
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Ingrid Maria Sundfør

Flexibility in Distribution Systems
through PyDSAL

Master’s thesis in Energy and Environmental Engingeering,
Electrical Energy Engineering
Supervisor: Prof. Olav Bjarte Fosso
November 2022

Ingrid Maria Sundfør

Flexibility in Distribution Systems
through PyDSAL

Master’s thesis in Energy and Environmental Engingeering, Electrical
Energy Engineering
Supervisor: Prof. Olav Bjarte Fosso
November 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

Sammendrag

Distribuert produksjon, lokal lagring og elektrifisering av transport og industrielle prosesser gir
mange nye utfordringer for strømforsyning. Nye forbruksprofiler kombinert med lokal produksjon,
der tilgjengelige ressurser viser signifikant variasjon, utfordrer distribusjonssystemet. Denne mas-
teroppgaven kommenterer enkelte utfordringer ved å anvende et eksisterende verktøy (en prototyp)
p̊a et referanse-system klargjort av FME CINELDI. Hensikten med dette referanse-systemet er å
ha et vel definert tilfelle av et nett representativt for en rekke norske distribusjonssystemer.

Analysene er utført p̊a test-systemet CINELDI 124 busser for å finne dets optimale operasjon i
ulike tilstander ved hjelp av det objekt-orienterte verktøyet PyDSAL (Python Distribusjons System
Analyse Bibliotek). Algoritmen Framover-Baklengs Sveip brukes som verktøyets motor. Verktøyet
har utvidet funksjonalitet og et skall (Algorithm B.2) er blitt utviklet for å tilrettelegge studiene.
Spenningskontroll med tillegg/svinn av spenning er benyttet. Prinsippene og strategiene utviklet
i denne masteroppgaven er anvendbare p̊a andre distribusjonssystemer med lignende struktur og
karakteristikker.

PyDSALs utbytte, best̊aende av profiler av spenning, kraftflyt og sensitiviteter for spenning og
tap p̊a grunn av endringer i aktive og reaktive injeksjoner, er nyttige for operasjonsavgjørelser.
Programvarens evne til å løse alternative topologi-tilfeller ved å dele nettet og forsyne dets del-
nett med sikkerhetskilder og -koblinger, muliggjør nyttig analysering av alternative strategier for å
forbedre forsyningssikkerheten. Konseptet kan innbefatte b̊ade mikrogrid operasjon og hovednett-
tilkoblet tilstand. Resultatene er vist grafisk og diskutert i detalj i rapporten.

Se Appendix B for denne masteroppgavens versjon av programvaren.

Abstract

Distributed generation, local storage and electrification of transport and industrial processes give
many new challenges for the distribution of electric energy. New consumption profiles combined
with local generation where the available resources will show significant variation will give chal-
lenges for the distribution system. This thesis will address a number of these challenges by using
an existing prototype tool on a reference system prepared by FME CINELDI. The purpose of this
reference system is to have a well-defined case of a grid representative for a number of Norwegian
distribution systems.

The analyses are done on the CINELDI 124 bus test system to find its optimal operation under
di↵erent conditions using the object oriented tool PyDSAL (Python Distribution System Analysis
Library). The Forward-Backward Sweep algorithm is used as the tool’s engine. The tool has got
extended functionality and a shell (Algorithm B.2) has been developed to facilitate the studies.
Voltage control with a droop voltage approach is applied. The principles and strategies developed in
this thesis will be applicable to other distribution systems with similar structure and characteristics.

PyDSAL’s outputs, which include profiles of voltage, line flow and sensitivities for voltage and loss
due to changes in active and reactive injections, are useful for operational decisions. Its ability to
solve alternative topology cases by splitting the grid and supplying sub-grids from backup sources
or backup connections, makes the tool useful to investigate alternative strategies to improve the
security of supply. The concept may involve both microgrid operation and in grid connected mode.
Results are depicted graphically and discussed in detail in this report.

See Appendix B for this thesis’ version of the software.

Preface

This master thesis was written during the fall of 2021 until the fall of 2022. The host institu-
tion was the Norwegian University of Science and Technology (NTNU), Department of Electrical
Power Engineering. The thesis is the last part of a five-year Master programme in Energy and
Environmental Engineering, corresponding to 30 ECTS credits.

The objective of this thesis was suggested by my supervisor Professor Olav Bjarte Fosso. The
topic is connected to SINTEF Energy Research’s FME CINELDI and the studies conducted there
concerning flexibility in system planning and operation. This thesis focuses on tool and strategy
development to address system problems, such as a system split or supply from alternative feed-
ers. In e↵ect, Prof. Fosso’s shell for PyDSAL is replaced by the shell created in this thesis
(Algorithm B.2). Click here to arrive at the previous version of PyDSAL’s shell. Thus the tool
was expanded, enabling the flexibility in system planning/operation latent in PyDSAL.

I am grateful for the opportunity to dig deeper into this problem and be able to see the beauty
and the ingenuity behind the solution.

Especially, I would like to thank both my supervisor and my brother for always believing in me
and helping me along, I could not have completed my master’s degree without them.

Ingrid Maria Sundfør, Haugesund, 12th November 2022

Table of Contents

List of Figures xi

List of Tables xii

List of Algorithms xiii

Abbreviations xiv

Terminology xv

1 Introduction 1

1.1 Motivation . 1

1.2 PyDSAL . 2

1.3 Forward-Backward Sweep and a simulation’s outputs 4

1.4 A simulation’s sensitivities and power loss minimization 7

1.5 Grid specification and input parameters . 8

1.5.1 The main branch . 9

1.5.2 Per unit measurement . 9

1.6 Loads . 10

1.6.1 Standard loads . 10

1.6.2 Added loads . 10

1.6.3 Charging and discharging . 10

2 Software development 13

2.1 Shell development . 13

2.2 Function development . 18

2.2.1 Tree pattern development . 19

2.2.2 Color-categorization development . 20

3 Simulation scenarios 23

3.1 Scenario: Change of supply bus . 24

3.2 Scenario: Splitting of the grid . 25

3.3 Scenario: Local storage as backup feeders . 27

3.4 Scenario: Battery powered ferry . 29

3.5 Scenario: Vehicles to grid . 31

4 Scenario implementation 32

viii

TABLE OF CONTENTS TABLE OF CONTENTS ix

4.1 ... of a change of supply bus . 32

4.2 ... of a splitting of the grid . 33

4.3 ... of local storage as backup feeders . 33

4.4 ... of a battery powered ferry . 34

4.5 ... of vehicles to grid . 34

5 Simulation results 36

5.1 ... of a change of supply bus . 36

5.2 ... of splitting of the grid . 67

5.3 ... of local storage as backup feeders . 75

5.4 ... of a battery powered ferry . 83

5.5 ... of vehicles to grid . 85

5.6 Simulation results summary . 87

5.7 The shell’s summary tables . 88

5.7.1 Grid load and loss and any added loads . 90

5.7.2 Color-categorized line flows . 92

5.7.3 Color-categorized node voltages . 92

6 Future software development 94

6.1 Future shell development . 94

6.1.1 ... of a change of supply . 94

6.1.2 ... of splitting of the grid . 94

6.1.3 ... of local storages as backup feeders . 95

6.1.4 ... of a battery powered ferry . 95

6.1.5 ... of vehicles to grid . 95

6.2 Future function development . 97

6.2.1 flatStart . 97

6.2.2 getload . 97

6.2.3 dispTree . 97

6.2.4 ... of the color-categorization . 98

7 Conclusion 99

Bibliography 100

A HTML files of tree patterns 101

B PyDSAL 102

A PyDSAL’s previous version of the function dispTree 102

B PyDSAL’s shell . 104

C PyDSAL’s laws and functions . 112

D PyDSAL’s class objects . 149

E PyDSAL’s selector of spreadsheets . 153

F PyDSAL’s reader of selected spreadsheet . 155

x

List of Figures

1.1 Flow chart of the steps in a backward sweep [Fos20] 5

1.2 Flow chart of the steps in a forward sweep [Fos20] 6

1.3 CINELDI 124 single-line diagram . 8

2.1 Flow chart of a topology’s five initialization stepsF 15

2.2 Flow chart of Algorithm B.2F . 17

2.3 Flow chart of Algorithm B.3‘s function dispTree, developed from Algorithm B.1F . 20

3.1 Simulation scenario: Change of supply busF . 24

3.2 Simulation scenario: Splitting of the gridF . 26

3.3 Nord Pool hourly price profile [NOK/h] [AS] . 27

3.4 Simulation scenario: Local storage as backup feedersF 28

3.5 Simulation scenario: Battery powered ferryF . 29

3.6 Simulation scenario: Vehicles to gridF . 31

5.2 Case 1 simulation’s tree patternF . 42

5.4 Case 2 simulation’s tree patternF . 50

5.6 Case 3 simulation’s tree patternF . 58

5.8 Case 4 simulation’s tree patternF . 66

5.9 Case 5 simulation’s tree patternF . 68

5.10 Case 6 simulation’s tree patternF . 70

5.11 Case 7 simulation’s tree patternF . 72

5.12 Case 8 simulation’s tree patternF . 74

5.13 Case 9 simulation’s tree patternF . 76

5.14 Case 10 simulation’s tree patternF . 78

5.15 Case 11 simulation’s tree patternF . 80

5.16 Case 12 simulation’s tree patternF . 82

5.17 Case 17 simulation’s tree patternF . 84

5.18 Case 19 simulation’s tree patternF . 86

6.1 Flow chart of a future development of the topology initializationF 94

6.2 Flow chart of a future development of Algorithm B.2F 96

xi

List of Tables

0.1 Abbreviations . xiv

0.2 Terminology, mostly paragraphed from a dictionary [Cop19] xv

1.1 An overview of the previous version of PyDSAL . 3

1.2 An overview of this thesis’ version of PyDSAL . 3

1.3 A simulation’s sensitivities categorized, concerning a bus 7

1.4 Two electric parameters of voltage dependent loads 11

2.1 Algorithm B.3’s tailored functions . 18

2.2 Algorithm B.3’s tailored functions’ purpose . 18

2.3 The color-categorization of scenario figures and simulation results explainedF . . . 21

3.1 The grid’s nineteen casesF . 23

4.1 Algorithm B.2’s chronological loop recordF . 32

5.1 Commentary on Case 1 simulation’s line flows in Tables 5.2 and 5.3F 36

5.2 Case 1 simulation’s line flows for lines L1-L62F . 37

5.3 Case 1 simulation’s line flows for lines L63-L123F 38

5.4 Commentary on Case 1 simulation’s bus voltages in Table 5.5F 39

5.5 Case 1 simulation’s bus voltagesF . 40

5.6 Commentary on Case 1 simulation’s tree pattern in Figure 5.2F 41

5.7 Commentary on Case 2 simulation’s line flows in Tables 5.8 and 5.9F 44

5.8 Case 2 simulation’s line flows for lines L1-L62F . 45

5.9 Case 2 simulation’s line flows for lines L63-L123F 46

5.10 Commentary on Case 2 simulation’s bus voltages in Table 5.11F 47

5.11 Case 2 simulation’s bus voltagesF . 48

5.12 Commentary on Case 2 simulation’s tree pattern in Figure 5.4F 49

5.13 Commentary on Case 3 simulation’s line flows in Tables 5.14 and 5.15F 52

5.14 Case 3 simulation’s line flows for lines L1-L62F . 53

5.15 Case 3 simulation’s line flows for lines L63-L123F 54

5.16 Commentary on Case 3 simulation’s bus voltages in Table 5.17F 55

5.17 Case 3 simulation’s bus voltagesF . 56

5.18 Commentary on Case 3 simulation’s tree pattern in Figure 5.6F 57

5.19 Commentary on Case 4 simulation’s line flows in Tables 5.20 and 5.21F 60

5.20 Case 4 simulation’s line flows for lines L1-L62F . 61

5.21 Case 4 simulation’s line flows for lines L63-L123F 62

5.22 Commentary on Case 4 simulation’s bus voltages in Table 5.23F 63

xii

5.23 Case 4 simulation’s bus voltagesF . 64

5.24 Commentary on Case 4 simulation’s tree pattern in Figure 5.8F 65

5.25 Commentary on Case 5 simulation’s tree pattern in Figure 5.9F 67

5.26 Commentary on Case 6 simulation’s tree pattern in Figure 5.10F 69

5.27 Commentary on Case 7 simulation’s tree pattern in Figure 5.11F 71

5.28 Commentary on Case 8 simulation’s tree pattern in Figure 5.12F 73

5.29 Commentary on Case 9 simulation’s tree pattern in Figure 5.13F 75

5.30 Commentary on Case 10 simulation’s tree pattern in Figure 5.14F 77

5.31 Commentary on Case 11 simulation’s tree pattern in Figure 5.15F 79

5.32 Commentary on Case 12 simulation’s tree pattern in Figure 5.16F 81

5.33 Commentary on Case 17 simulation’s tree pattern in Figure 5.17F 83

5.34 Commentary on Case 19 simulation’s tree pattern in Figure 5.18F 85

5.35 Indexed simulation results . 87

5.36 Indexed simulation commentaries . 87

5.37 The nineteen simulations’ labels explainedF . 89

5.38 Every simulation’s total power load and loss, and the percentage of added loadsF . 90

5.39 Color-categorized line flows of every simulationF 92

5.40 Color-categorized bus voltages of every simulationF 93

List of Algorithms

B.1 The function dispGraph . 102
B.2 concept.py . 104
B.3 DistLoadFlow-vIngrid.py . 112
B.4 DistribObjects-vIngrid.py . 149
B.5 MenuFunctions-v2.py . 153
B.6 BuildSystem-vIngrid.py . 155

xiii

Abbreviations

Table 0.1: Abbreviations

Abbreviation Explanation

CINELDI
Centre for Intelligent Electricity Distribution - to empower the future Smart
Grid.

FBS Forward Backward Sweep algorithm (Section 1.3).

FME
The Centres for Environment-friendly Energy Research. Norwegian: For-
skningssentrene for miljøvennlig energi.

FME
CINELDI

”The scheme of the Centres for Environment-friendly Energy Research (FME)
seeks to develop expertise and promote innovation through focus on long-term
research in selected areas of environment-friendly energy. There are today 10
centres within renewable energy, energy e�ciency, social sciences and CO2-
management. The research activity is carried out in close cooperation between
prominent research communities and users. The centres will operate for eight
years (2016 – 2024).” [FME]

IEEE Institute of Electrical and Electronics Engineers.
PyDSAL Python Distribution System Analysis Library (Section 1.2).

SINTEF
The Foundation for Scientific and Industrial Research at the Norwegian Insti-
tute of Technology. Norwegian: Stiftelsen for industriell og teknisk forskning.

xiv

Terminology

Table 0.2: Terminology, mostly paragraphed from a dictionary [Cop19]

Term Explanation
active Workable, capable of producing the desired e↵ect or result; feasible.

algorithm
A process or set of rules to be followed in calculations or other problem-solving
operations, especially by a computer.

bus
Node; a point in a network or diagram at which lines or pathways intersect or
branch.

case An instance of a particular situation.

class object

A class is a preset format for implementing objects. Consequently, any vari-
ables, functions and methods implemented within a class are members of it.
An object is a data construct that provides a description of anything known to
a computer (such as a piece of code) and defines its method of operation.

configuration
An arrangement of parts or elements in a particular form, figure, or combina-
tion.

configure
Arrange or order a topology or an element of it so as to fit it for a designated
task.

feeder A distribution point that supplies the grid.

function

A set of instructions designed to perform a frequently used operation within a
program, tailored to a specific task. Writing a function’s name rather than its
code in a script, shortens the script, dividing the responsibility of an algorithm’s
sequences to functions.

injection
An injection corresponds to power either draining (positive injection) from or
filling (negative injection) a node. Correspondingly, a node is either a ”sink-
hole” or a ”fountain”.

iteration
Repetition of a mathematical or computational procedure applied to the result
of a previous application, typically as a means of obtaining successively closer
approximations to the solution of a problem.

laws Rules defining correct procedure or behaviour in an algorithm.
load flow A numerical analysis of an electrified grid.

loop
A programmed sequence of instructions that is repeated until or while a par-
ticular condition is satisfied.

microgrid
A small network of electricity users with a local source of supply that is usually
attached to a centralized national grid but is able to function independently.

node A point in a network or diagram at which lines or pathways intersect or branch.

object-
oriented

(of a programming language) Using a methodology which enables a system to
be modelled as a set of objects which can be controlled and manipulated in a
modular manner.

outage
A period when a power supply or other service is not available or when equip-
ment is closed down.

output The amount of something produced by an algorithm.
process Operate on data by means of a program.

reactive
Directionless. Acting in response to a stimulus rather than creating or con-
trolling it. Noisy.

script An automated series of instructions carried out in a specific order.

sensitivity

A minor increase or decrease in the magnitude of a property (e.g. line flow,
bus voltage or bus load) observed in passing from one node to another. A
sensitivity can also be the rate of such a change, or the minor quantity of the
change.

shell
A program which provides an interface between the user and the operating
system.

simulation
The production of a computer model of a snap-shot of an electrified grid, es-
pecially for the purpose of study.

system
A set of things working together as parts of a mechanism or an interconnecting
network; a complex whole.

topology The way in which constituent parts are interrelated or arranged.

xv

1 INTRODUCTION 1

1 Introduction

1.1 Motivation

Distributed generation, local storage and electrification of transport and industrial processes create
many new challenges for the distribution of electric energy. New consumption profiles combined
with local generation where the available resources will show significant variation will create chal-
lenges for the distribution system. Most systems will experience lack of transfer capacity and
problems with the quality of supply at least in periods. Though investment in new infrastructure
may be necessary, it is important to be able to use the available capacity optimally. This will in
most cases be to operate closer to the physical limits of the equipment while using load-shifting,
topology changes, supply parts of the system from backup feeders, local storages, costumers will-
ingness to change consumption profiles to reduce consumption as well as vehicle to grid (V2G). See
Section 3 for more details. These system situations have in this thesis been implemented in the
Python language as described generally in Section 2 and specifically in Section 4. As many of the
loads and local generations as well as storage devices will be interfaced to the grid using Voltage
Source Converters (VSC), this will provide an opportunity for costumers to actively contribute to
the system services as voltage control and active reserves.

In such a new dynamic environment, it is important to adapt to the actual situation and quickly
find a solution to the upcoming challenges. This will involve alternative topologies where the
sub-systems are supplied from alternative feeders and some part of the system may temporally be
operated as microgrids.

The major advantage of using a microgrid concept is that it allows for the use of locally produced
power and the stored energy in the system to supply important loads over a longer period in an
isolated mode, where the alternative would be to shut down the loads until the sub-system could
be operated in connected mode again.

It is the locally produced energy and the ability to store energy that make such solutions feasible.
This new dynamic world needs tools to quickly identify alternative solutions and configurations.

The core of this work is to further develop an existing prototype to make it appropriate for analysing
a high number of alternative solutions and to provide the user with decision support tools. The
studies will be connected to the CINELDI 124 bus reference system. This is a system prepared
as a reference system representative for many distribution systems in Norway. It is based on a
real system but anonymized to make it possible to conduct studies and publish the results without
identifying the actual grid.

Existing tools to simulate microgrid systems have limitations on flexibility. Thus an open source
tool to study system performance for di↵erent topologies is of interest, as it enables planning and
operation of distribution and microgrid systems. More information about the tool can be found in
Section 1.2.

This thesis’ objective is to further develop the existing open source code, so that an optimal
operation (while fulfilling local voltage and flow constraints) can be simulated and results may be
used for decision support.

1 INTRODUCTION 1.2 PyDSAL 2

1.2 PyDSAL

In 2020 Prof. Fosso developed and published the open-source software PyDSAL (Python Distri-
bution System Analysis Library) on Github [https://github.com/obfosso/PyDSAL], with available
for download:

• A zip-file.

• A spreadsheet for a IEEE 66 bus test system.

The zip-file contains the version of the scripts listed in Table 1.1. Currently, the code developed is
for radial systems, providing many sensitivities (Section 1.4), benefitting decision support. Further
developing that code resulted in this thesis’ main contribution Algorithm B.2. See Section 2 for
more details on this thesis’ contributions to the tool. The spreadsheet contains grid specification
and parameters as generally described in Section 1.5.

Implemented in the Python language, the tool contains a shell, spreadsheets, class objects, laws and
functions. Distribution load flow simulations are executed by the shell. A given case determines
which grid relevant data is added to or excluded from a topology, followed by the simulation of the
grid’s electrification. The shell acts like a resettable game, where for each round, parts are added
or removed before the game is ready to play that round. In other words, analogous to an actual
clockwork mechanism:

• The shell drives the wheels in the clockwork.

• The laws determine the dimensions of the wheels.

• The functions are the wheels.

• The class objects are the wheels’ axels.

• The grid parameters listed in the spreadsheet are the slings connecting the wheels.

If any of these parts are missing, the clockwork will not tick. A deep dive into the workings of the
source code was done to master and further develop it. The shell is described in detail, whereas
other parts of the code are not, as they go beyond the scope of this thesis. The shell is implemented
to progress three main stages:

1. configure a distribution grid.

2. simulate a snap shot of power flowing in said grid.

3. display simulation outputs.

It is the second stage that is the actual simulation, illustrated by a green circle ”Run simulation” in
the flow chart in Figure 2.2. Delving into the workings of a simulation, the snap-shot electrification
of the grid is executed in Algorithm B.2 by the function DistLF . Its name is abbreviated from
”distribution load flow”. DistLF navigates the grid by the algorithm Forward Backward Sweep
(FBS, Section 1.3). Meaning, an iteration of DistLF calls in succession two functions:

1. accload

accumulates every node’s parameters of load and loss, led by a backward sweep.

2. UpdateV olt

updates every node’s parameters of voltage and sensitivities, led by a forward sweep.

https://github.com/obfosso/PyDSAL

1 INTRODUCTION 1.2 PyDSAL 3

If the simulation’s outputs are found to be within acceptable limits, no reiterations are required,
and the simulation is completed.

As of now the software performs analysis on a single-line system, although the real-life grid is a
three-line system. Previous versions of the tool analysed a IEEE 33 bus test system, then a IEEE
66 bus test system. This thesis’ version of PyDSAL, the scripts listed in Table 1.2, appended in
Appendix B, is tailored to a CINELDI 124 bus test system (single-line diagram in Figure 1.3) and
the simulation scenarios (Section 3). By continually increasing the complexity of the grid under
analysis, the intention is to expand the object-oriented software from a tailored to a general and
easy-to-use tool.

Table 1.1: An overview of the previous version of PyDSAL

Scripts Purpose
DistLoadFlow.py Laws, functions and shell
DistribObjects.py Class objects
MenuFunctions.py Selector of spreadsheets

BuildSystem.py
Reader of the selected
spreadsheet

Table 1.2: An overview of this thesis’ version of PyDSAL

Scripts References Purpose

concept.py
Algorithm B.2, Section 2.1 and a
flow chart in Figure 2.2

Shell

DistLoadFlow-vIngrid.py Algorithm B.3, Section 2.2 Laws and functions

DistribObjects-vIngrid.py
Algorithm B.4, Sections 4.3, 4.4,
and 4.5

Class objects

MenuFunctions-vIngrid.py Algorithm B.5 Selector of spreadsheets

BuildSystem-vIngrid.py Algorithm B.6
Reader of the selected
spreadsheet

Previously, the shell, laws and functions were all in one script, but were split into the two scripts Al-
gorithm B.2 and Algorithm B.3, singling out the tool’s shell as a stand-alone entity. Algorithm B.2
(flow chart in Figure 2.2) was the main work of this thesis, based on the previous shell located at
the end of Algorithm B.3. Click here to arrive at the previous version of the shell. Mainly the
tool’s shell and functions have been further developed (Section 2), writing a new type of shell and
altering the outputs’ layout. Minor changes concerned the implementation of voltage dependent
loads are detailed in Section 1.6.3. Also, a new code line was added to three class objects, addressed
in Sections 4.3, 4.4 and 4.5.

