
Understanding Fun in Learning to Code: A Multi-Modal Data
approach

Gabriella Tisza∗
Department of Industrial Design,

Eindhoven University of Technology,
Eindhoven, The Netherlands

g.tisza@tue.nl

Kshitij Sharma
Department of Computer Science,

Norwegian University of Science and
Technology, Trondheim, Norway

khitij.sharma@ntnu.nl

Sofia Papavlasopoulou
Department of Computer Science,

Norwegian University of Science and
Technology, Trondheim, Norway

spapav@ntnu.nl

Panos Markopoulos
Department of Industrial Design,

Eindhoven University of Technology,
Eindhoven, The Netherlands

p.markopoulos@tue.nl

Michail Giannakos
Department of Computer Science,

Norwegian University of Science and
Technology, Trondheim, Norway

michailg@ntnu.nl

ABSTRACT
The role of fun in learning, and specifically in learning to code, is
critical but not yet fully understood. Fun is typically measured by
post session questionnaires, which are coarse-grained, evaluating
activities that sometimes last an hour, a day or longer. Here we ex-
amine how fun impacts learning during a coding activity, combining
continuous physiological response data from wristbands and facial
expressions from facial camera videos, along with self-reported
measures (i.e. knowledge test and reported fun). Data were col-
lected from primary school students (N = 53) in a single-occasion,
two-hours long coding workshop, with the BBC micro:bits. We
found that a) sadness, anger and stress are negatively, and arousal
is positively related to students’ relative learning gain (RLG), b)
experienced fun is positively related to students’ RLG and c) RLG
and fun are related to certain physiological markers derived from
the physiological response data.
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1 INTRODUCTION
Coding skills are gaining increased attention especially as they are
often considered as a core literacy skill of the 21st century [35].
Accordingly, more and more countries are introducing computer
science (CS) and coding competence to their curricula1. Despite
this ongoing momentum and development of new CS courses (e.g.
[24]), currently, children’s participation in out of formal education
activities is the main way children obtain competence in CS and
coding. Designing fun and engaging learning activities is essential
to attract children as fun provides the affective coloring for all our
day-to-day events and interactions.

In the field of interaction design and children, evaluation of
fun has been largely focused on self-reported data from children,
asking them to assess specific activities in single-item scales or
to compare the experienced fun in relation to different elements
of the design [38]. This pragmatic and widely used approach ad-
dresses the difficulties children have in responding to surveys but
does not provide a theoretically grounded definition of fun and
a corresponding psychometrically validated measurement. Such
an undertaking is reported by Tisza and Markopoulos [53], where
a theoretical account of the nature of fun as an affective state is
proposed together with FunQ, a validated questionnaire for mea-
suring the fun children experience during learning. According to
their definition, fun is an affective state during which one feels in
control, loses the perception of time and space, lets off social inhibi-
tions, meets the appropriate level of challenge, and is dominated by
positive emotions while the levels of negative emotions remain as
low. This approach has arguably a better theoretical foundation and
is more reliable than single item measures, but still, suffers from
being coarse grained, providing a single retrospective measure for a
whole activity rather than a measure that considers fun as a chang-
ing state that varies over time and in relation to the momentary
activity of the child.

Despite the great promise on designing coding activities that
can be both instructional and perceived as fun, there are several
1https://www.euractiv.com/section/digital/infographic/infographic-coding-at-
school-how-do-eu-countries-compare/
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challenges with this endeavor. First, there are various available
methods used to measure children’s affect in design research, with
limited agreement among researchers about the definition and an
acceptable measurement of fun. Moods and emotions, as well as
human’s affective preferences (i.e., what someone likes or dislikes)
are complex constructs, and different methods have been developed
to understand and measure them. Three broad categories are the
following:

• Methods that rely on automatic affect recognition (e.g., objec-
tive signals portraying specific physiological and behavioral
response patterns that represent emotions) and inspired by
theories (embodiment of affect) [16, 17].

• Methods that rely on self-report (e.g., questionnaires, rank-
ings), such items can be of verbal or pictorial scales (e.g.,
Smileyometer).

• Methods that rely on text or discourse analysis (can be au-
tomated via natural language processing methods or via
human content analysis).

The three categories have different strengths and weaknesses
but can also co-exist allowing us to capture different aspects of
children’s mood and emotions and understand their affective prefer-
ences comprehensively (although the third category is not relevant
for this study, since there was no discourse and text). Despite the
great interest in designing fun learning activities, as yet there is
little known regarding the impact of fun on learning.

To further contemporary approaches and understand children’s
affective preferences comprehensively, we adopt the use of a mul-
timodal approach. In particular, our approach involves the use of
objective automatedmeasures coming from children’s physiological
response data (collected by wristbands and facial video recordings),
self-reported fun and their learning gain (via a standard test). This
approach has been proven to be effective, among others, for pre-
dicting cognitive performance [44], and hence indicated that using
physiological response data allows us a new level of examination.
However, we know little about the nature of fun in learning, and
fun in coding activities has never been examined previously from
the physiological perspective. This study aims to fill the gap in
the literature by investigating the relationship between the experi-
enced funwhile learning how to code (as self-reported), the learning
outcomes (based on standard tests) and children’s affective states
derived from unobstructive subjective measurements. In particular,
this study focuses on the following research questions (RQ):

RQ1: What is the relationship between children’s learning
and their affective states (i.e., affect from the Action Units
(AUs), physiological stress and arousal) and processes during
a coding activity?
RQ2: What is the relationship between children’s perceived
fun (as measured by FunQ) and their affective states and
processes during a coding activity?

To tackle the aforementioned RQs, we designed a 2-hour-long
playful coding workshop (introducing coding with BBC micro:bits)
and implemented it in six primary school classes. Our findings
indicate that both students’ learning (i.e., relative learning gain -
RLG) and the level of fun they have experienced while coding are
associated with specific set of physiological predictors. On top of
that, we also found a positive and significant association between

fun and students’ RLG. To summarize, we present the following
contributions:

(1) We offer insights from a study where children, aged 8-12
years, participated in a coding workshop and their experi-
ence and learning were captured by standardized tests and
physiological devices.

(2) We identify the relationship between children’s learning,
perceived fun and affective processes (captured using the
transitions among the affective states) during the coding
activity.

(3) We discuss how our approach and findings can be used to
design future coding workshops.

