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It is well known that sample moments are more sensitive and less robust than order

statistics for robustness with respect to outliers. In this article, we show that the situ-

ation is exactly the opposite for robustness with respect to rounding. For large and

very large sample sizes, statistical procedures based on order statistics become non-

applicable even for very mild data rounding while procedures based on sample

moments work perfectly for this rounding level. The comparison of sample moments

and order statistics is made for tests for normality and tests for exponentiality.
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1 | INTRODUCTION

In practice, data for a statistical analysis are always rounded. If the discretization step is not too large compared with the measurement error and

the sample size is not too large, then rounding usually does not lead to serious troubles. Such situations have been studied by a number of

authors; see, in particular, Hall (1982), Tricker (1984a), Tricker (1984b), Tricker (1990a), Tricker (1990b), Tricker (1990c), Härdle and Scott (1992),

Hall and Wand (1996), Tricker and Okell (1997), Minnotte (1998), Meintanis and Ushakov (2004), Bai et al. (2009), Schneeweiss et al. (2010),

Ushakov and Ushakov (2018), Zhao and Bai (2020) and references therein.

However, if the sample size is large, then the situation changes. Many statistical procedures, tests and estimators become non-robust with

respect to the data rounding. In this paper, we study statistical tests and their robustness with respect to rounding when sample sizes are large. It

is known that the sample mean is less robust with respect to outliers than the sample median. Here, we show that the situation is exactly the

opposite for robustness with respect to rounding: Statistical tests whose test statistics are based on sample moments are much more robust than

tests whose test statistics are based on order statistics. We present some preliminary theoretical analysis and then a simulation study of normality

and exponentiality tests based on the sample moments and on the order statistics and find out how well these tests control the probability of

Type I error, especially for the case when sample size is large.

Let c be a real number. ½c� is used to denote the largest integer less than or equal to c (the integer part of c). The fractional part of c is denoted

by fcg: fcg¼ c�½c�. For a positive h, the number h½c=h� is called the integer part modulo h and is denoted by ½c�h. The fractional part modulo h is

denoted by fcgh: fcgh ¼ c�½c�h. In this work, we study rounding to the nearest. Other rounding types are studied similarly. There is a rounding lat-

tice fx : x¼ kh,k¼0,�1,�2,…g, where h>0 (call it the discretization step). The rounding of a real number c is the nearest to c point of the round-

ing lattice. Denote it by cðhÞ. Thus, cðhÞ ¼ kh where k is such that kh�h=2≤ c< khþh=2. The integer part modulo h is called also the rounding

down. For a random variable X, its rounding (or discretization) is the discrete random variable XðhÞ such that XðhÞ ¼ kh when

kh�h=2≤X < khþh=2. Note that ½X�h ¼ kh when kh≤X < ðkþ1Þh.

Received: 6 April 2022 Revised: 25 May 2022 Accepted: 4 June 2022

DOI: 10.1002/sta4.478

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Stat published by John Wiley & Sons Ltd.

Stat. 2022;11:e478. wileyonlinelibrary.com/journal/sta4 1 of 13

https://doi.org/10.1002/sta4.478

 20491573, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.478 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-6521-1664
mailto:nikolai.ushakov@ntnu.no
https://doi.org/10.1002/sta4.478
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/sta4
https://doi.org/10.1002/sta4.478
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsta4.478&domain=pdf&date_stamp=2022-11-05


The closeness of moments of a random variable and moments of its discretization have been studied in a number of works; see, in particular,

Tricker (1984b), Janson (2006), Schneeweiss et al. (2010), Ushakov and Ushakov (2018), Samsonov et al. (2019), Ushakov and Ushakov (2020)

and references therein. Shortly, the moments are close provided that the discretization step is not too large.

For our purpose, it is important to take into account not only the accuracy of the discretization (the discretization step) but also the spread of

a rounded random variable. A natural measure of the level of rounding is the variable r¼ h=σ, where h is the step of discretization and σ is the

standard deviation of the random variable.

Throughout the paper, we will accept the following convention. To simplify analysis of simulation results, we will choose a certain threshold

value of the probability of Type I error and denote probabilities greater than this threshold by bold. Such values can be considered as unaccept-

able. Let us choose the threshold to be equal to the double significance level, that is, for example, 0.1 if the significance level is 5%. Of course, this

agreement is very conditional and is made only for convenience.

2 | THREE ELEMENTARY EXAMPLES

We start with three very elementary examples.

