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We propose a novel discrete concept for the total generalized variation (TGV), which

has originally been derived to reduce the staircasing e�ect in classical total variation (TV)

regularization, in image denoising problems. We describe discrete, second-order TGV for

piecewise constant functions on triangular meshes, thus allowing the TGV functional

to be applied to more general data structures than pixel images, and in particular in the

context of �nite element discretizations. Particular attention is given to the description

of the kernel of the TGV functional, which, in the continuous setting, consists of linear

polynomials. We discuss how to take advantage of this kernel structure using piecewise

constant functions on triangular meshes. Numerical experiments include denoising and

inpainting problems for images de�ned on non-standard grids, including data from a 3D

scanner.
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1 Introduction

In recent years, research areas such as computer vision, remote sensing and medical imaging have

been moving towards sophisticated applications requiring complex geometries. This in turn often

necessitates the use of data structures that are more general than regular pixel meshes; see, e. g., John,

Wilscy, 2016; Jensen, 2015; López Pérez, 2006 for some applications. Other areas where unstructured

data appears naturally are 3D scanning and geophysics.

Often, triangular meshes are convenient data structures for these purposes, since they can model

two-dimensional geometries and surfaces in a �exible way. We mention that triangular meshes are

also underlying many �nite element discretizations, which are convenient for the solution of inverse

problems involving partial di�erential equations (PDEs); see, e. g., Chan, Tai, 2004; Bachmayr, Burger,

2009; Clason, Kruse, Kunisch, 2018. Even in classical mathematical imaging, some new camera devices

leverage non-rectangular sub-pixel con�gurations for spatially varying exposure (SVE) sensors for

high-dynamic-range (HDR) imaging, see Li et al., 2016, further motivating the use of data structures

other than regular grids even in traditional imaging problems.

Common to the above problems is their inverse nature, and hence they usually require regularization

due to the unavoidable noise in the data acquisition process. The total variation regularizer, introduced

in Rudin, Osher, Fatemi, 1992 for imaging denoising, is a common choice due to its capacity of removing

random noise while preserving discontinuities of data across edges. We recall that the total variation

(TV)-seminorm of an 𝐿1 function 𝑢 on a bounded domain Ω ⊂ R2 is de�ned as

TV(𝑢) = sup

{∫
Ω
𝑢 div 𝒗 d𝑥

���� 𝒗 ∈ C1

𝑐 (Ω,R2), ‖𝒗‖𝐿∞ (Ω) ≤ 1

}
, (1.1)

where C1

𝑐 (Ω,R2) denotes the set of continuously di�erentiable functions with compact support in Ω.
We refer the reader to Attouch, Buttazzo, Michaille, 2014; Ambrosio, Fusco, Pallara, 2000 for more on

functions of bounded variation, i. e., functions with �nite TV-seminorm.

Before recalling the concept of total generalized variation, we mention that the literature considering

classical TV regularization with piecewise constant or piecewise linear functions on triangular meshes

is already quite rich; see, e. g., Feng, Prohl, 2003; Elliott, Smitheman, 2009; Wu et al., 2012; Bartels, 2012;

Stamm, Wihler, 2015; Bartels, Nochetto, Salgado, 2015; Alkämper, Langer, 2017; Berkels, E�and, Rumpf,

2017; Lee, Park, Park, 2019; Clason, Kruse, Kunisch, 2018; Herrmann, Herzog, Kröner, et al., 2018;

Chambolle, Pock, 2021 for applications in denoising and inpainting of images as well as optimization

problems in the coe�cient of di�erential equations. Moreover Herrmann, Herzog, Schmidt, et al., 2019

established a fully discrete analogue of (1.1) for higher-order �nite element spaces, which utilizes a

Raviart-Thomas �nite element space for the “test” functions 𝒗 (1.1). Recently, Chambolle, Pock, 2020

proposed a di�erent discrete approximation of the TV-seminorm over the Crouzeix-Raviart �nite

element space for the data functions 𝑢; see also Bartels, 2021. Furthermore, the discrete total variation

of the piecewise constant normal vector on triangulated meshes in 3D was investigated as a regularizer

for shape optimization problems in Zhang et al., 2015; Bergmann, Herrmann, et al., 2020.

To motivate the need for higher-order TV models, we recall that the TV-seminorm as a regularizer,

e. g., in the ROF image denoising model Rudin, Osher, Fatemi, 1992, leads to the so-called “staircasing

e�ect”, i. e., the formation of islands of equal function values. To counteract this phenomenon, several
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extensions have been proposed in the literature, often revolving around concepts of total variation of

second order

TV
2(𝑢) = sup

{∫
Ω
𝑢 divDiv𝑉 d𝑥

����𝑉 ∈ C2

𝑐 (Ω,R2×2), ‖𝑉 ‖𝐿∞ (Ω,R2×2) ≤ 𝛼0,

}
, (1.2)

and variations thereof; see Chambolle, Lions, 1997; Chan, Esedoglu, Park, 2010; Papa�tsoros, Schönlieb,

2014 and the discussion in Bredies, Kunisch, Pock, 2010. In (1.2), divDiv stands for the row-wise

divergence (Div) applied to the matrix-valued function 𝑉 , followed by the classical divergence (div)

applied to the resulting vector �eld.

However, in the present work, our focus will be on the second-order total generalized variation (TGV)

regularizer as introduced in Bredies, Kunisch, Pock, 2010, which is a state-of-the-art improvement

over the TV-seminorm (1.1). Given parameters 𝛼0, 𝛼1 > 0, the second-order TGV-seminorm reads

TGV
2

(𝛼0,𝛼1) (𝑢)

= sup

{∫
Ω
𝑢 divDiv𝑉 d𝑥

����𝑉 ∈ C2

𝑐 (Ω,R2×2sym
), ‖𝑉 ‖𝐿∞ (Ω,R2×2) ≤ 𝛼0, ‖Div𝑉 ‖𝐿∞ (Ω,R2) ≤ 𝛼1

}
. (1.3)

Here R2×2
sym

denotes the space of symmetric 2 × 2-matrices. As shown in Bredies, Kunisch, Pock, 2010,

this regularizer prefers piecewise linear reconstructions rather than piecewise constant ones, thereby

preventing the staircasing e�ect while still preserving discontinuities. Second-order TGV results in

a certain balancing of �rst- and second-order TV. This can be seen by rewriting (1.3) by means of

Fenchel’s duality theorem, see Bredies, Holler, 2014, to obtain

TGV
2

(𝛼0,𝛼1) (𝑢) = min

𝒘∈M(Ω,R2)
𝛼1 ‖∇𝑢 −𝒘 ‖M(Ω,R2) + 𝛼0 ‖E𝒘 ‖M(Ω,R2×2

sym
) . (1.4)

Here E = 1

2
(∇+∇ᵀ) is the symmetric (distributional) Jacobian of vector-valued functions, andM(Ω, 𝑋 )

denotes the Banach space of �nite signed Radon measures taking values in the Banach space 𝑋 . As

will be discussed in Section 2.1, Equation (1.3) reduces to 𝛼1 TV(𝑢) for piecewise constant functions 𝑢.
Therefore, the verbatim use of (1.3) has no advantage over �rst-order TV (1.1) for piecewise constant

functions. In order to exploit the additional features of second-order TGV in a discrete setting, several

authors have considered di�erent discrete interpretations of (1.4) and its variations.

In their original publication, Bredies, Kunisch, Pock, 2010, proposed a discretization of (1.4) using

one-sided �nite di�erences to evaluate discrete gradients of piecewise constant functions on regular

grids, allowing the use of TGV in imaging problems. These discrete gradients can be captured by the

auxiliary variable𝒘 located in the grid points. The symmetric Jacobian of𝒘 is then evaluated using

backward �nite di�erences. This discrete formulation has proven very successful for image denoising

problems on regular pixel grids; see, e. g., Bredies, Kunisch, Pock, 2010; Knoll et al., 2010.

As part of the present work, we propose a novel discrete interpretation of the second-order TGV-

seminorm (1.3)–(1.4), termed FETGV
2
, which allows it to be used for piecewise constant functions on

general triangular meshes in 2D. Our approach signi�cantly extends the applicability of the TGV in

imaging and other inverse problems, possibly involving PDEs, dispensing with the need to work on

regular Cartesian grids. In addition, it can be extended to surface meshes in 3D in a straightforward

way, as we demonstrate also in this paper.
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To the best of our knowledge, there is only one approach with a similar purpose in the literature so far,

see Gong et al., 2018. In that paper, the authors utilize the dual graph of the triangular mesh and apply

the graph-based de�nition of TGV from Ono, Yamada, Kumazawa, 2015. We defer further discussions

of the relation to our work to Section 2.

Our paper is structured as follows. Section 2 reviews two formulations of TGV, (1.3) and its non-

symmetric variant, from Bredies, Kunisch, Pock, 2010 and discusses its relation to the in�mal convolu-

tion approach. Furthermore, background material on �nite element spaces is collected and related work

on discrete versions of TGV is discussed in more detail, particularly Gong et al., 2018; Ono, Yamada,

Kumazawa, 2015. Our proposal for a discrete version of the second-order TGV-seminorm for piecewise

constant functions on general triangular meshes, termed FETGV
2
, is detailed in Section 3. It is based

on lowest-order discontinuous Lagrange and Raviart-Thomas �nite elements. We discuss its properties

and show that its kernel consists of functions arising from the interpolation of linear functions in

the triangle circumcenters. Moreover, we demonstrate that its 1D analogue coincides with the 1D

discretization of second-order TGV proposed in Bredies, Kunisch, Pock, 2010. Section 4 of this paper is

devoted to the numerical realization of optimization algorithms involving the non-smooth FETGV
2

functional. We employ an alternating direction method of multipliers (ADMM), speci�cally the split

Bregman algorithm for this purpose. Numerical results for image denoising and inpainting problems

are presented in Section 5 and compared to those obtained with the discrete TGV proposals from

Bredies, Kunisch, Pock, 2010; Gong et al., 2018. The paper �nishes with a conclusion in Section 6.

