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The increasing availability of multivariate data within biomedical research calls

for appropriate statistical methods that can describe and model complex

relationships between variables. The extended ANOVA simultaneous

component analysis (ASCA+) framework combines general linear models and

principal component analysis (PCA) to decompose and visualize the separate

effects of experimental factors. It has recently been demonstrated how linear

mixed models can be included in the framework to analyze data from

longitudinal experimental designs with repeated measurements (RM-ASCA+).

The ALASCA package for R makes the ASCA+ framework accessible for general

use and includes multiple methods for validation and visualization. The package

is especially useful for longitudinal data and the ability to easily adjust for

covariates is an important strength. This paper demonstrates how the

ALASCA package can be applied to gain insights into multivariate data from

interventional as well as observational designs. Publicly available data sets from

four studies are used to demonstrate the methods available (proteomics,

metabolomics, and transcriptomics).
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1 Introduction

The increasing availability of high-dimensional data through omics-technologies can

yield new insights into how intricate biological systems evolve and how they respond to

various experimental conditions. However, there is a need for parallel development of

novel statistical methods that can deal with the increased complexity of such data. The

methods must be valid for multidimensional data sets, flexible for different experimental

settings, as well as interpretable. Commonly used methods for multivariate data analysis,

such as principal component analysis (PCA) and partial least squares (PLS) regression, are
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not able to fully account for more complex experimental designs.

Multilevel PLS-DA, for instance, can only handle two time

points, and adjusting for confounders can only be handled by

subgroup analysis. One powerful approach for analysis of

multivariate data is the ANOVA simultaneous component

analysis (ASCA) framework that combines ANOVA with PCA

(Smilde et al., 2005; Smilde et al., 2012). More recently, extended

ASCA methods such as ASCA+ (Thiel et al., 2017), LiMM-PCA,

and repeated measures ASCA+ (RM-ASCA+, Martin and

Govaerts, 2020; Madssen et al., 2021) have emerged that

combine general linear (mixed) models with PCA. In this way

the flexibility of regression models are merged with the

visualization of multivariate analysis, providing excellent

interpretability by allowing to separate and display the

complex multivariate patterns originating from different

experimental factors. Despite these benefits, the availability of

software implementations of ASCA+, and thus the use of the

framework, has been limited.

In short, (RM-)ASCA+ comprises three steps: first, linear

regression with or without random effects produces regression

coefficients (β) which are summarized into a fixed effect

parameter matrix (B, also including fixed intercepts). In the

case of K measurements of J variables in I individuals, the linear

mixed model based regression with R random effect coefficients

(γ, including intercepts) and p fixed effect coefficients (β,

including the intercept) can be written as

Y � XB + ZU + E, (1)
whereY is an IK × J response matrix,X is an IK × p designmatrix,

B is a p × J parameter matrix, Z is an IK × R design matrix for

random effects,U is an R × J random parameters matrix, and E is

an IK × J residual matrix. Equation 1 can also be written as

where the design matrices are filled with custom values for

demonstration, y(i,k),j is the kth measurement of variable j in

individual i, and ϵ(i,k),j the corresponding residuals. It will in

many cases be sufficient to include a random intercept for

participant. ZU is then simplified to an IK × J matrix with one

intercept per individual per variable (γr,j→ γi,j), repeated for K rows.

The subject-specific random intercepts (γi,j) and the residuals (ϵ(i,k),j)
are assumed to be normally distributed with mean zero and

variations σ2u and σ2e , respectively. Ordinary ASCA+ represents

the special case when no random effects are included. The

second step in RM-ASCA+ is to decompose the XB matrix into

effectmatricesMh representing specific parts of the regressionmodel,

XB � M0 +∑
h

Mh. (3)

Here,M0 represents the intercept and is typically of little interest.

In ordinary ASCA,M0 usually represents the grand mean matrix,

whereas in RM-ASCA+ it typically either represents the baseline

mean of all, or one of the groups, depending on how the effects

are coded in the model. The effects h reflect the statistical and

experimental design (for examples, see Madssen et al., 2021). In

the context of a longitudinal study, an effect matrix MT would

represent the effect of time, i.e., the change from baseline. If the

study comprises multiple groups, additional effect matrices

describing group differences (MG) and time-group interaction

(MT:G) would be appropriate. Other covariates included in the

regression model, such as gender or body mass index (BMI),

would also require a separate effect matrix. The final step in RM-

ASCA+ is to apply PCA to individual or combined effect

matrices, depending on the research question, and extract

scores and loadings. The resulting scores and loadings can

then be plotted to visualize how variables are affected by the

selected effects.

Providing an estimate of uncertainty and robustness is an

important feature for all statistical techniques. There is a risk of

overfitting when using (RM-)ASCA+, as (RM-) ASCA+ is a

supervised method applied to labeled data (Bertinetto et al.,

2020). To mitigate the risk of overfitting, the confidence of

the estimated scores and loadings from (RM-)ASCA+,

reflecting the effects of factors and possibly their interaction,

should be tested. Most common are resampling methods such as

bootstrap, jack-knife and permutation (Vis et al., 2007; Bertinetto

et al., 2020). The latter involves random shuffling of the data

labels before applying (RM-)ASCA+, often 1,000–10,000 times.

As no systematic relationships should exist in the data when

measurements are shuffled across experimental conditions, it

establishes null-distributions for scores, loadings, or other

metrics. A p-value can then be calculated by comparing the

metric from the unaltered model to the null-distributions. While

exact permutation tests exist for main effects, only approximate

tests are available for interaction effects (Anderson and Braak,

2003; Bertinetto et al., 2020). In contrast to the permutation test,

the bootstrap and jack-knife methods conserve the data labels.

Here, the robustness of the metrics are tested by applying (RM-)

ASCA+ to either a subset of the original data set, where a

proportion of the participants are excluded (jack-knife), or a

resampled data set, where individual participants are selected at

random with replacement (bootstrap). When this is repeated in

the order of 1,000–10,000 times, confidence intervals can be

estimated for the scores and loadings by extracting upper and
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lower percentiles from the results of the resampled data sets.

Multiple strategies exist for permutation testing (Anderson and

Braak, 2003), and their suitability for RM-ASCA+ models with

various designs is currently under investigation.