1 INTRODUCTION 1.3 Forward-Backward Sweep and a simulation’s outputs 4

1.3 Forward-Backward Sweep and a simulation’s outputs

Forward-Backward Sweep (FBS) is PyDSAL’s engine, enabling the simulation of a distribution
load flow. As the name suggests, the algorithm procures a visit to every node in the grid in one
sweep, before sweeping back in the opposite direction, thus revisiting every node. In both sweeps,
every visited node is evaluated, and its electrical parameters calculated. The derivation of these
parameters’ equations are found in [Fos20] and [Haq95].

In e↵ect, FBS consists of two of Algorithm B.3’s functions, already commented on in Section 1.2:

1. accload

constitutes a backward sweep, illustrated with a flow chart in Figure 1.1.

2. UpdateV olt

constitutes a forward sweep, illustrated with a flow chart in Figure 1.2.

An iteration of these two functions in succession produces a simulation of an electrified grid’s
snapshot. Both functions require two lists, described in-depth in Section 2.1:

• BusList

is the chronological list of the grid’s buses, containing their electrical and topological para-
meters.

• TopologyList

is the grid’s tree structure, mirroring the single-line diagram in Figure 1.3.

Guided by the trail provided by TopologyList, both functions visit one bus at a time, steadily
updating BusList. This sweeping procedure can be imagined as a light moving from node to node
in the tree structure. When a node is visited, it is lit up while the others remain in darkness.
Meaning that only this node is investigated now. As a sweep moves through the tree structure,
the light jumps from branch to branch moving along the tree, until all buses have been evaluated.

In summary, a simulation is performed when in succession:

1. accload

reverses TopologyList, updating BusList.

2. UpdateV olt

trails TopologyList, updating BusList.

Thus FBS comprises these two functions, due to the direction they sweep TopologyList with.

Whenever a joint to a side branch is reached, FBS traverses it depending on the type of sweep. If
it’s a backward sweep, accload jumps to the side branch’s last node, navigating itself back to the
main branch. If it’s a forward sweep, UpdateV olt visits the side branch’s first node, trailing out
the side branch, until it jumps back to the main branch.

During a backward sweep (see flow chart in Figure 1.1), every visited node’s parameters of load and
loss are calculated, using the status of previously processed nodes as input parameters. Comparing
the tree structure with a river split into several channels, which themselves split into several
channels etc., the accumulation sequence can be seen as an accumulation of water quantities,
starting with visiting the node furthest downstream, which is the last node listed in TopologyList.
The respective accumulated load and loss at a given bus is registered for further use in the upcoming
forward sweep.

A completed backward sweep is followed by initiating a forward sweep (see flow chart in Figure 1.2).
Its procedure starts with visiting the node furthest upstream, which is the first node listed in

1 INTRODUCTION 1.3 Forward-Backward Sweep and a simulation’s outputs 5

TopologyList, working its way to the last node. By default, the first node’s voltage is set to 1.0 pu,
which is the grid’s feeding point, setting the system’s voltage reference. Moving forward through
the grid, the incremental node’s parameters of voltage and sensitivities are calculated, until the
last node is reached. Comparing the tree structure with a river as before, UpdateV olt sees a node
as an intersection of the river. The sequence of bus sensitivity calculations can thus be seen as a
forecast of water quantities at the next appointed intersection based on the upstream intersection’s
quantities. A change upstream a↵ects every downstream channel.

Figure 1.1: Flow chart of the steps in a backward sweep [Fos20]

Thus an iteration of a distribution load flow simulation is a backward sweep followed by a forward
sweep. FBS’s main principle is to estimate the loads and losses, sweeping them backwards, and
to then calculate voltages and sensitivities, sweeping them forwards. If the resulting bus voltages
converged, this imitation of an electrified grid at a moment in time is su�cient for analysis.
Otherwise, another iteration will be performed. Then the voltages calculated from the previous
iteration have overwritten the default setting of only 1.0 pu voltages in the grid, thus accload’s
estimation of voltage dependent loads (Section 1.6.3) may di↵er now due to its updated voltage
input. If the end of the loop of iterations is reached without a converged simulation solution, the
loop is exited, and the end simulation is not valid.

1 INTRODUCTION 1.3 Forward-Backward Sweep and a simulation’s outputs 6

Figure 1.2: Flow chart of the steps in a forward sweep [Fos20]

1 INTRODUCTION 1.4 A simulation’s sensitivities and power loss minimization 7

1.4 A simulation’s sensitivities and power loss minimization

PyDSAL’s simulation outputs are extensive, as commented on in Section 5 and seen in Table 5.35,
but the sensitivity outputs are not displayed in this report, downsizing this report.

During a simulation, the tool visits every node in the grid, calculating sensitivities as well as other
node parameters. Every line is also visited, but no sensitivities concerning a line are calculated.
The sensitivities all concern a bus injection’s update. Thus they are meant to be utilized in the
shell’s injection-loop (Section 2.1), where optional bus power change is applied, or in PyDSAL’s
estimation of any added voltage dependent loads (Section 1.6.3).

The sensitivities may be used for decision support if the user needs to change for example the
voltage profile or wants to minimize the losses by changing voltage set points on voltage controlling
devices. It’s up to the user to chart the recommended power corrections, and update the grid’s
load profile. Since none of this thesis’ tasks covered loss minimization, no attempts were made to
utilize the sensitivities.

See Table 1.3 for the three types of sensitivities PyDSAL o↵ers, concerning a bus.

Table 1.3: A simulation’s sensitivities categorized, concerning a bus

Type Explanation

Type 1
The partial derivative of its voltage or power loss, with respect to its load:
Quantifying its voltage and power loss change, with respect to its consumption/supply.

Type 2
The second partial derivative of its active power loss, with respect to its load:
Quantifying how fast its active power loss changes, with respect to its consump-
tion/supply.

Type 3
The correction of its load, with respect to its load:
Quantifying the bus power change needed to adjust its injection, with respect to its
consumption/supply.

Demonstrating a sensitivity evaluation, only the third sensitivity type is explained in further detail,
downsizing this report. As shown in Equation 1 [Fos20], the correction of bus b’s reactive power
injection Qb is calculated. It’s the partial derivative of its power loss PLoss

b , divided by the second
partial derivative of said loss, all with respect to its double marked reactive power injection Q

”
b .

The double marking indicates that the charge located over the bus’s shunt is included in the bus’s
total reactive power injection.

�Qb =
@P

Loss

@Q”

����
b

✓
@
2
P

Loss

@Q”2

����
b

◆�1

at bus b (1)

The correction is a sensitivity, though defined as a fraction of two sensitivities: The denominator
is the numerator’s rate of change. In fact, type 3 equals a type 1 divided by a type 2.

If Q”
b ", then P

Loss
b ", forcing �Qb ". Thus Equation 1 quantifies the reactive bus power injection

needed to minimalize a bus’s active power loss. Minimum bus active power loss is attained when
the numerator is zero.

1 INTRODUCTION 1.5 Grid specification and input parameters 8

1.5 Grid specification and input parameters

The topology, specification and parameters were provided as part of the thesis assignment, and the
objective was to further improve Prof. Fosso’s work on analysing the CINELDI 124 (Figure 1.3)
bus test system.

Figure 1.3: CINELDI 124 single-line diagram

Alternative feeders in red writing

The CINELDI 124 bus test system (from now on referred to as ”the grid” for simplicity) is a 22 kV
radial grid with 124 nodes. What every node encompasses is not made known, although the grid
is based on an anonymous real-life grid. It is implemented with a standard load profile (snap-shot
for one time interval) and as a stand-alone grid, although it in reality has a complex load profile
and is supplied by a higher voltage levelled grid. The higher level grid is not modelled here so the
feeding node is assumed as a sti↵ voltage (fixed voltage level and zero angle).

The grid serves as a distribution network. A transmission network is where a distribution network
receives its power, from alternative supply points. The grid’s alternative feeders are all connected
to the same transmission network, marked with red writing in Figure 1.3: main feeder B1, backup
feeders B36, B62 and B88.

The grid is described by the following electric input parameters at a moment in time:

• Bus voltage magnitudes and angles

• Active and reactive bus loads

• Line resistances and reactances

• Line flow limits

1 INTRODUCTION 1.5 Grid specification and input parameters 9

1.5.1 The main branch

For the numbering of the nodes it is chosen to try to keep the nodes close to each other in the
same number range. This is not a requirement but convenient to quickly get an overview of the
location of a bus. A main branch is a grid’s highest priority load trail, thus transmits the grid’s
main flow. Closer inspection reveals that the grid’s main branch consists of the buses B1-B88 when
main feeder B1 is the node furthest upstream, feeding the grid. With four alternative feeders, with
their four dispersed locations, the grid’s node furthest upstream is di↵erent for every alternative.
Thus the grid has for every feeder change a di↵erent main branch, as the flow branches out from
the feeder. This is explained in Section 4.2.

1.5.2 Per unit measurement

The system is represented in pu-values. This means that this report’s quantities are in accord with
the reference values Vref = 22 kV and Sref = 10 MW. For the reader of this report, the dimension
of Sref is set to MW for simplicity, when it in fact is MVA, thus downsizing this report.

• A voltage of 1.0 in pu is then 22 kV line-to-line.

• A line flow or load of 0.1 pu is 1 MW.

1 INTRODUCTION 1.6 Loads 10

1.6 Loads

The cases to be studied have local generation, storage and voltage control options. The standard
load profile is modelled as a constant-power load. The grid’s batteries are the local storage options,
which also function as local generation during discharging. Voltage control options come into e↵ect
with voltage dependent loads present in the grid, e.g. batteries or EVs are connected to the grid.

An implemented positive bus injection, e.g. when a household is cooking dinner on an electric stove,
corresponds to power being drained from the ”household” bus. Comparably, an implemented
negative bus injection corresponds to power being supplied to the system, e.g. when a storage
battery supplies the grid at the ”storage battery” bus.

1.6.1 Standard loads

The system is provided with a load profile based on the original system loads but scaled to enable
a load increase or decrease. This is needed to demonstrate some of the challenges imposed on the
system. This load has been denoted as a standard load profile. Unloading and loading the system
can then be made by scaling the loads.

1.6.2 Added loads

In addition the following loads are applied to a grid’s standard load profile:

• Local energy communities

• Dedicated storage devices

• Fast charging stations

• A battery powered ferry

Local energy communities can act as one unit, consisting of e.g. an electric power source, storages,
electric vehicles (EVs) with vehicle to grid (V2G) capability and households. The ferry further
complicates the grid dynamics with its intermittent consumption due to a time-table based arrival
and departure.

1.6.3 Charging and discharging

Via charging, voltage dependent loads consume active power from the grid, as they store or produce
reactive power. Via discharging, voltage dependent loads supply active power to the grid, as
they store or produce reactive power. Meaning, the presence of such loads in the grid, introduces
electric noise: directionless power. Their active power contributions are implemented by the user in
Algorithm B.2’s either feeder- or injection-loop (Section 2.1), as their reactive power contributions
are inherently calculated by Algorithm B.3’s function getload, called by accload during a backward
sweep (Section 1.3). This thesis investigates the charging of local storages, a ferry and EVs, and
the discharging of local storages as backup feeders.

An EV is comparable to a storage battery, but is typically of smaller capacity and mobile. Similarly,
the battery powered ferry can be considered a floating battery. The implementation of these added
loads is described in Section 4, specifically Sections 4.3, 4.4 and 4.5.

Roughly speaking, a plugged in EV consumes 150 kWh. The grid has a base apparent power
of 10 MVA (Section 1.5.2), making the resulting V2G active load equal to 0.015 pu per hour.
Distinguishing the battery powered ferry scenario (Section 3.4) from the vehicles to grid scenario
(Section 3.5), the ferry’s active load was implemented to be double the EV’s active load, as seen in
Table 1.4. Providing the ferry’s on board battery, the onshore battery’s discharge is implemented

1 INTRODUCTION 1.6 Loads 11

as a negative bus active power injection, depending respectively on its inherent size small, medium
or large as seen in Table 1.4. Distinguishing a local storage (Section 3.3) from a ferry’s onshore
battery, the local storage is implemented to inject one fourth more active power than the onshore
battery. Otherwise, for simplicity, they have the same charging slope d

2
Q/dV

2. It was fitting to
assume that these two battery types were similar, since the market for batteries is quite sparse at
the moment.

A battery is not a continuous electric power source, but discharges what the grid consumes with the
risk of being depleted, having replaced a feeder currently in an outage. Thus its inherent charging
slope needs to be steep to allow for short charging times. PyDSAL simulates a snap-shot of an
electrified grid, but the grid’s dynamic evolvement is not simulated. Thus a battery’s or an EV’s
capacity is not necessary to identify in this version of the tool. Distinguishing an EV’s charging
slope from the rest, it’s set to equal one quarter of a battery’s charging slope, as seen in Table 1.4.
Charging for hours on end, the flatter a charging slope, the less reactive power an EV contributes.

Table 1.4: Two electric parameters of voltage dependent loads

Entity Bus nr. (d2Q/dV
2)ref [pu] Pinj [pu]

Local storage B5, B70, B107 and B115 0.2 -0.04

Battery powered ferry B124 - 0.03
Onshore storage small B124 0.2 -0.015
Onshore storage medium B124 0.2 -0.03
Onshore storage large B124 0.2 -0.03

EV B2, B48 and B117 0.05 0.015

The charging slopes are implemented in Algorithm B.2’s start-up (Section 2.1), and the change of
active power is implemented in its either feeder- or injection-loop (Algorithm B.2’s flow chart in
Figure 2.2).

PyDSAL has one function each for calculating a battery’s and an EV’s contribution to voltage
control, named BatteryDroopCrtl and V 2GDroopCrtl respectively. These two functions are men-
tioned in Table 2.1. In e↵ect, they quantify the reactive power contribution of a plugged in voltage
dependent load, with the identical equation [Fos20]:

�Q
ctrl = � d

2
Q

dV 2

����
ref

V
�
V � V

ref
�
[pu] (2)

Equation 2 states that an entity’s directionless power contribution equals minus its rate of reactive
power change with respect to its voltage (d2Q/dV

2)ref , times its voltage magnitude V , times the
di↵erence between its voltage magnitude V and its voltage reference value V

ref . For simplicity,
the voltage magnitude reference was set to 1.0 pu for all voltage dependent loads.

Considering Equation 2’s value, as its first term (the charging slope) is set to be positive in this
thesis (Table 1.4):

• If �Q
ctrl is negative, the last term regarding voltage di↵erence is positive, and the entity

transmits directionless power to the grid. Thus the entity has a greater voltage potential
than its reference value.

• If �Q
ctrl ! 0, then (V � V

ref) ! 0.

• If �Q
ctrl is positive, the last term regarding voltage di↵erence is negative, and the entity

draws directionless power from the grid. Thus the entity has a smaller voltage potential than
its reference value.

The entity’s minimum reactive power contribution is attained in the second bullet point above.

Downsizing this report, the calculation of the voltage magnitude V is not described. An iteration
of a load flow consists of two sweeps (Section 1.3): one backwards followed by one forwards. It is

1 INTRODUCTION 1.6 Loads 12

of significance though to point out that the voltage calculation involves two sensitivities if they are
not zero, one of type 1 and the other of type 2 (Section 1.4), calculated in the forward sweep to
be thus utilized in any reiteration of a load flow. See BatteryDroopCrtl and V 2GDroopCrtl in
Algorithm B.3 for more details on these sensitivities. Marked with #Ingrid states which of their
equations were altered in this thesis, done to attain the correct dimensions (Section 2.2). Now
the dimension of the calculated voltage is V, but per-unit normalized. Algorithm B.3’s unaltered
function nodeV oltSensSPv2 is responsible for calculating the sensitivities.

The impact on the voltage changing by injecting �Q
ctrl, would be di↵erent for di↵erent nodes

as the ratio of resistance and reactance r/x of the distribution system varied. If the resistance
is significantly higher than the reactance, it has less impact to change the voltage by injecting
�Q

ctrl, as directionless power yields only to reactance.

2 SOFTWARE DEVELOPMENT 13

2 Software development

PyDSAL is not yet used by electricity companies to analyse their power systems, as the software
still does not have a graphical user interface, and otherwise is still under development. The tool’s
purpose is to solve a load flow. By performing di↵erent load flows and comparing their results,
the impact of changes in injections and topologies is identified by the user, e.g. as detailed in
Section 5.7. However, PyDSAL was missing procedures for systematic extensive calculation on
alternative solutions for system operations. The task was then to develop a script to systematically
identify the best strategy for solving any upcoming topology update.

To meet the objectives of this thesis, changes to the shell (Section 2.1) and functions (Section 2.2)
were required. See Table 1.2 for an overview of the scripts PyDSAL consists of. Minor changes
were made to Algorithm B.4, addressed in Section 4.

2.1 Shell development

To perform the di↵erent scenario simulations (Section 3), Prof. Fosso’s shell (at the end of Al-
gorithm B.3) had to be further developed. Click here to arrive at the previous version of the shell.
Thus, a standalone script, from now on referred to as a shell, was written and added to the tool
(Table 1.2). In e↵ect, Algorithm B.2 replaces the previous shell version. Avoiding tampering with
Algorithm B.3 and remaining focused on developing a new type of shell, were the main reasons for
setting Algorithm B.2 apart as an independent entity. The implementation of the simulation scen-
arios required certain changes to the functions (Table 2.1), tailoring the layout of the simulation
results.

Initially, a separate shell was coded for each of the simulation scenarios. Reducing the work load,
the individual shells were incorporated into a single systematized one. Thus resulting in a more
structured work flow as well as avoiding flow charting multiple shells. Ultimately, the previous
shell was elaborated, incorporating these system changes:

• The shell would need to create a new network for almost every case.

• Loads would for some of the cases be added to the network after its creation.

• A feeder change would have to be implemented.

• A battery’s discharge and the charging of both a local storage, a ferry and an EV, would
require an implementation of change of bus power.

• The simulation outputs were to be properly displayed.

The shell tailored to all scenarios is found in Algorithm B.2. Instead of writing command after
command line by line throughout the script, the shell was scripted to systematize the commands,
illustrated with a flow chart in Figure 2.2. Thus enabling output to automatically be saved in a
systematic manner, as well as providing easier debugging.

Introducing the overall structure of Algorithm B.2, its following five main sequences result in one
simulation and its outputs:

1. A scenario, a network and its feeder are chosen.

2. The network is initialized (See flow chart in Figure 2.1).

3. Optional bus power change is applied.

4. An electrified network is simulated.

5. The outputs are stored in lists, displayed either as graphics or tables.

2 SOFTWARE DEVELOPMENT 2.1 Shell development 14

The second sequence establishes the topology. The third sequence enables tweaking of the grid’s
load profile.

Delving into Algorithm B.2’s working parts, its flow chart in Figure 2.2 states four loops:

1. Scenario-loop

2. Network-loop

3. Feeder-loop

4. Injection-loop

The shell begins with linking itself to Algorithm B.3, enabling utilization of the functions. They
are to be fed with parameters, thus the parameters for added loads like batteries, ferry and EVs
are set at the beginning of the shell. A list of all simulation scenarios to be investigated is provided
as input to the shell’s first loop, the scenario-loop. In order to configure a network, data from an
Excel file is imported in the following network-loop, sorted into two di↵erent lists:

• BusList

• LineList

The first containing the system’s buses and their parameters, the latter containing its lines and
their parameters. At a network-loop’s start-up, BusList and LineList is introduced. Thus ensuring
that an untouched standard load profile (Section 1.6.1) is processed. Otherwise values from the
last case overlap the current one. With every grid configuration change in complying to a case
description, changes reflect in both/either BusList and/or LineList (Section 4). Thus as the shell
progresses, they are updated, while other lists stay fixed as illustrated in Figure 2.2. A yellow
ellipse in Figure 2.2 is an in-/output.

Just before the feeder-loop starts, their latest update is processed. Thus creating an object,
the network N , which is a data construct providing a description of all parameters known to a
distribution load flow (power flowing in the grid’s lines), defining its method of operation. As
Algorithm B.2 calls a function of Algorithm B.3 concerning this construct, it is called with the
object N . Thus every function called to either mould or extract data from the construct, is scripted
with the prefix ”N .” to its function name. The moulding represent either the network initialization
or its load flow simulation, while the extracted data is utilized in displaying the simulation’s outputs
in tables/graphics.

The grid is ready to be configured after choosing the feeder of the system, thus a start bus is selected.
At the feeder-loop’s start-up, the chosen feeder determines the start bus number (illustrated with a
yellow ellipse in the flow chart in Figure 2.1). See Section 4 for more details on the implementation
of every simulation scenario’s network. A topology initialization is implemented at the feeder-loop’s
start-up, as illustrated by the green circle ”Initialize topology” in the flow chart in Figure 2.2, with
these five steps (functions) illustrated by the flow chart in Figure 2.1:

1. flatStart

resets every bus’s electric parameters, visiting every bus in BusList, zeroing its voltage angle,
accumulated load and loss, setting its voltage magnitude equal to 1.0 pu.

2. config3

resets every bus’s topological parameters with clearTopology, followed by visiting every line
in LineList, thus updating BusList by tagging each bus with its respective connected lines
as well as neighbor buses.

3. findtree

finds a tree structure from the bus number (yellow ellipse in Figure 2.1) it processes, thus
updating LineList: From said bus, the line’s to and from parameters are switched, setting the

2 SOFTWARE DEVELOPMENT 2.1 Shell development 15

positive line flow direction downstream of the feeder. Visiting every line in LineList, every
line’s flow direction is updated.

4. config3

runs again, executes clearTopology, followed by visiting every line in the updated LineList,
updating BusList as before.

5. mainstruct4

produces a list of the grid’s main branch (Section 1.5.1), starting from the bus number (yellow
ellipse in Figure 2.1) it processes, with sublists wherever branching occurs. Thus establishing
the topology.

The list is named TopologyList (yellow ellipse in both Figure 2.1 and Figure 2.2). In e↵ect,
mainstruct4 trails the single-line diagram (Figure 1.3), enabling FBS (Section 1.3) to cas-
cade this configuration upstream then downstream, and the function dispTree to draw it
(Section 2.2.1).

No changes are made to neither BusList nor LineList.

BusList is required by all the initialization functions, but LineList is required only by two of them:
config3 and findtree.

In summary:

1. flatStart

resets electric parameters of BusList.

2. config3

resets topological parameters of BusList, followed by updating it.

3. findtree

updates line flow directions.

4. config3

repeats procedure, processing updated input.

5. mainstruct4

states the topology with TopologyList.

flatStart
Updates

BusList.

config3
Updates

BusList.

Start

findtree
Updates

LineList.

config3
Updates

BusList.

mainstruct4
Establishes

the topology.