Example 1. Let X1,…,Xn be a random sample (iid random variables) from a normal distribution with expectation μ and variance σ2

(both are unknown). The null hypothesis H0 : μ¼ μ0 is tested versus the alternative H1 : μ≠ μ0. The significance level is α. Denote

the sample mean and variance by X and S2. It is natural to use the Student t test: The null hypothesis is rejected if

���� ffiffiffinp X�μ0
S

����> tn�1,α=2:

Suppose however that we do not observe X1,…,Xn. Instead we have rounded observations XðhÞ
1 ,…,XðhÞ

n . The corresponding sample

mean and variance are X
0
and S02. Respectively, the null hypothesis is rejected if

���� ffiffiffinp X
0 �μ0
S0

����> tn�1,α=2:

Using Monte Carlo simulation, we calculate the empirical probability of Type I error for different rounding levels and different sam-

ple sizes and see what happens. To this end, we generate 10,000 samples of each size n¼20,50,100,103,104,105,106 from the nor-

mal distribution with prescribed expectation μ0 and variance σ2. Let for definiteness μ0 ¼0 and σ¼1. The observations generated

are rounded to different rounding levels r¼0:1,0:01,10�3,10�4,10�5,10�6 (since σ¼1, r simply coincides with h). For convenience,

consider also the case r¼0 (non-rounded data). The significance level α¼0:05. For each fixed r and fixed n, the proportion of

10,000 samples for which the hypothesis is rejected is the estimated probability of Type I error. The results are presented in

Table 1. The empirical significance level coincides with the theoretical for all levels of rounding and all sample sizes. The rounding

did not lead to any problems.

If we use the Wilcoxon signed rank test instead of the t test, then results are similar except for very large sample sizes and very

strong rounding. These results are presented in Table 2.

TABLE 1 Simulated probability of Type I error, Example 1, t test

r¼0 r¼10�6 r¼10�5 r¼ 10�4 r¼10�3 r¼0:01 r¼ 0:1

n¼ 20 0.051 0.0494 0.0499 0.0494 0.0496 0.051 0.0514

n¼ 50 0.0496 0.0472 0.0511 0.0513 0.0523 0.0484 0.0507

n¼ 100 0.0521 0.0511 0.0493 0.0494 0.0514 0.0505 0.0475

n¼ 103 0.0488 0.0489 0.052 0.0505 0.0486 0.0495 0.0501

n¼ 104 0.0532 0.0504 0.0485 0.0479 0.0501 0.0547 0.051

n¼ 105 0.0519 0.0509 0.0492 0.0506 0.051 0.0501 0.0516

n¼ 106 0.0467 0.047 0.0496 0.0504 0.045 0.0461 0.0541
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In the considered example, we used (for the t test) the optimal (optimal for non-rounded data) test based on a suffisient

statistic—the sample mean. In the next example, we again use the optimal test based on a sufficient statistic, but the statistic is an

order statistic—the maximum.

Example 2. Let X1,…,Xn be a random sample from a uniform distribution on the interval ½0,θ�,θ >0. The problem is to test the

hypothesis H0 : θ¼ θ0 against H1 : θ > θ0, where θ0 is a given positive number. The significance level is α. The likelihood ratio test is

based on the maximal observation. The null hypothesis is rejected if

maxfX1,…,Xng> θ0ð1�αÞ1n:

Like in Example 1, the sample X1,…,Xn is not observed. Instead we have rounded observations XðhÞ
1 ,…,XðhÞ

n and therefore use the test

where H0 is rejected when

maxfXðhÞ
1 ,…,XðhÞ

n g> θ0ð1�αÞ1n:

The probability of Type I error is estimated using Monte Carlo simulation absolutely in the same way as in Example 1; that is,

10,000 samples are generated for each sample size. The significance level is α¼0:05. The parameter θ0 ¼2
ffiffiffi
3

p
(then σ¼1, and

r¼ h). The results are presented in Table 3. It is seen that for any rounding level, the test becomes unsuitable for sufficiently large

sample sizes.

Let us try to solve the problem of Example 2 using a test statistic which is neither optimal and nor sufficient but is based on a

sample moment—the sample mean.

