
lable at ScienceDirect

Forensic Science International: Digital Investigation 42-43 (2022) 301476
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
It is about timeeDo exFAT implementations handle timestamps
correctly?

Rune Nordvik a, b, *, Stefan Axelsson a, c

a Norwegian University of Science and Technology, Norway
b Norwegian Police University College, Norway
c DSV, Stockholm University, Sweden
a r t i c l e i n f o

Article history:
Received 22 June 2022
Accepted 17 October 2022
Available online 29 October 2022

Keywords:
Digital Forensics
Timezone
Timestamps
Metadata
File systems
* Corresponding author. Norwegian University o
Norway.

E-mail address: rune.nordvik@phs.no (R. Nordvik)

https://doi.org/10.1016/j.fsidi.2022.301476
2666-2817/© 2022 The Authors. Published by Elsevie
a b s t r a c t

Digital forensic investigations require that file metadata are interpreted correctly. In this paper we focus
on the timestamps of the exFAT file system. How these timestamps are written may depend on the
implementation of the file system. We have performed experiments using Windows, MacOS and Linux to
examine whether the respective file system drivers for exFAT use timestamps in the same manner, and
whether they take the directory entry UTCOffset fields into account. We have also studied whether the
forensic tools: Autopsy, X-Ways Forensics, EnCase Examiner, and FTK Imager interpret the timestamps
consistently.

The results show that there are substantial inconsistencies both in the file system implementations
and in how forensic tools handle these inconsistencies. For the unwary forensic examiner, there is a clear
risk of interpreting timestamps incorrectly by a substantial margin.

We conclude that timestamp interpretation during criminal investigations should not be based on the
assumption that the file system specifications are followed flawlessly by the file system driver developers
or necessarily interpreted and displayed correctly by the digital forensic tools.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

During the investigation of criminal cases it is important that
timestamps are interpreted correctly. Misinterpreting timestamps
may exclude the guilty or implicate the innocent. For instance; a
Word document on a USB stick belonging to the suspect with a
creation timestamp corresponding to the time the crime was
committed may indicate that the suspect was using a computer at
the time of the crime to store the file on the USB stick. If traces
found on the suspect's home computer also show that the same
USB stick was inserted 1 h before the time of the crime, and
removed a day after, this may indicate that someone was at the
suspect's home at the creation of the document. If the crime took
place at another address at the same time, this finding may exclude
the person as a suspect if the investigation can connect the suspect
to the computer. If further hypothesis testing shows that the
computer has not been connected to any other network than the
f Science and Technology,

.

r Ltd. This is an open access article
home network, and that the computer clock has not been manip-
ulated, this will strengthen themain hypotheses that the suspect or
someone else was at the suspect's home address at the time of the
crime. However, more detailed hypothesis testing must be per-
formed before this conclusion is firmly drawn.

The above deductions can only be drawn if file systems follow
their specifications. However, these may not be available or only
partly available. Specifications may also be misinterpreted by the
implementer. For example, a previous study of N-version pro-
gramming by Knight and Leveson (1986) show that developers
tend to make similar mistakes even when they are following the
same specification, i.e. the flaws they introduce in the code are not
independent of each other. This means that there is little support to
trust a tool is correct only by comparing its results with a similar
tool (Nordvik et al., 2021).

In this paper we focus on the exFAT file system. The specifica-
tions are available from Microsoft (2021b). The exFAT file system
can be used on Windows, MacOS, Linux, and other operating sys-
tems (Bretel, 2017). Off the shelf removable storage devices are
today often pre-formatted with exFAT as it can work on most
computers and supports file system volume sizes much larger than
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:rune.nordvik@phs.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301476&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301476
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.fsidi.2022.301476

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
the 32 GiB FAT32 limitation (Microsoft, 2021a). These removable
devices can be mounted with read and write support on all previ-
ous mentioned operating systems, all thanks to the usage of the
exFAT file system (USB Memory Direct, 2022).

For most users of file systems it is not critical that timestamps
are accurate. However, when investigating criminal cases the ac-
curacy of times given could be critical in order to answer thewhen
question in the 5WH questions (Ieong, 2006). Ieong (2006) de-
scribes these 5WH questions as “What (the data attributes), Why
(the motivation), How (the procedures), Who (the people), Where
(the location) and When (the time)”.

When it comes to the investigation of metadata, such as time-
stamps from file systems, most investigations take for granted that
the digital forensic tools are able to parse the file systems that they
claim to support, and courts depend on the tools accuracy and
reliability (Nordvik et al., 2021). As timestamp interpretations may
give a suspect an alibi, the investigation should not rely solely on
tool interpretation.

Law enforcement organisations typically have a large backlog of
seized devices waiting for acquisition and analysis (Scanlon, 2016).
Digital forensic investigators use digital forensic tools when
investigating criminal cases to increase the efficiency of the
investigation. The concept of trust in criminal investigations is
discussed by Neale et al. (2022), including erroneous trust in the
accuracy of digital forensic tools. Error rates for digital forensic tools
are seldom available (Nordvik et al., 2021), and previous research
have shown that it is difficult to measure error rates involving all
independent variables (conditions) that may impact the dependent
variable (here the error rate) (Lyle, 2010).

In order to comply with certain human rights, like the right to
privacy, family life, and correspondence (Article 8) (Court of Human
Rights, 2021), law enforcement may utilise a more granular
acquisition of files, e.g. by only including files from a specific time
range (European Committee for Standardization, 2022). In these
cases law enforcement of course depend on accurate timestamp
interpretations.

Therefore, one can hardly overemphasise the importance of
manual verification of tool findings, and how file system time-
stamps are interpreted.

The contributions of this paper:

C File system driver developers do not implement exFAT
equally.

C When specifications are made available, they are not neces-
sarily followed.

C Digital forensic tools have a tendency to make assumptions
about metadata.

C Even when specifications are available, reverse engineering
by performing black box testing is necessary.

To the best of our knowledge, it has not been performed ex-
periments including multiple operating systems and multiple
driver implementations of the same exFAT file system. Since digital
forensic investigators do not necessarily know which operating
system a removable device has been connected to, they should not
assume that the exFAT specifications were followed by the driver.
Even building digital forensic tools to automate file system parsing
require a detailed understanding about how the file system drivers
store metadata, and this paper will show that it is not necessarily
always the case.

1.1. Background

The background information presented in this section is based
on Microsoft (2021b). The exFAT file system has a volume boot
2

record (VBR) which contains information necessary to find the
important metadata structures such as the file allocation table
(FAT), the cluster heap (data region), and the cluster of the Root
directory. It also defines the size of a sector, cluster, the size of the
volume, the number of FATs, the length of each FAT, and percentage
of allocated clusters in the cluster heap.

The data region starts at cluster 2 and it is recommended that
exFAT implementations place the root directory after the clusters
used for the allocation bitmap and the up-case table. The allocation
bitmap defines the allocation status of all clusters in the data re-
gion. The allocation bitmap has a corresponding set of directory
entries, and its primary directory entry has the type 0�81. The
number of allocation bitmaps correspond with the number of FATs,
and this is normally 1, or maximum of 2.

The exFAT FAT table is mainly used for fragmented files, which
are files that do not use contiguous clusters. When a file becomes
fragmented, the stream extension directory entry will set the
NoFatChain field to zero, meaning the FAT is in use. By using the
FirstCluster field in the stream extension directory entry, the system
identifies the correct cluster start in the FAT, and it can continue to
the next cluster in the allocation chain by reading FAT chain. This
enables the system to find all fragmented clusters for the file. If the
file is not fragmented, the FAT is not in use, by setting the
NoFatChain to one. Then the system can use the FirstCluster and the
DataLength fields to extract the contiguous clusters for the file.

The root directory contains files and folders and each of them
have a set of directory entries, as shown in Fig.1. Allocated files have
a file directory entry (type 0�85), a stream extension directory
entry (type 0xC0), and one ormore file name directory entries (type
0xC1), which is a set of allocated directory entries as illustrated in
the top part of Fig. 2. The file directory entry contains timestamps,
UTCOffset fields, file attributes, and a directory entry set checksum.
The stream extension directory entry gives information about
where the data content (the stream) is stored (FirstCluster, Data-
Length), the length of the FileName, and a hash of the FileName in
upper case. The file name directory entry describes the name of a
file, and will need NameLength/15 file name directory entries.