End

Start bus
number

TopologyList

Figure 2.1: Flow chart of a topology’s five initialization steps
F

FSee Figure 2.2 for Algorithm B.2’s flow chart, overwriting this flow chart with its green circle
”Initialize topology”.

2 SOFTWARE DEVELOPMENT 2.1 Shell development 16

With the topology ready to be electrified, any bus injection updates are implemented before ex-
ecuting a simulation. Resetting a grid’s load profile following a simulation, BusList is set to its
state prior to the optional bus power change, by inverting the bus injection changes. Otherwise,
within the injection-loop, a new simulation’s load profile is overlapped by the previous load profile.

The systematization of simulations has to do with the shell’s backtracking: It is implemented to
either rerun or exit a loop. The gray ellipse ”Fork” in the flow chart in Figure 2.2 illustrates the
shell’s forked path following a completed injection-loop, implemented to either resume optional
bus power change or skip it. This fork also illustrates the di↵erence between a topology and a
simulation: The tool allows multiple simulations to be performed on the same topology only with
di↵erent load profiles. See Section 6 for future software development on this matter.

This thesis performed a total of nineteen simulations. Thus the injection-loop was executed nine-
teen times. When all simulation scenarios are completed, no loops are reactivated, and the shell’s
end-product is three summary tables (Section 5.6, Tables 5.38, 5.39 and 5.40).

2 SOFTWARE DEVELOPMENT 2.1 Shell development 17

Start

Choose
scenario

Choose
network

Choose
feeder

Initialize
topology

Change
feeder?

Fork

Change
network?

Change
scenario?

Display
summary
tables

End Display
outputs

Run
simulation

Choose
injec-
tion(s)

Change
injec-

tion(s)?

LineList

BusList

list of
scenarios

BusList
Updated.

LineList
Updated.

TopologyList

list of feeders

LineList
Updated.

BusList
Updated.

(list of) bus
injection(s)

BusList
Updated.

exit

rerun

yesno

yes

no

yes

no

yes

no

Figure 2.2: Flow chart of Algorithm B.2
F

FSee Table 0.2 for this report’s terminology.
See Table 1.2 for an overview of PyDSAL’s scripts.
See Figure 2.1 for a flow chart of the topology initialization, overwritten by this flow chart’s green
circle ”Initialize topology”.
See Figure 2.3 for a flow chart of the drawing of a tree pattern (Section 2.2.1), overwritten by this
flow chart’s green circle ”Display outputs”.
See Table 3.1 for an overview of the cases.
See Section 4 for the scenario implementations.
See Table 4.1 for Algorithm B.2’s chronological loop record.
See Section 5.7 (Tables 5.38, 5.39 and 5.40) for Algorithm B.2’s end product (green circle ”Display
summary tables”).
See Figure 6.2 for a flow chart of a future development of Algorithm B.2.
Click here to arrive at the previous version of PyDSAL’s shell.

2 SOFTWARE DEVELOPMENT 2.2 Function development 18

2.2 Function development

Nine of Algorithm B.3’s functions were altered, all adjustments marked #Ingrid. See Table 2.1 for
an overview of their tailoring. See Table 2.2 for every tailored function’s purpose.

Table 2.1: Algorithm B.3’s tailored functions

Function Main changes Changes explained
DistLF Added a command: Returns a list of a simulation’s total power and loss.
Battery� Changed an equation: Changed the second and third coe�cients of the
DroopCtrl di↵erential equation, flipping a ratio.

See Section 1.6.3 for more details.
V 2G� Changed an equation: Changed the second and third coe�cients of the
DroopCtrl di↵erential equation, flipping a ratio.

See Section 1.6.3 for more details.
checkF low New name: From checkOverflow to checkF low.

Added a command: Returns a list of marked flows.
checkV olt New name: From checkOverLoad to checkV olt.

Expanded a command: Returns a list of marked voltages.
tableplot Removed three inputs: columncol, rowcol and colw, regarding column color,

row color and column width respectively.
Added two inputs: A case name and a list of marked flows/voltages.

Added color-categories: Systematized coloring of the table’s first column,
ensuring that marked flows/voltages stand out,
color-categorized as seen in Table 2.3.

dispF low Added two inputs: A case name and a list of marked flows.
dispV olt Added two inputs: A case name and a list of marked voltages.
dispTree New name: From dispGraph to dispTree.

Removed five inputs: The number top, and the six lists feeders, LEC,
charging, lowV olt, overload, disconnected,
regarding distinguishing marked flows and voltages.

Added three inputs: A case name and two lists tagBus and tagLine,
which are the marked flows and voltages respectively,
color-categorized as seen in Table 2.3.
See Section 2.2.1 for more details.

Table 2.2: Algorithm B.3’s tailored functions’ purpose

Function Purpose

DistLF
Executes a simulation of an electrified distribution grid based on FBS
(Section 1.3).

BatteryDroopCtrl Calculates the battery contribution to voltage control (Section 1.6.3).
V 2GDroopCtrl Calculates the V2G contribution to voltage control (Section 1.6.3).
checkF low Categorizes the line flows.
checkV olt Categorizes the bus voltages.
tableplot Produces a table.

dispF low
Calculates and then tabulates a simulation’s line flows, then calls
tableplot.

dispV olt Tabulates a simulation’s bus voltages, then calls tableplot.

dispTree

Produces a tree pattern (Section 2.2.1, a color-categorized single-line dia-
gram of an electrified grid, with line flow directions, at a moment in time),
stored in an HTML file (Appendix A), enabling zooming.

The layout of simulation outputs was tailored to this report, mainly regarding their color-categorization
(Section 2.2.2). This report displays simulation outputs of the electric parameters line flows and
bus voltages in tables, while the simulation output illustrating the electrified grid is displayed in
a graphic. See Section 2.2.1 for the development on the latter. The tool’s previous version was

2 SOFTWARE DEVELOPMENT 2.2 Function development 19

already implemented to produce an HTML file of a grid’s color-categorized single-line diagram
(Appendix A). Opening such a file in a web browser enables the user to zoom in on areas of
interest. The tree graphics used in this report are screenshots of said HTML files.

Previously, every table produced by the tool, created by the function tableplot, displayed a max-
imum of thirteen rows, scripted to have a cyan title column and title row. With a grid containing
124 nodes, this spawned ten tables per parameter outputs. Thus the amount of rows displayed in
one table was altered to what is seen in this report, e.g. Table 5.5.

The color-categorizing of a table’s title column is introduced, while a graphic’s color-categorization
was only elaborated. Thus the tables and graphic were synergized. When a bus listed in a table
is marked with a distinct color, then it is marked with the same color in the graphic depiction.
Thus it’s easier to spot the bus and take in its overall part in the scheme. Regretfully, the grid’s
bus numbering is not visible in the graphic (unless the grid is a subgrid as the single-line diagram
in Figure 3.2a), leaving one to rely on the color-categories, seen in Table 2.3.

Also, the calculation of the impact of voltage dependent loads charging in the grid was altered,
concerning voltage droop control. This is addressed in Section 1.6.3.

2.2.1 Tree pattern development

Displaying a snap shot of an electrified grid as a color-categorized single-line diagram, materializes
a simulation, concretizing PyDSAL’s concept. The color-categories are explained in Table 2.3.
This snap shot is named ”tree pattern”. Its objective is to display bus and line numbers, line
flow direction arrows and case characteristics. Its line numbering was introduced, implemented
in Algorithm B.2. The implementation of its color-categorization was further developed from
Algorithm B.1, and is illustrated in the flow chart in Figure 2.3.

The function dispTree (mentioned in Tables 2.1 and 2.2) is executed in the shell’s injection-loop,
within the green circle ”Display outputs” in the flow chart in Figure 2.2. In e↵ect, it draws a tree,
growing out from a grid’s supply node. A tree pattern’s feeder has line flow direction arrows leading
away from it. With every feeder change the tree growth starts at a new point, drawing a slightly
di↵erent tree pattern. Meaning, dispTree always starts with the node furthest upstream, as it is
implemented to process TopologyList, produced by the function mainstruct in Algorithm B.2’s
feeder-loop (Section 2.1).

dispTree processes four inputs, illustrated as yellow ellipses in the flow chart in Figure 2.3:

• The list TopologyList.

• A list of marked lines.

• A list of marked nodes.

• A case name.

TopologyList is produced in the flow chart in Figure 2.2’s green cirle ”Configure topology”, over-
writing the flow chart in Figure 2.1.

These inputs are prepared by Algorithm B.2, utilizing some of Algorithm B.3’ functions as de-
scribed in Table 2.1. Thus dispTree tags a bus node with its number, duties and voltage category,
corresponding a line with its number, flow direction and flow category. These node duties and
categories are color-categorized, as explained in Table 2.3.

dispTree begins with creating a graph G. Interpreting this creation as an empty map canvas, the
flow chart in Figure 2.3 illustrates the successive pinning of nodes and lines to it. The word ”map”
is used as a synonym for a tree pattern. In fact, dispTree calls two other functions to in turn
process G:

1. AddNodes

2 SOFTWARE DEVELOPMENT 2.2 Function development 20

processes TopologyList and the list of marked nodes.

2. ConnectNodes

processes TopologyList and the list of marked lines.

These functions visit every node in TopologyList. In e↵ect, the first adds every node to G, tagging
every node, corresponding the latter adds every line to G, tagging every line. Finally, a tree pattern
is drawn, establishing G. The case name is put to use when G is saved in an HTML file. The
green circle ”Display zoomable map” in the flow chart in Figure 2.3 implies that the user opens
the HTML file in a web browser. The word ”map” is used as a synonym for a tree pattern. A
yellow ellipse is an input.

Start

Create
an

empty
map

Pin the
next
node

Tag the
node

Visited
the last
node yet?

Visit
the next
node in
reversed
order

Retrieve
the

node’s
list of
connec-
ted lines

Pin each
of the
node’s
lines

Tag
each line

list of
marked buses

TopologyList

list of
marked lines

Visited
the first
node yet?

Draw
map

Save
map as
HTML
file

Display
zoomable

map

filename

End

yes

no

no

yes

Figure 2.3: Flow chart of Algorithm B.3‘s function dispTree, developed from Algorithm B.1
F

A challenge to overcome was implementing a node’s color overlap, since it can have only one. Also,
implementing a node with multiple tags proved challenging: The first tag would repeat itself. If it
is any of the alternative feeders, its green node is larger than the others.

2.2.2 Color-categorization development

The color-categories of simulation results are detailed in Table 2.3. Originally, the idea was to
make any preferred imitation of an electrified grid stand out, having simulation outputs with only
sea green colored lines and brown nodes. This proved di�cult, since this thesis’ simulations all
are quite similar. Introducing more colors and also widening the categories to chart a simulation’s

FSee Figure 2.2 for Algorithm B.2’s flow chart, overwriting this flow chart with its green circle
”Display outputs”.

2 SOFTWARE DEVELOPMENT 2.2 Function development 21

outputs with, gave a simulation a more distinct ”fingerprint”. Any simulation outputs with red
buses/lines illustrate an overloaded grid. More categories than existed in Algorithm B.1 were
introduced.

The coloring illustrates a simulation’s characteristics, e.g. Table 2.3 shows that a yellow colored
node has a too low voltage magnitude (below or equal to 0.94 pu). This table’s second column has
two variables:

• F stands for the percentage of a transmission line flow divided by its line’s transfer capacity.

• V stands for a bus voltage in pu.

Ideally, a node voltage surpasses yellow level, signalling that yellow is an unwanted color. A yellow
colored line (transmitting more than 40% and less or equal to 60% of its capacity) doesn’t transmit
too little, which might make the color-code counter-intuitive. A yellow line illustrates that it may
transmit at least 40% more power than it is currently transmitting before overloading. A line has a
higher risk of outage as it operates closer to its max capacity, overheating, giving less room for flow
error. Likewise, a too low or too high voltage magnitude would be unsatisfactory for consumers,
making their appliances cranky.

Table 2.3: The color-categorization of scenario figures and simulation results explained
F

Color Significant buses Used in...
green An alternative feeder Tree pattern, bus voltages table and scenario figure

cyan A battery or an EV Tree pattern, bus voltages table and scenario figure

connected to the bus

Color Line flow [%] Used in...

red F > 100% Tree pattern and line flows table

pink 80% < F 100% Tree pattern and line flows table

orange 60% < F 80% Tree pattern and line flows table

yellow 40% < F 60% Tree pattern and line flows table

seagreen 0% < F 40% Tree pattern and line flows table

violet Zero line flow Tree pattern and line flows table

Color Bus voltage [pu] Used in...

red V � 1.1 pu Tree pattern and bus voltages table

pink 1.0 pu V < 1.1 pu Tree pattern and bus voltages table

brown 0.96 pu < V < 1.0 pu Tree pattern and bus voltages table
orange 0.94 pu < V 0.96 pu Tree pattern and bus voltages table

yellow V 0.94 pu Tree pattern and bus voltages table

violet Zero bus voltage Tree pattern and bus voltages table

PyDSAL is implemented to set the grid’s supply node as the voltage reference for all the other
nodes. Thus it is set to have the standard voltage magnitude of 1.0 pu and voltage angle of 0.0.
The pink category of voltage magnitudes equal to or greater than 1.0 pu and smaller than 1.1 pu
is introduced.

If any node in the grid has a voltage magnitude of exactly 1.0 and a voltage angle exactly of 0.0,
this node is interpreted as a supply node by the further developed tableplot (Section 2.2), thus
bypassing this category, ensuring that the grid’s feeder stands out in the bus voltage table. If
the supply node is one of the alternative feeders, it is colored green. If the supply node is one
of the local storages, depleting during a feeder’s outage, it is implemented to be colored cyan.
The further developed dispTree (Section 2.2.1) isn’t implemented to bypass any line flow- or bus
voltage-category.

FSee Table 5.35 for the indexed simulation results.
See Table 5.36 for the indexed simulation commentaries.
See Tables 5.39 and 5.40 for Algorithm B.2’s color-categorized summary tables.

2 SOFTWARE DEVELOPMENT 2.2 Function development 22

When an alternative feeders supplies the grid, its green node is in this thesis implemented to be
larger than the grid’s other nodes, making it stand out. An overloaded supply bus should be red,
not green, symbolizing overload. Thus, if any of the buses, even any of the alternative feeders, fell
into any of the colored categories, their node color was overlapped by the category’s color. Future
development on this is discussed in Section 6.

3 SIMULATION SCENARIOS 23

3 Simulation scenarios

This thesis investigates five simulation scenarios, as listed in Table 3.1. Subjecting the grid to these
scenarios, it undergoes a total of nineteen cases. Thus nineteen simulations were performed. Their
implementation is described in Section 4. Every simulation produces a batch of results, commented
on in Section 5. The changes made to the grid in altering it to comply to a case description are
discussed in the following subsections.

Every case di↵ers depending on the combination of the grid’s feeder, topology and load profile, as
detailed by Table 3.1. Cases 1, 5 and 13-19 are all supplied by main feeder B1, but the topology
di↵ers. Thus these cases are likely to have near to or even identical results. Changing the feeder
causes the simulated power to flow in a di↵erent direction. Also, implementing node B1 as the
main feeder to supply the grid in the scenarios with a fixed feeder, make the simulations more
realistic: Only if the main feeder has an outage are any of the backup feeders supposed to take
over the load.

Table 3.1: The grid’s nineteen cases
F

Case Scenario Feeder Topology and any added loads
Case 1 Section 3.1 B1 The original topology
Case 2 Section 3.1 B36 The original topology
Case 3 Section 3.1 B62 The original topology
Case 4 Section 3.1 B88 The original topology

Case 5 Section 3.2 B1 The subgrid left of the disconnected line L16
Case 6 Section 3.2 B36 The subgrid left of the disconnected line L16
Case 7 Section 3.2 B62 The subgrid right of the disconnected line L16
Case 8 Section 3.2 B88 The subgrid right of the disconnected line L16

Case 9 Section 3.3 B5 Four batteries incorporated as provision for feeder outage
Case 10 Section 3.3 B70 Four batteries incorporated as provision for feeder outage
Case 11 Section 3.3 B107 Four batteries incorporated as provision for feeder outage
Case 12 Section 3.3 B115 Four batteries incorporated as provision for feeder outage

Case 13 Section 3.4 B1 One small battery incorporated. The ferry is o↵ grid.
Case 14 Section 3.4 B1 The ferry charges from the incorporated small battery
Case 15 Section 3.4 B1 One medium battery incorporated. The ferry is o↵ grid.
Case 16 Section 3.4 B1 The ferry charges from the incorporated medium battery
Case 17 Section 3.4 B1 One large battery incorporated. The ferry is o↵ grid.
Case 18 Section 3.4 B1 The ferry charges from the incorporated large battery

Case 19 Section 3.5 B1 Three EVs incorporated, all charging.

The first simulation scenario analyses the original topology (Figure 1.3). The others analyse an
updated topology, tailored to their respective cases. The objective was to achieve a simulation
without any overflowed lines and with bus voltage magnitudes above 0.96 pu and below 1.1 pu.

FSee Figures 3.1, 3.2a, 3.2b, 3.4, 3.5 and 3.6 for every scenario’s single-line diagram.
See Table 5.35 for the indexed simulation results.
See Table 5.37 for a more detailed overview of the cases.
See Figure 2.2 for Algorithm B.2’s flow chart.
See Section 4 for the scenario implementations.

3 SIMULATION SCENARIOS 3.1 Scenario: Change of supply bus 24

3.1 Scenario: Change of supply bus

This scenario is the base scenario, which the other scenarios are referenced to. This scenario’s
four cases analyse the original topology (Figure 1.3). The objective was to evaluate the alternative
feeders impact on supplying the load. The grid has one main feeder and three backup feeders,
which are buses B1, B36, B62 and B88 respectively, in green boxes in Figure 3.1.

Figure 3.1: Simulation scenario: Change of supply bus
F

Alternative feeders in green boxes.

FSee Table 3.1 for an overview of the cases.
See Tables 5.2, 5.3, 5.8, 5.9, 5.14, 5.15, 5.20 and 5.21 for this simulation scenario’s four sets of line
flows, respectively commented on in Tables 5.1, 5.7, 5.13 and 5.19.
See Tables 5.5, 5.11, 5.17 and 5.23 for this simulation scenario’s four sets of bus voltages, respect-
ively commented on in Tables 5.4, 5.10, 5.16 and 5.22.
See Figures 5.2, 5.4, 5.6 and 5.8 for this simulation scenario’s four tree patterns, respectively com-
mented on in Tables 5.6, 5.12, 5.18 and 5.24.
See Section 4.1 for this scenario implementation.
See Section 5.7 (Tables 5.38, 5.39 and 5.40) for Algorithm B.2’s end product (green circle ”Display
summary tables” in the flow chart in Figure 2.2).

3 SIMULATION SCENARIOS 3.2 Scenario: Splitting of the grid 25

3.2 Scenario: Splitting of the grid

The original topology is split, resulting in two stand-alone subgrids. Two of the cases analyse
one subgrid, correspondingly the other two analyse the other subgrid. The cases di↵er also in
that every case has a di↵erent feeder. Figure 3.2a shows the subgrid to the left of the split line.
Figure 3.2b shows the subgrid to the right of the split line.

With both subnetworks operating independent of each other, each subnetwork’s feeder meets a load
demand smaller than they are accustomed to. With the feeders less burdened, the lines transmit
less power. Since all feeders are connected to the same interconnected grid, the system frequency
stays constant despite a feeder change. It is of interest to see whether the grid experiences lower
losses operating in split- rather than in standard-mode. The standard-mode, as in Section 3.1, has
one feeder supplying the entire grid.

Ideally, subnetworks have equal loading, considering equipment sizes, supply quality and protection
gear. The more tailored a grid is, the higher the expense. To split the capacity in half, avoids
too steep power swings: If one subnetwork is left with a quarter of the load, while the other
subnetwork gets three fourths of the load, then the first experiences steeper power swings than the
latter following a splitting of the grid. Operating on half capacity also avoids uneven wear and
tear on feeders and other equipment. Another factor to consider is how long this split-mode will
be operated for.

3 SIMULATION SCENARIOS 3.2 Scenario: Splitting of the grid 26

(a) Left sub-grid

(b) Right sub-grid
Figure 3.2: Simulation scenario: Splitting of the grid

F

Alternative feeders in green boxes.

FSee Table 3.1 for an overview of the cases.
See Figures 5.9 and 5.10 for this simulation scenario’s left side subgrid’s two tree patterns, respect-
ively commented on in Tables 5.25 and 5.26.
See Figures 5.11 and 5.12 for this simulation scenario’s right side subgrid’s two tree patterns, re-
spectively commented on in Tables 5.27 and 5.28.
See Section 4.2 for this scenario implementation.
See Section 5.7 (Tables 5.38, 5.39 and 5.40) for Algorithm B.2’s end product (green circle ”Display
summary tables” in the flow chart in Figure 2.2).

3 SIMULATION SCENARIOS 3.3 Scenario: Local storage as backup feeders 27

3.3 Scenario: Local storage as backup feeders

If all the grid’s feeders defected, could it still supply itself? With the help of batteries it is possible
to keep the grid powered during mainline power cuts. Another benefit of battery solutions is the
possibility of charging when both the load and prices are low, and discharge vice versa. Thus the
battery could even out peaks in the grid. Using stored power in expensive periods, and charging
during cheap periods, would profit the battery’s owner. Figure 3.3 shows a typical winter price
profile from Nordpool over 24 hours, revealing that night-time charging and discharging at mid-day
or dinner-time (18:00) is best.

Figure 3.3: Nord Pool hourly price profile [NOK/h] [AS]

Investigating this, batteries were incorporated into the grid. The objective is to evaluate whether
a local storage can meet the load demand in a snap-shot of an electrified grid. Four randomly
chosen and dispersed buses were assigned an identical battery. Figure 3.4 marks the locations of
the randomly dispersed local storages with cyan boxes.

The original topology is updated to incorporate four identical batteries, as provision backup if the
feeder was to outage. This scenario’s four cases analyse this topology. The cases di↵er in that
every case has a di↵erent battery as feeder, as the other three batteries charge. Downsizing this
scenario, only four buses were chosen to contain a local storage. Thus this scenario has the same
amount of cases as the two preceeding scenarios, which is fitting.

The local storages were dispersed, but consciously chosen not to be located at the end of a branch.
Thus further distinguishing this scenario from the base scenario (Section 3.1), as well as making
their locations more realistic. A depleting battery in this scenario, feeding the grid, splits its main
flow right away or a few lines in, except for bus B5’s battery. The buses B70, B107 and B115
are all near the grid’s middle, except for bus B5. The latter was of interest, investigating how a
provision backup fared compared to main feeder B1. Their flow directions would be quite similar,
thus their simulation results should be quite similar.

3 SIMULATION SCENARIOS 3.3 Scenario: Local storage as backup feeders 28

Figure 3.4: Simulation scenario: Local storage as backup feeders
F

Backup feeders in cyan boxes.

FSee Table 3.1 for an overview of the cases.
See Figures 5.13, 5.14, 5.15 and 5.16 for this simulation scenario’s four tree patterns, respectively
commented on in Tables 5.29, 5.30, 5.31 and 5.32.
See Section 4.3 for this scenario implementation.
See Section 5.7 (Tables 5.38, 5.39 and 5.40) for Algorithm B.2’s end product (green circle ”Display
summary tables” in the flow chart in Figure 2.2).