Example 3. The same problem as in the previous example. The critical region has form X > cðn,θ0Þ. Since it is difficult to find pre-

cisely the critical value c, one can approximate it using the Central Limit Theorem. Due to the theorem, the statistic

TABLE 2 Simulated probability of Type I error, Example 1, Wilcoxon test

r¼0 r¼10�6 r¼10�5 r¼ 10�4 r¼10�3 r¼0:01 r¼ 0:1

n¼ 20 0.049 0.046 0.0494 0.0471 0.0507 0.0488 0.0478

n¼ 50 0.0485 0.0463 0.05 0.048 0.0509 0.0488 0.0478

n¼ 100 0.051 0.05 0.048 0.0534 0.0498 0.0509 0.0519

n¼ 103 0.0532 0.0521 0.0483 0.0474 0.0518 0.051 0.049

n¼ 104 0.0478 0.0469 0.0482 0.0473 0.049 0.0479 0.0475

n¼ 105 0.0498 0.0501 0.0502 0.0514 0.0469 0.0507 0.0707

n¼ 106 0.0438 0.0522 0.0466 0.0489 0.05 0.0514 0.2839

TABLE 3 Simulated probability of Type I error, Example 2, α¼0:05,θ0 ¼2
ffiffiffi
3

p

r¼0 r¼10�6 r¼10�5 r¼ 10�4 r¼10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0545 0.0466 0.0528 0.0516 0.0527 0.0523 0.0773

n¼ 50 0.0524 0.0525 0.0493 0.0522 0.0448 0.0597 0.1828

n¼ 100 0.0493 0.0489 0.0485 0.0509 0.0612 0.1146 0.3357

n¼ 103 0.05 0.0508 0.0496 0.0618 0.1567 0.6982 0.9826

n¼ 104 0.0505 0.0529 0.049 0.1373 0.4443 1 1

n¼ 105 0.0554 0.0622 0.1818 0.4643 0.9975 1 1

n¼ 106 0.0524 0.1591 0.6502 0.9976 1 1 1

ON THE EFFECT OF ROUNDING ON HYPOTHESIS TESTING WHEN SAMPLE SIZE IS LARGE 3 of 13
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ffiffiffi
n

p X�θ=2

θ=
ffiffiffiffiffiffi
12

p

has the standard normal distribution asymptotically; therefore, the approximate critical region is

ffiffiffi
n

p X�θ0=2

θ0=
ffiffiffiffiffiffi
12

p > zα:

Simulation is fulfilled in the same way as in Example 2. In particular, we take θ0 ¼2
ffiffiffi
3

p
. Simulation results are presented in Table 4.

The test works fine: The probability of Type I error is perfectly controlled for all rounding levels and all sample sizes.

Thus, although the test of Example 2 is more powerful than the test of Example 3, the latter is more preferable if data are

rounded, and the sample size is large.

3 | SOME ESTIMATES AND PRELIMINARY REMARKS

In this section, we obtain quantitative estimates for the distance between sample moments obtained from rounded and unrounded data and esti-

mates for such a distance between order statistics which shed light on the situation with the examples of the previous section. Although the esti-

mates are obtained under certain restrictions, we believe that they reflect the situation in the general case.

The sample moments are asymptotically normal (as the sample size tends to infinity), and for normally distributed observations, stability with

respect to the data rounding is very high provided that the rounding is not too coarse. This follows from the following quantitative estimate.

Theorem 1. Let Y1,Y2,::. be a sequence of independent random variables having the same normal distribution with unit variance. Then

P lim
n!∞

����1n
Xn
i¼1

YðhÞ
i �1

n

Xn
i¼1

Yi

����< h
π

1þ h2

2π2

 !
e�2π2=h2

 !
¼1: ð1Þ

Extension to the case of an arbitrary variance is straightforward. The following theorem gives lower bounds of stability of the minimal

and maximal order statistics.

Theorem 2. Let Y1,Y2,::. be a sequence of iid random variables with a unimodal bounded density and distribution function FðxÞ. If
FðxÞ≠1 for all x, then

lim inf
n! P jmaxfYðhÞ

1 , …, YðhÞ
n g�maxfY1, …, Yngj≥ h

4

� �
≥
1
2
,

and if FðxÞ≠0 for all x, then

lim inf
n! P jminfYðhÞ

1 , …, YðhÞ
n g�minfY1, …, Yngj≥ h

4

� �
≥
1
2
:

TABLE 4 Simulated probability of Type I error, Example 3, α¼0:05,θ0 ¼2
ffiffiffi
3

p

r¼0 r¼10�6 r¼10�5 r¼ 10�4 r¼10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0442 0.0493 0.0536 0.0498 0.0483 0.0512 0.0539

n¼ 50 0.0485 0.0485 0.0507 0.0526 0.0465 0.0513 0.0492

n¼ 100 0.0497 0.0482 0.0505 0.0574 0.053 0.0507 0.0513

n¼ 103 0.0501 0.0527 0.0476 0.0489 0.0484 0.047 0.0528

n¼ 104 0.0455 0.0521 0.0517 0.0488 0.0487 0.0491 0.0462

n¼ 105 0.0515 0.0488 0.0477 0.0456 0.0491 0.0508 0.0411

n¼ 106 0.0491 0.0512 0.0481 0.0536 0.0482 0.0509 0.0327
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Similar bounds probably hold for arbitrary order statistics. Proofs of Theorems 1 and 2 are contained in Appendix A1.

The theorems presented in this section as well as the examples given in Section 2 suggest that tests based on the empirical moments

must be more stable with respect to the data rounding than tests based on the order statistics. In the next two sections, using Monte Carlo

simulation, we find out if this is so.

4 | TESTS FOR NORMALITY

Among existing normality tests, we choose three tests based on the sample moments and four tests based on the order statistics or on the empiri-

cal distribution function. Using a simulation study, we check how well these tests control the probability of Type I error for different sample sizes.

The tests based on the sample moments are the Jarque–Bera, the kurtosis and the skewness. The tests based on the order statistics and the

empirical distribution function are the Kolmogorov–Smirnov, the Cramer–von Mises, the Anderson–Darling and the Pearson. The simulation is

performed as follows: 10,000 random samples are generated from a normal distribution for each sample size

n¼20,n¼50,n¼100,n¼103,n¼104,n¼105. The observations are rounded. Rounding levels are r¼0:1,r¼0:01,r¼10�3,r¼10�4. For conve-

nience, we provide also simulation results for non-rounded data. All the tests are applied to the same samples. The significance level is 5%. For

each sample and each of the seven tests, the hypothesis of normality is rejected if the p value obtained is less than 0.05. For a given test and fixed

r and n, the proportion of 10,000 samples for which the hypothesis is rejected is the estimated probability of Type I error. The results are pres-

ented in Tables 5–11.

The tables show that the conjecture made in Sections 2 and 3 is fully confirmed. The three tests whose test statistics are based only on the

sample moments are much more robust than the other tests if the sample size is large.

5 | TESTS FOR EXPONENTIALITY

The following tests for exponentiality have been selected. The first group: the Epps–Pulley, the Gini, the Atkinon. These tests are based on the

sample moments. The second group: the Harris, the Gnedenko, the Epstein. These tests are based on the order statistics. The simulation study is

similar to that provided in the previous section; 10,000 random samples are generated from an exponential distribution for each sample size

n¼20,n¼50,n¼100,n¼103,n¼104,n¼105. The observations are rounded. Rounding levels are r¼0:05,r¼0:01,r¼10�3,r¼10�4. The results

are presented in Tables 12–17. Again tests based on the sample moments are much more robust when the sample size is large.

TABLE 5 Simulated probability of Type I error, α¼0:05, Jarque—Bera test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0483 0.0487 0.0504 0.0514 0.0508

n¼ 50 0.0532 0.0522 0.051 0.0482 0.0441

n¼ 100 0.0445 0.0506 0.0487 0.0527 0.0502

n¼ 103 0.0487 0.0495 0.0518 0.049 0.0513

n¼ 104 0.0477 0.0502 0.0504 0.0488 0.0506

n¼ 105 0.0527 0.0511 0.0496 0.0523 0.0512

TABLE 6 Simulated probability of Type I error, α¼0:05, kurtosis test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.05 0.0484 0.0509 0.0456 0.0464

n¼ 50 0.0498 0.0521 0.0512 0.0478 0.0524

n¼ 100 0.0481 0.0499 0.0499 0.0509 0.0525

n¼ 103 0.0489 0.0503 0.0478 0.0516 0.0552

n¼ 104 0.0501 0.0517 0.0513 0.0592 0.0601

n¼ 105 0.0469 0.0517 0.0529 0.0701 0.0825

ON THE EFFECT OF ROUNDING ON HYPOTHESIS TESTING WHEN SAMPLE SIZE IS LARGE 5 of 13
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6 | POWER OF TESTS FOR ROUNDED DATA

In this section, we find and compare the empirical power of the tests in case of exact data (r¼0) and in case of rounded data (for definiteness

r¼0:1). We show that in contrast to the probability of Type I error, the probability of Type II error practically is not affected by the rounding. We

consider only tests for normality because the power of exponentiality tests for rounded data was in detail studied in Ushakov and Ushakov

(2021). The power is studied for three alternative distributions (Laplace, Student and Weibull) and two different sample sizes (n = 100, n = 1000).