In this paper we mainly focus on the timestamps found in file
directory entries, as shown in Table 1. There are three different
timestamps in a file directory entry (FDE); Create, Last Modified,
and Last Accessed. According to the specifications, to interpret the
actual time the timestamp, the 10 ms increments, and the UTC
offset should be considered (Microsoft, 2021b). The UTC offset
describes the offset from UTC to local time (including daylight
savings adjustments) in 15 min increments. The 10 ms increments
are only available for the Create and the Last Modified timestamp,
and increases the granularity from 2 s to 10 ms.

In Fig. 3 we see the UTCOffset value 0�84. This value can be
converted to the UTC offset used since the timezone enabled bit is
set. We do not count the timezone enabled bit, and get the value
0�04, meaning UTCþ1:00 because each units corresponds to
15 min intervals.

For more information about the exFAT file system please see
Schullich (2009).

1.2. Research problem

Since the exFAT file system is supported on all main desktop
operating systems (Bretel, 2017), can we be sure that the specifi-
cations are followed by the exFAT file system developers for each of
these platforms? Previous research has not tested exFAT imple-
mentations on multiple platforms, and our contributionwill bridge
that gap. A new feature of the exFAT compared to the FAT32 is the
UTCOffset field for each timestamp. Since the specifications describe
that the value stored is the offset from UTC to local time including

Fig. 1. ExFat set of directory entries.

Fig. 2. ExFat allocation of directory entries.

Fig. 3. ExFat timeszone field, from hex byte to UTC offset.

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
any daylight adjustments Microsoft (2021b), it is relevant in an
investigative context to test if we can find the timezone of the
Table 1
File directory entry (all fields are mandatory).

Field Name Offset Size Value exa

EntryType 0�0 0�1 0�85
SecondaryCount 0�01 0�01 0�04
SetChecksum 0�02 0�02
FileAttributes 0�04 0�02 0�20
Reserved1 0�06 0�02 0�00
CreateTimestamp 0�08 0�04 0xAA493A
LastModifiedTimestamp 0�0C 0�04 0xAA493A
LastAccessedTimestamp 0�10 0�04 0xAA493A
Create10msIncrement 0�14 0�01
LastModified10msIncrement 0�15 0�01
CreateUtcOffset 0�16 0�01 0xF4
LastModifiedUtcOffset 0�17 0�01 0xF4
LastAccessedUtcOffset 0�18 0�01 0xF4
Reserved2 0�19 0�07 0�00

3

computer used to store the data on the file system by interpreting
the file systemmetadata only. Currently, most Digital forensic tools
claim support for the exFAT file system, but is this support accurate
and reliable, and can it be validated for law enforcement purposes?
Do the latest versions of the tools follow the exFAT specifications,
and how do they handle exFAT implementations that do not
comply with the exFAT specifications? The problems described
above are defined as the following research questions:

C How do current exFAT implementations store timestamps?
C Can we use the UTC offset stored in a directory entry to

describe the local time of the computer?
C Do current forensic tools interpret exFAT timestamps

differently?

The main hypothesis:
mple Comments

Regular primary directory entry in use
Number of secondary directory entries in this set
A checksum of all bytes (except this field) of directory entry set
DOS mode: Archive and a file
Reserved

54 Created 2022-01-26 09:13:20
54 Modified 2022-01-26 09:13:20
54 Accessed 2022-01-26 09:13:20

10 ms increments for Create
10 ms increments for Modified
Valid, UTC-3
Valid, UTC-3
Valid, UTC-3
Reserved

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
C H1: the local time (the base truth) is related to the time
stored within the primary directory entry when the time-
zone offset is valid.

The null hypothesis:

C H0: the local time is not related to the timezone offset in the
primary directory entry when the timezone offset is valid.

The a ¼ 0.01 is the confidence level, meaning if less than 1
percent of the observations supports the null hypothesis, then the
null hypothesis is falsified, giving additional strength to the cor-
responding main hypothesis.

We have only defined one main hypothesis that is related to all
three research questions, and the main hypothesis is based on an
assumption that the exFAT specifications are followed, both by
exFAT driver developers and by digital forensic tool developers.

1.3. Organisation of this paper

In the Introduction section we have introduced the importance
of interpreting file system metadata, especially timestamps, in an
investigative context, and we have given a short introduction to the
exFAT file system. In addition, we have defined the research prob-
lems. In the Related Work section we summarise the current state
of the art research related to exFAT. In the Methodology section we
describe the methods we used for the experiments for all the
supported operating systems (Windows, MacOS, and Linux), and in
the Results section we describe our results. Then we discuss our
results in the Discussion section, andwe conclude in the Conclusion
and Further Work section.

2. Related Work

Hamm (2009) was of the first to publish documentation about
the exFAT file system structures. He described the file system from
the view of a Digital Forensic practitioner. The exFAT system is
similar to the old FAT systems, but each file has a set of directory
entries which describe metadata of files. The file allocation table is
mainly used for fragmented files, and an allocation bitmap file for
describing which cluster (block) is allocated. Hamm (2009) de-
scribes that exFAT was first introduced inWindows CE in 2006, and
then in Vista SP1 in 2008. In 2009 Windows XP drivers for exFAT
were released. This work was performed before Microsoft released
the full specifications, and the work was based on the patent US
20090164440 A1 (Microsoft, 2009), which describes most of the
file system structures and their meaning.

Schullich (2009) continued the work from Hamm (2009) and
described reverse engineering of the exFAT file system utilising
black box analysis, using existing documentation such as patents,
examination of other file systems in the FAT family, Google
searches, Microsoft knowledge base, and low level examination of
the exFAT file system. Schullich (2009) also developed a C program
to output metadata structures. Files were created, added, deleted,
and added again to observe the effect these operations had on the
file system. The output of the C program was compared to the
output of native Windows program such as dir, chkdsk, disk man-
agement, andWindows Explorer. Schullich (2009) also describes the
internals of exFAT and its metadata structures. The timezone value
fields (UTCOffset) were found based on experiments and observa-
tions, they were not described in the patents. These fields describe
the timezone offset in units of 15 min.

Munegowda et al. (2012) describe allocation strategies for exFAT
and compares them to FAT32. The exFAT file system uses the allo-
cation bitmap (they call it the cluster heap) to search for free
4

clusters. If enough free contiguous clusters are available for allo-
cation, then the “No FAT Chain” is set to 0, the allocation bitmap is
set for the new allocated clusters, and the FAT is not used. The
stream extension directory entry points to the first cluster. How-
ever, if it is not possible to allocate contiguous clusters the “No FAT
Chain” is set to 1, the allocation bitmap is updated with the new
allocated clusters, and the FAT is used.

Unfortunately, the use of the “No FAT Chain” is misinterpreted
byMunegowda et al. (2012), since the specifications fromMicrosoft
(2021b) state that the NoFatChain field is set to 1 if the clusters are
contiguous, and 0 if the FAT cluster chain is in use.

Munegowda et al. (2014) describe how exFAT can implement
directory compaction techniques when its first cluster only has
deleted/unallocated entries. In this case the directory entry for this
directory should be changed to point to the next cluster, and the
previous first cluster should be marked free in the allocation bit-
map and in the file allocation table (compaction).

Ma et al. (2015) describe different approaches for data recovery
for the exFAT file system. An unallocated file will change the set of
directory entries from the types 0�85, 0xC0, and 0xC1, to the types
0�05, 0�40, and 0�41. One approach is using the second directory
entry (stream extension directory entry, here type 0�40) of an
unallocated file. Read its cluster start, find the start sector and
extract the size of the file. If the file is not stored in contiguous
clusters and not in the FAT (if damaged), then the file may not be
completely recovered. Ma et al. (2015) also describe carving using
signatures, and a machine learning approach utilising a Support-
Vector Machine (SVM) classification algorithm.

Vandermeer et al. (2018) describe how a set of exFAT directory
entries can be unallocated not necessarily as a result of deletion. By
combining information from the allocation bitmap it is possible to
differentiate between renamed, moved or deleted files. All these
scenarios will have a set of unallocated directory entry sets, but
only the deletion scenario will also set the bits in the bitmap for the
corresponding clusters to zero. If the clusters of an unallocated file
is allocated in the bitmap, the file may just as well be moved or
renamed. If the file clusters are zeroed out in the allocation bitmap,
then the file is deleted. They also proposed a methodology for
recovering deleted files.