2 RELATED RESEARCH
2.1 Affective Processes and Learning
Pekrun [37] introduced the Control-Value Theory (CVT) of achieve-
ment emotions by integrating assumptions from expectancy-value
approaches to emotions, theories of perceived control, attributional
theories of achievement emotions, andmodels that involve effects of
emotions on learning and performance. More specifically, Control-
Value Theory builds on the idea that experiencing emotions during
learning is dependent on whether learners consider the learning
activity important, and the extent to which learners have control
over the achievement activities and outcomes [18]. Accordingly,
emotions can be mapped on a two-dimensional plot based on their
valence and activation, and thus we can distinguish positive activat-
ing (e.g. enjoyment, curiosity), negative activating (e.g. frustration,
confusion), positive deactivating (e.g. relief, relaxation), and nega-
tive deactivating (e.g. boredom) emotions. In a recent systematic
literature review on emotions in the technology-based learning
environment, Loderer et al [29] found that research into emotions
almost quadrupled in the past 20 years. Among the reviewed papers
in this study, anxiety is still the most studied academic emotion,
while enjoyment has become the second most frequently investi-
gated one. They also found enjoyment to be positively related to
engagement, learning strategy use, curiosity/interest and to learn-
ing outcomes as; but it was found to be negatively related to disen-
gagement. In contrast, anxiety was negatively associated with both
students’ engagement, strategy use and learning outcomes. Sim-
ilarly, a systematic literature review of emotions in design-based
learning [58] classified emotions reported in empirical studies ac-
cording to the typology of emotions introduced with the Control-
Value Theory (achievement, epistemic, topic and social emotions).
With very few exceptions, the studies reviewed sought for indi-
cations of enjoyment as a positive aspect of the learning activity,
though the evidence on the expected positive impact of enjoyment
or fun on learning engagement with the topic was found to be
equivocal. It is noticeable that fun and enjoyment are terms often
used interchangeably in design research, with fun being regularly
adopted as an evaluation criterion for learning games (e.g. [38, 46]).
In relation to the students learning experience during a coding
activity, this research focuses on the four Control-Value Theory
emotions - happiness, sadness, anger, and surprise together with
physiological stress and arousal to capture the affective states and
processes; while for capturing fun the already discussed definition
was adopted [53]. These four CVT emotions were selected as other
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emotions (e.g., disgust, contempt, relief) accounted for less than 3%
of the total interaction time.

2.2 Fun and Learning
Most research into the relationship between fun and learning is
found in the context of educational technology. Sim et al [46] in-
vestigated fun, usability and learning in an educational software
with seven and eight year-old children and found no correlation
between learning (measured by the difference between the post-
and pre-test scores) and fun or between fun and usability. In line
with their findings, Iten and Petko [22] studying a serious game
with child participants aged between 10 to 13 also found no signifi-
cant relationship between fun and learning (perceived learning and
measured learning calculated as the summary score for the current
answers for the pre- and post-test). Contrasting these earlier find-
ings, Tisza, Zhu and Markopoulos [55] found when investigating a
serious game with 14-15 years old students that having fun while
learning had a significant effect on students’ perceived learning,
but not on their measured learning (when considering their pre
and post outcomes). Lucardie [31] investigating fun and enjoyment
in adults’ learning found that both learners and their teachers per-
ceived fun as a motivator to attend classes, and as a contributor to
learning knowledge and new skills. Related to coding, Long [30]
studying the influence of a programming game on learners’ (mostly
adults) programming skills and knowledge found that about 80%
of the study participants reported a perceived increase. They also
found that 87.5% of the study participants joined because of the
anticipated fun of the learning game, making fun a strong motivator
for participation. Therefore, having an enjoyable or amusing time
(i.e. fun) while learning is a significant predictor for the learning
effort. Saez-Lopez et al [40] found in a two-year long study that us-
ing Scratch - a block-based visual programming interface - to teach
programming to primary school children significantly increased
students’ knowledge; furthermore, students reported on having fun
while learning with Scratch, a finding that is also supported by the
observers’ reports. However, that study did not examine the rela-
tionship between fun and learning. Complementary to this, Tisza
and Markopoulos [52] found that having fun while learning to pro-
gram contributed significantly to the perceived learning of primary
school children. As it is seen, there is a variety in earlier research
in terms of the assessment of learning. While some examined per-
ceived learning [30, 31, 52], others investigated measured learning
(i.e., pre-post tests) [40, 46, 55]. To our best knowledge, there are
only a few studies that report on the relationship between fun and
both the perceived and the measured learning [22, 54, 55]. All of
those studies report on regression analyses, indicating a slight dif-
ference between the two measures, however, without directly com-
paring them. Accordingly, understanding the relationship between
the perceived and the measured learning, especially in reflection of
the experienced fun while learning remains a topic to be addressed
by future research. In sum, while earlier research appeared to be
inconclusive on the role that fun plays on learning, recent empirical
research results are supportive that fun contributes positively to
the learning outcomes. This shift is proposed to be due to a better
understanding of the notion of fun and accordingly, improved ways
for the assessment of it.

2.3 Multimodal Data and Learning
Learning is a complex process and involves cooperation and co-
ordination of several cognitive processes (e.g., information pro-
cessing, creating, maintaining and updating mental schemas) and
affective mechanisms (e.g., frustration, boredom, confusion, stress,
arousal;[47]). These processes and mechanisms could incur an af-
fective disequilibrium that might be detrimental for learning, when
students struggle to maintain and update their existing mental
models with new information [19]. Given the range of processes
involved, it would make sense that a single data stream would not
be able to capture all these processes. Depending on the process of
interest, different data streams may be more appropriate. Some of
these data streams currently used within education include video,
system logs, and physiological response data such as, electroder-
mal activity, heart rate variability, blood volume pulse, and skin
temperature. Individually, these data streams have been used to
explain and predict aspects of the cognitive processes and affective
mechanisms [45]. By extending these findings into interventions,
researchers have used the data streams to scaffold the learning
process to provide better learning support to students.

Given that a single data stream cannot capture all processes
happening during learning activities as each data stream can only
provide a partial view when used on its own, an upcoming field of
research, multimodal learning analytics (MMLA), combines several
of these data streams to serve as a virtual observer and analyst of
learning activities [5, 45]. MMLA provide an unprecedented oppor-
tunity to understand students’ behavior and performance during
and after the learning sessions by understanding their relations
with cognitive processes and affective mechanisms [12]. MMLA can
provide insights into a multitude of behaviors including reasoning
patterns [57], short-term memory usage [25], artefact quality [49],
help-seeking and help-giving behavior [13], tentative and casual
problem-solving behavior [2], and problem-solving phases [3, 48].
MMLA can be used to differentiate and identify different learning
processes and behaviors [48, 57], as well as to explain the relation-
ship between two behaviors, such as a student’s physical actions
and their reasoning during learning [2]. MMLA can shed light to
learning processes that may be invisible to the human eye and that
students cannot self-report on [13, 28, 35, 43]. Therefore, MMLA
can complement our understanding on how children learn, pro-
viding more information on children’s affective aspects during the
coding activities.