3 SIMULATION SCENARIOS 3.4 Scenario: Battery powered ferry 29

3.4 Scenario: Battery powered ferry

Could the grid sustain an electric ferry consuming power intermittently? Updating the original
topology, an onshore battery is incorporated into one randomly chosen bus, feeding the ferry when
it docks, charging as the ferry is o↵ grid. Downsizing this scenario, only one bus was chosen to
have a dock, and only three di↵erent sizes of the onshore battery were chosen. The objective is to
investigate the ferry’s impact of plugging into the system, and the impact of alternative sizes of
the onshore battery. The cyan box in Figure 3.5 marks the location of the onshore battery.

Figure 3.5: Simulation scenario: Battery powered ferry
F

Main feeder in green box. Ferry/onshore battery in cyan box.

It was of interest to investigate an onshore battery:

• too small to meet the ferry’s demand.

• precisely meeting the ferry’s demand.

• meeting the ferry’s demand in abundance.

Thus six simulations were performed: Thrice simulating a di↵erent onshore battery charging as
the ferry is o↵ grid, and correspondingly discharging when the ferry consumes active power. All
simulations have main feeder B1 (green box in Figure 3.5) supplying the grid. Thus the simulation
results should be quite similar to Case 1’s simulation.

FSee Table 3.1 for an overview of the cases.
See Figure 5.17 for this simulation scenario’s randomly chosen tree pattern, commented on in
Table 5.33.
See Section 4.4 for this scenario implementation.
See Section 5.7 (Tables 5.38, 5.39 and 5.40) for Algorithm B.2’s end product (green circle ”Display
summary tables” in the flow chart in Figure 2.2).

3 SIMULATION SCENARIOS 3.4 Scenario: Battery powered ferry 30

When the ferry docks to charge, it can either draw power directly from the grid, with potentially
dramatic consequences to the grid’s voltage stability, or it can draw the necessary power from an
onshore battery. The onshore battery is charged by the grid and only discharges when the ferry
docks, which should avoid voltage drops on the grid.

Meeting a ferry’s demand, a too small battery will deplete, leaving the grid to overtake the load:
Bypassing the onshore battery, the ferry is fed, being the prioritized load. A large battery can
charge whilst discharging, since it puts no strain on the system. Thus the battery size is critical,
and must be tailored to the ferry’s charging time and power consumption in conveying passengers
and goods.

3 SIMULATION SCENARIOS 3.5 Scenario: Vehicles to grid 31

3.5 Scenario: Vehicles to grid

Could the grid sustain vehicle to grid (V2G) charging? Updating the original topology, three
identical electric vehicles (EVs) were incorporated into the grid. The cyan boxes in Figure 3.6
mark their respective locations. The objective is to discuss the V2G alternative and investigate
the impact such a solution has on the grid.

An EV is in this thesis seen as just a power consumption, thus it is fitting to downsize this scenario
to just one simulation. Further downsizing this scenario, only three randomly chosen and dispersed
buses are assigned an EV: Two on the main branch and one on a subbranch, enabling a viable
simulation. Main feeder B1 (green box in Figure 3.6) supplies the system. Thus this scenario’s
simulation results should be quite similar to Case 1’s simulation results.

Figure 3.6: Simulation scenario: Vehicles to grid
F

Main feeder in green box. The electrical vehicles in cyan boxes.

FSee Table 3.1 for an overview of the cases.
See Figure 5.18 for this simulation scenario’s only tree pattern, commented on in Table 5.34.
See Section 4.5 for this scenario implementation.
See Section 5.7 (Tables 5.38, 5.39 and 5.40) for Algorithm B.2’s end product (green circle ”Display
summary tables” in the flow chart in Figure 2.2).

4 SCENARIO IMPLEMENTATION 32

4 Scenario implementation

Algorithm B.2 contains the implementation of the five simulation scenarios. Executing it activates
loops in succession, as illustrated by its flow chart in Figure 2.2, as detailed in Table 4.1. This
table is discussed in the following subsections. See Section 2.1 for more details.

As seen in Table 3.1, the first two simulation scenarios have no added loads. The rest of the simu-
lation scenarios are implemented to incorporate extra loads to the grid’s standard load profile, all
implemented to be voltage dependent, except for a ferry’s consumption. The latter is implemented
as a bus load increase.

The supply is seen as continuous, thus no bus power injection is implemented, except when a local
storage discharges during a feeder outage.

The voltage dependent loads (Section 1.6.3) required one new code line to be written for the
di↵erent load objects. Thus a new parameter cmode, control mode, was added to Algorithm B.4’s
battery and V2G class. A simulation’s accumulation of loads is done by the function accload

(Section 1.2), calling the function getload to include any voltage dependent loads present in the
grid. Setting cmode equal to 2, activated getload’s inherent call for voltage droop control, thus
calculating the battery’s or EV’s impact on the system.

Table 4.1: Algorithm B.2’s chronological loop record
F

Case Scenario-loop Network-loop Feeder-loop Injection-loop
Case 1 run run run run
Case 2 - - rerun run
Case 3 - - rerun run
Case 4 - - rerun run

Case 5 rerun run run run
Case 6 - - rerun run
Case 7 - - rerun run
Case 8 - - rerun run

Case 9 rerun run run run
Case 10 - - rerun run
Case 11 - - rerun run
Case 12 - - rerun run

Case 13 rerun run run run
Case 14 - - - rerun
Case 15 - rerun run run
Case 16 - - - rerun
Case 17 - rerun run run
Case 18 - - - rerun

Case 19 rerun run run run

4.1 ... of a change of supply bus

A network with four alternating feeders was configured (Figure 3.1). Thus four simulations were
made. No added loads were incorporated into the topology.

As detailed in Table 4.1, Algorithm B.2 activates all loops in one run, resulting in a simulation of
Case 1. Following the exit of the injection-loop, the feeder-loop is reactivated, introducing a new
start bus supplying the system, activating the injection-loop, resulting in a simulation of Case 2.
This is repeated for Case 3 and Case 4.

FSee Figure 2.2 for Algorithm B.2’s flow chart. See Sections 4.1, 4.2, 4.3, 4.4 and 4.5 for more
details on this table.

4 SCENARIO IMPLEMENTATION 4.2 ... of a splitting of the grid 33

4.2 ... of a splitting of the grid

In addition to configuring the complete system as one, splitting the system into subparts was
configured (Figures 3.2a and 3.2b). The objective was to identify an appropriate separation point
to split the grid in di↵erent subgrids and supply these from alternative feeders. A separation point
was interpreted as a line disconnection, in the same way as a system would be split by a circuit
breaker.

The split network was configured by first creating the complete original network (Figure 3.1), then
split by updating LineList. This was implemented by splitting the main branch’s line L16, which
connected buses B46 and B47. In e↵ect, line L16’s attribute ibstat was zeroed, which is set equal
to zero when disconnected, and set to one when connected.

Inspecting the grid in Figure 1.3, splitting it in two between buses B46 and B47, gives the result-
ing two subnetworks a pair of feeders each. If the split was either between buses B26 and B33 or
between buses B47 and B48, one subnetwork would be left more vulnerable than the other, consid-
ering one subnetwork gets three feeders while the other only gets one. Presumably the appropriate
separation points must be on the main branch stretch between the buses B33 and B47, consisting
of seven possible separation points. The grid’s ”aorta” is split in half, creating two concentrated
subgrids rather than one subgrid widespread and the other stumped: The line to the far right of
the stretch (L16) was disconnected, downsizing the study to two subgrids with a pair of feeders
each and the most equal loading.

This scenario’s alternative feeders are the same as in the preceding section, thus four simulations
were made. No added loads were incorporated into the topology.

As the flow chart in Figure 2.1 of the five initialization steps of a network illustrates, two of
Algorithm B.3’s functions update BusList, as detailed in this paragraph. When a line disconnects,
the function config3 is prohibited from taking it into account. Meaning, the function visits every
line in LineList except for the disconnected line. Thus config3 is prevented from connecting it to
any bus, connecting all other lines to their respective buses, although the other subgrid won’t be
electrified. The function mainstruct4 knits the grid together line by line, visiting the start bus,
detecting a neighbor bus, proceeding to knit these two buses together, followed by visiting this
neighbor bus, detecting its neighbor bus etc. This start bus is the grid’s feeder, furthest upstream
in the system, thus introducing the main branch.

Wherever subbranches occur, mainstruct4 departs from the main branch, visiting the subbranch,
knitting it to completion, followed by departing from it, revisiting the main branch. Visiting the bus
previously connected to the line L16, mainstruct detects a dead end, followed by departing from
this subbranch, revisiting the main branch. Thus the LineList’s disconnected line is never knitted
into the grid, and mainstruct4 never trespasses on the other subgrid. If the grid is initialized
with a start bus on the left side, the left side subgrid is configured (Figure 3.2a); and vice versa
(Figure 3.2b).

As detailed in Table 4.1, Algorithm B.2 completes the scenario of a change of supply, exiting all
loops but the scenario-loop. Reactivating the latter, all loops are activated in one run, resulting
in a simulation of Case 5. Following the exit of the injection-loop, the feeder-loop is reactivated,
introducing a new start bus supplying the system, activating the injection-loop, resulting in a
simulation of Case 6. This is repeated for Case 7 and Case 8.

4.3 ... of local storage as backup feeders

The network containing four identical batteries (Figure 3.4) was configured by updating BusList.
Listing them as battery objects, the list BatteryList was scripted. Thus voltage dependent loads
were added to the topology. Assigning an object to a bus’s attribute battery, otherwise set to zero,
the buses B5, B70, B107 and B115 were implemented to contain a battery. The network’s altern-
ative feeders were implemented to be these local storages. As one battery discharged, implemented
as a bus load decrease, supplying the network, as the others charge. Thus four simulations were

4 SCENARIO IMPLEMENTATION 4.4 ... of a battery powered ferry 34

made. See Section 1.6.3 for the value of the depleting battery’s injected power.

As detailed in Table 4.1, Algorithm B.2 completes the scenario of splitting the grid, exiting all
loops but the scenario-loop. Reactivating the latter, all loops are activated in one run, resulting
in a simulation of Case 9. Following the exit of the injection-loop, the feeder-loop is reactivated,
introducing a new start bus supplying the system, activating the injection-loop, resulting in a
simulation of Case 10. This is repeated for Case 11 and Case 12.

4.4 ... of a battery powered ferry

The three networks, di↵ering in their onshore battery (Figure 3.5), were configured by updating
BusList. All are supplied by main feeder B1. Listing a small, medium and large sized battery
object, the list BatterySizes was scripted. Assigning an object to bus B124’s attribute battery,
otherwise set to zero, every network was implemented to contain a di↵erent sized battery. Thus a
voltage dependent load was added to every topology.

Implementing a stray bus connecting to the grid, in e↵ect adding a bus to the system, received the
error ”the grid is no longer radial”. Discarding this, the ferry’s charging was implemented as just
a bus load increase: As a change in power consumption rather than a bus with a battery on board
re-connecting to the grid. Otherwise, the on board battery would have been taken into account.
Providing the ferry’s on board battery, the onshore battery’s discharge is implemented as a bus
load decrease, meeting the ferry’s demand. See Section 1.6.3 for the value of both the ferry’s and
the on shore battery’s injected power.

As detailed in Table 4.1, Algorithm B.2 completes the scenario of local storages as backup feeders,
exiting all loops but the scenario-loop. Reactivating the latter, all loops are activated in one
run, resulting in a simulation of Case 13. Reactivating the injection-loop, Case 14 is simulated.
Following the exit of the injection-loop, the feeder-loop is exited as well, followed by reactivating
the network-loop, introducing a new topology. The feeder- and injection-loop is activated in one
run, resulting in a simulation of Case 15. Reactivating the injection-loop, Case 16 is simulated.
This is repeated for Case 17 and Case 18.

4.5 ... of vehicles to grid

The network containing three identical charging EVs (Figure 3.6) was configured by updating
BusList. Listing them as V2G objects, the list V2GList was scripted. Thus voltage dependent
loads were added to the topology. Assigning an object to a bus’s attribute v2g, otherwise set to
zero, the buses B2, B48 and B117 were implemented to contain an EV. The feeder was set to be
main feeder B1. See Section 1.6.3 for the value of the EV’s injected power.

As detailed in Table 4.1, Algorithm B.2 completes the scenario of a battery powered ferry, exiting
all loops but the scenario-loop. Reactivating the latter, all loops are activated in one run, resulting
in a simulation of Case 19.

.

5 SIMULATION RESULTS 36

5 Simulation results

This section comments on Algorithm B.2’s simulation outputs (green circle ”Display outputs” in
the flow chart in Figure 2.2.) Respectively, the simulation outputs commented on in this report
display a simulation’s:

• tabulated color-categorized line flows.

• tabulated color-categorized bus voltages.

• color-categorized single-line diagram with line flow directions (tree pattern, Section 2.2.1).

5.1 ... of a change of supply bus

This simulation scenario has four cases, as seen in Table 3.1. Thus four simulations were performed,
as seen in Table 5.35, producing four di↵erent sets of line flows, bus voltages and tree patterns.

Case 1 simulation’s line flows

This simulation’s line flows are seen in Tables 5.2 and 5.3. See Table 5.1 for the commentary on
them.

Table 5.1: Commentary on Case 1 simulation’s line flows in Tables 5.2 and 5.3
F

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow L3-L14

0% < F 40% seagreen The rest of the lines.

Zero line transmission violet

L65 and L66 (connected to backup feeder B36), L81
and L82, L96 and L97 (connected to backup feeder
B62), L120 and L121 (connected to backup feeder
B88).

Line flow range Color Line(s) or line flow value [pu]
Min. active flow in line(s) violet L65, L66, L81, L82, L96, L97, L120 and L121.

Min. active flow in line(s) seagreen
L95 (This line must have transmitted approximately
no flow. If the flow was 0.0 pu, the line would be
violet.)

Min. active line flow violet 0.0 pu

Max. active flow in line seagreen L1 (connected to main feeder B1, feeding the grid).

Max. active line flow seagreen 0.6613 pu

FF is a percentage of a line flow divided by its line’s capacity. Lines and nodes downstream of violet lines should
also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 37

Table 5.2: Case 1 simulation’s line flows for lines L1-L62
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 38

Table 5.3: Case 1 simulation’s line flows for lines L63-L123
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 39

Case 1 simulation’s bus voltages

This simulation’s bus voltages are seen in Table 5.5. See Table 5.4 for the commentary on them.

Table 5.4: Commentary on Case 1 simulation’s bus voltages in Table 5.5
F

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green Main feeder B1 feeds the grid.

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96 pu orange
B47-B108 (coloring the backup feeders B62 and B88
orange) and B117.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet

None in this category, but the buses B35, backup
feeder B36, B60, B61, backup feeder B62, B87,
backup feeder B88, B122 and B123 should be violet,
since no power is transmitted to them (Table 5.3).

Bus voltage range Color Bus(es) or bus voltage magnitude [pu]

Min. voltage at bus orange
B96, near backup feeder B88. B96 is the bus furthest
downstream in the grid.

Min. voltage magnitude orange 0.95122 pu

Max. voltage at bus green Main feeder B1, feeding the grid.

Max. voltage magnitude green 1.0 pu

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36
for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 40

Table 5.5: Case 1 simulation’s bus voltages
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 41

Case 1 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.2. See Table 5.6 for the commentary on it.

Table 5.6: Commentary on Case 1 simulation’s tree pattern in Figure 5.2
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the grid,
which is main feeder B1. The grid has four alternative feed-
ers, only two of them are colored green. The other two were
colored orange. The smaller green node is backup feeder
B36.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow
A string of twelve lines on the main branch, nearly furthest
upstream, only two lines apart from the feeder.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A string of two lines doesn’t transmit to backup feeder B36,
a string of two lines doesn’t transmit to bus B123, a string
of two lines doesn’t transmit to backup feeder B62, and a
string of two lines doesn’t transmit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the grid’s feeder,
main feeder B1, by default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96
pu

orange

Approximately half of the grid’s 124 nodes are colored or-
ange, all connected furthest downstream of the grid (coloring
the backup feeders B62 and B88 orange, both connected to
violet lines).

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 42

Figure 5.2: Case 1 simulation’s tree pattern
F

Main feeder B1 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 44

Case 2 simulation’s line flows

This simulation’s line flows are seen in Tables 5.8 and 5.9. See Table 5.7 for the commentary on
them.

Table 5.7: Commentary on Case 2 simulation’s line flows in Tables 5.8 and 5.9
F

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange L64 and L65.

40% < F 60% yellow L10-L14

0% < F 40% seagreen The rest of the lines.

Zero line transmission violet
L1 (connected to main feeder B1), L81 and L82, L95
and L96 (L97 is connected to backup feeder B62),
L120 and L121 (connected to backup feeder B88).

Line flow range Color Line(s) or line flow value [pu]
Min. active flow in line(s) violet L1, L81, L82, L95, L96, L120 and L121.

Min. active flow in line(s) seagreen
L97 (connected to backup feeder B62), probably not
exactly zero, thus not tagged violet.

Min. active line flow violet 0.0 pu

Max. active flow in line seagreen
L66 (connected to backup feeder B36, feeding the
grid).

Max. active line flow seagreen 0.6561 pu

FF is a percentage of a line flow divided by its line’s capacity. Lines and nodes downstream of violet lines should
also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 45

Table 5.8: Case 2 simulation’s line flows for lines L1-L62
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 46

Table 5.9: Case 2 simulation’s line flows for lines L63-L123
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 47

Case 2 simulation’s bus voltages

This simulation’s bus voltages are seen in Table 5.11. See Table 5.10 for the commentary on them.

Table 5.10: Commentary on Case 2 simulation’s bus voltages in Table 5.11
F

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink

None in this category, but bus B35 (one line down-
stream of backup feeder B36, feeding the grid) should
be colored pink as it has a voltage magnitude of 1.0
pu.

V = 1.0 pu green Backup feeder B36 feeds the grid.

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96 pu orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet

None in this category, but the buses main feeder B1,
B60, B61, backup feeder B62, B87, backup feeder
B88, B122 and B123 should be violet, since no power
is transmitted to them (Tables 5.8 and 5.9).

Bus voltage range Color Bus(es) or bus voltage magnitude [pu]

Min. voltage at bus brown
B96, near backup feeder B88. B96 is the bus furthest
downstream in the grid.

Min. voltage magnitude brown 0.96308 pu

Max. voltage at bus green Backup feeder B36, feeding the grid.

Max. voltage magnitude green 1.0 pu

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36
for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 48

Table 5.11: Case 2 simulation’s bus voltages
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 49

Case 2 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.4. See Table 5.12 for the commentary on it.

Table 5.12: Commentary on Case 2 simulation’s tree pattern in Figure 5.4
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node (furthest upstream) feeds the grid,
which is backup feeder B36. Figure 5.4 has three more smal-
ler green nodes: The one to the left is main feeder B1, the
middle one is backup feeder B62, and the one to the right is
backup feeder B88.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange A string of two lines near backup feeder B36.

40% < F 60% yellow
A string of twelve lines on the main branch, nearly furthest
upstream, only a string of two lines between the feeder and
the beforementioned string.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A string of two lines doesn’t transmit to backup feeder B36,
a string of two lines doesn’t transmit to bus B123, a string
of two lines doesn’t transmit to backup feeder B62, and a
string of two lines doesn’t transmit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node (furthest upstream) is the grid’s
feeder, main feeder B1, by default set with a voltage of 1.0
pu

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96
pu

orange

Approximately half of the grid’s 124 nodes are colored or-
ange, all connected furthest downstream of the grid (coloring
the backup feeders B62 and B88 orange, both connected to
violet lines).

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 50

Figure 5.4: Case 2 simulation’s tree pattern
F

Backup feeder B36 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 52

Case 3 simulation’s line flows

This simulation’s line flows are seen in Tables 5.14 and 5.15. See Table 5.13 for the commentary
on them.

Table 5.13: Commentary on Case 3 simulation’s line flows in Tables 5.14 and 5.15
F

Line flow [%] Color Categorized lines
F > 100% red L95, thus overloaded.

80% < F 100% pink L88 and L94.

60% < F 80% orange None in this category.

40% < F 60% yellow
L86 and L96 (L97 is connected to backup feeder B62,
feeding the grid).

0% < F 40% seagreen The rest of the lines.

Zero line transmission violet
L1 (connected to main feeder B1), L65 and L66 (con-
nected to backup feeder B36), L82, L120 and L121
(connected to backup feeder B88).

Line flow range Color Line(s) or line flow value [pu]
Min. active flow in line(s) violet L1, L65, L66, L82, L120 and L121.

Min. active flow in line(s) seagreen
L81 (connected to line L82), probably not exactly
zero, thus not tagged violet.

Min. active line flow violet 0.0 pu

Max. active flow in line seagreen
L97 (connected to backup feeder B62, feeding the
grid).

Max. active line flow seagreen 0.6530 pu

FF is a percentage of a line flow divided by its line’s capacity. Lines and nodes downstream of violet lines should
also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 53

Table 5.14: Case 3 simulation’s line flows for lines L1-L62
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 54

Table 5.15: Case 3 simulation’s line flows for lines L63-L123
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 55

Case 3 simulation’s bus voltages

This simulation’s bus voltages are seen in Table 5.17. See Table 5.16 for the commentary on them.

Table 5.16: Commentary on Case 3 simulation’s bus voltages in Table 5.17
F

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink

None in this category, but bus B61 (one line down-
stream of backup feeder B62, feeding the grid) should
be colored pink as it has a voltage magnitude of 1.0
pu.

V = 1.0 pu green Backup feeder B62 feeds the grid.

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96 pu orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet

None in this category, but the buses main feeder B1,
B35, backup feeder B36, B87, backup feeder B88,
B122 and B123 should be violet, since no power is
transmitted to them (Tables 5.14 and 5.15).

Bus voltage range Color Bus(es) or bus voltage magnitude [pu]

Min. voltage at bus brown
Main feeder B1, B2 and B6, thus they are the buses
furthest downstream.

Min. voltage magnitude brown 0.97313 pu

Max. voltage at bus green Backup feeder B62, feeding the grid.

Max. voltage magnitude green 1.0 pu

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36
for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 56

Table 5.17: Case 3 simulation’s bus voltages
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 57

Case 3 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.6. See Table 5.18 for the commentary on it.

Table 5.18: Commentary on Case 3 simulation’s tree pattern in Figure 5.6
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the grid,
which is backup feeder B62. The three other smaller green
nodes are the other alternative feeders: The left one is main
feeder B1. The middle one is backup feeder B36. The right
one is backup feeder B88.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red The third line from the feeder, thus overloaded.

80% < F 100% pink The fourth and tenth line from the feeder.

60% < F 80% orange None in this category.

40% < F 60% yellow The second and twelfth line from the feeder.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A line doesn’t transmit to main feeder B1, a string of two
lines doesn’t transmit to backup feeder B36, a line doesn’t
transmit to bus B123, and a string of two lines doesn’t trans-
mit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the grid’s feeder,
backup feeder B62, by default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 58

Figure 5.6: Case 3 simulation’s tree pattern
F

Backup feeder B62 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 60

Case 4 simulation’s line flows

This simulation’s line flows are seen in Tables 5.20 and 5.21. See Table 5.19 for the commentary
on them.

Table 5.19: Commentary on Case 4 simulation’s line flows in Tables 5.20 and 5.21
F

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange
L30, L120 and L121 (connected to backup feeder
B88, feeding the grid).

40% < F 60% yellow
L18-L26 and L31-L36, where L36 (connected to bus
B86) is two lines apart from backup feeder B88.