The Assorted Linear functions for ASCA (ALASCA) package

for R has been developed to make the ASCA+ and RM-ASCA+

frameworks accessible for the general researcher. The package

does not require advanced programming skills and is publicly

available from the Github code repository (https://github.com/

andjar/ALASCA). Although the ALASCA package supports both

ASCA+ and RM-ASCA+ analysis, the main focus of this paper will

be analysis of repeated measures of multivariate data with RM-

ASCA+ due to the increasing need for flexible methods to deal

with longitudinal experimental designs. The package utilizes

well-known R syntax for defining regression models, offers

options for predefined or custom scaling, includes multiple

validation methods (jack-knifing and bootstrapping), and

produces publication-ready figures. While the package is

designed to be easy to use, it provides a wide range of

customizable options available for advanced users. Further, the

package includes several options for exporting the resulting

models for archival, post-processing, external visualization, or

sharing. Earlier versions of the ALASCA package has been used

to reveal how serum cytokine levels change throughout

pregnancy in healthy women (Jarmund et al., 2021) and in

women with polycystic ovary syndrome (Stokkeland et al.,

2022), and to show how the cytokine development is sensitive

to maternal and fetal factors. The flexibility of the RM-ASCA+

framework was crucial for the combination of multiple cohorts

and for making complex relationships available for

interpretation. Since then, the package has been further

developed for general use and includes new functions for

validation and visualization.

In this paper, we demonstrate how the ALASCA package can

be used to analyze various multivariate omics-data using RM-

ASCA+. Three publicly available data sets are analyzed to

illustrate each modeling step, including appropriate choice of

scaling, model setup, and validation technique, and to

demonstrate how the results can be easily visualized and

interpreted. The data sets are diverse in terms of biological

level (proteomics, metabolomics, transcriptomics) and

experimental design (repeated measures within observational

and randomized-controlled intervention studies). This

practical and integrated approach will demonstrate the

flexibility of the ALASCA package for data exploration and

analysis.

1.1 Related works

Previous implementations of ASCA and ASCA-related

methods exist for several common statistical software such as

R and Matlab (Bertinetto et al., 2020). The first implementation

of ASCA was published as Matlab scripts by Smilde et al. (2005).

For R, the earliest implementations include ASCA-genes (Nueda

et al., 2007, the scripts are no longer available) and the lmdme

package (Fresno et al., 2014). Later options include MetStaT

(removed from CRAN but available as archive https://cran.r-

project.org/src/contrib/Archive/MetStaT/) for R and the PLS_

toolbox and MetaboAnalyst (Xia et al., 2015) for Matlab

(Bertinetto et al., 2020).

The multiblock package for R offers a comprehensive set of

methods for multiblock analysis, including various ASCA-

based methods such as LiMM-PCA, generalized ASCA, RM-

ASCA+, and covariates ASCA (Liland, 2022; Smilde et al.,

2022). A Matlab implementation of RM-ASCA+ has been

published by Madssen et al. (2021), (scripts available at

https://github.com/ntnu-mr-cancer/RM_ASCA). An

extension of RM-ASCA+ has been proposed in the case of

zero-inflated count data, namely the zero-inflated counts

(ZIC)RM-ASCA+ by applying zero-inflated negative

binomial mixed models, with code available for R (https://

github.com/AukeHaver/ZICRM-ASCA_plus).

The ALASCA package offers several distinct features

compared to existing implementations such as integrated

scaling and validation, option to force equal baseline

(important for randomized designs), supports both sum and

contrast coding, precise yet simple specification of effect

matrices, and diverse options for visualization.

2 Materials and methods

2.1 Package overview

The main functions of the ALASCA package are described in

Table 1 and a typical work flow is illustrated in Figure 1. The

ALASCA() function is used to define the regression model,

scaling, and validation strategy. The resulting ALASCA object

can then be visualized in several ways.

The ALASCA() function accepts a range of arguments

related to the regression model and validation (Table 2).

Recommended arguments for various study designs and

research questions are demonstrated in the examples below.

ALASCA will fit linear mixed models if the regression formula

contains terms with | such as (1|ID) (i.e., random effects) and

ordinary linear regression models otherwise. Regression

coefficients are estimated with one of three algorithms,

depending on the specific model to be fitted, namely, the

Rfast package (Papadakis et al., 2021), the lme4 package

(Bates et al., 2015), or base lm (R Core Team, 2020).

Coefficients are estimated by Rfast as default due to

performance, but Rfast has some limitations on which

regression models can be fitted. Therefore, lme4 and lm can

be used as alternatives when more complex regression models

are used. The two latter can be applied by specifying
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use_Rfast = FALSE and will also produce p-values and

additional information such as R2 for each regression model.

When lme4 is used, p-values are calculated with Satterthwaite’s

degrees of freedom method with the lmerTest package

(Kuznetsova et al., 2017). The data.table package is

extensively used to improve performance by doing data

TABLE 1 Important functions in the ALASCA package.

Function Description

ALASCA() Initialize and create the ALASCA model

flip() Invert the signs of scores and loadings

plot(. . ., type = “effect”) Plot scores and loadings from a model

plot(. . ., type = “prediction”) Plot marginal means from the underlying regression models

plot(. . ., type = “validation”) Plot score and loading for all validation runs

plot(. . ., type = “histogram”) Plot score and loading for all validation runs as histograms

plot(. . ., type = “residuals”) Plot regression residuals

plot(. . ., type = “covars”) Plot regression coefficients of covariates

plot(. . ., type = “2D”) Plot the main results of the model

plot(. . ., type = “participants”) Plot measurements from individual participants

summary() Returns key information about the model

get_scores() Returns the scores of the model

get_loadings() Returns the loadings of the model

get_covars() Returns additional regression coefficients

get_predictions() Returns marginal means from the model

FIGURE 1
The typical workflow in the ALASCA package involves three stages: (1) Preparation, (2) execution, and (3) visualization. When the user has
prepared the data and decided regression model, scaling, and validation strategy, the ALASCA() function is called. The ALASCA() function will then
scale the data, perform regression analyses, apply principal component analysis (PCA) to the effect matrices, and extract loadings and scores. The
option reduce_dimensions = TRUE will use PCA to reduce the number of variables to k, and loadings are automatically transformed back to
the original variable space. Validation is performed if validate = TRUE is specified. The validation consists of performing (RM-)ASCA+ on n
resampled data sets, and using percentiles for loadings and scores for confidence intervals. When themodel is constructed, the user can visualize and
report results in various ways.
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manipulation by reference and other optimizations (Dowle and

Srinivasan, 2021). ALASCA objects are also manipulated by

reference with help of the R6 package (Chang, 2021).

Traditionally in R, functions will not modify variables in

place but requires that variables are reassigned. ALASCA

objects, however, can be modified without re-assignment.

For instance, both flip(model) and model <-
flip(model) will modify the model object.

Currently, model validation can be performed with cluster

bootstrap or jack-knife, both with stratification. During

validation, the ALASCA() function will call itself using a

modified data set n_validation_runs times (Figure 1).

The default is 1,000 runs. If cluster bootstrap is selected

(default), each participant is replaced by a randomly selected

participant from the same stratification group, with replacement,

and all measurements from the sampled participant are added to

the modified data set. If jack-knife is chosen, the stratification

groups are iterated and one out of q (defaults to q = 7)

participants are excluded at random from the iteration. By

default, any column named group in the data set df will be

used for stratification, i.e., the relative group sizes are kept during

validation. Alternatively, another column in df can be specified

for stratification as stratification_column. If there is no

group column and stratification_column is not

specified, the first effect term will be used for stratification.