2 Literature Review and Background Material

Throughout the rest of this paper, we assume that Ω ⊂ R2 is a bounded domain unless otherwise

noted.

2.1 Continuous Formulations of Second-Order TGV

In this subsection we discuss the second-order total generalized variation

TGV
2

(𝛼0,𝛼1) (𝑢)

= sup

{∫
Ω
𝑢 divDiv𝑉 d𝑥

����𝑉 ∈ C2

𝑐 (Ω,R2×2sym
), ‖𝑉 ‖𝐿∞ (Ω,R2×2) ≤ 𝛼0, ‖Div𝑉 ‖𝐿∞ (Ω,R2) ≤ 𝛼1

}
, (2.1)

and its non-symmetric variant

¬ symTGV
2

(𝛼0,𝛼1) (𝑢)

= sup

{∫
Ω
𝑢 divDiv𝑉 d𝑥

����𝑉 ∈ C2

𝑐 (Ω,R2×2), ‖𝑉 ‖𝐿∞ (Ω,R2×2) ≤ 𝛼0, ‖Div𝑉 ‖𝐿∞ (Ω,R2) ≤ 𝛼1

}
, (2.2)

both proposed in Bredies, Kunisch, Pock, 2010. As was mentioned in the introduction, (2.1) and (2.2)

can be rewritten by Fenchel’s duality theorem, yielding

TGV
2

(𝛼0,𝛼1) (𝑢) = min

𝒘∈M(Ω,R2)
𝛼1 ‖∇𝑢 −𝒘 ‖M(Ω,R2) + 𝛼0 ‖E𝒘 ‖M(Ω,R2×2

sym
) (2.3)
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as well as

¬ symTGV
2

(𝛼0,𝛼1) (𝑢) = min

𝒘∈M(Ω,R2)
𝛼1 ‖∇𝑢 −𝒘 ‖M(Ω,R2) + 𝛼0 ‖∇𝒘 ‖M(Ω,R2×2)

= min

𝒘∈M(Ω,R2)
𝛼1 ‖∇𝑢 −𝒘 ‖M(Ω,R2) + 𝛼0 TV(𝒘) (2.4)

respectively. Again, E = 1

2
(∇ + ∇ᵀ) denotes the symmetric (distributional) Jacobian of vector-valued

functions, andM is the Banach space of �nite signed Radon measures 𝜂 taking values in the Banach

space 𝑋 , equipped with the norm

‖𝜂‖M(Ω,𝑋 ) B sup

{∫
Ω
𝑣 d𝜂

���� 𝑣 ∈ C𝑐 (Ω, 𝑋 ), ‖𝑣 ‖𝐿∞ (Ω,𝑋 ) ≤ 1

}
. (2.5)

Speci�cally, the cases 𝑋 = R2 and 𝑋 = R2×2 will be relevant for us. We refer the reader to Bredies,

Holler, 2014 for details on the space M(Ω, 𝑋 ).

The dual formulations (2.3) and (2.4) are in fact closely related to the approach of Chambolle, Lions,

1997, which balances �rst- and second-order total variation by their weighted in�mal convolution,

ICTV(𝑢) = min

𝑣
𝛼1 TV(𝑢 − 𝑣) + 𝛼0 TV

2(𝑣)

= min

𝑣
𝛼1 ‖∇(𝑢 − 𝑣)‖M(Ω,R2) + 𝛼0 ‖∇2𝑣 ‖M(Ω,R2×2) . (2.6)

As pointed out, e. g., in Bergmann, Fitschen, et al., 2017, the di�erence between (2.4) and (2.6) is that

the in�mal convolution formulation (2.6) uses a decomposition of 𝑢 into 𝑣 and a rest, rather than a

decomposition of ∇𝑢 into𝒘 and a rest as in (2.4). These two formulations are generally not the same

since𝒘 in (2.4) is not necessarily a gradient �eld.

The minimization involved in both, the TGV (2.4) and the in�mal convolution (2.6) formulations can

be seen as an optimal additive decomposition of 𝑢 or ∇𝑢, respectively. Informally, this leads to a

balancing between two priors, weighted by 𝛼1 and 𝛼0, respectively. The �rst summand in (2.4), i. e., the

�rst-order total variation prior, is zero if and only if the minimizer𝒘 satis�es𝒘 = ∇𝑢. In case of (2.6),

the respective �rst summand is zero if and only if 𝑣 = 𝑢 + 𝑐 holds for some constant function 𝑐 . Hence

in these cases (2.4) and (2.6) capture only a second-order total variation part. On the other hand, the

second term in (2.4) vanishes if and only if 𝒘 is constant, while the second term in (2.6) vanishes if

and only if 𝑣 is linear. Note that consequently both (2.4) and (2.6) vanish altogether when 𝑢 is a linear

function. In that case we obtain ∇𝑢 = 𝒘 as well as 𝑣 = 𝑢 + 𝑐 for arbitrary constant functions 𝑐 . One

thus concludes that precisely the linear functions span the kernel of (2.4) and (2.6).

It was already observed in Bredies, Holler, 2014, Theorem 3.5 that the auxiliary variable𝒘 must have

more regularity and can, in fact, not be measure-valued at the minimizer in (2.3) and (2.4). This is due

to the fact that measures generally have unbounded (distributed) gradients themselves. Consequently,

at a minimizer, 𝒘 must have a bounded symmetric (or non-symmetric) distributed Jacobian since

otherwise the term involving 𝛼0 would equal +∞. Therefore, instead of M(Ω,R2), the space of

bounded deformations

𝐵𝐷 (Ω,R2) =
{
𝑢 ∈ 𝐿1(Ω,R2)

�� E𝑢 ∈ M(Ω,R2×2
sym

)
}

(2.7)

respectively of bounded variation

𝐵𝑉 (Ω,R2) =
{
𝑢 ∈ 𝐿1(Ω,R2)

��∇𝑢 ∈ M(Ω,R2×2)
}

(2.8)
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can be used for 𝒘 in (2.3) and (2.4). Notice that 𝒘 is thus a Radon measure with a Lebesgue density,

i. e., ∫
Ω
𝑣 d𝒘 B

∫
Ω
𝑣 ·𝒘 d𝑥 (2.9)

holds.

For piecewise polynomial functions 𝑢 on a conforming mesh with polyhedral cells 𝑇 and interior

edges 𝐸, (2.4) evaluates to

TGV
2

(𝛼0,𝛼1) (𝑢) (2.10)

= min

𝒘∈𝐵𝑉 (Ω,R2)
𝛼1 ‖∇𝑢 −𝒘 ‖M(Ω,R2) + 𝛼0 ‖∇𝒘 ‖M(Ω,R2×2)

= min

𝒘∈𝐵𝑉 (Ω,R2)
𝛼1 sup

{∫
Ω
𝑢 div 𝒗 +𝒘 · 𝒗 d𝑥

���� 𝒗 ∈ C1

𝑐 (Ω,R2), ‖𝒗‖𝐿∞ (Ω,R2) ≤ 1

}
+ 𝛼0 ‖∇𝒘 ‖M(Ω,R2×2)

= min

𝒘∈𝐵𝑉 (Ω,R2)
𝛼1

∑︁
𝐸

∫
𝐸

��È𝑢É�� d𝑥 + 𝛼1

∑︁
𝑇

∫
𝑇

|∇𝑢 −𝒘 |2 d𝑥 + 𝛼0 ‖∇𝒘 ‖M(Ω,R2×2) .

Here È𝑢É denotes the scalar jump of 𝑢 across an edge; see (2.18). Moreover, |·|2 denotes the Euclidean
norm of a vector. Since for piecewise constant functions 𝑢, ∇𝑢 is zero inside each triangle, so will be

the minimizer for𝒘 . Then one is left with TGV
2

(𝛼0,𝛼1) (𝑢) = 𝛼1 TV(𝑢) since all terms except for the �rst

vanish. This shows that in order to exploit the additional features of the TGV-seminorm in a discrete

setting, an appropriate discrete interpretation of (2.4) is necessary. We review existing approaches in

the following subsection.

Remark 2.1 (Piecewise linear, continuous functions). When 𝑢 is a piecewise linear, continuous function
(𝑢 ∈ CG1(Ω)), then (2.10) reduces to

TGV
2

(𝛼0,𝛼1) (𝑢) = min

𝒘∈𝐵𝑉 (Ω,R2)
𝛼1

∑︁
𝑇

∫
𝑇

|∇𝑢 −𝒘 |2 d𝑥 + 𝛼0 ‖∇𝒘 ‖M(Ω,R2×2) . (2.11)

In contrast with the case that 𝑢 is piecewise constant, this formulation does not reduce to �rst-order total
variation. It is therefore not necessary to introduce a discrete interpretation of (2.11) beyond a choice for the
discretization of𝒘 . In view of the fact that the gradient maps CG1(Ω) surjectively onto curl-free functions
in the lowest-order Nédélec space N0(Ω), at least on simply connected domains, it appears natural to
choose𝒘 ∈ N0(Ω); see for instance Arnold, Falk, Winther, 2006; Christiansen, Hu, Hu, 2018. However, we
leave those investigations to future work.