0% < F 40% seagreen The rest of the lines.

Zero line transmission violet
L1 (connected to main feeder B1), L66 (connected to
backup feeder B36), L81 and L82, L95 and L96 (L97
is connected to backup feeder B62).

Line flow range Color Line(s) or line flow value [pu]
Min. active flow in line(s) violet L1, L66, L81, L82, L95 and L96.
Min. active flow in line(s) seagreen L65 and L97, the lines should be colored violet.

Min. active line flow violet 0.0 pu

Max. active flow in line orange
L121, connected to backup feeder B88, feeding the
grid.

Max. active line flow orange 0.6580 pu

FF is a percentage of a line flow divided by its line’s capacity. Lines and nodes downstream of violet lines should
also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 61

Table 5.20: Case 4 simulation’s line flows for lines L1-L62
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 62

Table 5.21: Case 4 simulation’s line flows for lines L63-L123
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 63

Case 4 simulation’s bus voltages

This simulation’s bus voltages are seen in Table 5.23. See Table 5.22 for the commentary on them.

Table 5.22: Commentary on Case 4 simulation’s bus voltages in Table 5.23
F

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green Backup feeder B88 feeds the grid.

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96 pu orange Main feeder B1-B32

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet

None in this category, but the buses main feeder B1,
B35, backup feeder B36, B60, B61, backup feeder
B62, B122 and B123 should be violet, since no power
is transmitted to them (Tables 5.20 and 5.21).

Bus voltage range Color Bus(es) or bus voltage magnitude [pu]
Min. voltage at bus orange Main feeder B1 and B2

Min. voltage magnitude orange 0.95756 pu

Max. voltage at bus green Backup feeder B88, feeding the grid.

Max. voltage magnitude green 1.0 pu

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36
for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 64

Table 5.23: Case 4 simulation’s bus voltages
F

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Appendix A to enable zooming of this tree pattern. See Figure 3.1 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 65

Case 4 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.8. See Table 5.24 for the commentary on it.

Table 5.24: Commentary on Case 4 simulation’s tree pattern in Figure 5.8
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the grid,
which is backup feeder B88. Figure 5.8 has two smaller green
nodes: The left one is backup feeder B36. The right one
is backup feeder B62. The grid’s fourth alternative feeder,
main feeder B1, is colored orange.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange
The first and second line from the feeder, and the ninth line
from the feeder.

40% < F 60% yellow

Two strings on the main branch: The first one strings six
lines together, two lines apart from the feeder. The latter
one strings nine lines together, twelve lines apart from the
feeder, four lines apart from the first string.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A line doesn’t transmit to main feeder B1 (colored orange),
a line doesn’t transmit to backup feeder B36, a string of two
lines doesn’t transmit to bus B123, and a string of three lines
doesn’t transmit to backup feeder B62 (the line connected to
backup feeder B62 is colored seagreen, but it doesn’t trans-
mit (Table 5.21).)

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the grid’s feeder,
backup feeder B88, by default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96
pu

orange
Approximately one fourth of the grid’s 124 nodes are colored
orange, all connected furthest downstream (coloring the
main feeder B1 orange, connected to a violet line).

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.1 ... of a change of supply bus 66

Figure 5.8: Case 4 simulation’s tree pattern
F

Backup feeder B88 as feeder.

FLines and nodes downstream of violet lines should also be violet, since no power is transmitted to them. See
Table 3.1 for an overview of the cases. See Figure 3.1 for this simulation scenario’s single-line diagram. See Table 2.3
for color-category explanation. See Table 5.35 for the indexed simulation results.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 67

5.2 ... of splitting of the grid

This simulation scenario has four cases, as seen in Table 3.1. Thus four simulations were performed,
as seen in Table 5.35, producing four di↵erent tree patterns. This scenario’s line flows and bus
voltages are omitted, downsizing the report.

Case 5 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.9. See Table 5.25 for the commentary on it.

Table 5.25: Commentary on Case 5 simulation’s tree pattern in Figure 5.9
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the subgrid,
which is main feeder B1. The smaller green node is backup
feeder B36. The other two alternative feeders are in the other
subgrid.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow None in this category.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A string of two lines (L65 and L66) doesn’t transmit to
backup feeder B36, and a string of two lines (L81 and L82)
doesn’t transmit to bus B123.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the subgrid’s
feeder, main feeder B1, by default set with a voltage of 1.0
pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.2a for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 68

Figure 5.9: Case 5 simulation’s tree pattern
F

Left side subgrid. Main feeder B1 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.2a for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 69

Case 6 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.10. See Table 5.26 for the commentary on it.

Table 5.26: Commentary on Case 6 simulation’s tree pattern in Figure 5.10
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the subgrid,
which is backup feeder B36. The smaller green node is main
feeder B1. The other two alternative feeders are in the other
subgrid.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow None in this category.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A line (L1) doesn’t transmit to main feeder B1, and a string
of two lines (L81 and L82) doesn’t transmit to bus B123.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the subgrid’s
feeder, backup feeder B36, by default set with a voltage of
1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.2a for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 70

Figure 5.10: Case 6 simulation’s tree pattern
F

Left side subgrid. Backup feeder B36 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.2a for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 71

Case 7 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.11. See Table 5.27 for the commentary on it.

Table 5.27: Commentary on Case 7 simulation’s tree pattern in Figure 5.11
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the subgrid,
which is backup feeder B62. The smaller green node is
backup feeder B88. The other two alternative feeders are
in the other subgrid.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow The third, fourth and tenth line from the feeder.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet A string of two lines doesn’t transmit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the subgrid’s
feeder, backup feeder B62, by default set with a voltage of
1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.2b for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 72

Figure 5.11: Case 7 simulation’s tree pattern
F

Right side subgrid. Backup feeder B62 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.2b for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 73

Case 8 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.12. See Table 5.28 for the commentary on it.

Table 5.28: Commentary on Case 8 simulation’s tree pattern in Figure 5.12
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the sub-
grid, which is backup feeder B88. The smaller green node is
backup feeder B62, which is furthest downstream. The two
other alternative feeders are in the other subgrid.

A battery or an EV cyan None in this category.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow None in this category.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A line connected to backup feeder B62 doesn’t transmit. The
third line from backup feeder B62 doesn’t transmit. Thus the
string of three lines connected to backup feeder B62 should
all be violet.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the subgrid’s
feeder, backup feeder B88, by default set with a voltage of
1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.2b for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.2 ... of splitting of the grid 74

Figure 5.12: Case 8 simulation’s tree pattern
F

Right side subgrid. Backup feeder B88 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.2b for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 75

5.3 ... of local storage as backup feeders

This simulation scenario has four cases, as seen in Table 3.1. Thus four simulations were performed,
as seen in Table 5.35, producing four di↵erent tree patterns. This scenario’s line flows and bus
voltages are omitted, downsizing the report.

Case 9 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.13. See Table 5.29 for the commentary on it.

Table 5.29: Commentary on Case 9 simulation’s tree pattern in Figure 5.13
F

Significant buses Color Categorized buses

An alternative feeder green

None of the four alternative feeders are feeding the grid.
Three of them are green, while backup feeder B88 furthest
downstream is orange.
The left green node is main feeder B1.
The middle green node is backup feeder B36.
The right green node is backup feeder B62.

A battery or an EV cyan

Four nodes are cyan, representing four identical local stor-
ages: Three are charging, as one is discharging, feeding the
grid during this feeder outage.
The node furthest upstream feeds the grid, cyan bus B5,
four lines apart from main feeder B1. The cyan buses fur-
ther downstream are in chronological order: B115, B70 and
B107. Only buses B5 and B70 are on the main branch.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow
A string of ten lines on the main branch, connected to the
discharging battery at cyan bus B5.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

None of the alternative feeders are receiving power.
Lines not transmitting: A line to main feeder B1, a string of
two lines to backup feeder B36, a string of two lines to bus
B123, a string of two lines to bus B61 (connected to backup
feeder B62), and a string of two lines to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu cyan
The cyan node furthest upstream is the grid’s local storage
depleting under this feeder outage, located at bus B5, by
default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96
pu

orange
Approximately 30% of the grid’s 124 nodes are colored or-
ange, all connected furthest downstream of the grid (coloring
the backup feeder B88 orange, connected to a violet string).

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.4 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 76

Figure 5.13: Case 9 simulation’s tree pattern
F

Battery at bus B5 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.4 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 77

Case 10 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.14. See Table 5.30 for the commentary on it.

Table 5.30: Commentary on Case 10 simulation’s tree pattern in Figure 5.14
F

Significant buses Color Categorized buses

An alternative feeder green

None of the four alternative feeders are feeding the grid. The
green node at Figure 5.14’s top is backup feeder B88.
The three green nodes at Figure 5.14’s bottom are:
The left one is main feeder B1.
The middle one is backup feeder B36.
The right one is backup feeder B62.

A battery or an EV cyan

Four nodes are cyan, representing four identical local stor-
ages: Three are charging, as one is discharging, feeding the
grid during this feeder outage.
The node furthest upstream feeds the grid, cyan bus B70,
located on the main branch, three lines apart from cyan bus
B107. The cyan buses further downstream are in chronolo-
gical order: B115, and B5. Only buses B5 and B70 are on
the main branch.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow
A string of three lines on the main branch, connected to the
discharging battery at cyan bus B70.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

None of the alternative feeders are receiving power. A line
doesn’t transmit to main feeder B1, a line doesn’t transmit to
bus B35 (connected to backup feeder B36), a string of two
lines doesn’t transmit to bus B123, a string of three lines
doesn’t transmit to backup feeder B62, and a string of two
lines doesn’t transmit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu cyan
The cyan node furthest upstream is the grid’s local storage
depleting under this feeder outage, located at bus B70, by
default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.4 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 78

Figure 5.14: Case 10 simulation’s tree pattern
F

Battery at bus B70 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.4 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 79

Case 11 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.15. See Table 5.31 for the commentary on it.

Table 5.31: Commentary on Case 11 simulation’s tree pattern in Figure 5.15
F

Significant buses Color Categorized buses

An alternative feeder green

None of the four alternative feeders are feeding the grid. The
green node at Figure 5.14’s top is backup feeder B88.
The three green nodes at Figure 5.14’s bottom are:
The left one is main feeder B1.
The middle one is backup feeder B36.
The right one is backup feeder B62.

A battery or an EV cyan

Four nodes are cyan, representing four identical local stor-
ages: Three are charging, as one is discharging, feeding the
grid during this feeder outage.
The node furthest upstream feeds the grid, cyan bus B107,
three lines apart from cyan bus B70 located on the main
branch. The cyan buses further downstream are in chrono-
logical order: B115, and B5. Only buses B5 and B70 are on
the main branch.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange
The line connected to cyan bus B107, depleting its local stor-
age during this feeder outage.

40% < F 60% yellow
A string of five lines on the main branch, one line apart from
the cyan bus B107.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

None of the alternative feeders are receiving power. A line
doesn’t transmit to main feeder B1, a string of two lines
doesn’t transmit to backup feeder B36, a string of two lines
doesn’t transmit to bus B123, a string of three lines doesn’t
transmit to backup feeder B62, and a string of two lines
doesn’t transmit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu cyan
The cyan node furthest upstream is the grid’s local storage
depleting under this feeder outage, located at bus B107, by
default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.4 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 80

Figure 5.15: Case 11 simulation’s tree pattern
F

Battery at bus B107 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.4 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 81

Case 12 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.16. See Table 5.32 for the commentary on it.

Table 5.32: Commentary on Case 12 simulation’s tree pattern in Figure 5.16
F

Significant buses Color Categorized buses

An alternative feeder green

None of the four alternative feeders are feeding the grid. The
green node at Figure 5.14’s top is backup feeder B88.
The three green nodes at Figure 5.14’s bottom are:
The left one is main feeder B1.
The middle one is backup feeder B36.
The right one is backup feeder B62.

A battery or an EV cyan

Four nodes are cyan, representing four identical local stor-
ages: Three are charging, as one is discharging, feeding the
grid during this feeder outage.
The node furthest upstream feeds the grid, cyan bus B115,
connected to a string of two orange lines. The cyan bus four
lines apart from main feeder B1, is bus B5. The other two
cyan buses further downstream are in chronological order:
B70 and B107. Only buses B115 and B70 are on this grid’s
main branch.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange
A string of two lines connected to cyan bus B115, depleting
its local storage during this feeder outage.

40% < F 60% yellow
A string of two lines on the main branch, two lines apart
from the cyan bus B115.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

None of the alternative feeders are receiving power. A line
doesn’t transmit to main feeder B1, a string of two lines
doesn’t transmit to backup feeder B36, a line doesn’t trans-
mit to bus B122, a string of three lines doesn’t transmit to
backup feeder B62, and a string of two lines doesn’t transmit
to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu cyan
The cyan node furthest upstream is the grid’s local storage
depleting under this feeder outage, located at bus B115, by
default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.
0.94 pu < V 0.96
pu

orange None in this category.

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.4 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.3 ... of local storage as backup feeders 82

Figure 5.16: Case 12 simulation’s tree pattern
F

Battery at bus B115 as feeder.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.4 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.4 ... of a battery powered ferry 83

5.4 ... of a battery powered ferry

This simulation scenario has six cases, as seen in Table 3.1. Thus six simulations were performed,
as seen in Table 5.35, producing an identical tree pattern. Thus only one tree pattern is seen in
this section, randomly choosing Case 17. This scenario’s line flows and bus voltages are omitted,
downsizing the report.

Case 17 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.17. See Table 5.33 for the commentary on it.

Table 5.33: Commentary on Case 17 simulation’s tree pattern in Figure 5.17
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the grid,
which is main feeder B1. The smaller green node is backup
feeder B36. The other two alternative feeders are orange,
connected to violet lines.

A battery or an EV cyan
The only cyan bus B124, with a charging local storage. The
ferry is o↵ grid.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange None in this category.

40% < F 60% yellow
As in Case 1 in Figure 5.2, a string of twelve lines on the
main branch, nearly furthest upstream, only a string of two
lines between the feeder and the beforementioned string.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A line doesn’t transmit to backup feeder B36, a line doesn’t
transmit to bus B123, a string of three lines doesn’t trans-
mit to backup feeder B62, and a string of two lines doesn’t
transmit to backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the grid’s feeder,
main feeder B1, by default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96
pu

orange

As in Case 1 in Figure 5.2, approximately half of the grid’s
124 nodes are colored orange, all connected furthest down-
stream of the grid (coloring the backup feeders B62 and B88
orange, both connected to violet lines).

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Figure 3.5 for this simulation scenario’s single-line diagram. See Table 5.36 for the indexed simulation
commentaries.

5 SIMULATION RESULTS 5.4 ... of a battery powered ferry 84

Figure 5.17: Case 17 simulation’s tree pattern
F

Main feeder B1 as feeder. Onshore battery at bus B124.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.5 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.5 ... of vehicles to grid 85

5.5 ... of vehicles to grid

This simulation scenario has one case, as seen in Table 3.1. Thus one simulation was performed, as
seen in Table 5.35. This scenario’s line flows and bus voltages are omitted, downsizing the report.

Case 19 simulation’s tree pattern

This simulation’s tree pattern is seen in Figure 5.18. See Table 5.34 for the commentary on it.

Table 5.34: Commentary on Case 19 simulation’s tree pattern in Figure 5.18
F

Significant buses Color Categorized buses

An alternative feeder green

The largest green node furthest upstream feeds the grid,
which is main feeder B1. The smaller green node is backup
feeder B36. The other two alternative feeders are orange,
connected to violet lines.

A battery or an EV cyan

Three nodes are cyan, representing three identical plugged
in EVs, charging.
The cyan node directly downstream of main feeder B1, is
bus B2. The cyan node near the grid’s middle is bus B48.
The last cyan node is bus B117, four lines apart from backup
feeder B62.

Line flow [%] Color Categorized lines
F > 100% red None in this category, thus no overloaded lines.

80% < F 100% pink None in this category.

60% < F 80% orange A string of two lines on the main branch.

40% < F 60% yellow
Two strings on the main branch, separated by the orange
string. The first string has four lines, connected to main
feeder B1. The second string has eight lines.

0% < F 40% seagreen The rest of the lines.

Zero line transmis-
sion violet

A line doesn’t transmit to bus B35 (connected to backup
feeder B36), a string of two lines doesn’t transmit to bus
B123, a string of three lines doesn’t transmit to backup
feeder B62, and a string of two lines doesn’t transmit to
backup feeder B88.

Bus voltage [pu] Color Categorized buses
V � 1.1 pu red None in this category, thus no overloaded nodes.

1.0 pu V < 1.1 pu pink None in this category.

V = 1.0 pu green
The largest green node furthest upstream is the grid’s feeder,
main feeder B1, by default set with a voltage of 1.0 pu

0.96 pu < V < 1.0 pu brown The rest of the buses.

0.94 pu < V 0.96
pu

orange

As in Case 1 in Figure 5.2, approximately half of the grid’s
124 nodes are colored orange, all connected furthest down-
stream of the grid (coloring the backup feeders B62 and B88
orange, both connected to violet lines).

0.0 pu < V 0.94 pu yellow None in this category.

Zero node potential violet None in this category.

FF is a percentage of a line flow divided by its line’s capacity. V is a bus voltage. Lines and nodes downstream
of violet lines should also be violet, since no power is transmitted to them. See Table 3.1 for an overview of the
cases. See Table 5.36 for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.5 ... of vehicles to grid 86

Figure 5.18: Case 19 simulation’s tree pattern
F

Main feeder B1 as feeder. Three identical EVs dispersed at buses B2, B48 and B117.

FSee Appendix A to enable zooming of this tree pattern. Lines and nodes downstream of violet lines should also
be violet, since no power is transmitted to them. See Table 3.1 for an overview of the cases. See Figure 3.6 for
this simulation scenario’s single-line diagram. See Table 2.3 for color-category explanation. See Table 5.35 for the
indexed simulation results.

5 SIMULATION RESULTS 5.6 Simulation results summary 87

5.6 Simulation results summary

This thesis analyses a grid (single-line diagram in Figure 1.3), experiencing five scenarios as listed in
Table 3.1. In total nineteen versions of the grid are configured. Their simulation results displayed
in this report are indexed in Table 5.35. Their commentaries are indexed in Table 5.36.

See Table 3.1 for an overview of the cases.
See an overview of the simulation labels in Table 5.37.

Table 5.35: Indexed simulation results

Case Line flows Bus voltages Tree pattern Load and loss
Case 1 Tables 5.2, 5.3, 5.39 Tables 5.5, 5.40 Figure 5.2 Table 5.38
Case 2 Tables 5.8, 5.9, 5.39 Tables 5.11, 5.40 Figure 5.4 Table 5.38
Case 3 Tables 5.14, 5.15, 5.39 Tables 5.17, 5.40 Figure 5.6 Table 5.38
Case 4 Tables 5.20, 5.21, 5.39 Tables 5.23, 5.40 Figure 5.8 Table 5.38

Case 5 Table 5.39 Table 5.40 Figure 5.9 Table 5.38
Case 6 Table 5.39 Table 5.40 Figure 5.10 Table 5.38
Case 7 Table 5.39 Table 5.40 Figure 5.11 Table 5.38
Case 8 Table 5.39 Table 5.40 Figure 5.12 Table 5.38

Case 9 Table 5.39 Table 5.40 Figure 5.13 Table 5.38
Case 10 Table 5.39 Table 5.40 Figure 5.14 Table 5.38
Case 11 Table 5.39 Table 5.40 Figure 5.15 Table 5.38
Case 12 Table 5.39 Table 5.40 Figure 5.16 Table 5.38

Case 13 Table 5.39 Table 5.40 Figure 5.17 Table 5.38
Case 14 Table 5.39 Table 5.40 Figure 5.17 Table 5.38
Case 15 Table 5.39 Table 5.40 Figure 5.17 Table 5.38
Case 16 Table 5.39 Table 5.40 Figure 5.17 Table 5.38
Case 17 Table 5.39 Table 5.40 Figure 5.17 Table 5.38
Case 18 Table 5.39 Table 5.40 Figure 5.17 Table 5.38

Case 19 Table 5.39 Table 5.40 Figure 5.18 Table 5.38

Table 5.36: Indexed simulation commentaries

Case Line flows Bus voltages Tree pattern Load and loss
Case 1 Table 5.1, Section 5.7.2 Table 5.4, Section 5.7.3 Table 5.6 Section 5.7.1
Case 2 Table 5.7, Section 5.7.2 Table 5.10, Section 5.7.3 Table 5.12 Section 5.7.1
Case 3 Table 5.13, Section 5.7.2 Table 5.16, Section 5.7.3 Table 5.18 Section 5.7.1
Case 4 Table 5.19, Section 5.7.2 Table 5.22, Section 5.7.3 Table 5.24 Section 5.7.1

Case 5 Section 5.7.2 Section 5.7.3 Table 5.25 Section 5.7.1
Case 6 Section 5.7.2 Section 5.7.3 Table 5.26 Section 5.7.1
Case 7 Section 5.7.2 Section 5.7.3 Table 5.27 Section 5.7.1
Case 8 Section 5.7.2 Section 5.7.3 Table 5.28 Section 5.7.1

Case 9 Section 5.7.2 Section 5.7.3 Table 5.29 Section 5.7.1
Case 10 Section 5.7.2 Section 5.7.3 Table 5.30 Section 5.7.1
Case 11 Section 5.7.2 Section 5.7.3 Table 5.31 Section 5.7.1
Case 12 Section 5.7.2 Section 5.7.3 Table 5.32 Section 5.7.1

Case 13 Section 5.7.2 Section 5.7.3 Table 5.33 Section 5.7.1
Case 14 Section 5.7.2 Section 5.7.3 - Section 5.7.1
Case 15 Section 5.7.2 Section 5.7.3 Table 5.33 Section 5.7.1
Case 16 Section 5.7.2 Section 5.7.3 - Section 5.7.1
Case 17 Section 5.7.2 Section 5.7.3 Table 5.33 Section 5.7.1
Case 18 Section 5.7.2 Section 5.7.3 - Section 5.7.1

Case 19 Section 5.7.2 Section 5.7.3 Table 5.34 Section 5.7.1

5 SIMULATION RESULTS 5.7 The shell’s summary tables 88

5.7 The shell’s summary tables

This section comments on Algorithm B.2’s end product (green circle ”Display summary tables” in
the flow chart in Figure 2.2): the Tables 5.38, 5.39 and 5.40. Respectively, these tables display an
overview of every simulation’s:

• grid load and loss.

• color-categorized line flows.

• color-categorized bus voltages.

A simulation imitates the impact a case has on the system. A system’s impact is quantified by a
grid’s total consumption and power loss, as well as color-categorized as explained in Table 2.3. In
e↵ect, Table 5.38 displays every simulation’s grid load- and loss-impact, as Tables 5.39 and 5.40
color-categorize every simulation’s line flows and bus voltages respectively.

These three summary tables are implemented in Algorithm B.2 to append a simulation’s label in
their first column. Thus the labels are explained in Table 5.37, seen on the next page. Also, these
summary tables make it easy to compare every case’s impact on the use of the system, as well as
detect whether any of the cases are either o↵ the charts or stand out.

5 SIMULATION RESULTS 5.7 The shell’s summary tables 89

Table 5.37: The nineteen simulations’ labels explained
F

Case Simulation label Scenario Feeder, topology and any added loads

Case 1 sufeed1
Change of sup-
ply bus

Main feeder B1 feeds the grid.