Loadings from the validation runs are rotated towards

loadings from the initial run using procrustes rotation, and

the rotation matrix is applied to the scores from the

validation run as well. As the sign of loadings and scores in

PCA is arbitrarily defined, ALASCA() will test whether

changing the signs of each principal component (PC)

improves the fit of the scores from validation runs and the

initial run, and choose the signs minimizing the summed

distance of the scores. Only PCs explaining more than 5%

variance are used for rotation. Finally, 95% confidence

intervals (CIs) are calculated for scores and loadings by

selecting the 2.5% and 97.5% percentiles from the

validation runs.

Visualizations are made within the popular

ggplot2 framework (Wickham, 2016; Kassambara, 2020;

Slowikowski, 2021). The default color palette for figures is the

viridis palette which is designed to be readable and perceptually

uniform despite gray scale printing and the most common forms

of color blindness (Wickham and Seidel, 2020; Garnier et al.,

2021). Custom ggplot2 themes can be used by specifying

plot.my_theme. If save = TRUE was used during

initialization of the model, the plot() function will

automatically save all plots that are produced.

For megavariate data sets, the large number of measured

variables makes individual regression too time consuming for

validation with sufficient numbers of iterations. If

reduce_dimensions = TRUE, ALASCA() will perform

an initial PCA on the measurements, prior to regression, so

that the original variables are replaced by PCs (Figure 1), similar

as for Limm-PCA (Martin and Govaerts, 2020). The number of

PCs kept from the initial PCA is selected so that 95% of the

variance in the measurements is explained. The limit can be

changed by specifying reduce_dimensions.limit.

Additionally, one can prevent ALASCA from running out of

memory by saving results from the validation runs directly to a

duckdb or sqlite3 database instead of keeping all the results in

memory with save_to_disk = TRUE (R Special Interest

Group on Databases et al., 2021; Müller et al., 2021;

Mühleisen and Raasveldt, 2022).

Logging of important events, such as estimated time for

validation or error messages, is performed with the log4r

package and written to file by default (White and Jacobs,

2021).

TABLE 2 Important arguments for the ALASCA() function. A full list of arguments can be shown in R using ?ALASCA::ALASCA().

Function Default Description

df — Data frame containing the data set to be analyzed

formula — Regression formula

scale_function “sdall” Function to scale data. See description of possible defaults in the text

separate_effects FALSE When TRUE, separate effect terms

equal_baseline FALSE When TRUE, remove interaction at baseline

validate FALSE When TRUE, validate the model

reduce_dimensions FALSE When TRUE, use principal component analysis to reduce the number of variables

wide FALSE Set to TRUE if data are provided in wide format

stratification_column NULL Name of the column to be used for stratification during validation. By default, use group or first the effect term

validation_method “bootstrap” Set to “jack-knife” to use jack-knife resampling for validation

n_validation_runs 1000 Number of validation runs

save FALSE When TRUE, automatically save the model and subsequent plots

limitsCI c(0.025, 0.975) Lower and upper percentiles for confidence intervals
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2.2 Installation and data preparation

The ALASCA package is freely available at the Github code

repository and can be installed in R with the following

commands:

install.packages(“devtools”)

devtools:install_github(“andjar/ALASCA”,

ref = “main”)

Version 1.0.0 of ALASCA was used for this paper. The code

to reproduce all results in this paper, including data preparation

and figures, can be found in the supplementary materials, and

simplified function calls are given below. The full code in the

supplementary materials utilizes additional packages such as here

and reshape2.

The ALASCA() function requires at minimum a data frame

or data table df and a regression formula. Generally, data can be

organized in two formats (Supplementary Figure S1): long (all

measured variables have separate rows) or wide (all observations

have separate rows, with the different variables as separate

columns). If data are provided to ALASCA() in long format

with one row for each measured variable (Supplementary Figure

S1A and examples 1 and 3 below), the variable names (i.e., the

measured variables) must be in a column named variable. If

wide format is used (one row per measured sample, with

variables as separate columns, Supplementary Figure S1B and

example 2 below), wide = TRUE must be provided to

ALASCA() and all columns not mentioned in the formula or

being specified otherwise (Table 2) will be treated as columns

containing measurements of interest. At least two other columns

are required, regardless of format: One column must contain an

identifier for the experimental unit, typically the study numbers

of the participants. By default, this column is either derived from

the random intercept in the formula or, in case there are no or

multiple random intercepts in the formula, it is assumed to be

named ID. If another column is to be used, it must be specified as

participant_column. Secondly, one column must contain

the first effect of interest and will be used to label the x-axis in

subsequent score plots. By default, this is assumed to be the first

term in the formula. If another column is to be used, it must be

specified as x_column. General data preparation is

demonstrated in the supplementary files. For example, the

function call

ALASCA(

df,

formula = value ~ v1 + v2 + (1|ID),

validate = TRUE)

will assume that the provided data (df) is organized in long

format (Supplementary Figure S1A) and includes the columns

variable, value, v1, v2, and ID (random intercept). The

regression formula value˜v1 + v2 + (1|ID) corresponds to a

model with value as outcome, ID as random intercept, and v1

and v2 as main effect terms. Bootstrap validation will also be

applied as validate = TRUEwith 1,000 iterations (default). If df

contains a column called group, the observations will be stratified

by group during bootstrapping, otherwise they are statified by v1.

Since scaling has not been specified (see below), the outcome data

will be scaled by the default method (i.e., division by the standard

deviation, by variable).

The effects of interest can be specified (e.g., effects =

c(“v1”, “v1:v2”) where v1, v2, . . . are terms in the

regression formula) or inferred by ALASCA. In the latter case,

the first formula term is assumed to be of interest. Next, ALASCA

will look for an interaction term, and, if it exists, include the

interaction and second main effect. For example, if the formula is

value~v1*v2 + v3 + (1|ID), ALASCA will assume that v1,

v2, and v1:v2 (interaction) are all of interest. How they are

combined depends on separate_effects. If

separate_effects = FALSE (default), only one

combined effect is extracted (i.e., v1*v2 or v1+v2+v1:v2).

If separate_effects = TRUE, two separate effect matrices

will be produced: v1 and v2+v1:v2. ALASCA will explicitly

state which effects that are assessed when ran.

Columns representing effects of interest, typically the time

and group columns, are expected to contain factors,

i.e., categorical data with ordered levels. For example,

df$group <- factor(df$group) will convert the

group column to factors with the factor levels ordered

alphabetically. The first levels of time and group are used

as baseline or reference group. Level order can be specified

explicitly, factor(. . ., levels = c(“Male,”

“Female”)), or by specifying just the reference,

relevel(. . ., ref = “Male”).