2.2 Discrete Formulations of Second-Order TGV

2.2.1 Discretization on Cartesian Grids

The original discrete interpretation of (2.3) from Bredies, Kunisch, Pock, 2010 was derived for a

two-dimensional Cartesian grid with grid size ℎ,

Ωℎ = {(𝑖ℎ, 𝑗ℎ) | (0, 0) ≤ (𝑖, 𝑗) < (𝑀, 𝑁 )}.
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For a grid function 𝑣ℎ de�ned through its nodal values (𝑣ℎ)𝑖, 𝑗 , de�ne the horizontal and vertical forward
di�erences as

(𝛿ℎ𝑥+𝑣ℎ)𝑖, 𝑗 =
{
(𝑣ℎ𝑖+1, 𝑗 − 𝑣ℎ𝑖,𝑗 )/ℎ if 0 ≤ 𝑖 < 𝑀 − 1,

0 if 𝑖 = 𝑀 − 1,

(𝛿ℎ𝑦+𝑣ℎ)𝑖, 𝑗 =
{
(𝑣ℎ𝑖,𝑗+1 − 𝑣ℎ𝑖,𝑗 )/ℎ if 0 ≤ 𝑗 < 𝑁 − 1,

0 if 𝑗 = 𝑁 − 1,

and the backward di�erences according to

(𝛿ℎ𝑥−𝑣ℎ)𝑖, 𝑗 =


−𝑣ℎ𝑖−1, 𝑗/ℎ if 𝑖 = 𝑀 − 1,

(𝑣ℎ𝑖,𝑗 − 𝑣ℎ𝑖−1, 𝑗 )/ℎ if 0 < 𝑖 < 𝑀 − 1,

𝑣ℎ𝑖,𝑗/ℎ if 𝑖 = 0,

(𝛿ℎ𝑦−𝑣ℎ)𝑖, 𝑗 =


−𝑣ℎ𝑖,𝑗−1/ℎ if 𝑗 = 𝑁 − 1,

(𝑣ℎ𝑖,𝑗 − 𝑣ℎ𝑖,𝑗−1)/ℎ if 0 < 𝑗 < 𝑁 − 1,

𝑣ℎ𝑖,𝑗/ℎ if 𝑗 = 0.

(2.12)

Further, denote by

∇ℎ𝑣ℎ =

(
𝛿ℎ𝑥+𝑣

ℎ

𝛿ℎ𝑦+𝑣
ℎ

)
the discrete forward gradient of 𝑣ℎ and by

Eℎ

(
𝒘ℎ
1

𝒘ℎ
2

)
=
©­« 𝛿ℎ𝑥−𝒘

ℎ
1

𝛿ℎ𝑦−𝒘
ℎ
1
+𝛿ℎ𝑥−𝒘

ℎ
2

2

𝛿ℎ𝑦−𝒘
ℎ
1
+𝛿ℎ𝑥−𝒘

ℎ
2

2
𝛿ℎ𝑦−𝒘

ℎ
2

ª®¬
the discrete symmetric Jacobian of a discrete nodal vector �eld𝒘ℎ

on Ωℎ . The discretization of (2.3)

originally proposed in Bredies, Kunisch, Pock, 2010 can now be written as

TGV
ℎ
(𝛼0,𝛼1) (𝑢

ℎ) = min

𝒘ℎ
𝛼1

∑︁
𝑖, 𝑗

��(∇ℎ𝑢ℎ)𝑖, 𝑗 − (𝒘ℎ)𝑖, 𝑗
��
2
+ 𝛼0

∑︁
𝑖, 𝑗

��(E𝒘ℎ)𝑖, 𝑗
��
𝐹
. (2.13)

Here |·|𝐹 denotes the Frobenius norm of a matrix.

2.2.2 TGV on Graphs

One of the �rst approaches to use the concept of TGV outside the realm of the regular pixel grid

structures used in imaging was devised by Ono, Yamada, Kumazawa, 2015, where total generalized

variation for graph signals was introduced. Suppose that 𝐺 = (V, E) is an undirected graph with

vertex sets V and edge sets E of �nite cardinalities #V and #E. Let 𝑢̃ ∈ R#V be a scalar-valued

function on V . According to Chan, Osher, Shen, 2001, the total variation of such a graph signal is

measured using the help of a jump operator R#V → R#E , represented by a matrix 𝐽 ∈ R#E×#V , which
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maps the nodal value vector 𝑢̃ to the vector of di�erences of adjacent values (with arbitrary but �xed

orientation) across the incident edges. We then have the de�nition

G-TV(𝑢̃) B |𝐽𝑢̃ |1 =
∑︁
𝑒𝑖 𝑗 ∈E

𝑤𝑖 𝑗 |𝑢̃𝑖 − 𝑢̃ 𝑗 |, (2.14)

where𝑤𝑖 𝑗 > 0 is a weight associated with the edge 𝑒𝑖 𝑗 . To obtain second-order derivatives on graphs

one usually employs the di�erential operator 𝐽 ᵀ 𝐽 . Notice that the jump operator corresponds to the

gradient in the continuous case. The adjoint 𝐽 ᵀ corresponds to a divergence, making 𝐽 ᵀ 𝐽 correspond to
div∇ = Δ, the Laplace operator. In fact, 𝐽 ᵀ 𝐽 is the graph Laplacian matrix. Leveraging again the idea

of balancing �rst- and second-order derivatives, the total generalized variation for data on graphs was

introduced in Ono, Yamada, Kumazawa, 2015 as

G-TGV
2

(𝛼0,𝛼1) (𝑢̃) B min

𝑞∈R#E
𝛼1 |𝐽𝑢̃ − 𝑞 |1 + 𝛼0 |𝐽 ᵀ𝑞 |1. (2.15)

The corresponding continuous formulation

lapTGV
2

(𝛼0,𝛼1) (𝑢) B min

𝒘∈M(Ω,R2)
𝛼1 ‖∇𝑢 −𝒘 ‖M(Ω,R2) + 𝛼0 ‖div𝒘 ‖M(Ω) (2.16)

di�ers from (2.3) in the 𝛼0-term, in which the symmetric Jacobian has been replaced by a divergence.

The e�ects of this change in the di�erential operator have been studied in Brinkmann, Burger, Grah,

2018. In the continuous setting, (2.16) is zero for all functions satisfying Δ𝑢 = div(∇𝑢) = 0, i. e., its

kernel is in�nite-dimensional. This regularizer, which we refer to as lapTGV
2

(𝛼0,𝛼1) , thus promotes

piecewise harmonic reconstructions. This is in contrast to (2.3), whose kernel contains precisely the

linear functions and thus is three-dimensional on connected domains in R2. In the �nite di�erence

implementation of Brinkmann, Burger, Grah, 2018 for image denoising, artifacts occurred for (2.16),

particularly at locations where jumps are to be reconstructed, see, e. g., Figure 5.1e. This can be

explained by the oscillatory nature of solutions to the Laplace equation without boundary condition,

e. g., sin(𝑘𝑥) sinh(𝑘𝑦) for arbitrary 𝑘 .

2.3 Discrete Formulations of Second-Order TGV using Finite Element Spaces

In this section, we review the (scarce) literature on discrete formulations of the total generalized

variation with �nite elements. Before that, we use the opportunity to recap the required �nite element

spaces of discontinuous Lagrange as well as Raviart-Thomas type.

2.3.1 Discontinuous Lagrange and Raviart-Thomas Finite Element Spaces

Suppose that Ω is a two-dimensional polygonal domain covered by a mesh of non-degenerate triangular

cells𝑇 and interior edges 𝐸. We denote the discontinuous Lagrange �nite element spaces of order 𝑟 ∈ N0

(the non-negative integers) on such a mesh by

DG𝑟 (Ω) B
{
𝑢 ∈ 𝐿2(Ω)

��𝑢 |𝑇 ∈ 𝑃𝑟 (𝑇 )
}
.

Here 𝑃𝑟 (𝑇 ) denotes the space of bivariate polynomials of degree at most 𝑟 . We will use the space DG𝑟

for 𝑟 = 0 (piecewise constant functions) and 𝑟 = 1 (piecewise linear). We represent elements of 𝑃0(𝑇 )
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by their values in the cell center and elements of 𝑃1(𝑇 ) by their values in the three vertices {𝑋𝑇,𝑘 } of𝑇 .
The corresponding linear Lagrange polynomials are denoted by {Φ𝑇,𝑘 } with 𝑘 = 1, 2, 3, and we have

Φ𝑋,𝑘 (𝑋𝑇,ℓ ) = 𝛿𝑘ℓ .

Analogously to the above, we de�ne the discontinuous Lagrange �nite element spaces of order 𝑟 ∈ N0

on the skeleton (the union of the interior edges, ∪𝐸) of the mesh as

DG𝑟 (∪𝐸) B
{
𝑢 ∈ 𝐿2(∪𝐸)

��𝑢 |𝐸 ∈ 𝑃𝑟 (𝐸)
}
.

Here 𝑃𝑟 (𝐸) denotes the space of univariate polynomials on an interior edge 𝐸 of the mesh. Similarly

as before, elements of 𝑃1(𝐸) are represented by their values in the two vertices 𝑋𝐸,𝑘 of 𝐸, 𝑘 = 1, 2. The

corresponding linear Lagrange polynomials are denoted by Φ𝐸,𝑘 . We also de�ne the interpolation

operator

I𝐸{𝑣} B
2∑︁

𝑘=1

𝑣 (𝑋𝐸,𝑘 ) Φ𝐸,𝑘 (2.17)

for continuous functions 𝑣 .