TABLE 7 Simulated probability of Type I error, α¼0:05, skewness test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0488 0.0489 0.05 0.0502 0.0522

n¼ 50 0.0509 0.0511 0.0512 0.052 0.0485

n¼ 100 0.05 0.0517 0.0499 0.0475 0.0543

n¼ 103 0.0503 0.0486 0.0507 0.0505 0.0508

n¼ 104 0.0497 0.0521 0.0495 0.0503 0.0514

n¼ 105 0.0523 0.0502 0.051 0.0507 0.0492

TABLE 8 Simulated probability of Type I error, α¼0:05, Kolmogorov–Smirnov test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0482 0.0454 0.0499 0.0483 0.0551

n¼ 50 0.0482 0.0484 0.0501 0.0504 0.0737

n¼ 100 0.0487 0.0507 0.0509 0.0532 0.1222

n¼ 103 0.0497 0.0478 0.0515 0.0592 0.9063

n¼ 104 0.0411 0.0383 0.0418 0.1692 1

n¼ 105 0.0302 0.0364 0.0532 0.9529 1

TABLE 9 Simulated probability of Type I error, α¼0:05, Cramer–von Mises test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0456 0.0513 0.0473 0.0479 0.0576

n¼ 50 0.0509 0.0508 0.0476 0.0512 0.0577

n¼ 100 0.0476 0.0536 0.0512 0.0499 0.0663

n¼ 103 0.0514 0.0513 0.0489 0.0528 0.5316

n¼ 104 0.0496 0.0526 0.0498 0.0622 1

n¼ 105 0.0489 0.0479 0.0533 0.5185 1

TABLE 10 Simulated probability of Type I error, α¼0:05, Anderson–Darling test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0492 0.0495 0.0507 0.047 0.0523

n¼ 50 0.0491 0.0525 0.0523 0.0483 0.0527

n¼ 100 0.0495 0.0483 0.051 0.0524 0.066

n¼ 103 0.0476 0.0522 0.0454 0.0522 0.4766

n¼ 104 0.0483 0.0523 0.0471 0.0604 1

n¼ 105 0.0512 0.05 0.0516 0.4659 1

6 of 13 USHAKOV AND USHAKOV
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The alternative distributions have the following parameters. Laplace: zero expectation, the mean absolute deviation 1=
ffiffiffiffiffi
2r

p
; Student: the variable

X=
ffiffiffiffiffi
2r

p
, where X has the Student distribution with 4 degrees of freedom; Weibull: the shape parameter 2, the scale parameter 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�π=4

p
r. The

choice of parameters is dictated by the level of rounding r when the discretization step is one, that is, when the generated data are rounded to

the nearest integer.

From each of the three distributions above, 10,000 random samples of size n are generated. For each sample and each of the 7 tests, the

hypothesis of normality is not rejected if the p value obtained is greater than 0.05, and we calculate the proportion of times when the hypothesis

is rejected. In other words, we calculate the proportion of times when the p value is less than 0.05. This is the empirical power of the test for the

TABLE 11 Simulated probability of Type I error, α¼0:05, Pearson test for normality

r¼0 r¼10�4 r¼ 10�3 r¼0:01 r¼ 0:1

n¼ 20 0.0487 0.0535 0.0514 0.0526 0.059

n¼ 50 0.0524 0.0523 0.0476 0.0556 0.0807

n¼ 100 0.0519 0.0499 0.0507 0.0517 0.1255

n¼ 103 0.0516 0.049 0.0511 0.0776 1

n¼ 104 0.0416 0.0473 0.0633 1 1

n¼ 105 0.053 0.0537 0.9034 1 1

TABLE 12 Simulated probability of Type I error, α¼0:05, Epps-Pulley test for exponentiality

r¼0 r¼10�4 r¼10�3 r¼0:01 r¼0:05

n¼ 20 0.0402 0.0384 0.0399 0.0395 0.0407

n¼ 50 0.0478 0.0434 0.0466 0.0511 0.0457

n¼ 100 0.046 0.0455 0.0468 0.0478 0.049

n¼ 103 0.0508 0.0499 0.0518 0.048 0.0509

n¼ 104 0.0498 0.0502 0.05 0.0487 0.0494

n¼ 105 0.048 0.0501 0.0448 0.0526 0.0595

TABLE 13 Simulated probability of Type I error, α¼0:05, Gini test for exponentiality