The data should not be normalized or scaled as part of

the preparation. Instead, a scaling function must be

specified and provided to the ALASCA() function. This

prevents data leak during validation where a subset of the

data set is used to determine scaling factors that are

independently applied to the remaining data for

validation. Four predefined options are currently

available (Timmerman et al., 2015):

• scale_function = “sdall” will divide the value

column by the standard deviation of all samples, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y ·,·( ),j( )

• scale_function = “sdt1” will divide the value

column by the standard deviation of all baseline

samples, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y ·,k( ),j( ), k � 1

• scale_function = “sdref” will divide the value

column by the standard deviation of all samples in the

reference group, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y i,·( ),j( ), i ∈ Reference group
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• scale_function = “sdreft1” will divide the value

column by the standard deviation of all baseline samples in

the reference group, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y i,k( ),j( ), i ∈ Reference group, k � 1

where SD refers to the standard deviation, ŷ(i,k),j is the scaled and
y(i,k),j the raw value of variable j for individual i at time point k

(see Eq. 2). Mean centering is by default performed before scaling.

In addition, a custom scaling function can be provided. The

scaling function should have the data frame as argument and

return a data frame with scaled values:

scale_function <- function(df){

... # Scale the value column

return(df) }

2.3 Example 1: Observational design with
repeated measurements

To illustrate the analysis of longitudinal, observational data,

we use two publicly available proteomics data sets (Erez et al.,

2017; Tarca et al., 2019) to approach the following research

questions:

1. How does the plasma proteome develop throughout normal

pregnancy?

2. How does smoking affect the plasma proteome development

throughout normal pregnancy, when accounting for body

mass index (BMI)?

3. Does the plasma proteome of pregnancies that are later

complicated by early- or late-onset preeclampsia follow

distinct developmental trajectories?

2.3.1 Materials
The two data sets contain repeated measurements of

1,125 plasma proteins from pregnant women, and share the

same control group (n = 90 women). The first study, by Tarca

et al. (2019), focused on early-onset preeclampsia (n = 33

women), whereas the second study, by Erez et al. (2017),

investigated late-onset preeclampsia (n = 76 women). BMI,

smoking status, age, and parity were available for controls and

early-onset preeclampsia cases only.

For the two first analyses, we selected control cases to

visualize the normal plasma proteome development

throughout pregnancy. To utilize as many serum samples as

possible, the control samples were divided into five time intervals:

first trimester (≤ 13+6 weeks, n = 76), early second trimester

(14+0–21+6 weeks, n = 87), late second trimester (22+0–27+6 weeks,

n = 43), early third trimester (28+0–33+6 weeks, n = 40), and late

third trimester (≥ 34+0 weeks, n = 32). Only the first sample from

each participant at each time interval was included.

For the second analysis, the data from the previous example

are reused as BMI and smoking status were available for the all

healthy women. Smoking was coded as a factor in the group

column with non-smokers acting as reference. Pre-pregnancy

BMI was included as a continuous covariate as BMI is a potential

confounder in the analysis.

For the third analysis the data sets from Erez et al. (2017) and

Tarca et al. (2019) were merged to assess whether the plasma

proteome of EO- and LO-preeclamptic pregnancies developed

along distinct trajectories. The two data sets shared the same

control group. Since women who developed EO-PE did not

deliver plasma samples in late pregnancy, we restricted the

analysis to samples collected before week 32+0. The remaining

plasma samples were divided by gestational age into four time

intervals: before week 14+0 (≤ 13+6 weeks), week

14–21 (14+0–20+6), week 21–28 (21+0–27+6), and week

28–32 (28+0–31+6).

2.4 Example 2: Randomized intervention
with repeated measurements

To demonstrate how data from randomized intervention

studies with repeated measurements can be analyzed with RM-

ASCA+, we investigated a publicly available metabolomics data

set from Euceda et al. (2017). In this data set, we aimed to assess

the following research questions:

1. How is the metabolomic response in breast cancer affected by

adding the drug bevacizumab to standard neoadjuvant

chemotherapy?

2. How does the metabolomic response in breast cancer differ

between responders and non-responders receiving

neoadjuvant cheomtehrapy with or without bevacizumab?

Whereas Example 1 focused on the interpretation of models,

this example will review scaling and validation strategies.

2.4.1 Materials
The publicly available metabolomics data set from Euceda

et al. (2017) contains measurements of 16 metabolites from

270 tumor biopsies from 122 patients randomized to either

bevacizumab + chemotherapy (n = 60) or chemotherapy alone

(n = 62). Biopsies were taken before treatment (T1), at 12 weeks

into treatement (T2), and at tumor removal at 24 weeks (T3) and

profiled with high resolution magic angle spinning MR

spectroscopy (HR MAS MR). In total, 46 participants provided

three biopsies, 21 in the chemotherapy group and 25 in the

bevacizumab group. By time point, 105 (50% later received

bevacizumab), 78 (47% receiving bevacizumab), and 87 (55%

receiving bevacizumab) biopsies were available at T1, T2, and

T3, respectively. Madssen et al. (2021) used this data set in the
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original description of RM-ASCA+ and their results are

reproduced and further explored here using the ALASCA package.

For the second analysis, participants were classified as

responders (n = 44) or non-responders (n = 78) on basis of

tumor size at surgery (T3). In the chemotherapy group, there

were 20 responders and 42 non-responders, and the

corresponding numbers for the bevacizumab group were

24 and 36, respectively.

2.5 Example 3: Megavariate data

This example introduces dimension reduction which makes

analysis of megavariate data sets manageable. A publicly available

transcriptomics data set by Skaug et al. (2021) was analyzed to

answer the following research questions:

1. Does skin gene expression differ between patients with

systemic sclerosis (SSc) and healthy controls?

2. Does longitudinal skin gene expression differ between

patients with limited and diffuse SSc?

2.5.1 Materials
Skaug et al. (2021) collected forearm skin biopsies from

113 unique patients with limited (n = 43) or diffuse (n = 70)

SSc and 44 matched healthy controls. Two additional biopsies

were subsequently collected from a subset of the patients. A

fourth biopsy was excluded due to the low sample size (n = 1).

Gene expression was measured by RNA sequencing and

microarrays. Variables with more than 10% missing values

were excluded (1,065 genes), and the remaining missing

values were replaced by half of the lowest measured value for

the corresponding variable. To avoid duplicated gene names,

“(d)” was added to the gene name when multiple probes assessed

the same genes. In sum, 26,910 genes were kept for analysis.

3 Results and discussion

3.1 Example 1: Observational design with
repeated measurements

3.1.1 How does the plasma proteome develop
throughout normal pregnancy?

Longitudinal plasma samples were collected from 90 healthy

pregnancies and analyzed for 1,125 proteins. A possible model to

assess normal proteome development throughout pregnancy

involves a main effect for time (k) and a random intercept for

each participant i. In R, this model can be specified as

value~time + (1|ID), where value is outcome, time

the predictor, and ID the random intercepts. Since the first

time point acts as baseline, protein levels were scaled by the

standard deviation of the baseline samples by setting

scale_function = “sdt1”. The RM-ASCA+ model was

then initialized as

mod <- ALASCA(

df = df,

formula = value ~ time + (1|ID),

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S1.