3 METHODS
3.1 Participants
The herein introduced study was conducted in mid-February 2020
in the Netherlands. Primary school teachers across the country
were approached to participate in the study. We recruited 53 chil-
dren (Mage = 10.13 yrs, SD = 1.103, 27 boys, 26 girls) from three
schools and six school classes. Participation in the activity was com-
pulsory for the children as the workshop took place during school
hours, however, participation in the study (i.e. responding to the
questionnaires and allowing us to capture their screens and cam-
eras) was voluntary. Given children’s age, informed consent was
obtained across the schools from both the children and their par-
ents/guardians before the study started. The study was approved on
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10 January 2020 by the ethics review board of Eindhoven University
of Technology, Department of Industrial Design.

3.2 Procedure
A single-occasion, two-hours long workshop was designed in col-
laboration with the SkillsDojo Foundation to introduce coding with
BBC micro:bits in a playful way. The workshop consisted of five
main sections. First, the pre-workshop data collection section, then
three distinct coding tasks and the workshop ended with the post-
workshop data collection. Both the pre- and post-workshop data
collection took approximately 10 minutes. Children had approxi-
mately 90 minutes to spend on the coding tasks. The coding tasks
were guided by the videos provided by the SkillsDojo Foundation
(see the detailed description at section 3.3). The first coding task
had an introductory nature, during which children learned the
basic properties of the micro:bits and thereafter they learned to
program their names. In the second task, children programmed a
stone-paper-scissors game. In the third task, children could create
a micropet that reacted to kinetic stimuli (guided by the instruc-
tional video) or they could choose to create their own code. By
their nature, the coding tasks required individual work, however,
collaboration was also allowed and facilitated by the researchers.

The workshop took place in the classroom as an extra-curricular
activity. During the workshop each child was equipped with a lap-
top to follow the instructional videos and practice coding, moreover
everyone had their own micro:bits. Further materials, such as pen-
cils, scissors, glue etc. that could be used for the micropet task were
provided by the schools. During the workshop children were seated
behind their laptops, however, they were allowed to move around
freely and interact with each other.

3.3 The How-To Instructional Videos
The how-to instructional videos used in this study to guide children
in the learning tasks were developed by the SkillsDojo Foundation
according to the Creative Learning Model of the Lifelong Kinder-
garten research group at MIT [39]. Accordingly, the videos have a
low floor and high ceiling making it easy to begin with but providing
plenty of room to be constantly challenging. The videos are also de-
signed in a way that makes the topic relevant to children by linking
content to their everyday life, they are following segmentation prin-
ciples, so that the videos are built up from comprehensive ‘chunks’
using signaling to highlight the most important parts. Additionally,
the videos used working examples as part of the instructions.

3.4 Data Collection
To address the research questions, multimodal data were collected.
Alongside with children’s demographics, we collected their self-
reported fun via questionnaires, their pre- and post- coding compe-
tence via a test, facial expressions from facial videos and physio-
logical arousal and stress from wristband sensors.

In particular, the pre-workshop questionnaire, captured chil-
dren’s demographics and background information that included
their perceived experience and knowledge on coding, using a 5-
point Likert scale (‘Do you have any idea about programming?’ (1)
not at all - (5) I’m a pro; ‘How many programming activities have
you participated before?’ (1) none - (5) six or more; see Figure 1).

To assess their coding competence, we employed a pre- and
post-workshop knowledge test. This allowed us to assess children’s
competence levels before and after their participation in the work-
shop, and calculate their RLG (knowledge level of Bloom’s taxonomy
[6]). The test was developed specially for the purpose of the study
to cover the material of the how-to videos. It consists of seven
multiple-choice questions with four response options, from which
four ask about terms that are explained in the videos (e.g.What/who
is a variable?) and three questions address the working of a piece
of code – which are necessary to complete the programming tasks
(see example in Figure 1; this piece of code is part of the stone–
paper–scissors game (task 2)).

For the assessment of fun during the workshop, we employed the
FunQ [53] instrument as part of the post-workshop questionnaire.
FunQ is a validated instrument in several languages (including
Dutch) and consists of 18 easy to understand (considering children’s
age) questions.

Besides using questionnaires, we collected children’s physiolog-
ical response data. We collected arousal data via wristbands and
facial expression via facial cameras data of 11 randomly selected
children in each workshop, thus from 66 children in total. How-
ever, data from 13 children was damaged or lost during recording,
hence our data set used for the analysis comprises of data from 53
children. Those multimodal data were collected while the children
were engaged with coding tasks. Regarding the data collection of
the different data modalities, we used the Empatica E4 wristband
to capture children’s physiological response data consisting of 4
different variables: Heart rate variability (HRV, 1Hz), Electrodermal
Activation (EDA, 64Hz), skin temperature (4Hz), and Blood Volume
Pulse (BVP, 4Hz) and for the facial video we used the web camera
of each laptop the children were working on. The frame rate was
set to 24 frames per second.

3.5 Measurements
Relative Learning Gain (RLG): From the pre and post knowl-
edge acquisition test, we calculated children’s RLG that has been
used previously in similar studies [34]. This measure is more accu-
rate than typical learning gain, since it considers children’s initial
knowledge when assessing learning gain and avoids potential floor
effects. RLG captures how much students learn beyond what they
knew prior to the intervention.

RLG =

{ posttest−pretest
Max .pretest−Pr estest , i f Posttest ≥ Pr estest

Posttest−Pr etest
Pr etest , i f Posttest < Pr etest

Fun Dimensions: FunQ instrument [53] was employed to mea-
sure the experienced fun along its six dimensions, FunQ has eigh-
teen questions (items), and it uses a 5-point Likert scale. The six
dimensions are Autonomy (perceived control over participation and
the activity itself), Challenge (experienced challenge), Delight (per-
ceived positive emotions and related desires), Immersion (perceived
loss of time and space), Loss of Social Barriers (perceived social con-
nectivity), and Stress (perceived negative emotions). More details
about the instrument and its evaluation with non-adult population
can be found here [72].
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Figure 1: Left: Example of the questionnaire.Middle: Example of the knowledge test. Right: Setup during the workshop.

Table 1: Defining emotions from Action Units.

Affective state Action units Affective state Action units

Happiness AU6, AU10 Anger AU1, AU2, AU5, AU26
Sadness AU1, AU4, AU15 Surprise AU4, AU5, AU7, AU23

Figure 2: Action Unites detected for this paper. The facial images are taken from https://www.cs.cmu.edu/~face/facs.htm The
action unit number are mentioned in parentheses next to the action unit names to have a mapping with Table 1.