Heeger et al. (2021) describe anti-forensic techniques to hide
data in the exFAT file system. They suggest the hiding of encrypted
data in the Create10msIncrement and LastModified10 ms-Increment
fields, by only using six of the least significant bits in these single
byte fields. In addition, one of the two most significant bits are set
or none of these two bits are set. The SetChecksum field in the file
directory entry is updated to take the hidden data into consider-
ation. This process is done for all necessary directory entry sets
used. Heeger et al. (2021) also suggest another approach called
exHide which only uses metadata from deleted files. This approach
uses the Create10msIncrement field (6 bits), and 1 bit from Crea-
teTimestamp and LastModifiedTimestamp are used in order to create
one byte. In addition, the FirstCluster and file size fields Val-
idDataLength and DataLength are used (the two latter needs to be
equal). A total of 4 bytes are used for hiding for each metadata
structure. For the exHide approach the LastModified10msIncrement
was not used because Windows does not use this field when
writing to the File System (Heeger et al., 2021).

3. Methodology

We used Linux Ubuntu 20.04 (using exFAT fuse v. 1.3), and
Ubuntu 20.04 (using the native kernel exFAT driver), MacOS
Monterey and Windows 10 as target operating systems (OSes).

We repeated the Linux experiments after removing the exFAT
fuse package in Linux Ubuntu 20.04 to enforce the usage of the

Fig. 4. Overview of all experiments, and all of them have a forensic image associated.

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
native kernel exFAT driver.
All experiments are described in this section and illustrated in

Fig. 4. The experiments A, C, and D were performed using a bash
shell script in MacOS and Linux, and a batch script was used in
Windows 10. Experiment B, and E were manually performed to
simulate normal user activity. We have shared the scripts and the
forensic images (Nordvik, 2022).

An overview of all experiments are shown in Fig. 4.

3.1. Experiment A - base

First we wiped the storage device, then we formatted it using
the exFAT v. 1.0 file system. We performed experiments by utilising
four different timezones, and for each timezone 100 files were
created in their own directory on the USB storage device. Before
each timezone change we performed an unmount and mount to
make sure the datawas written to the device. The local time as seen
by the user and a timezone index (from 0 to 3) was encoded as a
part of the filenames. After the experiments were performed a
forensic image was created for each target OS/driver. Metadata for
the created files were observed and timestamp related information
was interpreted.

The timezones index includes:

C Europe/Moscow (index 0, UTCþ3). Files stored in the direc-
tory Experiment-0.

C America/Godthab (index 1, UTC-3). Files stored in the direc-
tory Experiment-1.

C Atlantic/Azores (index 2, UTC-1). Files stored in the directory
Experiment-2.

C Europe/Oslo (index 3, UTCþ1). Files stored in the directory
Experiment-3.

For the Windows OS we used similar timezone values;

C Russian Standard Time (index 0, UTCþ3). Files stored in the
directory Experiment-0.

C E. South America Standard Time (index 1, UTC-3). Files stored
in the directory Experiment-1.

C Azores Standard Time (index 2, UTC-1). Files stored in the
directory Experiment-2.

C W. Europe Standard Time (index 3, UTCþ1). Files stored in
the directory Experiment-3.

The following forensic images were created in this experiment:

3.2. Experiment B - mounting and unmounting only

We used the Linux base forensic image from experiment A,
restored to the USB storage device using ewfmount and dd com-
mands, then the timezonewas changed to Europe/Oslo (UTCþ1) for
MacOS, andW. Europe Standard Time (UTCþ1) forWindows, which
is different from each base experiment 0, 1, 2. The storage device
was mounted on MacOS or Windows 10. We also restored the
Windows base forensic image, and mounted and unmounted the
USB storage device on Linux.

We did not make any change to any file. Then we unmounted
5

the device and created a forensic image for each target OS/driver.
The following forensic images were created in this experiment:

3.3. Experiment C - accessing selected files

We selected the Linux base image when targeting MacOS,
Windows and Linux native exFAT drivers, and we selected the
Windows base image when targeting Linux exFat fuse driver. We
restored the base forensic images to the USB storage device using
ewfmount and dd commands, and we re-mounted it on one of the
other operating systems after changing the timezone to America/
New_York (UTC-5). We opened the files in TextEdit on MacOS,
Notepad in Windows 10, and Gedit in Linux and then closed each
file. Then we created a forensic image for each target OS/driver. We
did not change or save any content.

The following forensic images were created in this experiment:

3.4. Experiment D - changing the content of all files

We performed experiments to change the files to simulate
normal user activity. We selected the Linux forensic image from the
base experiments, restored to the USB storage device using ewf-
mount and dd commands, then re-mounted the device on one of
the other operating systems. For every file in each of the 4 di-
rectories, we changed the content using the timezone America/

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
New_York (UTC-5) for Linux and MacOS, and Eastern Standard
Time (UTC-5) for Windows which is different from each base
experiment. Then we created a new forensic image for each target
OS/driver. The metadata changes of the files were observed and
documented.

The following forensic images were created in this experiment:
3.5. Experiment E � changing the content of selected files

We selected the Linux base image, restored it to the USB storage
device using ewfmount and dd commands, changed the timezone to
America/New_York (UTC-5) for Linux and MacOS and Eastern
Standard Time (UTC-5) for Windows, and re-mounted it on one of
the other operating systems. We changed the content of selected
files manually by opening them in TextEdit for MacOS, Notepad in
Windows 10 (the timezone had entered daylight time, meaning
UTC-4), or Gedit in Linux. Then we wrote a word and saved and
closed each file. We only changed the files in the directory Exper-
iment-0.

Then we created a forensic image for each target OS/driver. The
following forensic images were created in this experiment:
3.6. Tool testing

If the tool supported changing timezone, we adjusted to the
timezone stored in the hex dump for each experiment. We tested
the following Digital Forensic (DF) tools:

C Autopsy v. 4.19.3 (Windows version)
C FTK Imager v. 4.5.0.3
C X-Ways Forensics v. 20.04 SR-4
C EnCase Examiner v. 22.1

The FTK Imager does not support changing timezone, while
Autopsy, X-Ways and EnCase do.

When testing the tools we did not only compare the result from
different tools, but we also assessed the results manually in the
directory entries of the exFAT file system. This manual verification
was necessary since dual tool verification is not a reliable method
(Nordvik et al., 2021; Knight and Leveson, 1986).
6

3.7. Limitations and assumptions

We assumed that the current implementations of exFAT v. 1.0
store timestamps as localtime, and that each UTCOffset field de-
scribes the deviation between the local time and the UTC, which
the exFAT specifications describes (Microsoft, 2021b). However, an
implementation may choose not to utilise the UTCOffset fields.

We did not consider file systems that are manipulated, attacked,
or where anti-forensic methods as described by Wani et al. (2020)
are used. The experiment methodology described includes the ac-
tions that were performed on the USB storage device.

We also assume the exFAT file system interpretation by forensic
tools was unreliable until we have verified the findings (Zero Trust
(Neale et al., 2022)).

4. Results

4.1. Experiment A - creating files on an exFAT storage

We observed, as shown in Table 2, that for MacOS the time-
stamps were stored on disk in UTC-3 when the local time was
UTCþ3 (Europe/Moscow), and similar were the UTC offset switched
from negative to positive for timezones with negative UTC offset.

If we normalise the stored timestamps to UTC-0, we can see that
all files are created in the period 24/02/2022 00:52 to 00:53. The
files were created using a script, explaining why they were near in
creation time.

It was interesting to observe that the latest timezone used on
MacOS also changed the last access time for all files, even for files
not accessed.

Table 3 shows that the Windows exFAT driver is following the
exFAT specifications when setting the UTCOffset fields. In this case
the local time (real time) was stored.

Table 4 shows the results for the Linux Ubuntu experiment with
the exFAT fuse driver, and it set the UTCOffset fields to 0�00,
meaning these fields are not valid because the most significant bit
is not set. We observed that the timestamps are stored using
localtime. However, it is not possible to interpret what the local
time UTC offset was by only assessing the stored timestamps and
the UTCOffset fields.

Table 5 shows the results for the Linux Ubuntu experiment using
the native exFAT driver, and it sets the UTCOffset fields to 0�80,
meaning these fields are valid and is set to UTCþ0. The experiment
shows that we cannot interpret what the local time UTC offset was
by assessing only the stored timestamps and the UTCOffset fields.

The Experiment A shows that:

C 400 of 1600 observations show the usage of the 0�00 invalid
UTCOffset value. Invalid values are excluded from hypothesis
testing.