Case 2 sufeed36
Change of sup-
ply bus

Backup feeder B36 feeds the grid.

Case 3 sufeed62
Change of sup-
ply bus

Backup feeder B62 feeds the grid.

Case 4 sufeed88
Change of sup-
ply bus

Backup feeder B88 feeds the grid.

Case 5 spf46t47feed1
Splitting of the
grid

The line from bus B46 to B47 is disconnected.
Main feeder B1 feeds the left side subgrid.

Case 6 spf46t47feed36
Splitting of the
grid

The line from bus B46 to B47 is disconnected.
Backup feeder B36 feeds the left side subgrid.

Case 7 spf46t47feed62
Splitting of the
grid

The line from bus B46 to B47 is disconnected.
Backup feeder B62 feeds the right side subgrid.

Case 8 spf46t47feed88
Splitting of the
grid

The line from bus B46 to B47 is disconnected.
Backup feeder B88 feeds the right side subgrid.

Case 9 prfeed5
Local storage as
backup feeders

Bus B5’s battery feeds the grid, as the three
other batteries charge.

Case 10 prfeed70
Local storage as
backup feeders

Bus B70’s battery feeds the grid, as the three
other batteries charge.

Case 11 prfeed107
Local storage as
backup feeders

Bus B107’s battery feeds the grid, as the three
other batteries charge.

Case 12 prfeed115
Local storage as
backup feeders

Bus B115’s battery feeds the grid, as the three
other batteries charge.

Case 13 feSfeed1
Battery
powered ferry

Main feeder B1 feeds the grid, as bus B124’s
small battery charges. The ferry is o↵ grid.

Case 14 feSfeed1docks
Battery
powered ferry

Main feeder B1 feeds the grid, as bus B124’s
small battery feeds the charging ferry.

Case 15 feMfeed1
Battery
powered ferry

Main feeder B1 feeds the grid, as bus B124’s
medium battery charges. The ferry is o↵ grid.

Case 16 feMfeed1docks
Battery
powered ferry

Main feeder B1 feeds the grid, as bus B124’s
medium battery feeds the charging ferry.

Case 17 feLfeed1
Battery
powered ferry

Main feeder B1 feeds the grid, as bus B124’s
large battery charges. The ferry is o↵ grid.

Case 18 feLfeed1docks
Battery
powered ferry

Main feeder B1 feeds the grid, as bus B124’s
large battery feeds the charging ferry.

Case 19 v2gfeed1 Vehicles to grid
Main feeder B1 feeds the grid, as three EVs
charge.

FThe title column of Tables 5.38, 5.39 and 5.40 consists of these simulation labels.
See Table 3.1 for an overview of the cases.
See Table 5.35 for the indexed simulation results.
See Table 5.36 for the indexed simulation commentaries.

5 SIMULATION RESULTS 5.7 The shell’s summary tables 90

5.7.1 Grid load and loss and any added loads

Commenting on Table 5.38, firstly its title column consists of every simulation’s labels, implemented
in Algorithm B.2 and detailed in Table 5.37. Table 5.38 displays every simulation’s grid load and
loss, and the percentage of any added loads. It is one of the three summary tables Algorithm B.2
produces as its end product (green circle ”Display summary tables” in the flow chart of Figure 2.2).
Thus a user receives an overview of every case’s grid load and loss statistics, quantifying every case’s
stamp.

The two first scenarios were not implemented to incorporate added loads, thus their grid load stays
fixed and their percentages of added loads are zero. Their change of feeder though resulted in a
changed grid loss, as expected with the changed line flow direction. The three latter scenarios all
include specifically voltage dependent loads. A value appears in the percentage column of added
active power when the case concerned was implemented to either decrease (supply) or increase
(consumption) its active load in the shell’s either feeder- or injection-loop (Algorithm B.2’s flow
chart in Figure 2.2). A value appears in the percentage column of added reactive power contribution
when the case concerned was implemented to calculate either a decrease or an increase of its reactive
load (Section 1.6.3).

Table 5.38 shows that the last (Case 19, Figure 3.6) simulation has the largest grid both load
and loss. This was the scenario vehicles to grid’s only case, which of all this thesis’ cases had the
largest amount of active power consumption implemented, as stated also in the table’s column for
percentage of active load increase (6.6%). The active power consumption of the charging local
storages or onshore battery in the other cases were overlooked in this thesis. Comparing the
simulations having added loads, this last simulation has the least amount of added reactive power
contribution (1.9%), fitting since an EV has a smaller capacity than a battery, thus has less impact
on the system. Although there are several (three) EVs plugged into the grid, overall they strain
the grid less than a battery does. The parameters of Table 1.4 and the changes made in this thesis
to two equations concerning Equation 2 appear thus to be valid.

Table 5.38: Every simulation’s total power load and loss, and the percentage of added loads
F

Otherwise the load- and loss-impact do not di↵er much from simulation to simulation, except for
the simulations with a split grid, having approximately half the standard load. Adding the grid
load of the left subnetwork (Figure 3.2a) to the right subnetwork (Figure 3.2b) equals the first

FSee Table 5.37 for simulation label explanation. Return to Section 5.7.

5 SIMULATION RESULTS 5.7 The shell’s summary tables 91

scenario’s grid load. The sixth (Case 6, Figure 3.2a) simulation has the smallest grid loss. The left
side subnetwork fed by backup feeder B36, and right side subnetwork fed by backup feeder B88,
is the system’s split-mode pairing with the smallest grid loss of 0.0045 pu active and 0.0025 pu
reactive.

This thesis’ added active power contributions are a load decrease for the scenario of local storage
as backup feeders (Figure 3.4) and a load increase for the two latter scenarios (Figure 3.5 and
Figure 3.6). All the cases of the scenario of local storage as backup feeder have the same amount
of load decrease (-6.7%), as this scenario was implemented to alternate its four local storages as
backup feeders, thus feeding the grid from di↵erent vantage points than its original alternative
feeders (Figure 3.1). The scenario of the battery powered ferry (Figure 3.5) has one case where
the onshore battery is too small to feed the charging ferry, thus the grid experiences a net load
increase of 2.3% more active power consumption. The two latter instances of the ferry’s demand
being met is represented with a net 0.0%. Considering this, the latter instance was not valid in
illustrating an onshore battery meeting the ferry’s demand in abundance. A larger battery should
contribute more reactive power than a medium and small sized one. Thus it appears that as the
onshore battery’s size increased its charging slope should have increased accordingly.

This thesis’ added reactive power contributions are all positive. Interpreting this, the local storages,
onshore battery and EVs all transmit directionless power into the grid in these snapshots of the
electrified grid. The largest one (Case 9, Figure 3.4) is 10% of its reactive grid load, meaning this
case introduces a tenth more electrical noise to the grid. This alerts the user to consider employing
noise-reducing measures.

5 SIMULATION RESULTS 5.7 The shell’s summary tables 92

5.7.2 Color-categorized line flows

Commenting on Table 5.39, firstly its title column consists of every simulation’s labels, implemen-
ted in Algorithm B.2 and detailed in Table 5.37. Table 5.39 displays every simulation’s color-
categorized line flows, excluding the seagreen category of ”a flow of 0-40% of a line’s flow capacity”
in Table 2.3. It is one of the three summary tables Algorithm B.2 produces as its end product
(green circle ”Display summary tables” in the flow chart in Figure 2.2). Thus a user receives an
overview of every case’s statistics on line flows, similar to a user comparing every tree pattern’s
lines. A tree pattern displays their locations, while this table o↵ers a rough overview of the system’s
line flow profile.

In total the grid contains 123 lines. A row in Table 5.39 shows the amount of lines never trans-
mitting and those transmitting more than 40% of their line’s capacity. It becomes clear that there
are more lines without than within categorization, and the flow-impact does not di↵er much from
case to case. The first and three latter scenario’s simulations all have close to ten lines not trans-
mitting (Figure 3.1). Only the scenario of splitting the grid (Figure 3.2a and Figure 3.2b) have a
higher amount of lines never transmitting. This has to do with the implementation of the scenario
(Section 4.2), in e↵ect leaving the other subgrid barren while analysing the current subgrid. Only
the third simulation has a line overflowing its capacity (Figure 5.6).

Table 5.39: Color-categorized line flows of every simulation
F

5.7.3 Color-categorized node voltages

Commenting on Table 5.40, firstly its title column consists of every simulation’s labels, imple-
mented in Algorithm B.2 and detailed in Table 5.37. Table 5.40 displays every simulation’s color-
categorized node voltages, excluding the brown category of ”a bus voltage greater than 0.96 pu and
smaller than 1.0 pu” in Table 2.3. It is one of the three summary tables Algorithm B.2 produces
as its end product (green circle ”Display summary tables” in the flow chart of Figure 2.2). Thus
a user receives an overview of every case’s statistics on bus voltages, similar to a user comparing
every tree pattern’s nodes. A tree pattern displays their locations, while this table o↵ers a rough
overview of the system’s voltage profile.

FSee Table 5.37 for simulation label explanation. Return to Section 5.7.

5 SIMULATION RESULTS 5.7 The shell’s summary tables 93

In total the grid contains 124 nodes (buses). A row in Table 5.40 shows the amount of nodes
in an outage or with a categorized potential. It becomes clear that all grids, except for the left-
side subgrid (Figure 3.2a), supplied by main feeder B1, have 63 buses in orange category (voltage
magnitude larger than 0.94 pu and smaller than or equal to 0.96 pu). Two other cases have orange
buses: The grid supplied by backup feeder B88 and the grid supplied by a battery at bus B5. Bus
B88 is at the opposite end of the grid of main feeder B1, while bus B5 is four lines apart from main
feeder B1. Both have approximately one third of its buses colored orange. Thus all the cases with
orange buses have a similar main branch, only the case with backup feeder B88 has the opposite
line flow direction.

All cases have one bus in pink category (voltage magnitude larger than or equal to 1.0 pu and
smaller than 1.1 pu). The implementation of bypassing this category if the bus is supplying the
grid (has a voltage magnitude of exactly 1.0 pu and a voltage angle of exactly 0.0 pu) does not
a↵ect this summary table, because Algorithm B.3’s function tableplot is implemented to bypass the
pink category when a table’s title column starts with a ”B”, as a voltage table does in this report.
As discovered in the scenario of a change of supply’s (Figure 3.1) Cases 2 and 3 in their respective
Tables 5.11 and 5.17, displaying their bus voltages, both have an additional voltage within pink
category. The reason why this other pink voltage didn’t get categorized as pink has of yet not
been found.

Only the split grid cases have buses with zero voltage, belonging to the subgrid left barren when
simulating the other subgrid. Not a single bus has either too low (less than or equal to 0.94 pu,
yellow) or too high voltage (equal to or greater than 1.1 pu, red). The voltage-impact di↵ers mainly
in the orange category.

Table 5.40: Color-categorized bus voltages of every simulation
F

FSee Table 5.37 for simulation label explanation. Return to Section 5.7.

6 FUTURE SOFTWARE DEVELOPMENT 94

6 Future software development

6.1 Future shell development

A flat start of the system should be optional. Thus the network configuration should exclude the
function flatStart, having nothing to do with configuring the topology, explained in Section 6.2.
Its exclusion is illustrated in Figure 6.1, where a yellow ellipse is an in-/output. flatStart has been
removed (from the feeder-loop into the injection-loop), and put into the flow chart in Figure 6.2.

config3
Updates

BusList.

Start

findtree
Updates

LineList.

config3
Updates

BusList.

mainstruct4
Establishes

the topology.

End

Start bus
number

TopologyList

Figure 6.1: Flow chart of a future development of the topology initialization
F

The tool supports multiple simulations on the same network revolving di↵erent load profiles. Thus,
a rerun of the injection-loop either with or without a flat start of the grid, should be optional,
as illustrated in the flow chart in Figure 6.2; a future development from the flow chart in Fig-
ure 2.2. The orange circles, the ”rerun (flat)”-arrow and the single yellow ellipse state the future
development of the shell. This flow chart omits all other in-/outputs, downsizing it.

As of now, flatStart was discovered at the end of writing this report to have been written within
the function DistLF (Section 1.2). In other words flatStart is actually executed twice in Al-
gorithm B.2. Illustrating it with the flow chart in Figure 2.2, the first execution takes place in
the green circle ”Initialize topology”, and the last execution takes place in the green circle ”Run
simulation”. This is similar to the flow chart in Figure 6.2, without the optional rerun bypassing
a flat start of the system.

Also, the optional bus power change should only be applied within the injection-loop. Thus the
topology and the simulation is further distinguished than before, setting them apart as two entities.
At the moment the bus injection update is done within both the feeder- and injection-loop.

6.1.1 ... of a change of supply

Regarding this scenario, no further development comes to mind.

6.1.2 ... of splitting of the grid

In principle, the grid could be split in three subgrids or more, i.e. with just one subgrid connected
to an interconnected grid. This thesis has only focused on illustrating how PyDSAL splits a grid,
but it is possible to implement a split anywhere in the grid, and calculate the resulting load flow.

Downsizing this report, only one split network was analysed, but there is already implemented in
Algorithm B.2 (specifically line 91, containing a long list of names of several networks, and lines

FSee Figure 6.2 for a flow chart of a future development of Algorithm B.2, overwriting this flow
chart with its orange circle ”Configure topology”.

6 FUTURE SOFTWARE DEVELOPMENT 6.1 Future shell development 95

127-139, making use of all of these names in stating which line is to be disconnected) a demo for
analysing several split networks, but all of them split only one line. Splitting more than one of a
grid’s lines, could be implemented by making a list of the lines to be disconnected. Visiting every
line in LineList (Section 2.1), as these disconnected lines are detected they are declared to be in
an outage, zeroing the line’s parameter ibstat (Section 4.2).

If a subgrid doesn’t have any feeder, this part of the grid will experience a blackout. Implementing
an activation of a local storage as a backup feeder, enables the software with its failure in finding
a feeder, to detect a substitute in the grid, switching it on to supply-mode. Thus increasing the
flexibility of power system operations, enabling PyDSAL to self-heal the blackout. This requires
the scenarios splitting of the grid and local storages as backup feeders to be meshed.

6.1.3 ... of local storages as backup feeders

The three other local storages charging should have had a active power consumption implemented,
but this was overlooked in this thesis.

A battery is a depleting supply, thus an implementation of the grid’s evolvement over time would
increase PyDSAL’s flexibility, monitoring the power system operation. This could be implemented
as several snapshots of the grid experiencing a stage of the battery’s depletion. Thus the user could
watch a tree pattern morph from one state to another. An implementation of this could be to list
all the snapshots, and then execute a slide show of them.

The class object battery (Algorithm B.4) contains battery attributes of integers. In order to
represent a battery’s di↵erent stages, these attributes should be lists. As a battery discharges
many of its attributes will change. Thus the first state would be the first element in all the lists,
the second state would be the second element in all the lists etc. As a consequence, the injection-
loop (Section 2.1) reiterates until all depletion stages are fulfilled, since these stages are injection
updates.

Additionally, a battery’s capacity in both MW and pu should be presented to the user, added to
a tree pattern (Section 6.2). Thus easier for the user to form an idea of this battery’s impact on
the grid. The attribute Estorage (Algorithm B.4) is probably intended for such use, but has not
yet been utilized in PyDSAL.

Implementing this, a new command could be set at Algorithm B.2’s Fork (gray ellipse in the flow
charts in Figures 2.2 and 6.2): exit if the list of stages is completed, otherwise rerun with or without
a flat start of the system. This list of stages is illustrated as a yellow ellipse in the flow chart in
Figure 6.2.

A discharging battery consequently loses its potential as it gives away what it had stored. Thus
power electronics ensure that the voltage magnitude is kept at the same level throughout the
discharging. Due to the di�culties this entails, the battery’s potential should be higher than
PyDSAL’s default setting of 1.0 pu. This requires further development of Algorithm B.3’s function
flatStart (Section 6.2).

6.1.4 ... of a battery powered ferry

The ferry plugging in its onboard battery to the onshore battery, should be implemented as an extra
battery connecting to the bus. In e↵ect, the bus’s attribute battery (Section 4.4) should as a default
be implemented as an empty list rather than a zeroed integer, enabling several batteries to connect
to a bus. This requires further development of Algorithm B.3’s function getload (Section 6.2).

6.1.5 ... of vehicles to grid

Implementing an EV charging station or allowing several V2Gs to connect to a bus, requires a
bus’s attribute v2g (Section 4.5) as a default to be an empty list rather than a zeroed integer. This

6 FUTURE SOFTWARE DEVELOPMENT 6.1 Future shell development 96

requires further development of Algorithm B.3’s function getload (Section 6.2).

Concerning the results of the scenario vehichles only case (Case 19), every EV’s voltage was smaller
than its reference voltage, since reactive power was stored rather than produced (Section 1.6.3):
�Q

ctrl was positive (the column to the far right in Table 5.38). Thus the voltage reference should
have been lower than 1.0 pu, probably as low as 0.95 pu. A table should have been made of the
V2G voltages, to compare them with their respective bus voltages.

Start

Choose
scenario

Choose
network

Choose
feeder

Configure
topology

flatStart

Change
injec-

tion(s)?

Change
feeder?

Fork

Change
network?

Change
scenario?

Display
summary
tables

End

Display
outputs

Run
simulation

Choose
injec-
tion(s)

list of a
battery’s
depletion
states

exit

rerun

rerun (flat)

yesno

yes

no

yes

no

yes

no

Figure 6.2: Flow chart of a future development of Algorithm B.2
F

FSee Figure 2.2 for Algorithm B.2’s flow chart.
See Figure 6.1 for a flow chart of a future development of the topology initialization, overwritten
by the orange circle ”Configure topology” in this flow chart.

6 FUTURE SOFTWARE DEVELOPMENT 6.2 Future function development 97

6.2 Future function development

6.2.1 flatStart

To fulfill the demands set in Section 6.1, the function flatStart must be updated. As its name
entails, it doesn’t incorporate any objects into neither BusList nor LineList. Meaning, it has
nothing to do with the topology. When the user requires a network with no record of power
flowing in its lines, flatStart resets (flattens) every bus’s electric parameters of:

• Voltage magnitude and angle

• Accumulated load and loss

These are the parameters altered during a simulation by FBS (Section 1.3), except for the sensit-
ivities. Thus flatStart should also reset the sensitivities. Otherwise within the injection-loop the
last simulation’s sensitivities overlap the next simulation, a↵ecting PyDSAL’s calculation of any
added voltage dependent loads in the grid (Section 1.6.3).

Additionally, flatStart’s resetting of voltages should be updated when a battery is acting as a
backup feeder, supplying the system. The bus this battery is connected to, states the system’s
start bus. In e↵ect, the start bus’s voltage should have a higher voltage than the default value
of 1.0 pu. Thus taking into consideration a battery’s struggle to maintain its voltage magnitude,
delivering its charge to the grid. Probably a magnitude of 1.05 pu would su�ce, singling out this
depleting supply.

6.2.2 getload

To fulfill the demands set in Section 6.1.4 and Section 6.1.5 the function getload must be imple-
mented to process a list rather than just an integer as it does at the moment. It is called by the
function accload (Section 1.3) and executed in Algorithm B.2’s injection-loop within the green
circle ”Run simulation” in the flow charts in Figures 2.2 and 6.2.

Thus a node should be able to include several objects such as batteries and EVs. Requested by
accload to visit a node, getload fishes for a list of objects concerning this node during its visit. If
a list is caught, every object’s power contribution to this node is estimated. Having processed all
the listed objects, the function adds them to the load already stored in the node (stored following
the importation of BusList in Algorithm B.2’s network-loop, flow chart in Figure 2.2, Section 2.1).
The latter part was already implemented as this thesis began, as well as having one EV and one
battery both connected to the same bus.

6.2.3 dispTree

Commenting on the tree patterns displayed in this report, several issues became apparent:

• The visibility of alternative feeders, local storages, the ferry and EVs.

• The visibility of sizes of loads. Should be able to with a glance locate small, medium and
large loads.

• The coloring of specific buses clashed with the coloring of lines/nodes (Table 2.3), making
the color-code counter-intuitive.

The bus numbers of the grid’s alternative feeders should be visible even when the user has zoomed
out to a bird’s eye view of the tree pattern. In other words, the tree pattern graphics in this thesis
should have shown the alternative feeders’ bus numbers in the same text size as the rest of the

6 FUTURE SOFTWARE DEVELOPMENT 6.2 Future function development 98

report. Also, every node’s net injection should be made clear to the user, letting the user spot the
grid’s ”fountains” and ”sinkholes” with a glance.

Thus these node categories could be introduced:

• A circular node for a node with a net negative injection.

• A square node for a node having the capacity to achieve a net negative injection.

• A triangular node for the remaining nodes.

Could be confusing to have too many shapes to contend with, thus only three shapes seem fitting.
With such an update of a tree pattern, the color-category for specific buses may be removed.
Implementing this, dispTree must be extended to include processing of a node’s injection value
prior to drawing the node.

Thus the supply node would be circular rather than larger than the other nodes. Considering
a future version of PyDSAL that includes the discharging of EVs etc., analysing the impact of
e.g. households selling power to the grid: if any of these respective nodes result in a net negative
injection, they will be easy to spot when they are circular. The location of the circular nodes
implies whether it is an alternative feeder or a substitute. A substitute could be a depleting
battery, or a pool of depleting EVs connected to one bus. It would be of interest to implement say
50 EVs connected to the grid, dispersed, all discharging into the grid. Probably few of the a↵ected
nodes turn circular, but their nodes will definitely be square shaped. Usually, the substitutes are
dispersed, while the alternative feeders are at the grid’s periphery.

6.2.4 ... of the color-categorization

Commenting on the simulation results displayed in this report (Table 5.35), several issues became
apparent:

• Lines and nodes downstream of violet (not transmitting power) lines, weren’t violet (in an
outage).

• The coloring of voltage and line flow categories were counter-intuitive, since a bus’s voltage
must be kept within a range for system stability, while a line must avoid overflowing.

One solution could be to have fewer categories and/or never use the same color twice.

The violet coloring of lines and nodes was implemented by marking the lines transmitting a flow
of exactly 0.0 pu to be violet. As 1 MW is 0.0000001 pu in this thesis (Section 1.5.2), the violet
criteria should be for flows greater than -0.0000001 pu and smaller than 0.0000001 pu.

7 CONCLUSION 99

7 Conclusion

This master thesis further developed the object-oriented software PyDSAL (Python Distribution
System Analysis Library) and was used to study several grid configurations, based on the test
system CINELDI 124.

The five scenarios investigated were as follows:

1. A change of supply bus.

2. Splitting of the grid, with a change of supply bus.

3. Local storages as backup feeders one by one.

4. The battery powered ferry’s intermittent loading of the grid, with change of onshore battery.

5. Vehicles to grid, charging.

Thus the grid CINELDI 124 underwent several transformations. The two first scenarios had
straightforward procedures to accomplish. The three latter scenarios introduced complexities that
proved challenging to overcome, i.e. requiring the user to set the electrical and topological para-
meters for the local storages and voltage dependent loads to be incorporated into the grid.

Investigations of nineteen grid cases implemented in the Python language, resulted in a new type
of shell for PyDSAL, overwriting its previous shell. In e↵ect, the shell was systematized with loops
within loops, stating the tool’s four main sequences. Thus a user may tune in to this strategic guide.
This expanded user-friendliness enables a flexible approach to studying alternative topologies and
supply situations in a distribution grid or a microgrid.