Affect: We used the face images coming from the videos to ex-
tract the facial Action Units (AUs, [15]) using the OpenFace frame-
work [1]. Facial Action Coding System (FACS) is a taxonomy for
human facial movements as they appear on the face. Movements
of individual facial muscles are encoded by FACS from slight in-
stant changes in facial appearance. Using FACS it is possible to
code nearly any anatomically possible emotion, deconstructing it
into the specific AU that produced the facial expression. FACS is
an established scheme for coding facial expressions, which is sup-
ported by multiple studies that have evaluated FACS with positive
results with adults [11, 41]. Additionally, studies used the scheme
in the previous years with children with positive results as well
[35, 36]. Furthermore, it is a common standard to objectively de-
scribe emotions from facial expressions using such techniques [56].
Figure 4 shows the AUs detected for this paper and Table 1 shows
how to define emotions from the AUs. In this paper, we are using
the proportion of each emotion during the coding activity. We de-
fine happiness, sadness, anger, and surprise from the action units
(shown in table 1). These affective states are a subset of achievement
emotions included in Control-Value Theory [37]. These four CVT
emotions are use because other emotions (e.g., disgust, contempt,
relief) make less than 3% of the total interaction time. Therefore,
we discarded the emotions that are not detected with a significant
proportion of the interaction time. The interpretation of facial ex-
pressions can change from one situation to other however, the
coding is well-evaluated and the qualitative interpretation in the

context we studied will be done in our future analysis. This study
focused more (being the first of its kind, to the best of our knowl-
edge) on finding the relationships between CVT-based emotions
and sensor and facial data.

Affective states transition: the second set of measurements
were the transition probabilities between two affective states. These
transitions capture the affective process during the coding activity.
We did not consider the self-loops in this paper, because we are
already using the proportion of the duration of each individual
emotion as the first set of measurements.

Physiological Stress: This is computed as the heart rate’s in-
creasing slope. The more positive the slope of the heart rate is in a
given time window, the higher the stress is [51]. Heart rate has been
used to measure stress in educational [45] and problem-solving [32]
contexts. In the rest of the paper, physiological stress is referred to
as stress among the physio-affective states and processes.

Physiological arousal: EDA signal is comprised of two parts:
the tonic and phasic components. The tonic component of the EDA
signal is the onewith slow evolving patterns. The phasic component
of the EDA signal is the one with rapid changes and is found to be
related to physiological arousal [26]. In this paper, we consider only
the mean phasic EDA component as a measure of physiological
arousal. In the rest of the paper, physiological arousal is referred to
as arousal among the physio-affective states and processes.
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Figure 3: Facial data pre-processing. Detecting the main student.

3.6 Data Pre-processing
To remove noise, and potential conditional biases from the sensor
data, the following pre-processing was conducted.

Wristband data: A simple smoothing function was used to re-
move any unwanted spikes in the time series in the 4 data streams
originating from the E4 wristband (HRV, EDA, Skin Temperature,
and BVP). This was a simple running average with a moving win-
dow of 100 samples, and an overlap of 50 samples between two
consecutive windows. Physiological response data, such as HRV,
BVP, and skin temperature, are susceptible to many subjective and
contextual biases. These biases include the time of the day, physical
health condition, gender, age, overnight sleep, and others. All 4 data
streams were normalized using the first 30 seconds of the data to
remove the subjective and contextual biases from the data.

Facial data: For most of the frames in the video recordings, only
one face was visible. However, sometimes the researcher overseeing
the activity appeared in the field of view of the camera. For some
other frames there were a few other children in the frame as well
(visualized in the Figure 3). First, we used the OpenFace [1] library
in the videos, in order to detect the faces for every frame. Thus,
each face is given a label starting from left to right (1 to N, where
N is the number of faces in each frame). There are three cases
where the left-to-right labeling of faces fails as shown in Figure
3. First, when students are with the teacher and/or the researcher.
Second, when classmates join the student for a short time. We need
to keep the face to which the recording belongs. To achieve this,
we used a pre-trained deep neural network, INCEPTION-v4 [50],
to extract features from the individual face images and used a k-
nearest neighbor prediction algorithm to recognize the original
student in every recording. Figure 3 shows the example for all the
three cases. The first few minutes are used to create the feature
vectors for the original student in each recording.

3.7 Data Analysis
First, to get a better idea of the results of our study, a descriptive and
correlational analysis has been conducted on the main variables.
Then, to address our RQs, appropriate data analyses have been
conducted.

To examine possible predictors of children’s learning from their
physio-affective states (i.e. affect from AUs and physiological stress
and arousal; RQ1), multiple regression equations were calculated.
We use the RLG as the dependent variable and all the measure-
ments from the facial and wristband data as the regressors in a
regression model. The adjusted R-square value of the models shows
the variance of the RLG explained by the physio-affective vari-
ables. Second, we use a t-test to find which individual coefficients
from the regression model contribute significantly to the depen-
dent variables and explain the relationship between the RLG and
the physio-affective states. For multiple t-tests, the p-values are
corrected using a Bonferroni correction.

Similarly, to examine possible predictors of children’s perceived
fun (the dimensions measured by FunQ) from their physio-affective
states (RQ2), a series of multiple regression equations were calcu-
lated (Table 3-5).

To check the gender bias in the data, we use one-way ANOVA
with the physio-affective measurements, FunQ dimensions and
RLG as dependent variable and gender as the independent variable.
Regarding the age bias in the data, we use Pearson Correlation
between age and the other measurements (i.e., physio-affective
measurements, FunQ dimensions and RLG).

4 RESULTS
From the descriptive analysis, we found that just above half of
the children in our study were novices to coding. For the question
‘Do you have any idea about programming?’, 22.6% of the children
reported on having no idea about coding, and 35.8% of the children
reported knowing a bit. The mean for this question is 2.38 (with 5
being the highest) (SD = 1.105) which also translates into ‘knowing
a bit’. As for the responses for the question ‘How many coding
workshops have you participated in before?’, 43.4% of the children
reported never having participated in a coding activity, and an
additional 13.2% reported having participated in 1 coding activity
only. The mean of the responses for this question is 2.25 (with 5
being the highest) (SD = 1.356). Therefore, some of the children
who participated in our study had some previous experience with
coding, and most of them had none or very limited. When it comes
to children’s relative learning gain it was on an average 0.61 (SD =
0.22, minimum = 0, maximum = 1).
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Table 3: Themodel for RLGwith Control-Value Theory affective states, transitions among them, arousal, and stress. This table
shows only the significant terms.