A function 𝑢 ∈ DG𝑟 (Ω) will in general exhibit discontinuities across interior edges. In order to

evaluate these discontinuities, we choose an arbitrary but �xed orientation for each interior edge 𝐸,

such that one of the adjacent triangles is denoted by 𝑇+ and the other one by 𝑇−. De�ne 𝑢+ and 𝑢− as

the value of 𝑢 restricted to 𝑇+ and 𝑇−, respectively, and evaluated on the common edge 𝐸. Then the

jump operator is given by

È𝑢É B 𝑢+ − 𝑢−. (2.18)

𝝁+𝝁−

𝑇+

𝑢+

𝑇−

𝑢−

Figure 2.1: Visualization of some notation for functions 𝑢 ∈ DG𝑟 (Ω).

Recall the Sobolev space

𝐻 (div;Ω) B
{
𝒗 ∈ 𝐿2(Ω;R2)

��
div 𝒗 ∈ 𝐿2(Ω)

}
as the space of square-integrable, vector-valued functions having a weak divergence in 𝐿2(Ω). A
piecewise polynomial function 𝒘 ∈ DG𝑟 (Ω;R2) belongs to 𝐻 (div;Ω) if and only if the normal

component of𝒘 is continuous across each edge. We denote by 𝝁+ and 𝝁− the outward unit normal

vectors on 𝐸 as seen from the cells𝑇+ and𝑇−, respectively. Similarly as in the scalar case, the jump of𝒘
across 𝐸 is de�ned as È𝒘É B 𝒘+ −𝒘−, and the continuity of the normal component can be expressed

as È𝒘É · 𝝁+ = 0 or, equivalently, as È𝒘É · 𝝁− = 0.

We denote the lowest-order Raviart-Thomas �nite element space by

RT0(Ω) B
{
𝒗 ∈ 𝐻 (div;Ω)

���� 𝒗 |𝑇 ∈ 𝑃0(𝑇 )2 +
(
𝑥

𝑦

)
𝑃0(𝑇 )

}
,
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We refer to Herrmann, Herzog, Schmidt, et al., 2019 as well as Logg, Mardal, Wells, 2012 for more

details on this 𝐻 (div;Ω)-conforming �nite element space. Notice that for 𝒑 ∈ RT0, the following
degrees of freedom are going to be used in this paper:∫

𝐸

𝒑+ · 𝝁+ d𝑆. (2.19)

Finally, let RT 0

0
(Ω) be the subspace of RT0(Ω) of functions with vanishing normal component on the

outer boundary of Ω.

2.3.2 Discrete Total Variation with Finite Elements

It is well known that for piecewise constant and piecewise linear functions, the total variation (1.1)

simpli�es to

TV(𝑢) =
∑︁
𝐸

∫
𝐸

��È𝑢É�� d𝑆 for 𝑢 ∈ DG0, (2.20)

TV(𝑢) =
∑︁
𝑇

∫
𝑇

|∇𝑢 |2 d𝑥 +
∑︁
𝐸

∫
𝐸

��È𝑢É�� d𝑆 for 𝑢 ∈ DG1. (2.21)

The discrete total variation proposed in Herrmann, Herzog, Schmidt, et al., 2019 agrees with (2.20) in

case of 𝑢 ∈ DG0 but di�ers from (2.21) in case of 𝑢 ∈ DG1. In that case, instead of integrating the

nonlinear term

��È𝑢É�� on an edge 𝐸, it was proposed to integrate its linear interpolant, i. e., (2.21) is

replaced by

DTV(𝑢) =
∑︁
𝑇

∫
𝑇

|∇𝑢 |2 d𝑥 +
∑︁
𝐸

∫
𝐸

I𝐸
{��È𝑢É��} d𝑆 for 𝑢 ∈ DG1. (2.22)

2.3.3 Total Generalized Variation for Finite Element Functions via the Dual Graph

As was already mentioned, the �rst proposal to de�ne the second-order total generalized variation for

piecewise constant �nite element functions was made by Gong et al., 2018. There, the total generalized

variation concept for graph signals from Ono, Yamada, Kumazawa, 2015, see Section 2.2.2, was used on

the dual graph of the �nite element mesh. We remind the reader that the vertices of the dual graph are

the triangle centers and each pair of neighboring triangles generates an edge; see Figure 2.2 for an

illustration.

To retrace the approach by Gong et al., 2018, let us denote by 𝐺 = (V, E) be the dual graph of a

triangulated mesh with vertices V and edges E, with cardinalities #V and #E, respectively. It is then
possible to represent piecewise constant data 𝑢 ∈ DG0(Ω) equivalently by vertex data 𝑢̃ ∈ R#V on

the graph. Notice that the total variation for 𝑢 ∈ DG0(Ω) agrees with the total variation of the data 𝑢̃

on the dual graph, provided that the edge lengths |𝐸 | in the mesh are used as weights in 𝐽 , see (2.14):

G-TV(𝑢̃) B |𝐽𝑢̃ |1 =
∑︁
𝐸

|𝐸 |
��È𝑢É��. (2.23)
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Figure 2.2: Finite element mesh (black) and corresponding dual graph (red).

The total generalized variation G-TGV
2

(𝛼0,𝛼1) (𝑢̃) of Gong et al., 2018 was recalled in (2.15) as

G-TGV
2

(𝛼0,𝛼1) (𝑢̃) = min

𝑞∈R#E
𝛼1 |𝐽𝑢̃ − 𝑞 |1 + 𝛼0 |𝐽 ᵀ𝑞 |1.

We can now interpret this expression in terms of the �nite element mesh corresponding to the dual

graph. Using the previously de�ned degrees of freedom (2.19) for the Raviart-Thomas space RT0(Ω),
the coe�cient vector representation of the following problem,

lapFETGV
2

(𝛼0,𝛼1) (𝑢) B min

𝒘∈RT0

0
(Ω)

𝛼1

∑︁
𝐸




È𝑢É + 1

|𝐸 |𝒘+ · 𝝁+





𝐿1 (𝐸)

+ 𝛼0

∑︁
𝑇

‖div𝒘 ‖𝐿1 (𝑇 ) (2.24)

matches (2.15) after the minor substitution of the auxiliary variable 𝒘̃ = |𝐸 |𝑞, where 𝒘̃ denotes the

coe�cient vector of𝒘 . This emphasizes that the total generalized variation on a graph corresponds to

a discrete version of lapTGV
2

(𝛼0,𝛼1) from (2.16).

3 Novel Discrete Formulation of Second-Order TGV for Piecewise
Constant Elements on Unstructured Meshes

In this section we propose a novel discretization of the non-symmetric TGV functional (2.4). Our

formulation has a number of advantages. It is tailored to triangulated grids, i. e., data structures

more �exible than regular pixel grids. An earlier approach for triangulated grids, here denoted by

lapFETGV
2

(𝛼0,𝛼1) , see (2.16) and equivalently (2.24), was developed in Gong et al., 2018 but it shows

artifacts, as con�rmed by the independent implementation due to Brinkmann, Burger, Grah, 2018. We

attribute those artifacts to the observation that (2.24) favors piecewise discrete harmonic functions

rather than piecewise linear. We refer the reader to Section 5 for numerical experiments re�ecting this

observation.

Our approach starts from the continuous formulation of non-symmetric TGV, (2.4). There, the 𝛼0-term

measures the norm of the distributional gradient ∇𝒘 , i. e., the total variation of the auxiliary variable

𝒘 , rather than the norm of the divergence div𝒘 . In the discrete case, where𝒘 is an RT0-�nite element

function, a vector-valued variant of the discrete total variation (2.22) forDG1 functions fromHerrmann,

2022-09-27 cbna page 11 of 29



L. Baumgärtner, R. Bergmann, R. Herzog, S. Schmi [. . .] TGV for Piecewise Constant Functions

Herzog, Schmidt, et al., 2019 can be used for this purpose, noting that RT0(Ω) ⊂ DG1(Ω;R2). We

therefore combine ideas from Gong et al., 2018 and Herrmann, Herzog, Schmidt, et al., 2019 and propose

the following discrete approximation to (2.4) for piecewise constant 𝑢 ∈ DG0(Ω):

FETGV
2

(𝛼0,𝛼1) (𝑢) B min

𝒘∈RT0 (Ω)
𝛼1

∑︁
𝐸



È𝑢É + ℎ𝐸 𝒘 · 𝝁+



𝐿1 (𝐸)

+ 𝛼0

∑︁
𝑇

∫
𝑇

|∇𝒘 |𝐹 d𝑥 + 𝛼0

∑︁
𝐸

∫
𝐸

I𝐸
{��È𝒘É��

2

}
d𝑆. (3.1)

Recall from (2.17) that I𝐸
{��È𝒘É��

2

}
denotes the linear interpolation of the pointwise 2-norm of the linear

function È𝒘É = 𝒘+ −𝒘− onto the space of linear functions along 𝐸. The interpolation points are the

end points of 𝐸. Just like the continuous formulation (2.16), the above (3.1) reduces to 𝛼1 TV(𝑢) in case

the minimizing𝒘 is zero. In comparison to the term ∇𝑢 −𝒘 in (2.16) however, one can notice the extra

scaling factor ℎ𝐸 in front of𝒘 · 𝝁+.