r¼0 r¼10�4 r¼10�3 r¼0:01 r¼0:05

n¼ 20 0.0449 0.0499 0.0482 0.0482 0.0509

n¼ 50 0.0538 0.0494 0.0483 0.047 0.0494

n¼ 100 0.0482 0.0508 0.0463 0.0502 0.0498

n¼ 103 0.0481 0.05 0.0536 0.0461 0.049

n¼ 104 0.0512 0.0533 0.0513 0.0527 0.0558

n¼ 105 0.0528 0.0484 0.0537 0.0516 0.0544

TABLE 14 Simulated probability of Type I error, α¼0:05 Atkinson test for exponentiality

r¼0 r¼10�4 r¼10�3 r¼0:01 r¼0:05

n¼ 20 0.0348 0.0332 0.0349 0.036 0.0371

n¼ 50 0.0392 0.0409 0.0441 0.0404 0.0442

n¼ 100 0.0483 0.0466 0.043 0.0464 0.0514

n¼ 103 0.0489 0.0464 0.0464 0.0482 0.0553

n¼ 104 0.0457 0.0511 0.0545 0.0501 0.0558

n¼ 105 0.0496 0.0523 0.0475 0.0522 0.1198
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given the alternative distribution and given the sample size. The results are presented in Tables 18 and 19. It is seen that either the power for

rounded data is (practically) the same as the power for exact data or the power for rounded data is greater than the power for exact data (the

Pearson and Kolmogorov–Smirnov tests).

TABLE 16 Simulated probability of Type I error, α¼0:05, Gnedenko test for exponentiality

r¼0 r¼10�4 r¼10�3 r¼0:01 r¼0:05

n¼ 20 0.0477 0.046 0.0464 0.0508 0.0539

n¼ 50 0.0505 0.0492 0.0477 0.0509 0.0504

n¼ 100 0.0471 0.0514 0.0492 0.0585 0.0519

n¼ 103 0.0439 0.0473 0.0472 0.0484 0.0771

n¼ 104 0.0519 0.0491 0.0495 0.0561 0.0793

n¼ 105 0.0496 0.0477 0.0511 0.1704 0.5999

TABLE 17 Simulated probability of Type I error, α¼0:05, Epstein test for exponentiality

r¼0 r¼10�4 r¼10�3 r¼0:01 r¼0:05

n¼ 20 0.0448 0.0506 0.1279 0.662 0.996

n¼ 50 0.0451 0.0908 0.4748 0.999 1

n¼ 100 0.0388 0.249 0.9169 1 1

n¼ 103 0.0308 1 1 1 1

n¼ 104 0.0163 1 1 1 1

n¼ 105 0.5773 1 1 1 1

TABLE 15 Simulated probability of Type I error, α¼0:05, Harris test for exponentiality

r¼0 r¼10�4 r¼10�3 r¼0:01 r¼0:05

n¼ 20 0.0506 0.0503 0.0506 0.0501 0.0516

n¼ 50 0.0502 0.0515 0.0486 0.049 0.0514

n¼ 100 0.0489 0.0493 0.0501 0.0492 0.0533

n¼ 103 0.0506 0.0506 0.0483 0.0525 0.115

n¼ 104 0.0515 0.0516 0.0484 0.0741 0.3241

n¼ 105 0.0493 0.0536 0.0516 0.2502 0.999

TABLE 18 Empirical power for non-rounded and rounded data for three distributions (n¼100)

Laplace Student Weibull

r¼0 r¼0:1 r¼0 r¼0:1 r¼0 r¼ 0:1

Pearson 0.4743 0.5931 0.3052 0.4511 0.2714 0.3676

Kolmogorov–Smirnov 0.6922 0.8298 0.5117 0.6553 0.3784 0.5611

Cramer–von Mises 0.8152 0.8463 0.6084 0.6757 0.5017 0.5623

Anderson–Darling 0.8136 0.8423 0.6614 0.7231 0.6081 0.6524

Jarque–Bera 0.7823 0.7847 0.7772 0.7906 0.5483 0.5442

Kurtosis 0.8071 0.8112 0.7914 0.8325 0.1781 0.1532

Skewness 0.4167 0.4125 0.5312 0.5146 0.6781 0.6871
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7 | CONCLUSION

Statistical tests based on the empirical moments are more robust with respect to data rounding than tests based on the order statistics and the

empirical distribution function. Anyway, this is true for tests for normality and exponentiality. With a large sample size and rounded data tests

based on the order statistics should not be used.
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APPENDIX

In this appendix, we give proofs of Theorems 1 and 2.