β Error T-value P-value

Intercept 0.27 0.69 0.52 > 0.05
Sadness (sad) -1.37 0.009 -2.38 0.01
Anger (ang) -1.56 0.003 -3.12 0.001
Trans:hap <-> sup 1.13 0.04 2.03 0.02
Trans:sad <-> ang -1.88 0.004 -3.42 0.0006
Stress -1.03 0.01 -1.78 0.04
Arousal 1.19 0.02 1.71 0.04

Children’s average FunQ score is 71.55 (SD = 9.756; Cronbach’s
alpha = 0.819, min: 50, max: 89), which is quite high if you consider
that the possible scores range from 18 (lowest fun) to 90 (highest
fun).

We also checked for any age- or gender-related biases for the
RLG and the different FunQ dimensions (i.e., autonomy, challenge,
delight, immersion, social barrier, stress). There was no correlation
between the age of the children and their RLG or any of the FunQ
dimensions. However, there was one exception. The social barrier
was higher for boys than that for girls (F[1,37] = 4.63, p = 0.03,
nine children had missing values). As we show in the main analysis
that we did not find any significant relationship between the social
barrier and physio-affective states, this bias will not be discussed
in the light of the results reported in this paper.

4.1 Results from Modeling the Relative
Learning Gain (RQ1)

We modeled the relative learning gain (RLG) using the proportions
of emotions, the transition among them, stress, and arousal. The
overall model was significant (F (10, 37) = 10.41, p < 0.001, R2
= 0.72), accounting for 72% of explained variance in children’s
RLG. We found arousal and the transitions between happiness and
surprise to be positive predictor for RGL, while sadness, anger, stress,
and transition between sadness and anger contributed negatively
to students’ RLG. The coefficients of the significantly contributing
predictors are in Table 3, the complete model is to see in Appendix
1.

4.2 Results from Modeling the FunQ
Dimensions (RQ2)

We modelled the FunQ Total Score and all the dimensions using
the proportions of emotions, the transition among them, stress,
and arousal. Below are the details for each of the dependent
variables.

FunQ Total Score: The overall model for the total score of FunQ
was not significant (F (10, 37) = 1.44, p = 0.20, R2 = 0.26). We have
provided the model details in Appendix 1. In other words, from the
used physio-affective states we could not predict the total score of
the FunQ.

FunQ Autonomy: The overall model for the Autonomy dimen-
sion of FunQ was not significant (F (10, 37) = 1.47, p= 0.19, R-sq =
.32). We have provided the model details in Appendix 1. In other

words, from the investigated physio-affective states we could not
predict the FunQ Autonomy scores.

FunQ Challenge: The overall model was significant (F (10, 37) =
10.19, p < 0.001, R2 = 0.71), accounting for the 71% of explained vari-
ance in children’s FunQ Challenge. Happiness, anger, arousal, and
the transitions between happiness and sadness predict FunQ Chal-
lenge positively. On the other hand, sadness, surprise, and transition
between sadness and surprise contribute negatively to FunQ Chal-
lenge. The coefficients of the significantly contributing predictors
are shown in Table 4.

FunQ Delight: We found the overall model to be significant (F
(10, 37) = 9.93, p < 0.001, R2 = 0.65). The predictor model accounts
for 65% of the explained variance in children’s FunQ Delight. In
details, happiness and surprise are positive predictors for FunQ De-
light whereas, stress, and transition between happiness and anger
contribute negatively to FunQ Delight. The coefficients of the sig-
nificant predictors are shown in Table 4.

FunQ Immersion: The overall model was significant (F (10, 37)
= 8.16, p < 0.0001, R2 = 0.63), accounting for the 63% of explained
variance in children’s FunQ Immersion. Happiness and arousal are
positive predictors for FunQ Immersion while the transition between
sadness and anger contribute negatively to FunQ Immersion. The
coefficients of the significant predictors are shown in Table 5.

FunQ Social Barrier: The overall model for the social barrier
dimension of FunQ was not significant (F (10, 37) = 1.09, p= 0.39,
R2 = 0.17). We have provided the model details in Appendix 1.
In other words, from the investigated physio-affective states we
could not predict the Social Barrier dimension of FunQ. As we
mentioned earlier, there was a gender bias for this sub-construct.
Boys (mean = 9.00, SD = 3.22) reported a higher social barrier
than girls (mean = 7.11, SD = 1.99). However, because there is
no relationship between this construct and the RLG or any other
physio-affective measurements, we will not explore this bias in this
contribution.

FunQ Stress: We found the overall model to be significant (F
(10, 37) = 10.02, p < 0.001, R2 = 0.70), accounting for the 70% of
explained variance in children’s FunQ Stress. We found that sad-
ness, anger, stress, and transitions between sadness and anger predict
FunQ Stress positively, while the transition between happiness and
surprise contribute negatively to FunQ Stress. The coefficients of
the significant predictors are shown in Table 5.
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Table 4: The models for FunQ Challenge and Delight with control-value theoretic affective states, transitions among them,
arousal and stress. This table shows only the significant terms (p < 0.05).

Model
Challenge

β Error t Model Delight β Error t

intercept 0.31 0.12 0.43 intercept 0.44 0.24 0.54
Happiness 1.41 0.005 2.92 Happiness 1.34 0.051 2.13
Anger 1.02 0.004 3.13 Surprise 1.93 0.009 3.19
Sadness -1.32 0.012 -2.10 Trans.

Hap-Ang
-0.93 0.001 -4.18

Surprise -1.35 0.003 -2.44 Stress -1.34 0.003 -3.53
Trans.
Hap-Sad

0.99 0.001 3.38

Trans.
Sad-Sup

-1.45 0.001 -3.04

Arousal 1.23 0.014 2.23

Table 5: The model for FunQ Immersion and Stress with control-value theoretic affective states, transitions among them,
arousal, and stress. This table shows only the significant terms (p < 0.05).

Model
Immersion

β Error t Model Stress β Error t

intercept 0.19 0.89 0.52 intercept 0.16 0.21 0.89
Happiness 1.46 0.001 4.34 Sadness 1.28 0.005 2.48
Trans.
Sad-Ang

-1.73 0.003 -3.28 Anger 0.94 0.001 3.32

Arousal 2.01 0.001 4.26 Trans.
sad-ang

1.27 0.017 2.70

5 DISCUSSION
In this study we set out to investigate the relationship between
children’s coding learning, the experienced fun, and their physio-
affective states during a coding activity. We collected data from a
questionnaire, and physiological response data collected by wrist-
bands and facial video recordings. Using data from different modal-
ities and analyzing them we provide a novel approach as earlier
research has been limited to either the investigation of affective
states (e.g., by interviews or surveys (e.g., [52]) or physiological
measures (e.g., [45]). By combining these we extended our cur-
rent body of knowledge by adding a new, physiological level of
understanding of learning procedures. One can argue that the two
measurements are not exactly the same, which is evident by the re-
sults reported in the paper.We have shown that there is a significant
overlap between the retrospective measurement of fun (through
questionnaire) and the spontaneous measurement of affect (through
sensor data). Both measurements have been evaluated separately
[11, 41, 53]. This study is an attempt to find a relationship between
the two measurements to have more real-time information about
the semantic beliefs and memories using the sensor data. Accord-
ingly, we found that RLG and most of the FunQ dimensions can
be explained by the CVT affective states (i.e., happiness, sadness,
anger, surprise, and the transition between these). Therefore, the

introduced results indicate that there is a link between learners’
affective states, their learning outcomes, and the fun they have
experienced while learning.