C 400 of 1200 (33 percent) show the usage of 0�80 valid value,
even when local time deviates from UTCþ0.

C 800 of 1200 (67 percent) observations take the local time
into considerationwhen storing timestamps and UTC offsets.

This means that our main hypothesis is not true for all operating
systems.

4.2. Experiment B - mounting exFAT storage

The result shown in Table 6 shows that MacOS will change the
UTCOffset of the last accessed timestamp for all files when a USB
storage device is mounted and unmounted. It also shows that when

Table 2
Experiment A Results - MacOS. We can see that stored timestamps use a timezone offset with switched signs compared to the computer the experiments were executed on.

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Europe/Moscow Created 0xF4 (UTC-3) 23/02/2022 21:52 UTCþ3 24/02/2022 03:52 100
America/Godthab Created 0�8C (UTCþ3) 24/02/2022 03:53 UTC-3 23/02/2022 21:53 100
Atlantic/Azores Created 0�84 (UTCþ1) 24/02/2022 01:53 UTC-1 23/02/2022 23:53 100
Europe/Oslo Created 0xFC (UTC-1) 23/02/2022 23:53 UTCþ1 24/02/2022 01:53 100

Table 3
Experiment A Results - Win10. We can see that all types of timestamps are stored using the local UTC offset of the computer the experiments were executed on, and that real
time is the same as stored time.

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Russian Standard Time Created 0�8C (UTCþ3) 24/02/2022 21:23 UTCþ3 24/02/2022 21:23 100
E. South America Standard Time Created 0xF4 (UTC-3) 24/02/2022 15:23 UTC-3 24/02/2022 15:23 100
Azores Standard Time Created 0xFC (UTC-1) 24/02/2022 17:24 UTC-1 24/02/2022 17:24 100
W. Europe Standard Time Created 0�84 (UTCþ1) 24/02/2022 19:24 UTCþ1 24/02/2022 19:24 100

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
mounted on MacOS the directories .fseventsd and .SpotLight-V100
were created. When mounted on Windows, the directory System
Volume Information directory was created.

4.3. Experiment C - opening files

In the Experiment C in Table 7, we used the timezone America/
New_York (UTC-5). The last accessed timestamp was changed and
stored using UTC-5 (local time), but the UTCOffset fields were not
changed in Linux exFAT fuse driver. Since we used the Windows
base forensic image, and UTCOffset fields were not touched in Linux
(exFAT fuse) when opening files using Gedit, the local timestamp
stored does correspond with the preserved UTCOffset fields for the
last modified and the created, but not necessarily the last accessed.
We illustrate this in Fig. 5.

For the Linux native driver we used the base of the Linux exFAT
fuse, and here all UTCOffset fields were changed to 0�80 when
using the Linux exFAT native driver, even though only the time-
stamp last accessed was changed. This change shows that the
native driver interprets the previous value 0�00 UTCOffsets fields as
timestamps stored in UTCþ0, which was an incorrect assumption
for all our experiments. We illustrate this in Fig. 6.

It was strange that the last modified timestamp was changed
when files were opened using TextEdit on MacOS, especially
because we did not change the content of any files. The timestamp
for last modified was just converted to use the local UTC offset of
the computer. The previous last modified timestamp was assumed
to be UTC-5 (our local UTC offset) and then the timestamp was
converted to UTCþ5. This must fail since the Linux base did not use
UTCOffset fields, and the UTC-5 assumption was wrong. We illus-
trate this in Fig. 7. InWindows no change at all was registered when
just opening files in Notepad. We illustrate this in Fig. 8.

4.4. Experiment D and E: changing exFAT files on multiple OSes

The results are shown in Table 8. We can see that Windows set
Table 4
Experiment A Results - Linux Ubuntu 20.04 using exFAT fuse v.1.3. We can see that the
executed on, and that real time is the same as stored time. However, the UTCOffset fields

Base TZ Action Stored TZ Stored Tim

Europe/Moscow Created 0�00 (Not used) 02/03/202
America/Godthab Created 0�00 (Not used) 02/03/202
Atlantic/Azores Created 0�00 (Not used) 02/03/202
Europe/Oslo Created 0�00 (Not used) 02/03/202

7

the LastModified10msIncrement to 0�00 when changing the files in
Windows, and the last modified and last access timestamps and the
corresponding UTCOffset fields are updated.

Linux (exFAT fuse driver) only changes the last modified time-
stamp and the LastModified10msIncrement (values 0�00 or 0�64),
but not the UTCOffset fields when changing the files using the bash
script for appending more text in each file. The last accessed
timestamp was not changed. However, when using Gedit to change
the file content in Linux, it set all timestamps to the change time
using the local time of the computer and sets all UTCOffset fields to
0�00. The 10msIncrement fields are also updated. Since all time-
stamps are equal, it looks like the file was created at the time it
actually was only changed. The observations are similar when using
the Linux Ubuntu native exFAT driver, except that the UTCOffset
fields are set to 0�80, and that not only 0�64 and 0�00 are used for
the 10msIncrement fields. For both Linux drivers, the original create
timestamp is lost.

MacOS also behaves differently if the content is changed using
piping in a bash script, or if the files are changed by manually
opening and changing the files in TextEdit. The latter will even try
to set the UTCOffset for the created timestamp, assuming the orig-
inal timestamp was stored with the same timezone offset as the
local computer (in our case UTC-5), which was an incorrect
assumption in our case. We also observed that additional fork files
were created when changing the files in TextEdit, but not when
using the bash script. These fork files are pre-pended with and may
contain metadata information that describes which app was used
to change the file. A fork is a named attribute used normally in HFS
or APFS that contains a stream of data, and is similar to alternate
data streams in NTFS (Wani et al., 2020).
4.5. 10 msIncrement fields

Another result we observed was the usage of the 10 ms granu-
larity fields; Create10msIncrement and LastModified10msIncrement.
Based on the results in Table 9 we can verify that Windows 10 does
timestamps are stored using the local time of the computer the experiments were
are not in use.

e Real TZ Real Time Observations

2 16:11 UTCþ3 02/03/2022 16:11 100
2 10:12 UTC-3 02/03/2022 10:12 100
2 12:12 UTC-1 02/03/2022 12:12 100
2 14:13 UTCþ1 02/03/2022 14:13 100

Table 5
Experiment A Results - Linux Ubuntu 20.04 using exFAT native driver. We can see that the timestamps are stored using UTCþ0, not the local time of the computer the ex-
periments were executed on. The UTCOffset fields are used (set to 0 � 80).

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Europe/Moscow Created 0�80 16/03/2022 14:48 UTCþ3 16/03/2022 17:48 100
America/Godthab Created 0�80 16/03/2022 14:49 UTC-3 16/03/2022 11:49 100
Atlantic/Azores Created 0�80 16/03/2022 14:49 UTC-1 16/03/2022 13:49 100
Europe/Oslo Created 0�80 16/03/2022 14:50 UTCþ1 16/03/2022 15:50 100

Table 6
Experiment B Results - MacOS. Impact of mounting and unmounting

OS Action Timestamp 10msIncrement UtcOffset Observations New Directories

MacOS Mount/unmount LA Not changed LA (switched sign) 400 .fseventsd,.SpotLight-V100
Windows Mount/unmount Not changed Not changed Not changed 400 System Volume Information
Linux Mount/unmount Not changed Not changed Not changed 400

Table 7
Experiment C Results. Impact of opening files.

OS Action Tool used Timestamp 10msIncrement UtcOffset Observations

Linux (fuse) Open Gedit LA using local time Not changed Not changed 400
Linux (native) Open Gedit LA using UTCþ0 Not changed All to 0�80 400
MacOS Open TextEdit LM(*) and LA using local time Not changed LM and LA (switched) 400
Windows Open Notepad Not changed Not changed Not changed 400

Fig. 5. Changes in timestamps and UTCOffset fields when opening a file using Gedit in
Linux Ubuntu 20.04 exFAT fuse driver. The LastAccessedTimestamp is changed using
local time (LT), which was UTC-5, however the LastAccessedUtcOffset is not changed. In
this case the last accessed is inaccurate.

Fig. 6. Changes in timestamps and UTCOffset fields when opening a file using Gedit in
Linux Ubuntu 20.04 exFAT native driver. The LastAccessedTimestamp is stored as
UTCþ0, however the CreateUtcOffset and LastModifiedUtcOffset are also changed to
UTCþ0, but not the timestamps. In this case the create and last modified timestamps
are inaccurate.