RM-ASCA+ extracted two general patterns of change as

represented by the first (PC1) and second (PC2) principal

component, explaining 87% and 9%, respectively, of the

variability in the data set (Supplementary Figure S2). Each

component is associated with positive and negative loadings

describing how each plasma protein is related to the

corresponding PC. Proteins with positive loadings have higher

concentration in time points with higher score values, and vice

versa for proteins with negative loading values.

The first component represents a monotone increase (for

positive loadings) or decrease (for negative loadings) in plasma

level throughout pregnancy (Figure 2). The largest change takes

place in the first and second trimester before stabilizing in

the third trimester, as can be validated by assessing the

underlying regression models (Figure 3). Bone

morphogenetic protein 1 (BMP-1), epithelial discoidin

domain-containing receptor 1 (EDDR1), and placenta

growth factor (PlGF) showed the strongest positive

loading on the first component, and therefore increase the

most during the first trimesters. The increase of BMP1,

EDDR1, and PlGF levels in plasma is clearly visible from

the raw data itself (Supplementary Figure S3). In the

opposite end, dual specificity mitogen-activated protein

kinase kinase 4 (MAP2K4), histidine-rich glycoprotein

(HRG), and endothelin-converting enzyme 1 (ECE1)

showed the strongest negative loadings on the first

component (Figure 2). This pattern is also evident from

inspection of raw data (Supplementary Figure S3).

The second component represents a non-linear development

with either peak (for positive loadings) or dip (for negative

loadings) in the second trimester (Supplementary Figure

S4). The first pattern is seen for proteins such as vascular

endothelial growth factor A (VEGF-A), C1q and PAPPA-A.

C1q did, however, show significant variability and had a CI

for the loading that included zero. In contrast, the

concentration of sialic acid-binding Ig-like lectin (siglec-)

6, Activin A, and IL-1 R4 showed a u-shaped dipping in the

second trimester. These patterns are visible in the raw data as

well (Supplementary Figure S5). Some variables had high

loadings on both PC1 and PC2. Their trajectory is a

combination of the two, as can be seen as flattening of the

curve PlGF in the third trimester (Figure 3 and

Supplementary Figure S3).
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3.1.2 How does smoking affect the plasma
proteome development throughout normal
pregnancy, when accounting for BMI?

The impact of smoking and pre-pregnancy BMI on plasma

proteome development was examined in the same group of

women as the analysis above (Section 3.1.1). Of the 90 pregnant

women, 18 (20%) were smoking. Samples were collected from

76 (17% smoking), 87 (20% smoking), 43 (16% smoking), 40

(18% smoking), and 32 (19% smoking) women in the first

trimester, early and late second trimester, and early and late

third trimester, respectively. The BMI was 29 ± 7.8 and 28.1 ±

6.8 kg m−2 in the smoking and non-smoking group,

respectively, and 28.3 ± 7.0 kg m−2 overall. The influence of

BMI on the protein profile was assumed to be constant during

pregnancy and thus there was no interaction with time in the

regression model. In contrast, the effect of smoking was allowed

to vary with time.

The regression formula was expanded to include a group

term and time-group interaction: time*group is

shorthand for time + group + time:group, where

the two first terms represent the main effects of time and

group, respectively, and the latter their interaction.

Similarly, BMI was added as a covariate and the

corresponding column kept as numerical values. The time

and group effect matrices from Eq. 3 can be analyzed either

separately or combined, so the model was ran twice, with

separate_effects = TRUE, i.e., PCA is applied

separately to MT and MG+T:G, specified in the second run.

The RM-ASCA+ models were initialized as

mod <- ALASCA(

df = df,

formula = value ~ time*group + BMI + (1|ID),

scale_function = “sdt1”,

validate = TRUE

)

and

mod <- ALASCA(

df = df,

formula = value ~ time*group + BMI + (1|ID),

separate_effects = TRUE,

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S2.

RM-ASCA+ offers two approaches to compare the time

development of distinct groups of individuals. When the

time and group effects are analyzed as a combined unit,

i.e., the effect matrices for time, group, and time-group

interaction in Eq. 3 are subjected to the same PCA, the

resulting components will describe the common

development of the groups. When the time and group

effects are analyzed as separate units, i.e., the effect matrix

for time is separated from the effect matrices for group and

FIGURE 2
Time development of the plasma proteome throughout pregnancy as (A) scores and (B) loadings. The plasma level of proteins with high loading
is increasing when the scores increase and vice versa. Only the 12 proteins with highest and lowest loadings, separated by the vertical dotted line, are
shown due to the large number of assessed proteins.
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time-group interaction in Eq. 3 and analyzed separately by

PCA, two sets of scores and loadings are extracted. The first

set of scores and loadings describes the development of the

reference group, whereas the second set describes how the

other groups diverge from the reference group. The

underlying regression models, as well as the resulting

regression coefficients, are, however, the same for the two

approaches as the matrices X and B in Eq. 3 remain

unchanged.

Analysis of the combined effect of time and group shows that

smoking and non-smoking women demonstrate similar

development in plasma proteome in pregnancy, with a

tendency to lower scores for the smoking group

(Figure 4). The parallel lines in Figure 4 suggest that the

differences between the groups are stable over time, with

somewhat lower levels of proteins such as BMP-1 and higher

levels of proteins such as MP2K4 in smoking women.

However, the confidence intervals are overlapping,

suggesting that the effect of time is stronger than the

effect of smoking, and no group specific development is

evident.

Separating the effect of time and group changes the focus

from common trajectories to divergent trajectories. The isolated

time development of the non-smoking group, acting as reference,

is similar to the time development of the combined group shown

in Figure 2. The isolated group and time-group effect

demonstrates how the plasma proteome of smoking women

diverge from non-smoking women during pregnancy

(Figure 5). The first component shows a stable and reliable

difference between the two groups, with higher scores for the

smoking women. Higher scores corresponds to higher plasma

levels of proteins with positive loadings and vice versa. Thus,

smoking women showed higher levels of proteins such as casein

kinase II 2-alpha’:2-beta heterotetamer (CK2-A2:B) and

roundabout homolog 3 (ROBO3), and lower levels of proteins

such as apolipoprotein A-I (Apo A-I) and siglec-9.

Apolipoprotein A-I is an important constituent of high-

density cholesterol, and is known to be decreased by smoking

(Richard et al., 1997; Meenakshisundaram et al., 2010; Slagter

et al., 2013).