Let 𝒎+, 𝒎− ∈ R2 be the circumcenters of two adjacent triangles sharing the edge 𝐸. We then choose

the factor ℎ𝐸 B |𝒎+ −𝒎− |2 so that we have

𝝁− ℎ𝐸 = −𝝁+ ℎ𝐸 = È𝒎É = 𝒎+ −𝒎−. (3.2)

Notice that (3.2) is sensible since È𝒎É always intersects the midpoint of the edge 𝐸 orthogonally and

is therefore parallel to 𝝁+ and 𝝁−, see Figure 3.1.

𝒎+

𝒎−
𝐸

𝝁+
𝝁−

Figure 3.1: Illustration of (3.2): the factor ℎ𝐸 scales 𝝁+ and 𝝁− such that both their lengths equal the

distance of the circumcenters 𝒎+ and 𝒎−.

By interpreting the jump È𝑢É across the edge 𝐸 as a directional derivative of 𝑢 in the direction of È𝒎É,
i. e.,

È𝑢É ≈ ∇𝑢 · È𝒎É, (3.3)

we are o�ered with an alternative motivation for the formulation (3.1). Because only edge-concentrated

(and directional) information on the derivative of 𝑢 is available, the 𝛼1-term in (3.1) is used to couple

the directional derivative of 𝑢 (the jump in the sense of (3.3)) and the directional component of𝒘 , both
in the direction of È𝒎É = ℎ𝐸 (−𝝁+). The Raviart-Thomas space is then in fact a very natural choice
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for the auxiliary variable𝒘 , because it has exactly the normal component as a degree of freedom. It

furthermore propagates the edge-concentrated information into the triangle so that the total variation

of𝒘 can be measured through the 𝛼0-terms in (3.1).

Notice that there is a structural di�erence between the proposed formulation (3.1), the �nite di�erence

discretization (2.13) from Bredies, Kunisch, Pock, 2010, and the lapFETGV (2.24) from Gong et al., 2018

with regards to the treatment of the auxiliary variable 𝒘 on the boundary. For instance, (2.13) uses

one-sided �nite di�erences and thus requires some values of𝒘ℎ
on or outside the boundary. These

values are taken to be zero, see (2.12) for 𝑖 = 0 and 𝑗 = 0 as well as for 𝑖 = 𝑀 − 1 and 𝑗 = 𝑁 − 1.

Similarly in (2.24), an essential boundary condition𝒘 · 𝒏 = 0 is assumed. In both cases, these boundary

conditions also impact the solution𝒘 in the interior of the domain. In comparison with the continuous

formulation (2.3), either boundary condition on𝒘 appears arti�cial and we wish to avoid them.

3.1 1D Analogue

In order to get a better understanding, we study the 1D analogue of the proposed formulation (3.1) in

this subsection. In the 1D case, edges are replaced by vertices as the loci of intersection of adjacent mesh

entities, which are now intervals instead of triangles. Given an interval Ω consisting of subintervals 𝐼

in between vertices 𝑉 , the analogue of (3.1) reads

FETGV
2

(𝛼0,𝛼1) (𝑢) B min

𝒘∈CG1 (𝐼 )
𝛼1

∑︁
𝑉



È𝑢É − ℎ𝑉𝒘



𝐿1 (𝑉 ) + 𝛼0

∑︁
𝐼

‖∇𝒘 ‖𝐿1 (𝐼 ) , (3.4)

where ℎ𝑉 =𝑚+ −𝑚− =
|𝐼+ |+ |𝐼− |

2
is the distance between the midpoints of the subintervals adjacent to

the vertex 𝑉 . Notice that we take here, w.l.o.g., the “+” subinterval to be the one to the right of any
vertex and thus 𝝁+ becomes −1. Notice also that the Raviart-Thomas space RT0(Ω) coincides with the

continuous Lagrange space CG1(Ω). By dividing È𝑢É − ℎ𝑉𝒘 in (3.4) by ℎ𝑉 it can be observed that the

�nite di�erence È𝑢É/ℎ𝑉 across a vertex now involves only the single degree of freedom of𝒘 located

at that vertex.

𝐼1 𝐼2 𝐼3 𝐼4

𝑉1.5 𝑉2.5 𝑉3.5

ℎ𝑉1.5
ℎ𝑉2.5

ℎ𝑉3.5

È𝑢É

È𝑢É
È𝑢É

Figure 3.2: Visualization of a linear function (red) and its DG0 discretization (blue). The quotient of

È𝑢É/ℎ𝑉 is exactly the slope of a linear function.

We are now in the position to analyze the kernel of the semi-norm (3.4). The �rst condition for a

piecewise constant function 𝑢 ∈ DG0(Ω) to belong to the kernel is that È𝑢É − ℎ𝑉𝒘 = 0 holds. The
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second condition is that𝒘 ∈ CG1(Ω) has zero gradient, i. e.,𝒘 is constant. Both conditions together

imply that È𝑢É/ℎ𝑉 ≡ 𝑐 is constant. We conclude that FETGV
2

(𝛼0,𝛼1) (𝑢) = 0 holds if any only if 𝑢

interpolates a linear function on Ω with slope 𝑐 at the midpoints of subintervals on the domain Ω; see
Figure 3.2. The correct choice of the factor ℎ𝑉 is critical in achieving this result.

In the particular case that 𝑛 + 1 vertices are equally distributed and form 𝑛 subintervals of length 1,

the 1D formulation (3.4) coincides with the 1D �nite di�erence discretization used in Bredies, Kunisch,

Pock, 2010, except that in Bredies, Kunisch, Pock, 2010,𝒘 = 0 is assumed on or outside of Ω, depending
which side of the domain the boundary is on. In terms of the degrees of freedom of the �nite element

functions, our formulation (3.4) in the setting at hand reads

min

𝒘∈R𝑛+1
𝛼1

𝑛−1∑︁
𝑖=1

��(𝑢𝑖+1 − 𝑢𝑖) −𝒘𝑖+ 1

2

�� + 𝛼0

𝑛∑︁
𝑖=1

��𝒘𝑖+ 1

2

−𝒘𝑖− 1

2

��, (3.5)

whereas the formulation (2.13) from Bredies, Kunisch, Pock, 2010 would read

min

𝒘∈R𝑛
𝛼1

𝑛−1∑︁
𝑖=1

��(𝑢𝑖+1 − 𝑢𝑖) −𝒘𝑖

�� + 𝛼1
��𝒘𝑛

�� + 𝛼0
��𝒘0

�� + 𝛼0

𝑛−1∑︁
𝑖=2

��𝒘𝑖 −𝒘𝑖−1
�� + 𝛼0

��−𝒘𝑛−1
��, (3.6)

where the additional terms arise from the particular choice of �nite di�erence scheme. Using a simple

index shift, (3.5) and (3.6) coincide in the interior of the domain but not on the boundary. Our approach

(3.5) avoids the introduction of arti�cial boundary conditions for𝒘 and thus the additional terms that

arise in (3.6).

3.2 Properties of the Kernel in 2D

As discussed in the introduction, the kernel of TGV in the continuous settings contains precisely

the linear functions on Ω. In this section we discuss the kernel of the proposed formulation (3.1) in

2D for piecewise constant functions. As a �rst observation, we note that a necessary condition for

FETGV
2

(𝛼0,𝛼1) (𝑢) to be zero, the minimizer for𝒘 must be globally constant since otherwise the 𝛼0-terms

will be non-zero. Furthermore, the minimizer 𝑢 ∈ DG0(Ω) must satisfy

È𝑢É = −ℎ𝐸 𝒘+ · 𝝁+ = 𝒘+ · È𝒎É (3.7)

on all interior edges 𝐸. Again 𝒎+, 𝒎− denote the circumcenters of the respective triangles. The kernel

of this set of equations inDG0(Ω), one for each interior edge, consists of exactly the constant functions,
hence 𝑢 can be recovered from (3.7) only up to a constant. Since 𝒘 ∈ RT0(Ω) is vector-valued and

constant, it is determined by two degrees of freedom. Altogether, we infer that the kernel of (3.1) is a

three-dimensional subspace of DG0(Ω). Notice that by (3.7), the jumps È𝑢É will be zero on all edges

parallel to 𝒘 , i. e., where we have 𝒘+ · 𝝁+ = 0. Furthermore, for edges perpendicular to 𝒘 , È𝑢É/ℎ𝐸
is equal to ±𝒘+ · 𝝁+. This is exactly the slope of 𝒘 in the direction of ±𝝁+, thus the direction of the

jump.

We now argue that the kernel of the novel formulation (3.1) includes precisely those functions in

DG0(Ω) that interpolate linear functions at the circumcenters of each triangle; see Figure 3.3 for a

visualization. This can be seen directly from (3.7) since for a linear function 𝑓 : Ω → R one has

È𝑓 (𝒎)É = 𝑓 (𝒎+) − 𝑓 (𝒎−) = ∇𝑓 · È𝒎É (3.8)
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and setting 𝑢± = 𝑓 (𝒎±) and𝒘 = ∇𝑓 yields (3.7).

Notice that for triangles with a right angle, the circumcenter lies on the hypotenuse. Therefore a

kernel element always has the same function values 𝑢± on any two triangles𝑇± which form a rectangle

and share their hypotenuses; see Figure 3.3.

(a) Kernel element of (3.1) for

𝒘 ≡ (1.0, 0.0)ᵀ.
(b) Kernel element of (3.1) for

𝒘 ≡ (3.0, 1.0)ᵀ.
(c) Kernel element of (3.1) for

𝒘 ≡ (1.0, 1.0)ᵀ.