Fig. 7. Changes in timestamps and UTCOffset fields when opening a file using TextEdit
in MacOS Monterey. The LastAccessedTimestamp is stored as UTCþ5, even though the
real timezone was UTC-5. The CreateUtcOffset is not changed, but the LastModifie-
dUtcOffset is changed to UTCþ5, trying to convert LT from UTC-5 to UTCþ5. In this case
the last modified timestamp is inaccurate.

Fig. 8. Changes in timestamps and UTCOffset fields when opening a file using Notepad
in Windows 10. Nothing was changed. In this case the LastAccessedTimestamp is
inaccurate.

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
not update the LastModified10msIncrement accurately on change, as
described by Heeger et al. (2021). Windows 10 sets it to 0x00.
However, MacOS does update these fields. We also observed that
Linux update these fields, and we observed that both
8

10msIncrement fields either had the value 0�00 or 0�64 for the
exFAT fuse driver. The latter value 0�64 is 100 in decimal, meaning
in this context 1000 ms or 1 s. However, the native exFAT driver
used by Ubuntu 20.04 updates the 10msIncrement fields similar to
MacOS.

Table 8
Experiment D and E Results - Changes in Timestamps, 10msIncrement and UTCOffset fields in the exFAT file directory entry when changing the files on Windows, MacOS or
Linux.

OS Action Tool used Timestamp 10msIncrement UtcOffset Observations

Windows Change [LM and LA LM (0�00) LM and LA 400
Windows Change Notepad (manual) LM and LA LM (0�00) LM and LA 100
MacOS Change [LM and LA LM LM and LA 400
MacOS Change TextEdit (manual) C, LM and LA LM C, LM and LA 100
Linux (fuse) Change [LM LM (0�00 or 0�64) Not changed 400
Linux (native) Change [LM LM All is set to 0�80 400
Linux (fuse) Change Gedit (manual) C, LM, and LA C and LM (0�00 or 0�64) All is set to 0�00 100
Linux (native) Change Gedit (manual) C, LM, and LA C and LM All is set to 0�80 100

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
4.6. Tool testing

Law enforcement require tools that give accurate results, and
interpret timestamps correctly, else any incorrect results may
impact a criminal case. Therefore, we will show how different
Digital Forensic tools show timestamps from the exFAT file system,
in the context of the above mentioned experiments.

4.7. Autopsy

When testing Autopsy we adjusted the timezone for each
experiment in order to match the timezone used for storing the
timestamp. The date/time should match between stored time and
the time shown in Autopsy, and the results are shown in Table 10.
We can see that experiment index 2matcheswhere both timezones
are using UTCþ1. We also need to take into consideration that
Autopsy was initially set to the timezone Europe/Oslo (UTCþ1) in
standard time when adding the forensic image. Therefore, we
found that Autopsy interprets the exFAT timestamps using this
initial timezone as the stored local time. In the other experiments
we saw that Autopsy interpreted all stored timestamps as the initial
local time (here UTCþ1), and then tries to convert it to a timezone
selected in Autopsy options view tab. This assumption about the
current timezone was incorrect in most of our experiments. For
instance, in order to change to UTC-3, Autopsy tries to subtract �4
from the stored timestamp, since it assumes the stored timestamp
is given in UTCþ1. For UTCþ3 Autopsy adds 2 h to get from UTCþ1
to UTCþ3. The only place it gives the same timestamp is when the
UTC offset is the same as the assumed timezone. However, even in
the latter case it is inaccurate, because Atlantic/Azores is using UTC-
1 in standard time as seen in Table 10.

Whenwe added the Windows exFAT forensic image to Autopsy,
we adjusted the initial value to Europe/Moscow (UTCþ3). Autopsy
tried to adjust the timezone based on the initial UTCþ3 that it
interpreted as the local time stored. This assumption is only correct
for the Experiment-0 files.

4.8. FTK imager

In Table 11 we were not able to adjust the timezone shown by
FTK Imager. Instead, the tool converted the timestamps to UTCþ0.
The conversions from stored timestamp to UTCþ0 was correct.
Table 9
Experiment Results - Usage of the 10 ms granularity fields in the exFAT file directo

OS Create10msIncrement

Windows In use
Mac OS In use
Linux In use

9

However, when adding the linux base image from the exFAT fuse
driver with UTCOffset fields not valid, then the Created, Modified
and Accessed are set to N/A (Not Applicable). The latter approach is
fine, since it is infeasible to show the date and time when the UTC
offset fields are not valid. However, showing the timestamps with a
LT (Local Time) would have been better.

4.9. X-Ways Forensics

Table 12 shows the timestamps correctly using the same UTC
offset as they were stored. X-Ways also displays the applied UTC
offset after each timestamp, as shown in Fig. 9 and the hex repre-
sentation of the first file in Fig. 10. X-Ways converts the exFAT
timestamp correctly using any selected timezone. When X-Ways
interprets UTCOffset fields with a mix of valid and invalid values, it
tries to convert all values using the stored UTC offset to compute
the selected timezone UTC offset. However, converting an invalid
UTC offset value to a timezone UTC offset is based on an assumption
about the previous stored UTC offset.

4.10. EnCase forensic

EnCase shows the timestamps in the selected timezone taking
the UTCOffset fields into consideration, as shown in Table 13. When
it comes to interpreting an exFAT filesystem created by the Linux
Ubuntu exFAT fuse driver, EnCase interprets the stored timestamp
as UTCþ0 and tries to convert to the selected timezone, even
though the UTCOffset fields have the 0�00 value (not valid). This is
only accurate if the local time of the Linux computer was UTCþ0,
which it was not in all our experiments.

When there were mixed values in the UTCOffset fields, EnCase
correctly showed timestamps where UTCOffset fields contained
valid values, but failed if these values were invalid (0 � 00). For
instance, Encase correctly showed the ones with value 0�80 using
the selected timezone in EnCase, however the 0�00 value was
wrongly interpreted as if the timestamps are stored using UTCþ0.

Based on the experiments we can see that EnCase can be vali-
dated for exFAT as long as the UTCOffset fields are valid. If they are
not valid, then EnCase seems to make an assumption about the UTC
offset that may be wrong.

We can see this interpretation in Fig. 11 where the local time
stored was 02.03.2022 at 16:11 (UTCþ3), but wrongly interpreted
ry entry when using Windows, MacOS or Linux.

LastModified10msIncrement Observations

Not used, set to 0x00 400
In Use 400
In Use 400

Table 10
Experiment Results - MacOS and Autopsy v. 4.19.3

Base TZ (Index) Type Stored TZ Stored Time Autopsy TZ Autopsy Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC-3 23/02/2022 17:52 100
America/Godthab (1) Created 0�8C (UTCþ3) 24/02/2022 03:53 UTCþ3 24/02/2022 05:53 100
Atlantic/Azores (2) Created 0�84 (UTCþ1) 24/02/2022 01:53 UTCþ1 24/02/2022 01:53 100
Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC-1 23-02-2022 21:53 100

Table 11
Experiment Results - MacOS and FTK Imager v. 4.5.0.3

Base TZ (Index) Type Stored TZ Stored Time FTK TZ FTK Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTCþ0 24/02/2022 00:52 100
America/Godthab (1) Created 0�8C (UTCþ3) 24/02/2022 03:53 UTCþ0 24/02/2022 00:53 100
Atlantic/Azores (2) Created 0�84 (UTCþ1) 24/02/2022 01:53 UTCþ0 24/02/2022 00:53 100
Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTCþ0 23/02/2022 00:53 100

Table 12
Experiment Results - MacOS and X-Ways Forensics v. 20.04 SR-4.

Base TZ (Index) Type Stored TZ Stored Time X-Ways TZ X-Ways Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC-3 23/02/2022 21:52 100
America/Godthab (1) Created 0�8C (UTCþ3) 24/02/2022 03:53 UTCþ3 24/02/2022 03:53 100
Atlantic/Azores (2) Created 0�84 (UTCþ1) 24/02/2022 01:53 UTCþ1 24/02/2022 01:53 100
Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC-1 23/02/2022 23:53 100

Fig. 9. ExFat timezones using stored UTC-1 offset for Experiment3 on MacOS and the X-Ways directory listing.

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
as UTCþ0 because of the 0�00 values in the UTCOffset fields, and
then EnCase adds 3 h to convert to UTCþ3, which is incorrect in this
context.