More specifically, regarding students’ learning and their affec-
tive states during coding activity (RQ1), we found that sadness,
anger, and stress contribute negatively on students’ learning, while
arousal positively on it. This finding is in line with previous research
that has investigated this relationship with traditional methods (i.e.
questionnaires and observations) [29]. However, it also goes beyond
those by applying MMLA and physiological measures.

Our research results indicate that from physiological data we
could not predict the level of fun - measured as the total score on
FunQ – that children experienced while learning to code. Never-
theless, we found that the total FunQ score significantly correlates
with the RLG (Pearson correlation = 0.33, p < 0.05). This finding is
in line with earlier research, which suggests that having fun while
learning contributes to the learning outcomes [30, 31, 40, 52, 55]. Al-
though some dimensions of fun could be predicted from the physio-
affective states of the child, we found that the physio-affective states
do not predict fun comprehensibly. This aligns with previous works
in physiological response measures that indicate challenges with
achieving perfect one-to-one relationship between physiological
response measures and psychological constructs [9].
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Concerning our findings about the dimensions of FunQ, we con-
clude that as just mentioned, not all its dimensions could be pre-
dicted from physiological response data. Accordingly, neither the
Autonomy nor the Loss of Social Barriers dimensions could be mod-
elled by the affective states. We believe that these results rather
reflect the characteristics of the activity rather than general tenden-
cies. Namely, despite children were provided with some freedom
and attributes that are atypical in a formal learning environment
(e.g., they could decide whether they wanted to follow the activity,
they were allowed to move around freely and ask the instructors
whenever they wanted), the workshop was still scripted as it fol-
lowed a fixed sequence of tasks. Hence, children might have not
felt a sufficient level of autonomy (or not frequently enough) to be
able to relate it to physiological response data. Regarding the Loss
of Social Barrier dimension, on top of the aforementioned possible
explanations, the scripted structure of the workshop might not have
provided enough space for social interactions that would have led
to an increase in social connectedness. Hence, it appeared not to
be possible to link this dimension to physiological response data.
Regarding both dimensions, further research is required to establish
general tendencies as our findings might be a consequence of the
activity design and be activity specific.

The Challenge dimension of FunQ could be predicted from the
CVT affective states happiness, anger and arousal positively, and
the transitions between happiness and sadness. These transitions’
positive contribution to FunQ challenge can perhaps be because
children were in a constant loop of succeeding and failing, as not
everything worked at their first attempt. On the other hand, sadness,
surprise, and transition between sadness and surprise, contribute
negatively to FunQ Challenge. Connected to the previous finding,
when children were failing the task, it could have been a sign that
the task was (momentarily) too difficult for them and it can explain
of why the transition between sadness and surprise contributed
negatively to FunQChallenge. During a coding activity, the children
need to deal with different aspects of the tasks, like debugging,
problem solving and reflecting iteratively on the needed actions,
and this process can be difficult and challenging [33].

As for the Delight dimension, happiness and surprise appeared
to be a positive contributor, whereas stress, and the transition be-
tween happiness and anger contributed negatively. We propose
that Delight can be seen as an emotion related to solving or under-
standing a problem or even having a desired outcome in a given
possible task [14] and this can be triggered from positive emotions
or an unexpected outcome. Regarding Immersion, happiness and
arousal are found to contribute positively to it, while transition
between sadness and anger turned out to be a negative contributor
to Immersion.

Concerning the Stress dimension, which is a contra-indicative
dimension of FunQ with reversed items, we found that the physio-
affective states sadness, anger, stress, and the transition between
sadness and anger contributed positively, while the transition be-
tween happiness and surprise contributed negatively. In other
words, the physio-affective states sadness, anger and stress are
inducing stress, while changing from happy to surprised, and vice-
versa is a contra-indicative signal, indicating low levels of stress.

For all the constructs that we have used in this contribution (i.e.,
RLG and the FunQ dimensions), stress and/or arousal have been a

significant predictor. We found that arousal is positively associated
with RLG and Challenge, Delight, and Immersion dimensions of
FunQ; stress is negatively associated with RLG and positively asso-
ciated with the Stress dimension of FunQ. The positive association
of arousal and the negative association of stress with the RLG (or
in other words learning or cognitive performance) is consistent
with various other studies. For example, in game-based learning
settings with children Lee-Cultura et al [27] and Sharma et al [42]
found physiological stress to be negatively associated with learning
performance and experiences. Similarly, Joëls et al [23] showed that
the memory-based learning performances decrease under stress.
These studies are also in line with the finding that higher levels
of stress are negatively associated with the RLG extends the con-
sensus from these studies. Furthermore, the physiological response
measurement of stress being positively associated with the self-
reported stress is indicative of the measurements’ validity in the
context of children coding.

On the other hand, physiological arousal provides us with a
reliable proxy of engaged behavior [7, 26, 28]. The high levels of
engagement have been shown to be positively associated with learn-
ing [8, 10, 20]. In our case, higher levels of physiological arousal
indicate high levels of engagement which in turn increases the
probability of children with high physiological arousal also having
a high RLG. Moreover, with high levels of engagement, children
might also feel immersed and challenged at appropriate levels,
which in turn might increase their ratings for the delight dimension
of FunQ.

5.1 Implications
Our findings support endeavors of educators, designers, and re-
searchers to make learning to code a fun experience, as we found a
positive relationship between those. Further research studies could
aim to improve the applicability of physiological measure devices
(e.g. wristbands) for children. Beyond research purposes, such im-
provements in the physiological measure devices could pave the
way for everyday (classroom) use. Our research also opens ways
for at-the-moment measurement of fun that will allow us a precise
insight into the activity, in contrast with the post-hoc tests and
get a more holistic understanding. This way, micro-level investiga-
tions and interventions are enabled for supporting fun, leading to
increased learning outcomes – a finding introduced by this study
and supported by previous research indicating a clear relationship
between children’s perceived fun while learning and their learn-
ing outcomes [52]. Additionally, it can be particularly relevant for
the development of different systems for educational purposes,
to use multimodal data to support both teachers and students in
their everyday learning activities. This can happen for example by
providing systems with affordances for reflective purposes, indi-
cating students’ disengagement or other features to support better
classroom management. This can be helpful from the students’
perspective because they will be able to signal when they are in
need for more support from the teacher/instructor. Future systems
with different functionalities can also exploit multimodal data, to,
for example, automatically adjust the difficulty level of a learning
task, providing personalized learning to students on a given task.
Personalization should then also take into account the learning
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setup, whether the task requires individual work, or collaboration
is possible. In the latter case adjusting the timing of the scaffolding
would be required in order to support social learning. Knowing the
affective state of the students, can be powerful information helping
them to overcome affective states that may hinder their learning or
fun during coding.