Lemma 1. Let Y be an absolutely continuous random variable with the probability density function fðyÞ and the characteristic func-

tion φðtÞ. If φðtÞ is absolutely integrable, then

EfYgh ¼ h
1
2
�
X∞
n¼1

Iφð2πn=hÞ
πn

 !
:

Proof. We have

EfYgh ¼ ð

h

0
y
X∞
n¼�∞

fðyþnhÞdy:

Due to the Poisson summation formula (see Feller, (1971), p. 632, formula 5.9 with ζ¼0,λ¼ π),

X∞
n¼�∞

fðyþnhÞ¼1
h

X∞
k¼�∞

φð2πk=hÞe�iy2πk=h;

therefore,

EfYgh¼ h
P∞
k¼�∞

φð2πk=hÞ ð

1

0

ye�iy2πkdy¼h
1
2
þ
X
k ≠ 0

φð2πk=hÞ i
2πk

 !
¼

¼ h
1
2
�
X∞
k¼1

Iφð2πk=hÞ
πk

 !

(we have used the fact that the real part of any characteristic function is even and the imaginary part is odd).

Proof of Theorem 1. Denote the expectation of Yi by μ. Since

1
n

Xn
i¼1

YðhÞ
i !a:s:E Yiþ h

2

� �
h

¼

¼ E Yiþ
h
2

� �
�E

�
Yiþh

2

	
h

¼μþ
h
2
�E Yiþ h

2

� 	
h

,

the limit in Theorem 1 is equal to jh=2�EfYiþh=2ghj. Denote tn ¼2πn=h. Then, using Lemma 1, we obtain

����h2�E Yiþ h
2

� 	
h

����¼
����hX∞

n¼1

e�t2n=2 sinððμþh=2ÞtnÞ
πn

����≤ h
π

X∞
n¼1

e�t2n=2

n
:

Estimate the sum in the right hand side:
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P∞
n¼1

e�t2n=2

n
¼ e�2π2=h2 þ

X∞
n¼2

e�2π2n2=h2

n
< e�2π2=h2 þ

X∞
n¼2

e�2π2n=h2 <

< e�2π2=h2þ ð

∞

1

e�2π2x=h2 dx¼e�2π2=h2þ
h2

2π2
e�2π2=h2 :

Thus,

����h2�E Yiþ h
2

� 	
h

����< h
π

1þ h2

2π2

 !
e�2π2=h2

that implies the theorem.

The concentration function of a random variable X is defined as

QðX ; lÞ¼ sup
x

Pðx ≤ X ≤ xþ lÞ, l ≥0:

Lemma 2. Let X have an absolutely continuous unimodal distribution with the probability density function fðxÞ. If fðxÞ≤A, then

P jXðhÞ �Xj≥ h
4

� �
≥
1
2
ð1�AhÞ:

Proof. Let k be an arbitrary integer. Then

jXðhÞ �Xj< h
4

if

X� hk� h
4
, hkþ h

4

� �

and

jXðhÞ �Xj≥ h
4

if

X� hk� h
2
, hk� h

4

� �
[ hkþ h

4
, hkþ h

2

� �
,

that is,

jXðhÞ �Xj≥ h
4

if

X� hkþ h
4
, hkþ3h

4

� �
, k¼0,�1,�2,…
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Let fðxÞ attain its maximum at x0. Denote by k0 the integer such that

x0 � hk0� h
2
, hk0þ h

2

� �
:

Then (to the right of the mode)

P X � hk0þ
h
4
, hðk0þ1Þ� h

4

� �� �
≥P X � hðk0þ1Þ�

h
4
, hðk0þ1Þ

� �� �
,

P X � hkþ
h
4
, hkþ3h

4

� �� �
≥ P X � hðkþ1Þ�

h
4
, hðkþ1Þþ h

4

� �� �

for k¼ k0þ1,k0þ2,…, and (to the left of the mode)

P X � hk0�
3h
4
, hk0� h

4

� �� �
≥P X � hðk0�1Þ, hðk0�1Þþ

h
4

� �� �
,

P X � hk�
3h
4
, hk� h

4

� �� �
≥ P X � hðk�1Þ�

h
4
, hðk�1Þþ h

4

� �� �

for k¼ k0�1,k0�2,:::.