The ability to adjust for covariates is one of the main

advantages of (RM-)ASCA+ when compared to other

FIGURE 3
Marginal means for scaled protein concentration from linear mixed models. The intercept has been removed to highlight the robustness of
development over time. The plot was made with the plot(. . ., type = “prediction”) function.
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FIGURE 4
Time development of the plasma proteome throughout pregnancy in smoking and non-smoking women as (A) scores and (B) loadings. The
plasma level of proteins with high loading is increasing when the scores increase and vice versa. Only the 12 proteins with highest and lowest
loadings, separated by the vertical dotted line, are shown due to the large number of assessed proteins.

FIGURE 5
Time development of the plasma proteome throughout pregnancy in smoking and non-smoking women as (A) scores and (B) loadings. The
time development of the non-smokingwomen has been removed to highlight the effect of smoking. The plasma level of proteins with high loading is
increasing when the scores increase and vice versa. Only the 12 proteins with highest and lowest loadings, separated by the vertical dotted line, are
shown due to the large number of assessed proteins.
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multivariate methods such as PLS. Continuous covariate

adjustment was first introduced with ASCA+ and with RM-

ASCA+ this ability has been extended to longitudinal data. For

longitudinal trials, adjusting for covariates can offer both more

precise and less biased effect estimates, and increase statistical

power. Although covariate adjustment can be achieved for

methods such as PLS by including it as part of data

preprocessing, the ASCA+ framework leverages the users’

existing intuitions and knowledge of both linear regression

and PCA together in a cohesive approach. With RM-ASCA+

the effect of BMI can be isolated by including BMI as a covariate

in the regression model, but not in the effect matrices subjected

FIGURE 6
Time development of the plasma proteome throughout pregnancy in (A) healthy women and (B)women developing early-onset (EO-) or late-
onset (LO-) preeclampsia (PE). The time development of healthy women is isolated in the upper panels, whereas the lower panels visualize how the
plasma proteome differs between the groups. The plasma level of proteins with high loading is increasing when the scores increase and vice versa.
Only the 12 proteins with highest and lowest loadings, separated by the vertical dotted line, are shown due to the large number of assessed
proteins.
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to PCA. The effect of BMI is thus presented as ordinary β

coefficients (Supplementary Figure S6). The β coefficients are

the same regardless of whether the time and group effects are

assessed separately or not, and represent the adjustment for

BMI. High BMI was associated with higher plasma levels of

leptin, and the complement components C1s and C5a. In

contrast, lower levels of kallistatin, soluble receptor for

advanced glycation end products (sRAGE) and neural cell

adhesion Molecule (Nr-CAM) were observed with increasing

BMI. Obesity is related to low-grade inflammation with lower

levels of both the anti-inflammatory kallistatin (Zhu et al., 2013;

Frühbeck et al., 2018) and the cardioprotective sRAGE (Norata

et al., 2009), and leptin is strongly linked to obesity and

correlate with body fat percentage (Obradovic et al., 2021).

In addition, the strong effect of BMI on leptin, IGFBP2, and

SHBG is in line with previous research on plasma proteomics

(Goudswaard et al., 2021).

3.1.3 Does the plasma proteome of pregnancies
that are later complicated by early- (EO-) or late-
onset (LO-) preeclampsia (PE) follow distinct
developmental trajectories?

To assess the developmental trajectories of preeclamptic

women, the full data sets of Erez et al. (2017) and Tarca et al.

(2019) were used. In total, 572 plasma samples were included for

analysis. Of 199 participants, 33 (17%) developed early-onset

preeclampsia (EO-PE) and 76 (38%) developed late-onset

preeclampsia (LO-PE). For the different time points, 151 (12%

EO-PE and 27% LO-PE), 157 (16% EO-PE and 39% LO-PE), 135

(20% EO-PE and 54% LO-PE), and 129 (13% EO-PE and 56%

LO-PE) samples were analyzed. The disease groups were coded in

the group column with the controls acting as reference and the

previous regression formula was similar to the previous example

(Section 3.1.1) except that the BMI term was removed. To isolate

the potentially distinct trajectories of the preeclamptic

pregnancies, the time and group effect matrices were

separated by setting separate_effects = TRUE. The

RM-ASCA+ model was thus initialized as

mod <- ALASCA(

df = df,

formula = value ~ time*group + (1|ID),

separate_effects = TRUE,

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S3.

Women developing EO-PE showed lower plasma levels of

proteins such as PlGF, VEGF-121, and soluble tyrosine-protein

kinase receptor Tie-1 (sTie-1), and higher plasma levels of

proteins such as Siglec-6, activin A, and matrilysin/MMP-7

(Figure 6 and Supplementary Figure S7). These findings

support the original results by Tarca et al. (2019)

(Supplementary Figure S8). The differences from the control

group were present from early pregnancy for some proteins, and

increased steadily as the pregnancy progressed. The development

of the reference group is similar as in sections 3.1.1, 3.1.2 except

minor changes of scores and loadings due to redefined time

points.

Interestingly, women developing LO-PE showed a similar

but delayed shift in plasma proteome (Figure 6). It is, however,

necessary to also investigate PC2, as PC1 explained only 41%

of the group variation. PC2 demonstrates a clear difference

between women developing LO-PE, and the remaining women

(Supplementary Figure S9). Women developing LO-PE seem

to have higher levels of proteins such as MMP-7, RAN and

PPID from early pregnancy, and lower levels of proteins such

as HSP70, BMP10, and integrin aVb5 (Supplementary Figure

S10). These findings are consistent with the original results by

Erez et al. (2017). It is useful to visualize the marginal means

from the underlying regression models when a protein has

strong loading on multiple PCs and there are robust

differences in score in the corresponding PCs. From

Supplementary Figures S7, S10, it can be seen that women

developing PE had clearly higher MMP-7 throughout

pregnancy.

3.2 Example 2: Randomized intervention
with repeated measurements

3.2.1 How is the metabolomic response in breast
cancer affected by adding bevacizumab to
standard neoadjuvant chemotherapy?

In contrast to the previous example with observational data,

studies with randomized intervention assume that the groups are

equal prior to intervention. Thus, the regression model should

not include a main effect for treatment (Twisk et al., 2018). A

regression model with a time effect, a time-group interaction, and

a random intercept can in R be defined as value~time +

time:group + (1|ID). By default, however, the interaction

term between time and group (time:group) will include the

interaction between the first time point (i.e., baseline) and group,

which has to be removed. This can be achieved by providing

equal_baseline = TRUE to the ALASCA() function. Thus,

the function call

mod <- ALASCA(

df = df,

formula = value ~ time + time:group + (1|ID),

equal_baseline = TRUE,

scale_function = “sdt1”,

validate = TRUE

)

reproduce the findings of Madssen et al. (2021). The

corresponding design matrix is shown in Supplementary

Table S4.
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To illustrate how scaling and validation strategy impact the

analysis, the model was generated for all 16 combinations of

scaling (sdall, sdt1, sdref, and sdfref1), resampling (bootstrap and

jack-knife), and extraction of effect matrices (combined and

separate). The bootstrap and jack-knife samples were reused

for each model to make the results comparable.