(d) Kernel element of (3.1) for

𝒘 ≡ (1.0, 0.0)ᵀ.
(e) Kernel element of (3.1) for

𝒘 ≡ (3.0, 1.0)ᵀ.
(f) Kernel element of (3.1) for

𝒘 ≡ (1.0, 1.0)ᵀ.

Figure 3.3: Kernel elements of the proposed formulation (3.1) on di�erent meshes.

4 Using the Discrete Total Generalized Variation

In this section we present algorithmic details for optimization problems on triangulated meshes using

the novel discrete formulation FETGV
2

(𝛼0,𝛼1) from (3.1) of second-order TGV. Numerical results will

follow in Section 5, where we compare FETGV
2

(𝛼0,𝛼1) to the graph-based approach lapFETGV
2

(𝛼0,𝛼1) of
Gong et al., 2018, see (2.24), as well as the �rst-order total variation semi-norm (2.20).

We solve all problems using a split Bregman algorithm; see Goldstein, Osher, 2009. We detail its

realization for an image denoising problem using the novel discrete formulation (3.1). The case of

(2.24) is similar and (2.20) is simpler and well known, so we skip the details. We assume that 𝑓 is a
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given DG0(Ω) data function. We wish to solve the discrete TGV-𝐿2 denoising problem

Minimize

1

2

∑︁
𝑇

|𝑇 | (𝑢 − 𝑓 )2 + 𝛼1

∑︁
𝐸

|𝐸 |
��È𝑢É + ℎ𝐸 𝒘+ · 𝝁+

��
+ 𝛼0

∑︁
𝑇

|𝑇 | |∇𝒘 |𝐹 + 𝛼0

∑︁
𝐸

2∑︁
𝑖=1

|𝐸 |
2

��È𝒘É(𝑋𝐸,𝑖)
��
2
,

where (𝑢,𝒘) ∈ DG0(Ω) × RT0(Ω) .

(4.1)

In (4.1), we spelled out the norms and integrals in (3.1). As before, |𝐸 | denotes the length of an interior

edge 𝐸, and |𝑇 | denotes the area of a triangle 𝑇 . For simplicity, we denote the constant value of 𝑢 on 𝑇

simply by 𝑢, and similarly for 𝑓 and ∇𝒘 . A similar convention applies to the quantities È𝑢É, 𝒘+, 𝝁+
and È𝒘É on edges 𝐸. The quantity È𝒘É(𝑋𝐸,𝑖) is the evaluation of the jump of𝒘 at the end points 𝑋𝐸,𝑖

(𝑖 = 1, 2) of the edge 𝐸. It is apparent that (4.1) is not di�erentiable due to the presence of absolute

values and norms.

The split Bregman method introduced in Goldstein, Osher, 2009 is an alternating direction method of

multipliers (ADMM) tailored to problems involving absolute values and norms. To derive this method

for problem (4.1), three new variables are introduced: the scalar-valued 𝑑0 ∈ DG0(∪𝐸) on the skeleton,

the matrix-valued 𝐷1 ∈ DG0(Ω;R2×2) in the domain Ω and the vector-valued 𝒅2 ∈ DG1(∪𝐸;R2)
again on the skeleton. Recall that ∪𝐸 denotes the skeleton of the mesh, i. e., the union of interior edges.

The variables are coupled to the original unknowns 𝑢,𝒘 through the constraints

𝑑0 |𝐸 = È𝑢É + ℎ𝐸 𝒘+ · 𝝁+ ∈ 𝑃0(𝐸),
𝐷1 |𝑇 = ∇𝒘 ∈ 𝑃0(𝑇 )2×2,
𝒅2 |𝐸 = È𝒘É ∈ 𝑃1(𝐸)2

for all interior edges 𝐸 and triangles 𝑇 , respectively. Since 𝒅2 and È𝒘É are linear on every edge, we

only need to enforce the respective constraint in the two Lagrange nodes used to describe DG1(𝐸),
which we take to be the end points. The augmented Lagrangian function for problem (4.1) with penalty

parameters 𝜆0, 𝜆1, 𝜆2 > 0, respectively, reads

Minimize

1

2

∑︁
𝑇

|𝑇 | (𝑢 − 𝑓 )2 + 𝛼1

∑︁
𝐸

|𝐸 | |𝑑0 | + 𝛼0

∑︁
𝑇

|𝑇 | |𝐷1 |𝐹 + 𝛼0

∑︁
𝐸

2∑︁
𝑖=1

|𝐸 |
2

��𝒅2(𝑋𝐸,𝑖)
��
2

+ 𝜆0

2

∑︁
𝐸

|𝐸 |
(
𝑑0 −

(
È𝑢É + ℎ𝐸 𝒘+ · 𝝁+

)
− 𝑏0

)
2 + 𝜆1

2

∑︁
𝑇

|𝑇 |
��𝐷1 − ∇𝒘 − 𝐵1

��2
𝐹

+ 𝜆2

2

∑︁
𝐸

2∑︁
𝑖=1

|𝐸 |
2

��𝒅2(𝑋𝐸,𝑖) − È𝒘É(𝑋𝐸,𝑖) − 𝒃2(𝑋𝐸,𝑖)
��2
2
,

where (𝑢,𝒘) ∈ DG0(Ω) × RT0(Ω)
and (𝑑0, 𝐷1, 𝒅2) ∈ DG0(∪𝐸) × DG0(Ω;R2×2) × DG1(∪𝐸;R2) .

(4.2)

The scaled Lagrange multiplier estimates 𝑏0, 𝐵1 and 𝒃2 are taken from the same spaces as 𝑑0, 𝐷1 and

𝒅2, respectively.

The split Bregman method proceeds by minimizing over (𝑢,𝒘), then over (𝑑0, 𝐷1, 𝒅2), and by updating
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(𝑏0, 𝐵1, 𝒃2), in cyclic repetitions. The minimization w.r.t. (𝑢,𝒘), i. e.,

Minimize

1

2

∑︁
𝑇

|𝑇 | (𝑢 − 𝑓 )2 + 𝜆0

2

∑︁
𝐸

|𝐸 |
(
𝑑0 −

(
È𝑢É + ℎ𝐸 𝒘+ · 𝝁+

)
− 𝑏0

)
2

+ 𝜆1

2

∑︁
𝑇

|𝑇 |
��𝐷1 − ∇𝒘 − 𝐵1

��2
𝐹

+ 𝜆2

2

∑︁
𝐸

2∑︁
𝑖=1

|𝐸 |
2

��𝒅2(𝑋𝐸,𝑖) − È𝒘É(𝑋𝐸,𝑖) − 𝒃2(𝑋𝐸,𝑖)
��2
2
,

where (𝑢,𝒘) ∈ DG0(Ω) × RT0(Ω),

(4.3)

is a uniformly convex quadratic problem and thus its solution is given by a linear system, governed by

a sparse matrix. Details are given below.

The minimization w.r.t. (𝑑0, 𝐷1, 𝒅2) fully decouples into the following subproblems formulated in terms

of their coe�cients (denoted by 𝑑0, 𝐷1, 𝒅2,1 and 𝒅2,2) on each interior edge or triangle.

Minimize 𝛼1 |𝑑0 | +
𝜆0

2

(
𝑑0 −

(
È𝑢É + ℎ𝐸 𝒘+ · 𝝁+

)
− 𝑏0

)
2

w.r.t. 𝑑0 ∈ R,

Minimize 𝛼0 |𝐷1 |𝐹 + 𝜆1

2

��𝐷1 − ∇𝒘 − 𝐵1

��2
𝐹

w.r.t. 𝐷1 ∈ R2×2,

Minimize 𝛼0
��𝒅2,𝑖 ��

2
+ 𝜆2

2

��𝒅2,𝑖 − È𝒘É(𝑋𝐸,𝑖) − 𝒃2,𝑖
��2
2

w.r.t. 𝒅2,𝑖 ∈ R2, 𝑖 = 1, 2.

Notice that 𝒅2,𝑖 , 𝑖 = 1, 2 denotes the two R2-valued degrees of freedom of 𝒅2, at the endpoints of the
interior edge 𝐸. It is well known that each of the above problems has a unique, closed-form solution,

given by a soft shrinkage operation. Speci�cally, the optimal 𝑑0, 𝐷1, 𝒅2 on each edge, triangle and

vertex are given by

shrink(𝑥, 𝛿 𝑗 ) B
{

𝑥
|𝑥 |∗ max{|𝑥 |∗ − 𝛿 𝑗 , 0} if 𝑥 ≠ 0,

0 if 𝑥 = 0,

where 𝛿 𝑗 ∈ R is some data and |𝑥 |∗ stands either for the absolute value in case of 𝑗 = 0, the Frobenius

norm in R2×2 in case of 𝑗 = 1, or the Euclidean norm in R2 in case of 𝑗 = 2; see Algorithm 1 for full

details.

The speci�cation of the complete split Bregman algorithm is given as Algorithm 1. To avoid a cluttered

notation, we do not endow the variables with an iteration index. The convergence of a class of methods

for convex functions with linear constraints comprising Algorithm 1 is studied in Boyd et al., 2010. To

measure the current state of convergence one often considers the primal residual, i. e., the error in

the constraint, and the dual residual, which is the gradient of the non-augmented Lagrangian with

respect to the (𝑢,𝒘) variable. We stop when both the primal and dual residual norms fall below a

certain threshold.