5. Discussion

The observations show that exFAT on Windows uses the local
timezone offset including any daylight settings without switching
signs, accurately storing the timestamp using the UTC offset of the
local time of the computer. The MacOS experiments show that
10
timestamps are not stored in the local time, instead it converts the
UTC offset by switching signs. The Linux experiments using exFAT
fuse driver shows that the timezone UTCOffset fields are not in use,
and that the timestamp is stored using localtime, while the Linux
native driver and UTCOffset fields are set to 0�80 (UTCþ0) and the
timestamps are stored using UTCþ0 for the native exFAT driver.

The implementation used by MacOS will not make timestamps
inaccurate when showing the files from these experiments in
Windows. Windows File Explorer interprets the exFAT file system
correctly, meaning File Explorer will take the timezone UTCOffset

Fig. 10. ExFat timeszones using stored UTC-1 offset for Experiment3 and the X-Ways for D2022-02-24T01-53-54-tz-3-file1.txt.

Table 13
Experiment Results - MacOS and EnCase Forensic v. 22.1

Base TZ (Index) Type Stored TZ Stored Time X-Ways TZ X-Ways Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC-3 23/02/2022 21:52 100
America/Godthab (1) Created 0�8C (UTCþ3) 24/02/2022 03:53 UTCþ3 24/02/2022 03:53 100
Atlantic/Azores (2) Created 0�84 (UTCþ1) 24/02/2022 01:53 UTCþ1 24/02/2022 01:53 100
Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC-1 23/02/2022 23:53 100

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
field into consideration before converting it to the local time used
by the local computer. An example from Experiment-3 is shown in
Fig. 12 for File Explorer. The same is true when mounting an exFAT
storage device from Windows to MacOS, except that MacOS
changes the Last Accessed timestamp and the LastAccesse-
dUtcOffset. However, both MacOS and Windows take the UTCOffset
fields into account and show them in the local time of the
computer.

When it comes to Linux Ubuntu 20.04 exFAT fuse driver, no tools
examined in this experiment will knowwhat the timezone offset of
the local time was for each file created. If the files are changed by
using Gedit in Linux the UTCOffset are set to 0�00 and all time-
stamps are changed to the time of the update. Therefore, the
original created date is lost. Linux Ubuntu 20.04 native exFAT driver
store the time in UTCþ0 nomatter what the timezone was, and this
is an implementation were the knowledge of the local time of the
computer is not preserved. It is not necessarily an incorrect method,
and it does not impact how the timestamps are presented in other
OSes and in Digital Forensic tools. However, they are not following
the specifications (Microsoft, 2021b).

Digital Forensic tools interpreting the timestamps should
Fig. 11. ExFat timeszones using stored UTCþ3 offset for Experim

11
describe that the timestamps are stored as the localtime whenever
the UTCOffset fields are not in use, and investigators cannot assume
anything about which timezone was in use for a particular file
when using the Linux exFAT fuse driver. If the UTCOffset fields was
not in use, any change of timezone using a Digital Forensic tool
should not change the time shown, but continue using the local
time. However, if UTCOffset fields are valid, then Digital Forensic
tools should change to the selected timezone utilising the neces-
sary computation based on the stored timestamp and UTCOffset
fields. Further, it should not be assumed that the UTCOffset fields
only use one timezone offset.

If we know that an exFAT storage device has only been used on a
MacOS, we can describe the local time of the computer (UTC offset
for the timezone and any daylight settings) by switching the sign
again. We can also find the last registered MacOS local computer
UTC offset used by checking the LastAccessedUtcOffset field. On the
other hand it will be difficult to assess if the timezone offset was
initially set by a Windows or a MacOS computer. For instance, a
MacOS using UTC-1 will store the timestamp in UTCþ1, and a
Windows computer using UTCþ1 will store timestamps in UTCþ1.
In this scenario we have UTCOffsets of 0�84 on all timestamps,
ent0 from the Linux Base exFAT fuse image and the EnCase.

Fig. 12. ExFat timeszones using Europe/Oslo timezone (UTCþ1) for Experiment-3 and the Windows 10 computer.

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
though they were actually running on two different timezones.
The existence of a .fseventsd and .Spotlight-V100 directory within

the root directory is an indication of MacOS usage, while existence
of a System Volume Information directorywithin the root directory is
an indication of Windows usage.

If only mounting and dismounting a USB storage device with
exFAT file system on a MacOS, then the LastAccessedUtcOffset field
will be updated and stored using the switching signs method on
every file on the device. However, the Created and Modified
timestamps and their corresponding UTCOffset fields will not be
updated. Therefore, it is common that a storage device used on both
on Windows and MacOS will include timezone offsets that deviate
within the same directory entry, even when using the same time-
zone. It is also important to note how easy it is to change time-
stamps unintentionally by connecting a storage device to a MacOS
without using a write blocker.

5.1. Rules for updating timestamps

Table 14 shows which operating system exFAT driver complies
with the exFAT specifications for updating the different time-
stamps. The MacOS and Linux changes the timestamp for creation
when using TextEdit or Gedit to change the content of a file. This
means the timestamps are changed by the driver, and it may
already be inaccurate before parsing and interpretations of Digital
Forensic tools. Most of the drivers update the last modified on
change, but MacOS may update the last modified on open only. The
last accessed timestamp is updated on open for all exFAT drivers
except on Windows when using Notepad to open files. In Linux
when using a bash script to append content the last accessed is not
updated for both exFAT drivers, only the last modified timestamp.

This unequal behaviour impact the investigation, and therefore
it must be emphasized that it is important to understand which OS
driver has been used in order to interpret the findings correctly.

5.2. 10 ms granularity

Even though the exFAT specifications describe that the Last-
Modified10msIncrement field should be updated when updating any
clusters used by the stream extension directory entry, or when
changing the ValidDataLength or DataLength fields (Microsoft,
2021b), we observed that this was not implemented in Windows
and implemented in MacOS.

The stego-only approach proposed by Heeger et al. (2021) will
12
fail if the storage device is mounted and files are updated using
MacOS or Linux, since this approach is using the LastModi-
fied10msIncrement. However, their exHide approach will work
since they are not using this field and are utilising only unallocated
directory entries.

5.3. Patterns

The three operating systems used in our experiments show
distinct patterns which can be used to identify the OS used for a
particular exFAT storage device. The most clear pattern is when the
UTCOffset fields have the 0�00 value, meaning it is used by the
Linux exFAT fuse driver. The other Linux exFAT fuse pattern is that
the 10msIncrement fields have the value 0�00 or 0�64. We should
not see any System Volume Information directory or .fseventsd and
.SpotLight-V100 directories if the USB storage is only used on Linux.
We only know that the local time is used to store the timestamps
when using the exFAT fuse driver, we do not knowwhich timezone
was used. The Linux exFAT native driver uses 0�80 (UTCþ0) always,
but other OSes using the GMT timezone will also use 0�80, and
therefore this is not a good pattern to identify Linux.

MacOS uses allUTCOffset fields and both 10msIncrement fields. In
addition it creates the directories .fseventsd and .Spot-Light-V100.
If no UTCOffset fields are 0�00 and the System Volume Informa-
tion directory is not present in the root directory, then we know
MacOS has been used. However, the native Linux driver may also
have been used, but in this context if all files are using another
timezone than GMT, then we know MacOS has been used. Another
sign is the usage of fork files when using GUI apps to change files.
The latter is very interesting since we can see which app was used
to change the files. When only MacOS has been used, we can switch
the storedUTCOffset sign to find the local time of the computer used
when creating or updating a file.

Windows updates all UTCOffset fields and Create10msIncrement,
and the LastModified10msIncrement is set to 0�00 on creation. In
addition the directory System Volume Information is created in the
root directory. On change the last modified and last accessed
timestamps are updated, and the last modified is updated for the
10msIncrement field, which is set to 0x00. If no UTCOffset fields have
the value 0�00, and the directories .fseventsd and the .SpotLight-
V100 are not present, and the System Volume Information direc-
tory is present, and all files have 0�00 for the LastModi-
fied10msIncrement, but uses the Create10msIncrement, then we
know that Windows has been used. When Windows is the only OS

Table 14
Rules for updating timestamps - compliance.

Timestamp Specs Driver compliance

CreateTimestamp On creation Windows 10
LastModifiedTimestamp Modifying cluster content Windows 10, Linux
LastAccessedTimestamp Modifying or reading cluster content MacOS

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
used, thenwe can find the local time used by the computer by using
the UTCOffset fields.