To assess the effect of adding the drug bevacizumab to

standard neoadjuvant chemotherapy to treat breast cancer, the

effect matrix for time and the effect matrix for time-group

interaction were analyzed separately by PCA (Figure 7). The

addition of bevacizumab led to higher concentrations of alanine,

glucose, and lactate, and lower concentrations of gluthatione,

succinate, and phosphocoline. The increased alanine and glucose

levels, and decreased gluthatione levels, were statistically

significant at T3 following bevacizumab treatment in

univariate models (Supplementary Figure S11) and the

FIGURE 7
Time development of tumor biopsy metabolome before and during cancer treatment. (A) The time development of the participants receiving
chemotherapy only is isolated in the upper panels, whereas (B) the lower panels visualize how the metabolome differs between the groups. The
levels of metabolites with high loading is increasing when the scores increase and vice versa.
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residuals showed acceptable normal distribution (Supplementary

Figure S12). These results are discussed in detail byMadssen et al.

(2021). ALASCA also allows the results to be displayed as a more

classical ASCA analysis, by plotting the first and second PC

against each other, as in Supplementary Figure S13.

The choice of scaling and validation strategy has strong

impact on uncertainty estimates (Supplementary Figures

S14–S16). Jack-knife resulted in markedly smaller CIs for both

scores and loadings than bootstrap. The choice of scaling does

not alter how the results are interpreted but using baseline

samples for scaling (sdt1 or sdreft1) enhanced the separation

of the groups at the third time point. ALASCA provides two

additional visualizations of the validation results: either the

scores and loadings for each individual iteration

(Supplementary Figure S17) or the distribution of scores and

loadings as histograms (Figure 8).

In general, Timmerman et al. (2015) advice that “scaling

factors should be free from the effect of interest.” The

argument is that if the effect of interest actually increases

between-group variation, then we have to avoid that this effect

is damped by scaling. I.e., the between-group variation

introduced by experimental manipulation should not be

part of the scaling factor. In this specific example with a

randomized trial, the baseline measurements constitute a

subset of data where no such between-group variation has

yet been introduced. In other cases, however, it may be less

clear which groups that are affected by the experimental

condition of interest. In addition, the scaling factor must be

based on a sufficiently large group. In this paper, we are

primarily using the baseline measurement for scaling to

balance the need for a sample free from the effect of

interest (typically the effect of time and time-group

interaction) and sample size. In example 3, however, where

a healthy and a diseased population are compared at a single

time point and where the disease is manifest, the scaling factor

is based on the healthy controls only.

FIGURE 8
Distribution of the bootstrapped parameters (A) scores and (B) loadings for the RM-ASCA+ model shown in Figure 7. Main model estimates are
shown as vertical line. The dotted lines mark zero. The plot was made with the plot(. . ., type = “histogram”) function.
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Bootstrapping seems the preferable resampling strategy

despite jack-knifing resulting in smaller CIs and clearer

separation between groups. Targeted studies are needed to

assess the performance and coverage of specific validation

strategies for (RM-)ASCA+, and the most conservative

approach seems reasonable until such studies emerge. A

possible explanation for the smaller CIs from jack-knife

may be that bootstrapping “‘shakes’ the original data more

violently than jackknifing” (Efron and Hastie, 2016, p. 161);

on average, bootstrapping leaves out approximately 37% of the

participants compared to 14% for jack-knife when 1/

7 participants are excluded. Many refined strategies exist

for resampling and CI calculation for multilevel models

and may be implemented in later versions of ALASCA

when the strengths and weaknesses have been thoroughly

mapped (van der Leeden et al., 2008). Similarly,

permutation tests exist in exact or approximate form for

general ASCA models and provide means to calculate p

values for model terms and interactions (Anderson and

Braak, 2003; Bertinetto et al., 2020), and may be

implemented in ALASCA when their performance under

various model design have been thoroughly explored.

3.2.2 How does the metabolomic response in
breast cancer differ between responders and
non-responders receiving neoadjuvant
chemotherapy with or without bevacizumab?

To investigate whether the metabolomic changes in tumors

from patients having a good response to either chemotherapy

alone or chemotherapy+bevacizumab differed from non-

responders, a main effect for response and a three-way

interaction between time, group, and response was added. In R,

the model can be specified as value ~ time + response + time:

response + time:group + time:group:response + (1|ID). Since

equal_baseline = TRUE, the treatment groups are similar

at baseline, whereas the response groups can differ. In this case, the

effect matrix is specifiedmanually. If not, the response effect would

be separated as for BMI in example 1. The ALASCA() call was:

mod <- ALASCA(

df = df,

formula = value ~ time + response +

time:response + time:group +

time:group:response + (1|ID),

equal_baseline = TRUE,

effects = “time + response + time:response +

time:group + time:group:response”,

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S5.

The regression model including a three-way-interaction

between time, response, and treatment showed that responders

had somewhat higher concentrations of tyrosine and glutathione,

and lower concentrations of glucose and lactate at baseline and

showed a larger shift in metabolomic profile than non-responders

(Figure 9). After 12 weeks of treatment (T2), the metabolomic shift

seems similar in the reponder group as well as non-responders

receiving bevacizumab. At 24 weeks, however, the responders had

the largest change in metabolic profile, followed by non-

responders receiving bevacizumab, whereas non-responders

receiving chemotherapy only had the smallest change.

FIGURE 9
Time development of tumor biopsy metabolome before and during cancer treatment, in responders and non-responders as (A) scores and (B)
loadings. Since participants were randomized to treatment but not response, the baseline levels are equal for all participants within each response
groups. Non-responders receiving chemotherapy only show the smallest change of metabolome. The level of metabolites with high loading is
increasing when the scores increase and vice versa.
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One should note that the baseline levels shown in Figure 9

reflect amore complex statistical model than the previous example,

where the treatment groups shared the same baseline. Since the

tumors from responders and non-responders may have had some

distinct properties from the beginning, the baseline levels of

responders and non-responders are allowed to vary, whereas

the baseline levels of the treatment groups are kept equal. Thus,

the three-way interaction between time, treatment, and response

could not have been reproduced by simply creating four groups

(treatment×response) and using the same regression model as

above (value~time + time:group + (1|ID)).

3.3 Example 3: Megavariate data

3.3.1 Does skin gene expression differ between
patientswith systemic sclerosis (SSc) and healthy
controls?

Since control samples were only available for a single time

point, skin gene expression in healthy controls were

compared to patients with limited or diffuse SSc at

baseline. Reduction of dimensions by PCA was applied

due to the size of the data set.