Thus, P∞
k¼�∞

P X � hkþ
h
4
, hkþ3h

4

� �� �
¼

¼
P∞
k¼�∞

P X � hk�
h
2
, hk� h

4

� �� �
þ
P∞
k¼�∞

P X � hkþ
h
4
, hkþ h

2

� �� �
≥

≥ P X � hðk0þ1Þ�
h
4
, hðk0þ1Þ

� �� �
þP X � hðk0�1Þ, hðk0�1Þþ

h
4

� �� �
þ

þ
Pk0�1

k¼�∞

P X � hðk�1Þ�
h
4
, hðk�1Þþh

4

� �� �
þ

þ
P∞

k¼k0þ1

P X � hðkþ1Þ�
h
4
, hðkþ1Þþ h

4

� �� �
:

Denote the expression in the left hand side by S and the expression in the right hand side by R. We have

S≥R, ðA1Þ

and

SþRþP X � hk0�
h
4
, hk0þ h

4

� �� �
þ P X � hðk0þ1Þ, hðk0þ1Þþ

h
4

� �� �
þ

þ P X � hðk0�1Þ�
h
4
, hðk0�1Þ

� �� �
¼1:

The sum of the three last probabilities in the left hand side does not exceed the concentration function QðX;hÞ; therefore,

SþRþQðX;hÞ≥1: ðA2Þ

From (A1) and (A2), we obtain

S≥
1
2
ð1�QðX;hÞÞ≥ 1

2
ð1�AhÞ:

Thus, finally,

P jXðhÞ �Xj≥ h
4

� �
≥ S≥

1
2
ð1�AhÞ:
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Lemma 3. Let X1,…,Xn be iid random variables with the unimodal bounded density fðxÞ and the distribution function FðxÞ. Denote

the probability density function of XðnÞ ¼ maxfX1,…,Xng by fmax ðxÞ and the density of Xð1Þ ¼ minfX1,…,Xng by fmin ðxÞ.
If FðxÞ≠1 for all x, then there exist two constants C1 and Δ1 (0 <Δ1 < 1), depending on f but not depending on n, such that

fmax ðxÞ≤C1Δn
1: ðA3Þ

If FðxÞ≠0 for all x, then there exist two constants C2 and Δ2 (0 <Δ2 < 1), depending on f but not depending on n, such that

fmin ðxÞ≤C2Δn
2: ðA4Þ

Proof. We have

fmax ðxÞ¼ nFn�1ðxÞfðxÞ:

Without loss of generality, suppose that fðxÞ is differentiable and that its mode is equal to zero. Denote the mode of the density

fmax ðxÞ by x ∗
n . x

∗
n is a solution of the equation

ðn�1Þf2ðxÞþFðxÞf 0ðxÞ¼0: ðA5Þ

The first summand in the left hand side of the equation is positive. The second summand is positive for x<0 and negative for x>0.

Since Fð0Þf 0ð0Þ¼0 and lim x!FðxÞf0ðxÞ¼0, there exists the point x0 where FðxÞf 0ðxÞ attains its minimum.

The first summand in the left hand side of (A5) increases as n increases while the second summand does not change; therefore,

Fðx ∗
n Þf 0ðx ∗

n Þ decreases in n, and the sequence fx ∗
n g increases while remaining less than or equal to x0. Hence,

fmax ðxÞ≤ nFn�1ðx ∗
n Þfðx ∗

n Þ≤ nFn�1ðx0Þfð0Þ:

This inequality implies (A3). Inequality (A4) is obtained similarly.

Proof of Theorem 2. Denote the probability density function of maxfY1,…,Yng by fmax ðxÞ. Then, due to Lemma 2,

P maxfYðhÞ
1 , …, YðhÞ

n g�maxfY1, …, Yng
����

����≥ h4
� �

¼

¼P ðmaxfX1, …, XnÞðhÞg�maxfX1 , …, Xng
����

����≥ h4
� �

≥
1
2
ð1�AnhÞ,

ðA6Þ

where An ¼ max xfmax ðxÞ. But, due to Lemma 2,

lim
n!∞

An ¼0: ðA7Þ

(A6) and (A7) imply the theorem.
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