5.4. Challenges

The MacOS exFAT driver will try to update the Create timestamp
when changing a file manually using TextEdit. It also made an
assumption that the timezone must be equal the local time of the
Mac computer. This may or may not be true, and if wrong will
effectively change the created date to a wrong time.

Linux (both drivers) changed all timestamps when changing
files using Gedit, using the local time when the change happened (3
equal timestamps). A text document created a year ago, will get a
new set of equal timestamps for create, last modified, and last
accessed when changing the file using Gedit. If the digital forensic
investigator identify that the exFAT storage device has been used on
Linux, we can not say anything about creation time.

5.5. Tools

In this section we discuss if different tools can be validated for
law enforcement usage. With tool validation we mean if the tool is
appropriate for its intended usage (ISO, 2017). Our aim is that the
tool developers improve tools where we have found inaccuracy.
This also means that in future releases of these tools, the inter-
pretation may have been improved.

5.6. Autopsy

Autopsy interpreted that exFAT has stored the timestamp as the
local time initially set when adding the forensic image into Autopsy,
and does not consider the timezone offset in the directory entry. If
the initial given local time does notmatch the stored local timezone
UTCOffset for each timestamp, then it will yield erroneous results.
Setting the initial local timezone correctly requires the DF investi-
gator to verify the timezone UTCOffsetmanually in a hex viewer, but
Autopsy cannot support files with multiple timezone offsets stored
on the same file system.

Based on these findings we assess that Autopsy v. 4.19.3 (Win-
dows version) cannot be validated for interpreting exFAT
timestamps.

5.7. FTK-imager

FTK Imager displays the timestamps in UTCþ0 by taking the
UTCOffset fields into consideration. FTK Imager can be validated for
interpreting exFAT timestamps as long as the timestamps shown
are interpreted as UTCþ0 by the digital forensic investigator. It is
not suitable to use for a storage that have been using the Linux
exFAT fuse driver, since it will not show any timestamps because of
the non valid UTCOffset field values.

FTK Imager can be validated for interpreting exFAT timestamps.

5.8. X-ways

X-Ways displays the timestamps correctly in the timezone
13
selected by the investigator, and it takes the stored UTCOffset fields
into consideration when adjusting the time to the selected time-
zone. X-Ways also show the UTC offset used after each timestamp.
X-Ways can be validated for interpreting exFAT timestamps as long
as all UTCOffset fields are the same within the same directory entry.

If the CreateUtcOffset is 0�00 and the LastModifiedOffset and
LastAccessedUtcOffset is a valid UTC offset, then it will try to showall
timestamps in the selected timezone. However, it cannot know the
local time of the timestamp using UTCOffset value 0�00, and any
conversion must be based on assumptions. This is especially
important when there are mixed UTCOffset values, where one or
more contain the value 0�00.
5.9. EnCase

EnCase displays timestamps correctly if the UTCOffset fields have
valid values. The assumption made by EnCase is that the UTCOffset
field value 0�00 means UTCþ0, but this is a wrong assumption. If
the stored timestampwas stored using UTCþ3, then the accuracy is
3 h off.

EnCase can be validated for interpreting exFAT timestamps
when the UTCOffset fields contain valid values.
6. Conclusion and Further Work

C How do current exFAT implementations store timestamps?

In Windows 10 the exFAT specifications (Microsoft, 2021b) are
followed by storing timestamps using the UTC offset of the local
computer, including any daylight settings. MacOS has their own
method of storing exFAT timestamps that switches the UTC sign
and store the time accordingly. Linux Ubuntu 20.04 when using the
exFAT fuse driver sets the UTCOffset fields to 0�00, which means
the fields are not in use. Linux Ubuntu 20.04 native exFAT driver
uses the UTCOffset fields, but sets them always to 0�80 (UTCþ0).
We also observed that graphical user interface apps could update
the create timestamps in Linux to themodification time, or adjust it
in MacOS making assumptions about the UTC offset previously
registered.

C Can we use the UTC offset stored in a directory entry to
describe the local time of the computer?

If the exFAT storage device has only been used on MacOS
computers, we can switch the sign of the UTCOffset fields and find
the local UTC offset used by the MacOS computer for a specific
timestamp. If the storage device has only been used on a Windows
computer, we can interpret the local UTC as equal to the UTCOffset
field for a specific timestamp. However, if mix usage between
Windows andMacOS then it may bemore difficult. In Linux it is not
possible to know what UTC offset were used, but still the local time
is used for storing the timestamps when using the exFAT fuse
driver, and UTCþ0 when using the native exFAT driver.

We were not able to falsify our null hypotheses, because 33
percent of the valid UTCOffset observations in Experiment A
showed that timestamps were stored using UTCþ0, and only 67

R. Nordvik and S. Axelsson Forensic Science International: Digital Investigation 42-43 (2022) 301476
percent were stored related to the local time. This means our main
hypothesis is wrong for Linux Ubuntu 20.04 native exfat driver, but
correct for the Windows and the MacOS exFAT driver.

C Do current forensic tools interpret exFAT timestamps
differently?

The four different ways of storing exFAT timestamps between
MacOS, Windows and Linux do impact tools that take the timezone
UTCOffset fields into consideration (FTK Imager, X-Ways, and
EnCase). Unfortunately, Autopsy does not consider the UTCOffset
fields stored in the directory entry and uses the given timezone
when adding the forensic image as the local time used for storing
the timestamps. EnCase does not interpret exFAT with a non-valid
UTCOffset field correctly, but make an assumption that the value
0�00 means UTCþ0, which is incorrect in most cases. FTK Imager
converts all timestamps to UTCþ0 taking the UTCOffset fields into
consideration. If one or more of the UTCOffset fields contains a non
valid value, it only shows the timestamps for the valid UTCOffset
fields. X-Ways take UTCOffset fields into consideration, and if these
fields are all invalid it describes that local time (LT) is being used.
However, X-Ways does not handle a mix of valid and invalid
UTCOffset values, it then makes assumptions about the non-valid
value in order to convert all timestamps of a file to the selected
timezone.

It is not just the tools that may interpret exFAT differently, but
also the different file system drivers may incorrectly change time-
stamps. MacOSmakes an assumption that the created time uses the
local time of the MacOS when the UTCOffset fields are invalid, and
updates the Create time when changing a file using TextEdit by
switching the UTC offset and storing the time accordingly. If the
assumption is wrong, then the created time is stored incorrectly.

Finally, the conclusion is that exFAT timestamps stored by file
systems may be unreliable, especially when used on multiple OSes,
and that Digital Forensic tools may even interpret reliable dates in
an unreliable way. We recommend using X-Ways or FTK Imager to
interpret exFAT, and use patterns to identify which OS has been
used in order to make an accurate interpretation of the timestamps.

As further workwe suggest observing other file systems that can
be used on multiple OSes, to assess if the drivers store timestamps
equally, and if Digital Forensic tools interpret the timestamps
accurately and reliably. Further, we recommend law enforcement to
reassess criminal cases where exFAT and timestamps have been an
important evidence to make sure innocent persons have not been
convicted based on misinterpreted timestamps.

Acknowledgement

The research leading to these results has received funding from
the Research Council of Norway programme IKTPLUSS, under the
R&D project ”Ars Forensica - Computational Forensics for Large-
scale Fraud Detection, Crime Investigation & Prevention”, grant
agreement 248094/O70.

References

Bretel, J., 2017. Operating Systems and File Systems Compatibility. https://www.
14
7dayshop.com/blog/operating-systems-and-file-systems-cross-compatibility-
windows-apple-linux-playstation-xbox-android/.

Court of Human Rights, European, 2021. European Convention on Human Rights.
https://www.echr.coe.int/Documents/Convention_ENG.pdf.

European Committee for Standardization, 2022. Cen Workshop Agrement (CWA):
Requirements and Guidelines for a Complete End-To-End Mobile Forensic
Investigation Chain. https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/
RI/cwa17865_2022.pdf.

Hamm, J., 2009. Extended Fat File System visited 2022-03-01. https://
paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf.

Heeger, J., Yannikos, Y., Steinebach, M., 2021. Exhide: hiding data within the exfat
file system. In: The 16th International Conference on Availability, Reliability and
Security. Association for Computing Machinery, New York, NY, USA. https://
doi.org/10.1145/3465481.3470117. URL:

Ieong, R.S., 2006. Forza e digital forensics investigation framework that incorporate
legal issues. Digit. Invest. 3, 29e36. https://doi.org/10.1016/j.diin.2006.06.004
the Proceedings of the 6th Annual Digital Forensic Research Workshop (DFRWS
’06).