With suitable substitutions, Algorithm 1 can also solve variants of (4.1) with the regularization term

replaced by lapFETGV
2

(𝛼0,𝛼1) (2.24) or the �rst-order total variation function 𝛼1 TV (2.20). Moreover, it

can be adapted to the pixel-based discretization (2.13) of the continuous second-order TGV semi-norm

(2.4) from Bredies, Kunisch, Pock, 2010; compare He et al., 2014.
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Algorithm 1 Split Bregman method for the solution of (4.1).

Input: noisy image data 𝑓 ∈ DG0(Ω)
Output: approximate solution of (4.1)

1: Set 𝑘 B 0

2: Set (𝑑0, 𝐷1, 𝒅2) B (0, 0, 0) ∈ DG0(∪𝐸) × DG0(Ω;R2×2) × DG1(∪𝐸;R2)
3: Set (𝑏0, 𝐵1, 𝒃2) B (𝑑0, 𝐷1, 𝒅2)
4: while not converged do
5: Set (𝑢,𝒘) to the solution of (4.3)

6: Set 𝑑0 B shrink

(
È𝑢É + ℎ𝐸 𝒘+ · 𝝁+ + 𝑏0,

𝛼1

𝜆0

)
on each interior edge 𝐸

7: Set 𝐷1 B shrink

(
∇𝒘 + 𝐵1,

𝛼0

𝜆1

)
on each triangle 𝑇

8: Set 𝒅2,𝑖 B shrink

(
È𝒘É(𝑋𝐸,𝑖) + 𝒃2,𝑖 ,

𝛼0

𝜆2

)
on each interior edge 𝐸 for 𝑖 = 1, 2

9: Set 𝑏0 B 𝑏0 + È𝑢É + ℎ𝐸 𝒘+ · 𝝁+ − 𝑑0 on each interior edge 𝐸

10: Set 𝐵1 B 𝐵1 + ∇𝒘 − 𝐷1 on each triangle 𝑇

11: Set 𝒃2,𝑖 B 𝒃2,𝑖 + È𝒘É(𝑋𝐸,𝑖) − 𝒅2,𝑖 on each interior edge 𝐸 for 𝑖 = 1, 2

12: 𝑘 B 𝑘 + 1

13: end while

An implementation of Algorithm 1 was carried out in the �nite element framework FEniCS (ver-

sion 2019.2), see Logg, Mardal, Wells, 2012. This framework o�ers a considerable variety of �nite

elements including DG, CG and RTon simplicial meshes, and in particular on triangular meshes

in 2D. Notice, however, that the convention for the lowest-order Raviart-Thomas space in FEniCS

is RT1, not RT0. It also features the automatic generation of code from variational forms based on a

programming paradigm involving the uni�ed form language UFL Alnæs, 2012.

Subproblem (4.3) is solved in the following way. We formulate its objective using the UFL and

di�erentiate it to obtain a sparse linear system. We then employ a sparse direct solver to store the

LU factorization of the system matrix, which is constant throughout the algorithm. Concerning the

implementation of the soft shrinkage operations in steps 6 to 8 in Algorithm 1, which are formulated

in terms of the coe�cient vectors of �nite element functions, we cast the latter into NumPy arrays.

The implementation of the soft shrinkage functions is then straightforward. Likewise, the Lagrange

multiplier updates in steps 9 to 11 are implemented in terms of coe�cient vectors.

5 Numerical Results for Image Reconstruction Problems

In this section we present numerical results for image denoising and inpainting problems on triangu-

lated meshes using the novel discrete formulation FETGV
2

(𝛼0,𝛼1) from (3.1) of second-order TGV. We

also compare it to the graph-based approach lapFETGV
2

(𝛼0,𝛼1) of Gong et al., 2018, see (2.24), as well as

the �rst-order total variation semi-norm (2.20). As detailed in Section 4, we solve all three problems

using a split Bregman algorithm.

Tomake a reasonable comparison between the above formulations, we need to choose the regularization

parameters 𝛼0 and 𝛼1 for each approach independently and in an optimal way. We use the mean
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structural similarity measure (MSSIM) introduced in Wang et al., 2004 for this purpose. In each case,

we seek parameters 𝛼0 and 𝛼1 which maximize the MSSIM between the reconstruction 𝑢 and the

original image. These optimal parameters are determined using an interval bisection method.

5.1 MSSIM for Unstructured Data

The MSSIM combines similarity measurements in luminance (𝑙), contrast (𝑐) and structure (𝑠) over

various windows, i. e., subdomains, of a pair of images. Given two images 𝑢, 𝑣 and a common window

centered at a point 𝑥 , one usually uses

𝑙 (𝑥) B 2 𝜇𝑢 (𝑥) 𝜇𝑣 (𝑥) +𝐶1

𝜇𝑢 (𝑥)2 + 𝜇𝑣 (𝑥)2 +𝐶1

,

𝑐 (𝑥) B 2𝜎𝑢 (𝑥) 𝜎𝑣 (𝑥) +𝐶2

𝜎𝑢 (𝑥)2 + 𝜎𝑣 (𝑥)2 +𝐶2

,

𝑠 (𝑥) B 𝜎𝑢𝑣 (𝑥) +𝐶3

𝜎𝑢 (𝑥) 𝜎𝑣 (𝑥) +𝐶3

,

where 𝐶1,𝐶2,𝐶3 are image independent constants, 𝜇𝑢 (𝑥) and 𝜇𝑣 (𝑥) denote the respective averages,
𝜎𝑢 (𝑥)2 and 𝜎𝑣 (𝑥)2 denote the respective variances and 𝜎𝑢𝑣 (𝑥) denotes the covariance of (𝑢, 𝑣) over the
window around the point 𝑥 . For details on their computation on pixels we refer the reader to Wang

et al., 2004. The structural similarity measure at 𝑥 is then given by

SSIM(𝑥) B 𝑙 (𝑥)𝛼 𝑐 (𝑥)𝛽 𝑠 (𝑥)𝛾 . (5.1)

Usually, 𝛼 = 𝛽 = 𝛾 = 1 and 𝐶3 = 𝐶2/2 are chosen, resulting in

SSIM(𝑥) = (2 𝜇𝑢 (𝑥) 𝜇𝑣 (𝑥) +𝐶1) (2𝜎𝑢𝑣 (𝑥) +𝐶2)
(𝜇𝑢 (𝑥)2 + 𝜇𝑣 (𝑥)2 +𝐶1) (𝜎𝑢 (𝑥)2 + 𝜎𝑣 (𝑥)2 +𝐶2)

. (5.2)

The mean SSIM, or MSSIM, is then computed by averaging (5.2) over the whole domain. When the

image has values in [0, 1], then often 𝐶1 = 0.01 and 𝐶2 = 0.03 are chosen, see Nilsson, Akenine-Möller,

2020. Also, it appears to be common to choose windows of size 11 × 11.

Obviously, this procedure requires some modi�cations when we work with unstructured images

de�ned over meshes instead of rectangular grids. For unstructured meshes, we propose to use windows

for the evaluation of averages and variances which include all cells within a certain distance of the

vertex representing the triangle 𝑇 of interest in the dual graph of the mesh. For instance, a radius

of 2 would mean to include all neighbors and neighbors of neighbors of 𝑇 . We compute the average,

variance and covariance by means of integrals over the ensuing subdomain Ω′
with total area |Ω′ |

consisting of triangles 𝑇 ∈ Ω′
as follows:

𝜇𝑢 (𝑇 ) =
1

|Ω′ |

∫
Ω′
𝑢 (𝑥) d𝑥 =

∑
𝑇 ∈Ω′ |𝑇 |𝑢∑
𝑇 ∈Ω′ |𝑇 | ,

𝜎𝑢 (𝑇 ) =
1

|Ω′ |

∫
Ω′
(𝑢 (𝑥) − 𝜇𝑢 (𝑇 ))2 d𝑥 =

∑
𝑇 ∈Ω′ |𝑇 | (𝑢 − 𝜇𝑢 (𝑇 ))2∑

𝑇 ∈Ω′ |𝑇 | ,

𝜎𝑢𝑣 (𝑇 ) =
1

|Ω′ |

∫
Ω′
(𝑢 (𝑥) − 𝜇𝑢 (𝑇 )) (𝑣 (𝑥) − 𝜇𝑣 (𝑇 )) d𝑥 =

∑
𝑇 ∈Ω′ |𝑇 | (𝑢 − 𝜇𝑢 (𝑇 )) (𝑣 − 𝜇𝑣 (𝑇 ))∑

𝑇 ∈Ω′ |𝑇 | .
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As before in (4.1), we denote the values of 𝑢 and 𝑣 on a triangle𝑇 in any of the sums simply by 𝑢 and 𝑣 ,

respectively. The average and variance of the second image 𝑣 are computed in the same way as 𝜇𝑢 (𝑇 )
and 𝜎𝑢 (𝑇 ). The SSIM at 𝑇 is then evaluated as in (5.2) and MSSIM follows by averaging SSIM(𝑇 ) over
all triangles 𝑇 , weighted by the area |𝑇 |.

Notice that, as in the case of pixel images, the MSSIM measure depends on the window sizes and shape.

Therefore, the MSSIM scores of di�erent regularizers are only comparable when the same windows

are used.

5.2 Results for Image Denoising

We show three test cases for the TGV-𝐿2 denoising problem in this section. We begin with a grayscale

image on a classical pixel grid, then consider a grayscale image on a triangulated mesh, and �nally a

real-world test case on an unstructured surface mesh obtained from 3D scanning a real object. In all

test cases, normally distributed noise with standard deviation of 5% of the data range is added to the

original image data.

