify
the strain at the maximum load and the strain at
fracture.

(4) Compute the initial void volume fraction f0 with
Equation (7) as a function of the hardening and
fracture strain obtained in step (3).

When equation (7) is applied to the case where the volume
of material of interest (weld metal or heat affected zone in a
weldment) is limited, the zone size of the homogenous
material to be tested should be as large as possible com-
pared with the minimum cross section diameter
H=D0 ≥ 0:5. When the material zone size is very small, the
size of the notched tensile specimen can be scaled down
accordingly to satisfy this geometrical requirement.

Discussion and conclusions

The “magic’ notched tensile specimen has been shown
previously to possess a special function, namely, the true
stress-strain curve obtained from the tensile test using this
special specimen can be directly converted into materials
equivalent stress-strain curve without the need of per-
forming a Bridgman correction. This study extends the
function of the “magic” notched tensile specimen to de-
termine the ductile damage parameter – the initial void
volume fraction f0. The CGM model has been applied to
analyze the correlation between the predicted fracture
behavior of the notched tensile specimen and its input
parameter f0. It is shown that the ductile fracture of the
notched tensile specimen mainly depends on two param-
eters, the plastic strain hardening exponent and the initial
void volume fraction. Because the fracture strain and
plastic strain hardening exponent can be conveniently
obtained from the strain-strain curve, an explicit equation
to calculate the initial void volume fraction is proposed.

It is important to emphasize that the obtained the initial
void volume fraction physically represents the effective
initial void volume fraction of the tested material. The
obtained effective initial void volume fraction ideally can
be treated as a material ductility indicator, and transferred
to the other cases with different stress triaxiality. However,
the transferability may be material specific and remains to
be experimentally verified in the near future. Only one
notch geometry was considered in this study. Similar
equations for other notched tensile specimens can be de-
rived using the same procedure reported in this study.
When the effective initial void volume fractions obtained
from two notched tensile specimens differ significantly,
question regarding the choice of the cluster void nucleation
model should be raised. If that is the case, other void
nucleation models, such as continuous void nucleation or
statistical nucleation model may be considered [27]. There
is only one parameter associated with the continuous void
nucleation model. However, more than one parameter must
be involved in the statistical void nucleation model. A good

Table 1. Mechanical properties and the inversely calculated initial void volume fraction.

σ0 (MPa) n (εm) εf f0 from equation (7) Average f0 Notes

Specimen 1-1 600 0.076 0.451 0.000098
Specimen 1-2 595 0.083 0.455 0.000128 0.00014 X80 base metal
Specimen 1-3 610 0.079 0.406 0.000207
Specimen 2-1 475 0.095 0.411 0.000359
Specimen 2-2 370 0.121 0.506 0.000282 0.0004 X80 Weld metal
Specimen 2-3 430 0.117 0.438 0.000528
Specimen 3-1 630 0.027 0.157 0.001662
Specimen 3-2 620 0.032 0.146 0.002479 0.0021 15CrMo
Specimen 3-3 620 0.025 0.142 0.002152
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advice is to fix as many parameters as possible and leave
only one parameter to be identified.

In summary, based on the CGM model and by adopting
a cluster void nucleation model and assuming that the void
nucleation can be described by an effective initial void
volume fraction, an explicit equation to calculate the ef-
fective initial void volume fraction using a special notched
tensile specimen is presented. A recommended procedure
for using the method is proposed. The method is partic-
ularly applicable to the cases where the size of the material
zone of interest is limited, and it is impractical to machine
the material to fabricate standard specimens for mechanical
characterization. The method has been verified against
three engineering materials including two types of high
strength steels and one weld metal. It is expected that the
method will facilitate the identification of damage
parameters.

Highlights
· A method is proposed to explicitly calculate the

effective initial void volume fraction from the strain
at the maximum load and the strain at fracture of a
specially designed notched tensile specimen.

· The method is well-suited for weldments where
material volume of homogenous microstructure is
limited.

· The proposed method has been experimentally
verified by applying to three engineering materials
including both high strength steels and an associated
weld metal.

· This effective initial void volume fraction can fa-
cilitate the classification of deformation behavior of
metallic materials.
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Appendix

Notation

a0 Radius of the minimum cross section of a notched
specimen

D Diameter of the minimum cross section
D0 Outer diameter of the notched tensile specimen
E Young’s modulus
f Current void volume fraction
f0 Initial void volume fraction
fc Critical void volume fraction
fF Void volume fraction at failure
H Width of the weld metal
L Length of the notched tensile specimen
l0 Uniform element size at the minimum cross ection
n Plastic strain hardening exponent
Pf Fracture load
Pm Maximum load in a notched tensile test
q The von Mises equivalent stress

q1, q2 Tvergaard constants for modifying the Gurson
model

R0 Notch radius
υ Poisson ratio
σ0 Yield stress of the material
σh Mean stress
σe Average engineering stress of the notched tensile

specimen defined as the tensile load divided by
the initial minimum cross-sectional area

σm Average engineering stress at the maximum load
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σt Average true stress of the notched tensile
specimen defined as the tensile load divided by
the current minimum cross-sectional area

σ Flow stress of the material
ε0 Yield strain of the material
εf Fracture strain - true strain corresponding to Pf

εm Strain at the maximum load - true strain
corresponding to Pm

εp Equivalent plastic strain of the material
εt Average true strain calculated from the reduction

of the minimum cross-sectional area
α, β Fitted functions of εm

Wang et al. 11


	A method for determining the ductile damage parameters of high strength steels and weld metal
	Introduction
	Revisit of the complete Gurson model
	The “magic” notched tensile specimen for determining both the stress
	Inversely determining the initial void volume fraction
	The numerical procedure
	The correlation data and explicit equation
	Application to high strength steels and weld metal
	Recommended procedures for identifying initial void volume fraction

	Discussion and conclusions
	Highlights
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iD
	References
	Appendix
	Notation