A prototype for simulating a radial grid’s single-line diagram displaying attributes was further
developed. Via a HTML file, this zoomable tree pattern depicts flow directions, labels and color-
categorized load flow characteristics.

BIBLIOGRAPHY BIBLIOGRAPHY 100

Bibliography

[Haq95] M. H. Haque. ‘Load flow solution of distribution systems with voltage dependent load
models’. In: Electric Power Systems Research 36 (1996) 151-156 (1995).

[Cop19] Oxford University Press Copyright © 2010. Oxford Dictionary of English. Copyright
© 2005–2019 Apple Inc. Apple macOS Catalina 10.15’s Dictionary app version 2.3.0
(239.5), 2019.

[Fos20] Olav Bjarte Fosso. ‘PyDSAL - Python Distribution System Analysis Library’. In: DOI:

10.1109/POWERCON48463.2020.9230554 (2020).

[AS] Nord Pool AS. System price. url: https : / /www .nordpoolgroup . com/Market - data1/

Dayahead/Area-Prices/SYS1/Hourly/?view=chart (visited on 04/01/2022).

[FME] CINELDI FME. Centre for Intelligent Electricity Distribution. url: https://www.sintef.
no/projectweb/cineldi/ (visited on 03/02/2022).

https://www.nordpoolgroup.com/Market-data1/Dayahead/Area-Prices/SYS1/Hourly/?view=chart
https://www.nordpoolgroup.com/Market-data1/Dayahead/Area-Prices/SYS1/Hourly/?view=chart
https://www.sintef.no/projectweb/cineldi/
https://www.sintef.no/projectweb/cineldi/

A HTML FILES OF TREE PATTERNS 101

A HTML files of tree patterns

Every tree pattern was saved in a HTML file, enabling zooming of the grid when opened in a web
browser. These ninenteen HTML files are delivered together with this PDF file of this report.

See Table 5.35 for the indexed simulation results. See Section 2.2.1 for more details on the tool’s
drawing of a tree pattern.

B PYDSAL 102

B PyDSAL

A PyDSAL’s previous version of the function dispTree

See Table 1.2 for an overview of PyDSAL’s scripts. Algorithm B.1 is commented on in Section 2.2.1.

Algorithm B.1: The function dispGraph

1 def dispGraph(self, topologyList,top=1, feeders=[], LEC=[], charging=[],
lowVolt=[], overload= [],disconnected=[]):,!

2 """
3 Builds and display the graph as a HTML-file
4 """

5 self.BuildGraph(topologyList,top=1,feeders=feeders, LEC=LEC,
charging=charging, lowVolt=lowVolt),!

6 self.AddEdges(topologyList, overload=overload,disconnected=disconnected)
7 nt.from_nx(nx_graph)
8 nt.show("nt.html")

9 # Visit all nodes in the forward list.
10 def BuildGraph(self, topologyList,top=1, feeders=[], LEC=[], charging=[],

lowVolt=[]):,!

11 """Visit all nodes in a forward approach and build the graphic
representation,!

12 """
13 # from pyvis.network import Network
14 # nt = Network('1000px', '2000px', layout=None)
15 def adaptNode(node, top=1, feeders=[], LEC=[], charging=[],lowVolt=[]):
16 if node == top:
17 nx_graph.add_node(node, label="Main feeder", color='green')
18 elif node in feeders:
19 nx_graph.add_node(node,label= "Bck feeder", color='green')
20 elif node in LEC:
21 nx_graph.add_node(node,label= "LEC", color='#FF33F9')
22 elif node in charging:
23 nx_graph.add_node(node,label= "Charging", color='purple')
24 elif node in lowVolt:
25 nx_graph.add_node(node,label= "Low Volt", color='yellow')
26 else:
27 nx_graph.add_node(node)
28 # print(feeders, LEC, lowVolt)
29 for x in topologyList:
30 if len(x) > 1:
31 # print('Bus' + str(x[0].busnum))
32 # nt.add_node(int(x[0].busnum))
33 adaptNode(int(x[0].busnum), top=1, feeders=feeders, LEC=LEC,

charging=charging, lowVolt=lowVolt),!

34 iloop = 1
35 while iloop < len(x): # Do for all branches of a bus
36 self.BuildGraph(x[iloop], top=1, feeders=feeders, LEC=LEC,

charging=charging, lowVolt=lowVolt),!

37 iloop += 1
38 else:

B PYDSAL A PyDSAL’s previous version of the function dispTree 103

39 # print('Bus' + str(x[0].busnum))
40 # nt.add_node(int(x[0].busnum))
41 adaptNode(int(x[0].busnum), top=1, feeders=feeders, LEC=LEC,

charging=charging, lowVolt=lowVolt),!

42 # Visit all nodes in the reverse list.
43 def AddEdges(self, topologyList, overload=[], disconnected=[]):
44 """ Visit all the nodes in a backward approach and prints the Bus name
45 """
46 def adaptEdge(node1, node2, overload=[], disconnected=[]):
47 if (node1, node2) in overload:
48 nx_graph.add_edge(node1, node2, color='red', value=2)
49 elif (node1,node2) in disconnected:
50 nx_graph.add_edge(node1, node2, color='brown', value=2)
51 else:
52 nx_graph.add_edge(node1, node2, color=" #33AFFF", arrow=True)

53 for x in reversed(topologyList):
54 if len(x) > 1:
55 # print('Bus' + str(x[0].busnum))
56 if x[0].toline:
57 # nt.add_edge(int(x[0].toline.fbus),int(x[0].busnum))
58 adaptEdge(int(x[0].toline.fbus), int(x[0].busnum),

overload=overload, disconnected=disconnected),!

59 iloop = 1
60 while iloop < len(x): # Do for all branches of a bus
61 self.AddEdges(x[iloop], overload=overload,

disconnected=disconnected),!

62 iloop += 1
63 else:
64 # print('Bus' + str(x[0].busnum))
65 if x[0].toline:
66 # nt.add_edge(int(x[0].toline.fbus), int(x[0].busnum))
67 adaptEdge(int(x[0].toline.fbus), int(x[0].busnum),

overload=overload, disconnected=disconnected),!

B PYDSAL B PyDSAL’s shell 104

B PyDSAL’s shell

See Table 1.2 for an overview of PyDSAL’s scripts. Algorithm B.2 is commented on in Section 2.1.
It was further developed from the previous version of PyDSAL’s shell, located here. A flow chart
illustrates this algorithm in Figure 2.2.

Algorithm B.2: concept.py

1 # Import functions from .py file:
2 from DistLoadFlow_vIngrid import *

3 # Set parameters:
4 dpbattery = -0.04 # Set the battery's injection for its feeding the grid:
5 dpferry = .03 # Twice of dpV2G # Set the Ferry's load:
6 dpV2G = .015# Set the V2G's load:

7 pbatmax = .04
8 qbatmax = .04
9 sizebatonshore = [0.5, 1.0, 1.5]

10 pferrymax = np.multiply(dpferry, sizebatonshore)
11 qferrymax = np.multiply(dpferry, sizebatonshore)
12 pV2Gmax = .04
13 qV2Gmax = .04

14 slopebat = .2 # Discharges what the grid drains from it.
15 slopeV2G = .05 # Charges for hours.

16 batterynr = [5, 70, 107, 115]
17 ferrynr = 124
18 V2Gnr = [2, 48, 117]

19 # Set the battery on the shore's injection (discharge):
20 dpbatteryonshore = np.multiply(-1,pferrymax)
21 dpbatL = -1*dpferry
22 dpbatteryonshore[-1] = dpbatL
23 print('Battery menu of injections on shore:',dpbatteryonshore)

24 # Create BatteryList, BatterySizes and V2GList :
25 # cmode = 1 is used in UpdateVolt, when BusList[itr].iloss==1.
26 # Meaning that, loss minimization script is activiated at these specific buses,

and only with a battery having cmode=1 will get a loss minimization.,!

27 # cmode = 2 is used in potential() and getload().
28 BatteryList = [Battery(
29 bus = nr,
30 cmode = 2,# I guess cmode stands for controlmode.
31 svcstat = 1.0,
32 vref = 1.0,
33 injPmax = pbatmax,
34 injPmin = 0.0,
35 injQmax = qbatmax,
36 injQmin = 0.0,
37 slopeP = slopebat,
38 slopeQ = slopebat)
39 for nr in batterynr]

B PYDSAL B PyDSAL’s shell 105

40 BatterySizes = [Battery(
41 bus = ferrynr,
42 cmode = 2,# I guess cmode stands for controlmode.
43 svcstat = 1.0,
44 vref = 1.0,
45 injPmax = pferrymax[i],
46 injPmin = 0.0,
47 injQmax = qferrymax[i],
48 injQmin = 0.0,
49 slopeP = slopebat,
50 slopeQ = slopebat)
51 for i in range(len(pferrymax))]

52 V2GList = [V2G(
53 bus = nr,
54 cmode = 2,
55 v2gstat = 1,
56 vref = 1,
57 injPmax = pV2Gmax,
58 injPmin = 0.0,
59 injQmax = qV2Gmax,
60 injQmin = 0.0,
61 slopeP = slopeV2G,
62 slopeQ = slopeV2G)
63 for nr in V2Gnr]

64 # Show impact:
65 impact=[] #To be appended at bottom of this script.
66 impactcountF=[] #To be appended at bottom of this script.
67 impactcountV=[] #To be appended at bottom of this script.
68 rowno=[] #To be appended at bottom of this script.

69 col = ['P_{Load}', 'Q_{Load}', 'P_{Loss}','Q_{Loss}']
70 addloads = ['p/P_{Load}[%]', 'q/Q_{Load}[%]']
71 col += addloads

72 colcountF = ['Zero F', '$40-60\%$', '$60-80\%$', '$80-100\%$', '$>100\%$']
73 colcountV = ['Zero |V|', '$|V|\leq 0.94$', '$0.94<|V|\leq 0.96$', '$1.0\leq

|V|<1.1$', '$|V|\geq 1.1$'],!

74 # Choose a scenario:
75 #scenarios = ['supply']#, 'split', 'provision', 'ferry', 'V2G']
76 #for ind in range(1):
77 scenarios = ['supply', 'split', 'provision', 'ferry', 'V2G']
78 for ind in range(5):
79 Scenario = scenarios[ind]
80 print('')
81 print('')
82 print('')
83 print('')
84 print('--- Investigating:',Scenario,'---')
85 print('')
86 print('')
87 print('')

B PYDSAL B PyDSAL’s shell 106

88 # Name network:
89 names = ['']
90 if Scenario=='split':
91 #names = ['f42t44','f44t45', 'f45t46', 'f46t47']
92 names = ['f46t47']
93 if Scenario=='ferry':
94 names = ['S', 'M', 'L']
95 if Scenario=='V2G':
96 names = ['G'] # Because label, as defined near bottom of this code,

starts with VG for the V2G investigation. Add 'G' here, and the label
starts with 'V2G'.

,!

,!

97 k=0
98 # Choose network:
99 for name in names:

100 print('')
101 print('')
102 print('')
103 print('--- Running network',name+': ---')

104 # Import data from Excel file; in effect calibrating BusList and
LineList:,!

105 BusList, LineList = BuildSystem3() # Cannot be put outside of this
name-loop, because otherwise values from last network case overlap
the current one.

,!

,!

106 # Update BusList:
107 if Scenario=='provision':
108 i=0
109 for batobj in BatteryList:
110 busnr = batobj.bus
111 BusList[busnr-1].battery = BatteryList[i]
112 i+=1
113 if Scenario=='ferry':
114 indx = names.index(name)
115 BusList[ferrynr-1].battery = BatterySizes[indx]
116 if Scenario=='V2G':
117 i=0
118 for V2Gobj in V2GList:
119 busnr = V2Gobj.bus
120 BusList[busnr-1].v2g = V2GList[i] #V2Gs dock.
121 i+=1

122 # Update LineList:
123 num=1
124 for lobj in LineList:
125 lobj.linenum = num #Their linenumbers are used in dispTree.
126 num += 1

B PYDSAL B PyDSAL’s shell 107

127 if Scenario=='split':
128 if name[-1]=='4':
129 splitfbus = 42
130 splittbus = 44
131 if name[-1]=='5':
132 splitfbus = 44
133 splittbus = 45
134 if name[-1]=='6':
135 splitfbus = 45
136 splittbus = 46
137 if name[-1]=='7':
138 splitfbus = 46
139 splittbus = 47
140 for lobj in LineList:
141 if lobj.fbus==splitfbus and lobj.tbus==splittbus:
142 lobj.ibstat = 0
143 print('')
144 print('***** Disconnected line between buses',

lobj.fbus,'and', lobj.tbus, '*****'),!

145 print('')

146 # Create network with latest update of BusList and LineList:
147 N = DistLoadFlow3(BusList, LineList) # Every network N has two lists

each: One BusList and one LineList.,!

148 # Choose feeder:
149 #In the case of Scenario=='split':
150 # Make N become the subsystem to the left by choosing a startBus left

of sep.point:,!

151 # Make N become the subsystem to the right by choosing a startBus
right of sep.point:,!

152 if Scenario=='provision':
153 feeders = [BusList[i-1] for i in batterynr]
154 elif Scenario=='ferry' or Scenario=='V2G':
155 feeders = [BusList[0]]
156 else:
157 nr = [1, 36, 62, 88]
158 feeders = [BusList[i-1] for i in nr]

159 for feeder in feeders:
160 # Initialize:
161 N.flatStart()
162 N.config3()
163 N.findtree(feeder.busnum)
164 N.config3()
165 N.topology = N.mainstruct4(startBus = feeder.busnum)

166 print('')
167 print('')
168 print('Supplying the load from Bus' + str(feeder.busnum) + ':')
169 print('Length of mainlist:',len(N.topology))
170 print('Last bus:',N.topology[-1][0].busname)
171 #N.ForwardSearch(N.topology)

B PYDSAL B PyDSAL’s shell 108

172 # Set display-lists:
173 batteries=[]
174 ferry=[]
175 V2Gs=[]
176 charging=[]
177 if Scenario=='provision':
178 batteries = feeders
179 chargingnr=[]
180 for i in batterynr:
181 if i!=feeder.busnum:
182 chargingnr.append(i)
183 charging = [BusList[i-1] for i in chargingnr]
184 if Scenario=='V2G':
185 V2Gs = [BusList[i-1] for i in V2Gnr]
186 charging = V2Gs

187 # Choose power:
188 if Scenario=='provision':
189 print('')
190 print('The battery at Bus' + str(feeder.busnum),'discharges:')
191 N.changePower(feeder.busnum, dpbattery)
192 if Scenario=='V2G':
193 print('')
194 print('V2Gs dock:')
195 for V2Gobj in V2GList:
196 N.changePower(V2Gobj.bus, dpV2G) # One V2G docks at each

respective bus.,!

197 # Choose how many rounds of load flows:
198 docks='' #Used in label below.
199 rounds = ['1st']
200 if Scenario=='ferry':
201 rounds = rounds + ['2nd']

202 # Run distribution load flow:
203 for run in rounds: #Only the ferry scenario has len(rounds)=2.
204 if Scenario=='ferry':
205 charging = [BusList[ferrynr-1]]
206 # The N-object, which is now being analyzed, includes only

one battery, which is meant for feeding the ferry,
therefore it is charging when the ferry is off grid.

,!

,!

207 if run=='2nd':
208 docks = 'docks'
209 print('')
210 print('The ferry docs:')
211 charging=[]
212 ferry = [BusList[ferrynr-1]] # Now that the ferry

connects to the grid, it appears in the resulting
.html-file.

,!

,!

B PYDSAL B PyDSAL’s shell 109

213 dp = dpferry + dpbatteryonshore[indx]
214 N.changePower(ferrynr, dp)

215 # Case description is completed. Activate load flow simulation:
216 PQList = N.DistLF(epsilon=0.00001) #Oppdatere med updategen etter

DistLF? Fant ikke den funksjonen i Fosso sin
DistLoadFlow_v2.py

,!

,!

217 N.resetBuses()
218 FLists = N.checkFlow() #Marked line flows.
219 VLists = N.checkVolt() #Marked bus voltages.

220 # Reset power as well as accumulate the added loads:
221 pinj=0
222 qinj=0
223 if Scenario=='provision':
224 pinj = dpbattery
225 for batobj in BatteryList:
226 qinj += batobj.qinj
227 # batobj.qinj = 0
228 dpreset = np.multiply(-1,dpbattery)
229 N.changePower(feeder.busnum, dpreset)
230 if Scenario=='ferry':
231 qinj = BusList[ferrynr-1].battery.qinj
232 # BusList[ferrynr-1].battery.qinj = 0
233 if run=='2nd':
234 pinj = dp
235 dpreset = np.multiply(-1,dp)
236 N.changePower(ferrynr, dpreset)
237 BusList[ferrynr-1].battery = 0 #Two load flow runs

completed, next up is the new battery size, therefore
clearing the current battery.

,!

,!

238 if Scenario=='V2G':
239 pinj = dpV2G*len(V2GList)
240 dpreset = np.multiply(-1,dpV2G)
241 for V2Gobj in V2GList:
242 qinj += V2Gobj.qinj
243 # V2Gobj.qinj = 0
244 N.changePower(V2Gobj.bus, dpreset) # One V2G disconnects

at each respective bus.,!

245 # Display results:
246 label = Scenario[0:2] + name + 'feed' + str(feeder.busnum) +

docks,!

247 print('---',label, 'analysis completed ---')

B PYDSAL B PyDSAL’s shell 110

248 # Create lists for dispTree:
249 CINELDI124feeders = [BusList[i-1] for i in [1, 36, 62, 88]]
250 tag_bobj = [CINELDI124feeders, batteries, V2Gs, ferry, charging,

[feeder]] + VLists,!

251 #Draw radial tree:
252 N.dispTree(N.topology, tagBus=tag_bobj, tagLine=FLists,

filename=label),!

253 #Tabulate voltage and/or flow results:
254 k=1
255 if k==0:
256 # fr=0
257 # N.dispFlow(fromLine=fr, tpres=True, case=label,

FLists=FLists),!

258 # N.dispVolt(fromBus=fr, tpres=True, case=label,
VLists=VLists),!

259 for i in range(2):
260 fr = i*62
261 N.dispFlow(fromLine=fr, tpres=True, case=label,

FLists=FLists),!

262 N.dispVolt(fromBus=fr, tpres=True, case=label,
VLists=VLists),!

263 #break

264 if Scenario=='supply':
265 input('pause; Press Enter to continue.') # To avoid

overheating.,!

266 # k=1

267 #Create lists for impact-tables:
268 if PQList==[]:
269 PQList = ['?']*len(col) #No solution was found.
270 else:
271 padd = (pinj/float(PQList[0]))*100
272 qadd = (qinj/float(PQList[1]))*100
273 if padd==0 and run=='1st':
274 padd='-'
275 else:
276 padd = '{:7.1f}'.format(padd)
277 if qadd==0 and run=='1st':
278 qadd='-'
279 else:
280 qadd = '{:7.1f}'.format(qadd)
281 PQList += [padd, qadd]

282 row=[]
283 for FList in FLists:
284 temp = '-'
285 l = len(FList)
286 if l > 0:
287 temp = str(l)
288 row.append(temp)
289 impactcountF.append(row)

290 row=[]
291 for VList in VLists:
292 temp = '-'

B PYDSAL B PyDSAL’s shell 111

293 l = len(VList)
294 if l > 0:
295 temp = str(l)
296 row.append(temp)
297 impactcountV.append(row)

298 rowno.append(label)
299 impact.append(PQList)
300 # Exiting load flow loop
301 # Exiting feeder loop
302 if Scenario!='ferry' or (name=='L' and run=='2nd'):
303 rowno.append('-')
304 dashes = ['-']*len(col)
305 impact.append(dashes)
306 dashes = ['-']*len(colcountF)
307 impactcountF.append(dashes)
308 dashes = ['-']*len(colcountV)
309 impactcountV.append(dashes)
310 # Exiting names of network loop
311 # Exiting investigation loop
312 #print(col)
313 #print(impact)
314 #print(colcountF)
315 #print(impactcountF)
316 #print(colcountV)
317 #print(impactcountV)
318 N.tableplot(impact, columns=col, rows=rowno, case='impact')
319 N.tableplot(impactcountF, columns=colcountF, rows=rowno, case='impactcountF')
320 N.tableplot(impactcountV, columns=colcountV, rows=rowno, case='impactcountV')

B PYDSAL C PyDSAL’s laws and functions 112

C PyDSAL’s laws and functions

See Table 1.2 for an overview of PyDSAL’s scripts. Algorithm B.3 is commented on in Section 2.2.

Algorithm B.3: DistLoadFlow-vIngrid.py

1 # Copyright (c) 2021, Olav B. Fosso, NTNU
2 #
3 # All rights reserved.
4 #
5 # Redistribution and use in source and binary forms, with or without

modification,,!

6 # are permitted provided that the following conditions are met:
7 #
8 # * Redistributions of source code must retain the above copyright notice,
9 # this list of conditions and the following disclaimer.

10 # * Redistributions in binary form must reproduce the above copyright
notice,,!

11 # this list of conditions and the following disclaimer in the
documentation,!

12 # and/or other materials provided with the distribution.

13 import math
14 import matplotlib.pyplot as plt

15 import DistribObjects_vIngrid
16 from BuildSystem_vIngrid import *

17 # Graphics representation
18 percentS = .4
19 percentM = .6
20 percentL = .8
21 from pyvis.network import Network
22 import networkx as nx
23 charge = 'cyan'
24 large= 'orchid'
25 medium = 'darkorange'
26 over = 'red'
27 small = 'gold'
28 lec = '#FF33F9'
29 zero = 'purple'
30 supply = 'forestgreen'
31 buses = 'darkgoldenrod'
32 lines = 'lightseagreen'
33 cases = 'turquoise'

34 class DistLoadFlow3:
35 """
36 Common base class Radial System's (Distribution) Load Flow
37 Input:
38 BusList - List off all Bus objects
39 LineList - List of all transmission lines objects
40 Returns: None
41 """

B PYDSAL C PyDSAL’s laws and functions 113

42 def __init__(self, Buses, Lines):
43 self.BusList = Buses
44 self.LineList = Lines
45 self.voang = np.zeros(len(self.BusList))
46 self.vomag = np.ones(len(self.BusList))
47 self.topology = []

48 def config3(self):
49 """Function for making the topology - it sets up the connection between

two buses by assigned the line to the to bus,!

50 and by preparing a list of from bus connections (branching)
51 Problem: Currently turn the direction of too many lines when the

connection point splits the chain,!

52 """
53 self.clearTopology()
54 for lobj in self.LineList:
55 if lobj.ibstat:
56 itr = lobj.tbus - 1
57 ifr = lobj.fbus - 1
58 self.BusList[ifr].tolinelist.append(lobj)
59 self.BusList[
60 itr].toline = lobj # Add information to each bus of a line

abouth which line that connects the meighbour bus.,!

61 self.BusList[ifr].fromline = lobj

62 # Add the topology information needed to define the tree structure
63 for lobj in self.LineList:
64 if lobj.ibstat:
65 itr = lobj.tbus - 1
66 ifr = lobj.fbus - 1
67 self.BusList[ifr].nextbus.append(
68 self.BusList[itr]) # Add the next bus to the list of

branches of the bus,!