ISO, 2017. ISO/IEC 17025:2017 General Requirements for the Competence of Testing
and Calibration Laboratories. https://www.iso.org/standard/66912.html.

Knight, J.C., Leveson, N.G., 1986. An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Transactions on Software
Engineering SE- 12, 96e109. https://doi.org/10.1109/TSE.1986.6312924.

Lyle, J.R., 2010. If error rate is such a simple concept, why don't i have one for my
forensic tool yet? Digit. Invest. 7, S135eS139. https://www.sciencedirect.com/
science/article/pii/S1742287610000447. https://doi.org/10.1016/j.diin.2010.05.
017. the Proceedings of the Tenth Annual DFRWS Conference.

Ma, G., Wang, Z., Cheng, Y., 2015. Recovery of evidence and the judicial identifica-
tion of electronic data based on exfat. In: 2015 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 66e71.
https://doi.org/10.1109/CyberC.2015.10.

Microsoft, 2009. Us Patent Us 20090164440 A1. https://ppubs.uspto.gov/
pubwebapp/, visited 2022-03-01.

Microsoft, 2021a. Default Cluster Size for NTFS, FAT, and exFAT. https://support.
microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-
9772e6f1-e31a-00d7-e18f-73169155af95.

Microsoft, 2021b. exFAT File System Specification. https://docs.microsoft.com/en-
us/windows/win32/fileio/exfat-specification.

Munegowda, K., Raju, G.T., Raju, V.M., 2012. Cluster allocation strategies of the exfat
and fat file systems: a comparative study in embedded storage systems. In:
Kumar, M., R. S., A., Kumar, T.V.S. (Eds.), Proceedings of International Conference
on Advances in Computing. Springer India, New Delhi, pp. 691e698.

Munegowda, K., Raju, G., Raju, V.M., 2014. Directory compaction techniques for
space optimizations in exfat and fat file systems for embedded storage devices.
International Journal of Computer Science Issues (IJCSI) 11, 144.

Neale, C., Kennedy, I., Price, B., Yu, Y., Nuseibeh, B., 2022. The case for zero trust
digital forensics. Forensic Sci. Int.: Digit. Invest. 40, 301352. https://doi.org/
10.1016/j.fsidi.2022.301352. URL: https://www.sciencedirect.com/science/
article/pii/S266628172200021X.

Nordvik, R., 2022. Exfat Forensic Images for Timestamp Testing. https://data.
mendeley.com/datasets/krjsmdc65h/1, visited 2022-03-31.

Nordvik, R., Stoykova, R., Franke, K., Axelsson, S., Toolan, F., 2021. Reliability vali-
dation for file system interpretation. Forensic Sci. Int.: Digit. Invest. 37, 301174.
https://doi.org/10.1016/j.fsidi.2021.301174. URL: https://www.sciencedirect.
com/science/article/pii/S2666281721000822.

Scanlon, M., 2016. Battling the digital forensic backlog through data deduplication.
In: 2016 Sixth International Conference on Innovative Computing Technology.
INTECH), pp. 10e14. https://doi.org/10.1109/INTECH.2016.7845139.

Schullich, R., 2009. Reverse Engineering the Microsoft Extended FAT File System
(exFAT). https://www.giac.org/paper/gcfa/570/reverse-engineering-microsoft-
exfat-file-system/106672, visited 2022-03-01.

USB Memory Direct, 2022. Do I Need to Format a New USB Flash Drive? https://
www.usbmemorydirect.com/blog/need-format-new-flash-drive/.

Vandermeer, Y., Le-Khac, N.A., Carthy, J., Kechadi, T., 2018. Forensic Analysis of the
Exfat Artefacts, 08653 arXiv:1804.

Wani, M.A., AlZahrani, A., Bhat, W.A., 2020. File System Anti-forensics e Types,
Techniques and Tools, vol. 2020. Computer Fraud & Security, pp. 14e19. https://
doi.org/10.1016/S1361-3723(20)30030-0. URL: https://www.sciencedirect.com/
science/article/pii/S1361372320300300.

https://www.7dayshop.com/blog/operating-systems-and-file-systems-cross-compatibility-windows-apple-linux-playstation-xbox-android/
https://www.7dayshop.com/blog/operating-systems-and-file-systems-cross-compatibility-windows-apple-linux-playstation-xbox-android/
https://www.7dayshop.com/blog/operating-systems-and-file-systems-cross-compatibility-windows-apple-linux-playstation-xbox-android/
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17865_2022.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17865_2022.pdf
https://paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf
https://paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf
https://doi.org/10.1145/3465481.3470117
https://doi.org/10.1145/3465481.3470117
https://doi.org/10.1016/j.diin.2006.06.004
https://www.iso.org/standard/66912.html
https://doi.org/10.1109/TSE.1986.6312924
https://www.sciencedirect.com/science/article/pii/S1742287610000447
https://www.sciencedirect.com/science/article/pii/S1742287610000447
https://doi.org/10.1016/j.diin.2010.05.017
https://doi.org/10.1016/j.diin.2010.05.017
https://doi.org/10.1109/CyberC.2015.10
https://ppubs.uspto.gov/pubwebapp/,%20visited%202022-03-01
https://ppubs.uspto.gov/pubwebapp/,%20visited%202022-03-01
https://support.microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-73169155af95
https://support.microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-73169155af95
https://support.microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-73169155af95
https://docs.microsoft.com/en-us/windows/win32/fileio/exfat-specification
https://docs.microsoft.com/en-us/windows/win32/fileio/exfat-specification
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref14
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref14
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref14
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref14
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref14
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref15
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref15
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref15
https://doi.org/10.1016/j.fsidi.2022.301352
https://doi.org/10.1016/j.fsidi.2022.301352
https://www.sciencedirect.com/science/article/pii/S266628172200021X
https://www.sciencedirect.com/science/article/pii/S266628172200021X
https://data.mendeley.com/datasets/krjsmdc65h/1,%20visited%202022-03-31
https://data.mendeley.com/datasets/krjsmdc65h/1,%20visited%202022-03-31
https://doi.org/10.1016/j.fsidi.2021.301174
https://www.sciencedirect.com/science/article/pii/S2666281721000822
https://www.sciencedirect.com/science/article/pii/S2666281721000822
https://doi.org/10.1109/INTECH.2016.7845139
https://www.giac.org/paper/gcfa/570/reverse-engineering-microsoft-exfat-file-system/106672,%20visited%202022-03-01
https://www.giac.org/paper/gcfa/570/reverse-engineering-microsoft-exfat-file-system/106672,%20visited%202022-03-01
https://www.usbmemorydirect.com/blog/need-format-new-flash-drive/
https://www.usbmemorydirect.com/blog/need-format-new-flash-drive/
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref22
http://refhub.elsevier.com/S2666-2817(22)00157-3/sref22
https://doi.org/10.1016/S1361-3723(20)30030-0
https://doi.org/10.1016/S1361-3723(20)30030-0
https://www.sciencedirect.com/science/article/pii/S1361372320300300
https://www.sciencedirect.com/science/article/pii/S1361372320300300

	It is about time–Do exFAT implementations handle timestamps correctly?
	1. Introduction
	1.1. Background
	1.2. Research problem
	1.3. Organisation of this paper

	2. Related Work
	3. Methodology
	3.1. Experiment A - base
	3.2. Experiment B - mounting and unmounting only
	3.3. Experiment C - accessing selected files
	3.4. Experiment D - changing the content of all files
	3.5. Experiment E − changing the content of selected files
	3.6. Tool testing
	3.7. Limitations and assumptions

	4. Results
	4.1. Experiment A - creating files on an exFAT storage
	4.2. Experiment B - mounting exFAT storage
	4.3. Experiment C - opening files
	4.4. Experiment D and E: changing exFAT files on multiple OSes
	4.5. 10 msIncrement fields
	4.6. Tool testing
	4.7. Autopsy
	4.8. FTK imager
	4.9. X-Ways Forensics
	4.10. EnCase forensic

	5. Discussion
	5.1. Rules for updating timestamps
	5.2. 10 ms granularity
	5.3. Patterns
	5.4. Challenges
	5.5. Tools
	5.6. Autopsy
	5.7. FTK-imager
	5.8. X-ways
	5.9. EnCase

	6. Conclusion and Further Work
	Acknowledgement
	References