5.2 Limitations and Future Work
Besides the applicable findings and the new approach introduced,
the limitations of this study should be mentioned. First, we high-
light the practical difficulties involved in collecting of physiological
response data from children as these technologies are designed
for adults. One example is the difficulty we faced in attaching the
wristbands to some of the children’s wrists. This led to some uncon-
trolled data loss. To resolve this issue, further research could assist
the design of the wristbands to be more suitable for child users.
In the same lines, the use of sensing devices increases children’s
curiosity, therefore researchers need to spend time to explain in
simple words how each device works, what data we collect and
why, letting the children interact with them. One example from our
study is that we observed that some children wanted to see on the
mobile device connected with the wristband how their heart rate is
shown or how it changes. If this cannot be controlled, it can lead
to some data removal.

Second, the coding activity was designed as a non-curricular
activity, but in a classroom setting, aiming to provide participating
children with autonomy over their participation and the activity
itself. Since we did not find physiological response correlates for
the Autonomy and Loss of Social Barriers dimension of FunQ, we
speculate that given the activity was scripted (i.e. three tasks were
given to be followed), children might not have felt the desired level
of autonomy, and in relation to this, they also might not felt enough
freedom to connect to each other more than usual. Future studies,
hence, should examine the physiological response correlates of the
FunQ dimensions in relation to a broad range of learning activities,
including possibly informal learning setups as well.

Another limitation of this study is the use of only quantitative
data, future research should also include qualitative data such as
interviews or observations to do a triangulation of the findings and
get deeper into children’s behavior. Although facial expressions
have been used in many studies to extract emotions, this method
comes with some limitations [4, 21]. Lastly, more studies are needed
to better understand the cognitive and affective states of children
during coding and to monitor how they may shift naturally or not
with the ultimate goal to offer more effective and efficient learning
experiences.

While this study is the first to connect FunQ and sensor data fo-
cusing on a quantitative exploration, we call on further research, in-
cluding both qualitative, quantitative, and especially mixed-method
approaches to provide more insights into this relationship, and to
triangulate the results of the herein introduced study. Hence, in
future mixed-method studies participants could be closely moni-
tored on the individual level in order to pinpoint moments that are
detrimental or helpful for learning and/or fun, and those moments
could be studied in depth to extend our understanding on the topic.

6 CONCLUSION
We contribute to the literature regarding the role of fun in how
children learn to code in a number of ways. First, we investigated
fun, a construct, which is frequently in the focus of evaluation in
design and educational research, however, our knowledge is still
limited about its nature. By using multimodal data, we went a step
further than earlier research as it either pertained to surveys or
to physiological response data only. Using the combination of the
two allowed us a deeper understanding on how fun occurs during
learning to program, and which physio-affective states can be used
as a predictor of fun. Being able to predict fun from physiological
signals can help assess different learning activities, but potentially
can be developed further to support timely interventions to get
disengaged children on track again, ultimately leading to better
learning outcomes. In contrast to surveying children about their
level of fun, using physiological response data by its unobstructive
nature can provide us with immediate feedback, without disrupting
the learning experience (surveying several times during an activity)
and without inducing recency bias (surveying once at the end).
Developing new tools or further improving existing ones that ad-
dress the potential of unobstructive physiological response data
could support both teachers and students in their everyday life, by
providing systems with affordances for reflective purposes, indi-
cating students’ disengagement or other features to support better
classroom management.

7 SELECTION AND PARTICIPATION OF
CHILDREN

Before the start of the study, both children and their parents were
informed about the study, and informed consent was obtained ac-
cordingly. The consent form contained information on the purpose
of the study, the explanation of the procedures, the potential risks
and benefits, the data handling and confidentiality, and the with-
drawing of participation. At the beginning of each workshop, 11
children were randomly selected for participation in the study, i.e.
for collect physiological response data and facial videos.
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A APPENDDIX 1
The full model details are provided in the following Appendix.

Table 6: Detailed results for Model predicting the RLG using
affective states, the transitions among them and the physio-
logical measurements. The boldface coefficients are signifi-
cant. The predictor model accounts for 72% variance in chil-
dren’s RLG.

Variable β Error T-value P-value

Intercept 0.27 0.69 0.52 > 0.05
Happiness (hap) 0.59 0.88 0.49 > 0.05
Sadness (sad) -1.37 0.009 -2.38 0.01
Anger (ang) -1.56 0.003 -3.12 0.001
Surprise (sup) 0.42 0.94 0.36 > 0.05
Trans:hap <-> sad 0.64 0.74 0.23 > 0.05
Trans:hap <-> ang -0.48 0.84 -0.52 > 0.05
Trans:hap <->
sup

1.13 0.04 2.03 0.02

Trans:sad <-> ang -1.88 0.004 -3.42 0.0006
Trans:sad <-> sup 0.11 0.88 0.16 > 0.05
Trans:ang <-> sup 0.08 0.63 0.12 > 0.05
Stress -1.03 0.01 -1.78 0.04
Arousal 1.19 0.02 1.71 0.04

Table 7: Model for the FunQ Total Score using the affec-
tive states, the transitions among them and the physiolog-
ical measurements. The boldface coefficients are significant.
The predictor model accounts for 26% variance in children’s
FunQ Total score.

β Error T-value P-value

Intercept 0.57 0.56 0.75 > 0.05
Happiness (hap) 0.58 0.90 0.12 > 0.05
Sadness (sad) -0.79 0.57 -0.61 > 0.05
Anger (ang) -0.67 0.49 -0.46 > 0.05
Surprise (sup) 0.77 0.43 0.75 > 0.05
Trans:hap <-> sad 0.65 0.70 0.69 > 0.05
Trans:hap <-> ang 0.81 1.01 0.48 > 0.05
Trans:hap <-> sup 0.72 0.92 0.33 > 0.05
Trans:sad <-> ang -0.71 0.46 -0.32 > 0.05
Trans:sad <-> sup -0.58 0.68 -0.39 > 0.05
Trans:ang <-> sup 0.63 0.46 0.47 > 0.05
Stress -0.51 0.78 -0.40 > 0.05
Arousal 0.70 0.84 0.37 > 0.05

Table 8: Model for the FunQ Autonomy using the affec-
tive states, the transitions among them and the physiolog-
ical measurements. The boldface coefficients are significant.
The predictor model accounts for 32% variance in children’s
FunQ Autonomy.