5.2.1 Case 1: Grayscale Gradient Image on a Pixel Grid

We employ the often-used grayscale gradient image with an inverted area in the middle; see e. g. Setzer,

Steidl, Teuber, 2011 and Figure 5.1. This image has size 128 × 128 pixels and it features both sharp

edges as well as linear transitions. Due to the regular pixel structure, we can also include the �nite

di�erence discretization TGV
ℎ
(𝛼0,𝛼1) of Bredies, Kunisch, Pock, 2010, see (2.13), into the comparison.

For the purpose of our formulation (3.1) and lapFETGV
2

(𝛼0,𝛼1) (2.24), we subdivide each pixel into two

triangles. For comparison of �rst-order TV and second-order TGV, we also show results using the

�rst-order total variation functional 𝛼1 TV on triangular meshes, see (2.20).

The results are shown in Figure 5.1. They were obtained using Algorithm 1 with penalty parameters

𝜆0 = 𝜆1 = 𝜆2 = 10. The MSSIM quantities for each image were evaluated using a window size of

11 × 11 square pixels.

As expected, all discrete second-order TGV models outperform the �rst-order TV regularization in

Figure 5.1c. Moreover, the results obtained with the novel formulation (3.1) closely resemble those with

(2.13) from Bredies, Kunisch, Pock, 2010, which can be considered the reference implementation for

square pixel images. Notice that Figure 5.1f is obtained on a triangular discretization with twice as many

degrees of freedom compared to Figure 5.1d. In addition, we observe artifacts in the lapFETGV
2

(𝛼0,𝛼1)
method (2.24). In fact, similar artifacts can already be found in Gong et al., 2018, Fig. 3 and its

implementation for square pixels from Brinkmann, Burger, Grah, 2018, Fig. 2.
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(a) Original image. (b) Noisy image. (c) 𝛼1 TV

from (2.20) with parameter

𝛼1 = 1.33 · 10−1.
MSSIM = 0.94758.

(d) TGV
ℎ
(𝛼0,𝛼1)

from (2.13) with parameters

𝛼1 = 1.49 · 10−1, 𝛼0 = 7.64 · 10−2.
MSSIM = 0.99130.

(e) lapFETGV
2

(𝛼0,𝛼1)
from (2.24) with parameters

𝛼1 = 1.13 · 10−1, 𝛼0 = 4.87 · 10−1.
MSSIM = 0.97735.

(f) FETGV
2

(𝛼0,𝛼1)
from (3.1) with parameters

𝛼1 = 8.59 · 10−2, 𝛼0 = 6.72 · 10−2.
MSSIM = 0.99201.

Figure 5.1: Denoising results for the grayscale gradient image (case 1).
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5.2.2 Case 2: Grayscale Gradient Image on an Unstructured Grid

Test case 2 is set on an unstructured mesh and it is taken from Herrmann, Herzog, Schmidt, et al., 2019.

The results are shown in Figure 5.2. They were obtained using Algorithm 1 with penalty parameters

𝜆0 = 𝜆1 = 𝜆2 = 0.1. The MSSIM for each image was evaluated using a window including each triangle’s

neighbors up to a distance of 10. As for case 1, we observe artifacts in the lapFETGV
2

(𝛼0,𝛼1) method

(2.24) but not in our approach (3.1).

5.2.3 Case 3: Image Denoising on an Unstructured Surface Grid

As wementioned in the introduction, our approach (3.1) can be generalized to images on surface meshes

embedded in 3D in a straightforward way. For this purpose, the following two minor modi�cations

are necessary. First, the scalar factor ℎ𝐸 , which is de�ned in the planar case according to (3.2) as the

distance between the circumcenters 𝒎± of the triangles adjacent to an edge 𝐸, has to be computed as

the surface-intrinsic distance. This is achieved using the midpoint 𝒎𝐸 of the edge 𝐸 and the formula

ℎ𝐸 B 𝝁+ · (𝒎𝐸 −𝒎+) + 𝝁− · (𝒎𝐸 −𝒎−) .

Furthermore, the jump of 𝒘 also has to be computed intrinsically. This is done by replacing È𝒘É
by 𝒕 (𝒕 · È𝒘É) in the last term of (3.1), where 𝒕 is a unit vector tangent to the edge with arbitrary

orientation. The graph-based approach lapFETGV
2

(𝛼0,𝛼1) (2.24), as well as the �rst-order total variation
semi-norm (2.20) can be used for surface images as well with similar modi�cations.

We are choosing the �ower test case from Artec Europe
1
. To denoise the color image, which is given by

DG0 data on a mesh of 389 632 triangles, we are applying the denoising on each RGB channel using

the same regularization parameters. For this purpose we are using the above described modi�cations

in Algorithm 1 with penalty parameters 𝜆0 = 𝜆1 = 𝜆2 = 1. The MSSIM is computed with a window size

of 20 neighbors. Results are shown in Figure 5.3.

Again both versions of TGV prevent most of the staircasing e�ect. In addition to the appearance

of artifacts, the lapFETGV
2

(𝛼0,𝛼1) method (2.24) also su�ers from smoothing of jumps for the optimal

choice of regularization parameters 𝛼1 and 𝛼0. To some extent, this e�ect can also be seen in the

other test cases, however only in regions where the jumps are very small, see Figure 5.1e (case 1) and

Figure 5.2d (case 2). The smoothing e�ect through the particular choice of parameters made in the

present test case 3 does not only smooth out jumps but also leads to a reduction of artifact in areas

without any jumps. Since these areas are very large compared to the regions that are a�ected from the

smoothing of jumps, this choice of parameters yields a better MSSIM score.

5.3 Case 4: Results for Joint Image Inpainting and Denoising

Finally we present an example of joint image denoising and inpainting (case 4). This is achieved

through a modi�cation of the �rst term in (4.1) so that the sum extends only over a subset of triangles

1
available under a Creative Commons 3.0 license from https://www.artec3d.com/de/3d-models/flower
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(a) Original image. (b) Noisy image. (c) 𝛼1 TV

from (2.20) with parameter

𝛼1 = 1.7 · 10−3.
MSSIM = 0.95382.

(d) lapFETGV
2

(𝛼0,𝛼1)
from (2.24) with parameters

𝛼1 = ·1.94−3, 𝛼0 = 2.97 · 10−1.
MSSIM = 0.89042.

(e) FETGV
2

(𝛼0,𝛼1)
from (3.1) with parameters

𝛼1 = 1.5 · 10−3, 𝛼0 = 2 · 10−5.
MSSIM = 0.96499.

Figure 5.2: Denoising results for a grayscale gradient image on an unstructured mesh (case 2).
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(a) Noisy surface image. (b) 𝛼1 TV

from (2.20) with parameter

𝛼1 = 5.3 · 10−3.
MSSIM = 0.94321.

(c) lapFETGV
2

(𝛼0,𝛼1)
from (2.24) with parameters

𝛼1 = 8.1 · 10−3, 𝛼0 = 5.1 · 10−2.
MSSIM = 0.94123.

(d) FETGV
2

(𝛼0,𝛼1)
from (3.1) with parameters

𝛼1 = 5 · 10−3, 𝛼0 = 1 · 10−3.
MSSIM = 0.94546.

Figure 5.3: Denoising results for a color image on an unstructured surface mesh embedded in 3D

(case 3).
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where data is available. Our test case is the well-known peppers image taken from the USC-SIPI Image

Database
2
. As before, the pixel image is discretized on a triangulated mesh by letting two triangles

form a pixel. A text overlay serves as the region representing missing data. The results are shown

in Figure 5.4. They were obtained using Algorithm 1 with penalty parameters 𝜆0 = 𝜆1 = 𝜆2 = 10. The

MSSIM for each image was evaluated using a window including each triangle’s neighbors up to a

distance of 10.

Due to the kernel of the proposed discretization (3.1) consisting precisely of interpolations of linear

functions, we see a linear �ll-in in regions with missing data. As before, the reconstruction using

lapFETGV
2

(𝛼0,𝛼1) from (2.24) shows a lot of artifacts due to the (piecewise constant) harmonic functions

in the kernel of this regularizer, see Section 2.2.2. The artifacts occur in particularly in the �ll-in regions

since no other form of tracking is available there. These additional oscillations impact the MSSIM score

more than the staircasing e�ect (clearly visible for the �rst-order TV with results shown in Figure 5.4b)

and thus make lapFETGV
2

(𝛼0,𝛼1) perform worse than the �rst-order total-variation regularizer for this

test case.

6 Conclusion

In this paper we have introduced a novel discrete formulation (3.1) for the second-order total generalized

variation (1.3) for piecewise constant data on triangulated meshes. Our formulation extends (2.13)

introduced in Bredies, Kunisch, Pock, 2010 from pixel grids to arbitrary triangular meshes, which can be

planar or embedded in 3D. A particular feature is the use of the standard lowest-order Raviart-Thomas

�nite element space for the discretization of the auxiliary variable𝒘 .

We have shown that the kernel of (3.1) consists precisely of interpolants of linear functions. Com-

pared to the alternative formulation (2.24) from Gong et al., 2018, our proposal is thus closer to the

continuous formulation (1.3) and does not exhibit the artifacts observed using (2.24). We also gave

an implementation of the split Bregman method suitable for solving image denoising and inpainting

problems using (3.1) as regularizer.
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