Although the ALASCA package is primarily designed for

longitudinal data sets, it also supports ordinary linear models

without random effects. When there is no time term in the

regression formula, the first term will be used as abscissa. Gender

and age were included as covariates to demonstrate adjustment of

categorical and continuous variables. In R, the regression model

can be defined as value~disease + gender + age:

mod <- ALASCA(

df = df,

formula = value ~ disease + gender + age,

scale_function = “sdref”,

reduce_dimensions = TRUE,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S6.

ALASCA can be used to compare multivariate data from

experimental designs with single measurements and adjust for

confounders such as gender. When only two groups are

compared, the difference between the groups is fully explained

by PC1 (Figure 10). Patients with SSc showed stronger expression

of several genes related to collagen alpha proteins such as

COL8A1, COL4A1, and COL4A4. In contrast, the healthy

controls showed stronger expression of genes such as

SCARA5 (Scavenger Receptor Class A Member 5), C1QTNF7

(Complement C1q Tumor Necrosis Factor-Related Protein 7),

SP5 (Transcription Factor Sp5), SGCG (sarcoglycan gamma),

and ENHO (Energy Homeostasis-Associated Protein). The genes

with highest and lowest loading showed some overlap with the

FIGURE 10
The difference in skin biopsy transciptome between healthy controls and patients with systemic sclerosis (SSc) as (A) scores and (B) loadings.
The effects of age and gender have been adjusted for (Figure 11). The expression of genes with high loading is increasing when the scores increase
and vice versa. Only the 12 genes with highest and lowest loadings, separated by the vertical dotted line, are shown due to the large number of
assessed genes.
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genes with the highest/lowest fold-change as reported in the

original study, but ALASCA also identified several new genes of

possible interest (Supplementary Figure S18). In addition, the

original study did not adjust for gender and age.

Many of the genes differently expressed in males and females

were located on the sex chromosomes (Figure 11). Male

participants had stronger expression of genes such as

TXLNG2P (Taxilin Gamma Pseudogene, Y-Linked), Lysine

Demethylase 5D (KDM5D), and DDX3Y (DEAD-Box

Helicase 3, Y-Linked). Females, on the other hand, showed

stronger expression of genes such as XIST (X Inactive Specific

Transcript), EIF1AX (Eukaryotic Translation Initiation Factor

1A, X-Linked), and DDX3X (DEAD-Box Helicase 3, X-Linked).

Increasing age was associated with stronger expression of genes

such as CADM3 (Cell Adhesion Molecule 3) and NOVA1

(NOVA Alternative Splicing Regulator 1), whereas genes such

as ACSF2 (Acyl-CoA Synthetase Family Member 2) and MVD

(Mevalonate Diphosphate Decarboxylase) showed the opposite

pattern.

The default settings in the ALASCA package are suggestions

and should not be treated as authoritative recommendations. The

user’s choice of parameters and settings should be informed by

the research question and the data. For example, by reducing the

number of variables through PCA as in this example, one

improves efficiency at the cost of accuracy. Currently, there

are many opinions on how to select the number of necessary

components (Abdi and Williams, 2010), and the performance of

various methods depends on the nature of the data being studied

(Peres-Neto et al., 2005). The number of components selected by

the ALASCA package during dimension reduction depends on

how much variance wish to retain (by default,

reduce_dimensions.limit = 0.95 so that 95% of the

variance will be kept). A good strategy would be to compare the

results from multiple models with various limits to see how

sensitive the results are to that specific parameter. A similar

strategy can be employed to gain confidence in other parameters

as well.

3.3.2 Does longitudinal skin gene expression
differ between patients with limited and
diffuse SSc?

The longitudinal skin gene expression from patients with

limited or diffuse SSc was assessed with the limited variant as

reference group. To reduce the number of variables subjected to

regression by applying an initial PCA prior to regression,

reduce_dimensions was set to TRUE. As the default

FIGURE 11
The effects of age and gender on gene expression in skin biopsies from healthy controls and patients with systemic sclerosis. The coefficients
are regression coefficients from linear regression models, colored by chromosome location. Some genes were associated with mulitple probes, and
are marked with “(d)” to avoid duplicated names. The error bars reflect 95% confidence intervals from bootstrapping. Only the 12 genes with highest
and lowest coefficients are shown. The figure was made with the plot(. . ., type = “covars”) function.
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PCA algorithm in R sometimes stops due to internal errors, an

alternative PCA function can be provided by specifying

pca_function (Baglama et al., 2021). The regression

model is similar to the final model in Example 1 with

separated effects for time and group:

mod <- ALASCA(

df = df,

value ~ time * group + (1|ID),

scale_function = “sdt1”,

pca_function = “irlba”,

reduce_dimensions = TRUE,

separate_effects = TRUE,

validate = TRUE

)

FIGURE 12
Time development of skin biopsy genome in patients with limited or diffuse systemic sclerosis. (A) The time development of patients with
limited systemic sclerosis is isolated in the upper panels, whereas (B) the lower panels visualize how the skin biopsy genome develop distinctly
between the groups. The expression of genes with high loadings is increasing when the scores increase and vice versa. Only the 12 genes with
highest and lowest loadings, separated by the vertical dotted line, are shown due to the large number of assessed genes.
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The corresponding design matrix is shown in Supplementary

Table S7.

The initial skin biopsy from patients with limited SSc differed

from the two subsequent biopsies with a tendency to increased

expression of genes such as GNE (Bifunctional UDP-N-

acetylglucosamine 2-epimerase/N-acetylmannosamine kinase),

SOX13 (SRY-Box Transcription Factor 13), and DBN1 (drebin 1)

with time (Figure 12A). The difference in gene expression between

the patient groups was stable over time (Figure 12B). Patients with

diffuse SSc showed stronger expression of genes such as SFRP4

(Secreted Frizzled Related Protein 4), ANGPT2 (Angiopoietin 2),

and COL4A4 (Collagen Type IV Alpha 4 Chain) than patients with

limited SSc. In contrast, genes such as SPAG17 (Sperm Associated

Antigen 17), SCARA5, and WIF1 (WNT Inhibitory Factor 1) were

more strongly expressed in skin from patients with limited SSc than

patients with diffuse SSc. Although SFRP4 was reported to have the

highest fold-change between diffuse and limited SSc in the original

publication (Skaug et al., 2021), ALASCA identifies several the genes

of possible interest (Supplementary Figure S19).

4 Conclusion

The (RM-)ASCA+ framework offers a flexible and robust

method to quickly discover patterns in multivariate data.

Advantages with (RM-)ASCA+ compared to other methods such

as PLS-DA include the possibility to model longitudinal changes

from multiple timepoints, to incorporate advanced experimental

designs, and to include confounders in the analysis. The ALASCA

package for R makes the (RM-)ASCA+ available for general use by

offering a simple interface to model complex relationships, to scale

the data, to perform model validation, and to produce a variety of

publication-ready visualizations.
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