β Error T-value P-value

Intercept 0.04 0.02 0.34 > 0.05
Happiness (hap) -0.24 0.17 -0.82 > 0.05
Sadness (sad) -0.72 0.58 -0.74 > 0.05
Anger (ang) 0.88 0.75 0.35 > 0.05
Surprise (sup) 0.96 0.45 0.34 > 0.05
Trans:hap <-> sad 0.44 0.35 0.06 > 0.05
Trans:hap <-> ang 0.89 0.80 0.06 > 0.05
Trans:hap <-> sup 0.29 0.18 0.61 > 0.05
Trans:sad <-> ang -0.35 0.34 -0.30 > 0.05
Trans:sad <-> sup -0.79 0.64 -0.37 > 0.05
Trans:ang <-> sup 0.95 0.87 0.99 > 0.05
Stress 0.28 0.32 0.73 > 0.05
Arousal 0.10 0.21 0.17 > 0.05
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Table 9: Model for the FunQ Challenge using the affec-
tive states, the transitions among them and the physiolog-
ical measurements. The boldface coefficients are significant.
The predictor model accounts for 71% variance in children’s
FunQ Challenge.

β Error T-value P-value

Intercept 0.31 0.12 0.43 > 0.05
Happiness (hap) 1.41 0.005 2.92 0.002
Sadness (sad) -1.32 0.012 -2.10 0.02
Anger (ang) 1.02 0.004 3.13 0.001
Surprise (sup) -1.35 0.003 -2.44 0.009
Trans:hap <-> sad 0.99 0.001 3.38 0.0007
Trans:hap <-> ang 0.31 0.30 0.35 > 0.05
Trans:hap <-> sup 0.42 0.33 0.33 > 0.05
Trans:sad <-> ang 0.47 0.43 0.48 > 0.05
Trans:sad <-> sup -1.45 0.001 -3.04 0.001
Trans:ang <-> sup 0.33 0.46 0.39 > 0.05
Stress 0.32 0.33 0.34 > 0.05
Arousal 1.23 0.014 2.23 0.01

Table 10: Model for the FunQ Delight using the affective
states, the transitions among them and the physiological
measurements. The boldface coefficients are significant. The
predictor model accounts for 65% variance in children’s
FunQ Delight.

β Error T-value P-value

Intercept 0.44 0.24 0.54 > 0.05
Happiness (hap) 1.34 0.051 2.13 0.02
Sadness (sad) -0.42 0.11 -0.97 > 0.05
Anger (ang) -0.33 0.09 -1.44 > 0.05
Surprise (sup) 1.93 0.009 3.19 0.001
Trans:hap <-> sad -0.39 0.42 -0.66 > 0.05
Trans:hap <-> ang -0.93 0.001 -4.18 0.00006
Trans:hap <-> sup 0.53 1.12 0.20 > 0.05
Trans:sad <-> ang -0.99 0.12 -1.35 > 0.05
Trans:sad <-> sup 0.33 0.23 0.44 > 0.05
Trans:ang <-> sup -0.59 0.62 -0.43 > 0.05
Stress 0.43 0.91 0.12 > 0.05
Arousal -1.34 0.003 -3.53 0.0004

Table 11: Model for the FunQ Immersion using the affec-
tive states, the transitions among them and the physiolog-
ical measurements. The boldface coefficients are significant.
The predictor model accounts for 63% variance in children’s
FunQ Immersion.

β Error T-value P-value

Intercept 0.19 0.89 0.52 > 0.05
Happiness (hap) 1.46 0.001 4.34 0.00003
Sadness (sad) 0.22 0.45 0.38 > 0.05
Anger (ang) -0.62 0.26 -0.34 > 0.05
Surprise (sup) 0.44 0.61 0.22 > 0.05
Trans:hap <-> sad 0.27 0.77 0.40 > 0.05
Trans:hap <-> ang -0.83 0.49 -0.36 > 0.05
Trans:hap <-> sup 0.32 0.59 0.22 > 0.05
Trans:sad <-> ang -1.73 0.003 -3.28 0.009
Trans:sad <-> sup 0.31 0.82 0.37 > 0.05
Trans:ang <-> sup 0.62 0.77 0.20 > 0.05
Stress 0.83 0.65 0.20 > 0.05
Arousal 2.01 0.001 4.26 0.00005

Table 12: Model for the FunQ Social Barrier using the affec-
tive states, the transitions among them and the physiologi-
cal measurements. The boldface coefficients are significant.
The predictor model accounts for 17% variance in children’s
FunQ Social barrier.

β Error T-value P-value

Intercept 0.47 0.66 0.40 > 0.05
Happiness (hap) 0.57 0.48 0.45 > 0.05
Sadness (sad) -0.77 0.67 -0.33 > 0.05
Anger (ang) -0.80 0.49 -0.51 > 0.05
Surprise (sup) 0.50 0.92 0.30 > 0.05
Trans:hap <-> sad -0.55 0.90 -0.56 > 0.05
Trans:hap <-> ang -0.47 0.73 -0.57 > 0.05
Trans:hap <-> sup 0.44 0.54 0.48 > 0.05
Trans:sad <-> ang -0.77 0.91 -0.44 > 0.05
Trans:sad <-> sup -0.39 0.69 -0.56 > 0.05
Trans:ang <-> sup -0.81 0.69 -0.55 > 0.05
Stress 0.62 0.90 0.47 > 0.05
Arousal 0.59 0.91 0.31 > 0.05
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Table 13:Model for the FunQ Stress using the affective states,
the transitions among them and the physiological measure-
ments. The boldface coefficients are significant. The pre-
dictor model accounts for 70% variance in children’s FunQ
Stress.

β Error T-value P-value

Intercept 0.16 0.21 0.89 > 0.05
Happiness (hap) -0.70 0.78 -0.25 > 0.05
Sadness (sad) 1.28 0.005 2.48 0.008
Anger (ang) 0.94 0.001 3.32 0.0009
Surprise (sup) -0.87 0.86 -0.21 > 0.05
Trans:hap <-> sad 0.58 0.72 0.21 > 0.05
Trans:hap <-> ang 0.63 0.83 0.34 > 0.05
Trans:hap <-> sup -0.89 0.006 3.29 0.0009
Trans:sad <-> ang 1.27 0.017 2.70 0.005
Trans:sad <-> sup -0.88 0.74 -0.26 > 0.05
Trans:ang <-> sup 0.59 0.82 0.34 > 0.05
Stress 1.39 0.001 3.88 0.0001
Arousal 0.70 0.62 0.32 > 0.05
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