69 def findtree(self, bstart=1):
70 """ Finds a trestructure from a spesified node
71 The from and two nodes are switched to get a positive flow

direction.,!

72 """
73 def mswitch(ifrom, ito): # To switch direction
74 return ito, ifrom

75 def direct(bindex, val =None): # Recursive function for topology search
and direction of a graph.,!

76 ibus = self.BusList[bindex]
77 for lobj in lineconnlist[bindex]:
78 if lobj.tbus == ibus.busnum:
79 lobj.fbus, lobj.tbus = mswitch(lobj.fbus, lobj.tbus)
80 if lobj not in lineconnlist[lobj.tbus - 1]:
81 print('Grid is not radial')
82 return False
83 lineconnlist[lobj.tbus - 1].remove(
84 lobj) # When a line is checked remove the object from the

lineconnlist of the to-bus,!

85 val = direct(lobj.tbus - 1)
86 if val == False:
87 return val

B PYDSAL C PyDSAL’s laws and functions 114

88 lineconnlist = [] # Define and initialize with sublists
89 iloop = 0
90 while iloop < len(self.BusList):
91 lineconnlist.append([])
92 iloop += 1

93 # Find lines connected to all buses
94 for lobj in self.LineList:
95 if lobj.ibstat:
96 itr = lobj.tbus - 1
97 ifr = lobj.fbus - 1
98 lineconnlist[ifr].append(lobj)
99 lineconnlist[itr].append(lobj)

100 # Build a tree structure
101 ibus = self.BusList[bstart - 1] # Identify the bus object to start with
102 valid = direct(bstart - 1)
103 return valid

104 # Flat start
105 def flatStart(self):
106 iloop = 0
107 while iloop < len(self.BusList):
108 ibus = self.BusList[iloop]
109 ibus.vomag = 1.0
110 ibus.voang = 0.0
111 ibus.ploadds = 0.0
112 ibus.qloadds = 0.0
113 ibus.pblossds = 0.0
114 ibus.qblossds = 0.0
115 iloop += 1

116 # Set up a list for the main branch, where subbranches are stored as
sublists. Handles all radial topologies,!

117 def mainstruct4(self, startBus=None):
118 """
119 An algorithm to establish a tree structure based on the system data. Sets

up a list for the main branch,,!

120 with sublists wherever branching occurs. The algorithm can handle any
radial topology, but not meshed grids.,!

121 """
122 if startBus is None:
123 startBus = self.BusList[0]
124 else:
125 startBus = self.BusList[startBus - 1]
126 mainlist = [] # Make the main branch
127 nextobj = [startBus] # Set next object to the

first bus,!

128 while len(nextobj) > 0: # Until we reach the end of
the main branch,!

129 if len(nextobj) == 1: # If no branch is present,
add the bus to main branch,!

130 mainlist.append(nextobj)
131 if len(nextobj) > 1:
132 mainlist.append([nextobj[0]]) # If branches occur, add the

root bus to the main branch,!

133 for i in range(1, len(nextobj)): # Go through each sub branch
134 bra = self.branch4(nextobj, i) # Make sub branches

B PYDSAL C PyDSAL’s laws and functions 115

135 mainlist[-2].append(bra) # Add sub branch to the root
bus,!

136 nextobj = mainlist[-1][0].nextbus # Set next bus to the next in
main branch,!

137 return mainlist

138 def branch4(self, nextobj, i):
139 """
140 A recursive algorithm to follow every branch until the end. In case of

sub branches, the algorithm calls itself.,!

141 """
142 sub = [[nextobj[i]]] # Make the sub branch,

and add the first bus,!

143 nextobj = sub[-1][0].nextbus # Set next bus to the
first of the branch,!

144 while len(nextobj) > 0: # Follow until the end of
the sub branch,!

145 if len(nextobj) == 1: # If no further
branching, add to sub branch,!

146 sub.append(nextobj)
147 if len(nextobj) > 1:
148 sub.append([nextobj[0]]) # If further branching,

add root of branch to sub branch,!

149 for j in range(1, len(nextobj)):
150 subsub = self.branch4(nextobj, j) # Go through each subsub

branch(recursive step),!

151 sub[-2].append(subsub) # Add possible subsub
branches,!

152 nextobj = sub[-1][0].nextbus # Set next bus to next
bus in sub branch,!

153 return sub

154 # Return the buses connected to the grid
155 def connectedBuses(self, topologyList):
156 """
157 The function returns a list of all buses connected to the grid.
158 """
159 buses = []
160 for x in topologyList:
161 if len(x) > 1:
162 buses.append(x[0])
163 iloop = 1
164 while iloop < len(x): # Do for all branches of a bus
165 am = self.connectedBuses(x[iloop])
166 for i in range(0, len(am)):
167 buses.append(am[i])
168 iloop += 1
169 else:
170 buses.append(x[0])
171 return buses

172 # Clear topology to start new configuration of the grid
173 def clearTopology(self):
174 """
175 The function clears all topology parameters to ensure correct

configuration when the system is altered.,!

176 """
177 for bus in self.BusList:

B PYDSAL C PyDSAL’s laws and functions 116

178 bus.connectedLines = []
179 bus.tolinelist = []
180 bus.toline = 0
181 bus.fromline = 0
182 bus.nextbus = []

183 # Connect a line
184 def connectLine2(self, line):
185 """
186 Connects a line. Can take a line object or a line index as input.
187 """
188 lineindex = 0
189 if type(line) is Line:
190 lineindex = self.LineList.index(line)
191 if type(line) is int:
192 lineindex = line
193 self.LineList[lineindex].ibstat = 1
194 print('Connected line between bus ' + str(self.LineList[lineindex].fbus)

+ ' and ' + str(,!

195 self.LineList[lineindex].tbus))

196 # Disconnect a line
197 def disconnectLine2(self, line):
198 """
199 Disconnects a line. Can take a line object or a line index as input.
200 """
201 lineindex = 0
202 if type(line) is Line:
203 lineindex = self.LineList.index(line)
204 if type(line) is int:
205 lineindex = line
206 self.LineList[lineindex].ibstat = 0
207 print('Disconnected line between bus ' +

str(self.LineList[lineindex].fbus) + ' and ' +,!

208 str(self.LineList[lineindex].tbus))

209 #Disconnect a bus
210 def disconnectBus(self, busnum):
211 """
212 The functions disconnects a bus from the system by disconnecting all

lines connected to it, and resetting,!

213 the voltage magnitude and angle.
214 """
215 bind = busnum - 1
216 bus = self.BusList[bind]
217 self.disconnectLine2(self.LineList.index(bus.toline))
218 self.BusList[bind].toline = 0
219 for lobj in bus.tolinelist:
220 self.disconnectLine2(self.LineList.index(lobj))
221 self.BusList[bind].vomag = 0.0
222 self.BusList[bind].voang = 0.0

223 # Disconnect all overloaded buses
224 def disconnectBuses(self, buses):
225 """
226 The function goes through a list of buses and disconnects them.
227 """
228 for bus in buses:

B PYDSAL C PyDSAL’s laws and functions 117

229 self.disconnectBus(bus.busnum)
230 print('Disconnected bus : ', [o.busnum for o in buses])

231 # Check is any buses have too high or too low voltage
232 #Ingrid def checkOverLoad(self):
233 def checkVolt(self): #Ingrid
234 """
235 The function goes through the list of buses to check for over- and

underloaded buses.,!

236 Returns: All buses that have been under- and overloaded
237 """
238 zero=[]
239 under=[]
240 medium=[]
241 large=[]
242 over=[]
243 for bobj in self.BusList:
244 #Ingrid if bus.vmax < bus.vomag:
245 v = bobj.vomag
246 if v==0.0:
247 zero.append(bobj)
248 if v <= .94 and v!=0.0:
249 under.append(bobj) #Like small
250 if v > .94 and v <= .96:
251 medium.append(bobj)
252 if v >= 1.0 and v < 1.1:
253 large.append(bobj)
254 if v >= 1.1:
255 over.append(bobj)

256 if len(over) > 0:
257 print('Overload found at bus: ', [o.busnum for o in over])
258 else:
259 print('No overload found.') #Ingrid
260 if len(under) > 0:
261 print('Underload found at bus: ', [u.busnum for u in under])
262 else:
263 print('No underload found.') #Ingrid
264 return [zero, under, medium, large, over]

265 #Reset buses not in the topology
266 def resetBuses(self):
267 """
268 Sets the voltage magnitude and angle of all buses not connected to the

grid to zero for display purposes.,!

269 """
270 top = self.connectedBuses(self.topology)
271 for bus in self.BusList:
272 if bus not in top:
273 bus.vomag = 0.0
274 bus.voang = 0.0

275 #Change power consumption at a bus
276 def changePower(self, busnum, delta):
277 """
278 Function for altering the power injection or consumption at a bus.
279 """
280 self.BusList[busnum - 1].pload += delta

B PYDSAL C PyDSAL’s laws and functions 118

281 #Checks for overflow on all lines
282 #Ingrid def checkOverflow(self):
283 def checkFlow(self): #Ingrid
284 """
285 Function for checking for any overflows on any lin ein the system.
286 """
287 #Ingrid print('Checking for overflow on all lines:')
288 found = 0
289 zeroFList=[] #Ingrid
290 smallFList=[] #Ingrid
291 mediumFList=[] #Ingrid
292 largeFList=[] #Ingrid
293 overFList=[] #Ingrid
294 for line in self.LineList:
295 #Ingrid if line.ratea != 0:
296 if line.ratea != 0 and line.ibstat==1: #Ingrid
297 def uij(gij, bij, tetai, tetaj):
298 return gij * np.sin(tetai - tetaj) - bij * np.cos(tetai -

tetaj),!

299 def tij(gij, bij, tetai, tetaj):
300 return gij * np.cos(tetai - tetaj) + bij * np.sin(tetai -

tetaj),!

301 def bij(R, X):
302 return (1.0 / complex(R, X)).imag

303 def gij(R, X):
304 return (1.0 / complex(R, X)).real

305 ifr = line.fbus - 1
306 itr = line.tbus - 1
307 bsh = 0.0 # No shunts included so far
308 teta1 = self.BusList[ifr].voang
309 teta2 = self.BusList[itr].voang
310 v1 = self.BusList[ifr].vomag
311 v2 = self.BusList[itr].vomag
312 b = bij(line.r, line.x)
313 g = gij(line.r, line.x)

314 Pfrom = g * v1 * v1 - v1 * v2 * tij(g, b, teta1, teta2)
315 Pto = g * v2 * v2 - v1 * v2 * tij(g, b, teta2, teta1)
316 Qfrom = -(b + bsh) * v1 * v1 - v1 * v2 * uij(g, b, teta1, teta2)
317 Qto = -(b + bsh) * v2 * v2 - v1 * v2 * uij(g, b, teta2, teta1)
318 Sfrom = math.sqrt(Pfrom**2 + Qfrom**2)
319 Sto = math.sqrt(Pto ** 2 + Qto ** 2)
320 tabS = line.ratea * percentS
321 tabM = line.ratea * percentM
322 tabL = line.ratea * percentL
323 # 40% < line flow <= 60 %
324 if (Sfrom > tabS and Sfrom <= tabM) or (Sto > tabS and Sto <=

tabM):,!

325 smallFList.append(line)
326 # 60% < line flow <= 80 %
327 if (Sfrom > tabM and Sfrom <= tabL) or (Sto > tabM and Sto <=

tabL):,!

328 mediumFList.append(line)

B PYDSAL C PyDSAL’s laws and functions 119

329 # 80% < line flow <= 100 %
330 if (Sfrom > tabL and Sfrom <= line.ratea) or (Sto > tabL and Sto

<= line.ratea):,!

331 largeFList.append(line)
332 if Sfrom > line.ratea or Sto > line.ratea:
333 # print('Overflow found at line between bus: ', line.tbus, '

and ', line.fbus),!

334 found += 1
335 overFList.append(line) # Ingrid, appending line objects.
336 if Pfrom==0.0 or Qfrom==0.0 or Pto==0.0 or Qto==0.0:
337 #Ingrid; Use 'or' here and not 'and' to make sure that if

anything is making trouble here, we spot it.,!

338 zeroFList.append(line) # Ingrid, appending line objects.
339 print('No flow on the line from bus', line.fbus, 'to',

line.tbus),!

340 if found == 0:
341 print('All line flows are within the limits.')
342 return [zeroFList, smallFList, mediumFList, largeFList,

overFList]#Ingrid,!

343 #Get the potential voltage regulation at a bus
344 def potential(self, bus):
345 """
346 Finds the maximum possible potential for voltage regulation at a bus.
347 """
348 # Get sensitivities
349 sensP = bus.dVdP * (1.0 + bus.dPlossdP)
350 sensQ = bus.dVdQ * (1.0 + bus.dQlossdQ)

351 # Get available compensation
352 compP = 0
353 compQ = 0
354 if bus.comp:
355 compQ = self.SVCDroopCrtl(bus) # Droop-based representation
356 if bus.pv:
357 pvobj = bus.pv
358 if pvobj.cmode == 2:
359 pvobj.qinj = self.PVDroopCrtl(bus) * bus.controlScale
360 compP += pvobj.injPmax
361 compQ += pvobj.injQmax
362 if bus.battery:
363 pvobj = bus.battery
364 if pvobj.cmode == 2:
365 pvobj.qinj = self.BatteryDroopCrtl(bus) * bus.controlScale
366 compP += pvobj.injPmax
367 compQ += pvobj.injQmax
368 if bus.v2g:
369 pvobj = bus.v2g
370 if pvobj.cmode == 2:
371 pvobj.qinj = self.V2GDroopCrtl(bus) * bus.controlScale
372 compP += pvobj.injPmax
373 compQ += pvobj.injQmax

374 # Find the possible voltage regulation available
375 vComp = sensP * compP + sensQ * compQ
376 vComp = - vComp
377 return vComp

B PYDSAL C PyDSAL’s laws and functions 120

378 #Find out the needed change in power injection at a bus to correct a voltage
mismatch,!

379 def neededInjection(self, busnum, actOrReact=None):
380 """
381 The functions finds the needed power injection needed at a bus to get the

voltage back within its limits.,!

382 """
383 bus = self.BusList[busnum - 1]
384 deltaV = 0.0
385 inj = 0.0
386 typ = actOrReact
387 sens = 0
388 if typ == 'active':
389 sens = bus.dVdP * (1.0 + bus.dPlossdP)
390 elif typ == 'reactive':
391 sens = bus.dVdQ * (1.0 + bus.dQlossdQ)
392 increase = 0
393 decrease = 0
394 if bus.vomag > bus.vmax:
395 deltaV = bus.vomag - bus.vmax
396 print('The bus voltage at bus', bus.busnum, ' needs to be lowered by

', deltaV),!

397 inj = deltaV / sens
398 if sens < 0:
399 increase = 1
400 if sens > 0:
401 decrease = 1
402 elif bus.vomag < bus.vmin:
403 deltaV = bus.vmin - bus.vomag
404 print('The bus voltage at bus ', bus.busnum, ' needs to be increased

by ', deltaV),!

405 inj = deltaV / sens
406 if sens < 0:
407 decrease = 1
408 if sens > 0:
409 increase = 1
410 else:
411 print('The bus voltage at bus ', bus.busnum, ' is within its range')
412 if increase:
413 print(typ, ' power injection at bus ', bus.busnum, ' must be

increased by ', abs(inj)),!

414 if decrease:
415 print(typ, ' power injection at bus ', bus.busnum, ' must be

decreased by ', abs(inj)),!

416 return inj

417 def neededInjectionLine2(self, line):
418 """
419 Finds the needed active power injection needed at a bus in case of an

overflow on a line.,!

420 """
421 lobj = None
422 if type(line) is Line:
423 lobj = line
424 if type(line) is int:
425 lobj = self.LineList[line]

B PYDSAL C PyDSAL’s laws and functions 121

426 def getDelta(lobj1):
427 def uij(gij, bij, tetai, tetaj):
428 return gij * np.sin(tetai - tetaj) - bij * np.cos(tetai - tetaj)

429 def tij(gij, bij, tetai, tetaj):
430 return gij * np.cos(tetai - tetaj) + bij * np.sin(tetai - tetaj)

431 ifr = lobj1.fbus - 1
432 itr = lobj1.tbus - 1
433 teta1 = self.BusList[ifr].voang
434 teta2 = self.BusList[itr].voang
435 v1 = self.BusList[ifr].vomag
436 v2 = self.BusList[itr].vomag
437 b = (1.0 / complex(lobj1.r, lobj1.x)).imag
438 g = (1.0 / complex(lobj1.r, lobj1.x)).real

439 Pfrom = g * v1 * v1 - v1 * v2 * tij(g, b, teta1, teta2)
440 Qfrom = -b * v1 * v1 - v1 * v2 * uij(g, b, teta1, teta2)
441 Sfrom1 = math.sqrt(Pfrom**2 + Qfrom**2)
442 deltaS1 = Sfrom1 - lobj.ratea
443 if deltaS1 ** 2 > Qfrom ** 2: #Extra

check to make it compile even if it is within its limit.,!

444 neededP = math.sqrt(deltaS1 ** 2 - Qfrom ** 2)
445 else:
446 neededP = None
447 return deltaS1, neededP

448 deltaS, neededP = getDelta(lobj)
449 if deltaS <= 0:
450 print('Line flow between bus ', lobj.fbus, ' and ', lobj.tbus, ' is

within limits.'),!

451 return 0.0
452 if deltaS > 0:
453 print('Line flow on line between bus ', lobj.fbus, ' and ',

lobj.tbus, ' must be lowered by ', deltaS),!

454 if neededP is None:
455 print('The line flow cannot be corrected solely by active

injection at bus ', lobj.tbus),!

456 else:
457 print('Active injection at bus ', lobj.tbus, ' can be increased

by ', neededP),!

458 return deltaS, neededP

459 # Handle an overload
460 def handleOverload(self, overloaded):
461 """
462 Function to handle an overload at one or several buses. Disconnects them,

and tries to connect the reserve,!

463 lines present in the system. Finds the reserve line that connects the
most buses and results in the lowest,!

464 losses.
465 """
466 self.disconnectBuses(overloaded)
467 print('Trying different topologies to find a solution: \n')
468 reserve = []
469 connected = None
470 for line in self.LineList:

B PYDSAL C PyDSAL’s laws and functions 122

471 if line.reserve == 1:
472 reserve.append(line)
473 plossmin = 10000
474 numbus = 0
475 for line in reserve:
476 self.connectLine2(line)
477 self.config3()
478 mesh = self.findtree()
479 if mesh is None:
480 self.config3()
481 self.topology = dlf.mainstruct4()
482 p1, q1, p2, q2 = self.accload(self.topology, self.BusList)
483 connectedbuses = self.connectedBuses(self.topology)
484 if len(connectedbuses) >= numbus:
485 if p2 < plossmin:
486 numbus = len(connectedbuses)
487 plossmin = p2
488 connected = line
489 self.disconnectLine2(line)
490 if plossmin < 10000:
491 self.connectLine2(connected)
492 self.config3()
493 mesh = self.findtree()
494 self.config3()
495 self.topology = dlf.mainstruct4()
496 print('\nNetwork was altered due to an overload at bus: ' +

str([o.busnum for o in overloaded]) + '\n' +,!

497 'Network was altered by connecting line: ' +
str(self.LineList.index(connected)) + ' between bus: ' +,!

498 str(connected.tbus) + ' and ' + str(connected.fbus))
499 top = self.connectedBuses(self.topology)
500 print('Number of buses connected: ', len(top))
501 self.resetBuses()
502 print('New Load Flow Solution: \n')
503 dlf.DistLF(epsilon=0.00001)
504 if plossmin == 10000:
505 print('No alternative topology could be found to alter the network

and still have a radial network'),!

506 # Display transmission line flows
507 def dispFlow(self, fromLine=0, toLine=0, tpres=False, case=None, FLists=[]):

#Ingrid, included case and FLists.,!

508 """ Display the flow on the requested distribution lines
509 """

510 mainlist = []
511 rowno = []

512 def uij(gij, bij, tetai, tetaj):
513 return gij * np.sin(tetai - tetaj) - bij * np.cos(tetai - tetaj)

514 def tij(gij, bij, tetai, tetaj):
515 return gij * np.cos(tetai - tetaj) + bij * np.sin(tetai - tetaj)

516 def bij(R, X):
517 return (1.0 / complex(R, X)).imag

518 def gij(R, X):

B PYDSAL C PyDSAL’s laws and functions 123

519 return (1.0 / complex(R, X)).real

520 if toLine == 0:
521 toLine = len(self.LineList)
522 # if tpres:
523 #Ingrid toLine = np.minimum(fromLine + 13, toLine)
524 toLine = np.minimum(fromLine + 62, toLine) #Ingrid

525 if fromLine < len(self.LineList):
526 inum = fromLine
527 else:
528 print('Line :', fromLine, ' does not exist')
529 return()

530 for line in self.LineList[fromLine:toLine]:
531 ifr = line.fbus - 1
532 itr = line.tbus - 1
533 bsh = 0.0 # No shunts included so far
534 teta1 = self.BusList[ifr].voang
535 teta2 = self.BusList[itr].voang
536 v1 = self.BusList[ifr].vomag
537 v2 = self.BusList[itr].vomag
538 b = bij(line.r, line.x)
539 g = gij(line.r, line.x)

540 Pfrom = g * v1 * v1 - v1 * v2 * tij(g, b, teta1, teta2)
541 Pto = g * v2 * v2 - v1 * v2 * tij(g, b, teta2, teta1)
542 Qfrom = -(b + bsh) * v1 * v1 - v1 * v2 * uij(g, b, teta1, teta2)
543 Qto = -(b + bsh) * v2 * v2 - v1 * v2 * uij(g, b, teta2, teta1)
544 # Update structures
545 line.flowfromP = Pfrom
546 line.flowfromQ = Qfrom
547 line.flowtoP = Pto
548 line.flowtoQ = Qto

549 if not tpres:
550 print(' FromBus :', '{:4.0f}'.format(ifr + 1), ' ToBus :',

'{:4.0f}'.format(itr + 1),,!

551 ' Pfrom :', '{:7.4f}'.format(Pfrom), ' Qfrom : ',
'{:7.4f}'.format(Qfrom),,!

552 ' Pto :', '{:7.4f}'.format(Pto), ' Qto :',
'{:7.4f}'.format(Qto)),!

553 #Ingrid sublist = [ifr + 1, itr + 1, '{:7.4f}'.format(Pfrom),
'{:7.4f}'.format(Qfrom),,!

554 #Ingrid '{:7.4f}'.format(Pto), '{:7.4f}'.format(Qfrom)]
555 Sfrom = math.sqrt(Pfrom**2 + Qfrom**2)
556 Sto = math.sqrt(Pto ** 2 + Qto ** 2)
557 sublist = [ifr + 1, itr + 1,
558 # sublist = [str(ifr + 1)+'-'+str(itr + 1),
559 # '{:7.4f}'.format(Sfrom),
560 # '{:7.4f}'.format(Sto)]#,
561 '{:7.4f}'.format(Pfrom),
562 '{:7.4f}'.format(Pto),
563 '{:7.4f}'.format(Qfrom),
564 '{:7.4f}'.format(Qto)] #Ingrid, changed the last Q from Qfrom

to Qto. Must have been a copy-paste error.,!

565 mainlist.append(sublist)

B PYDSAL C PyDSAL’s laws and functions 124

566 #Ingrid rowno.append('Line ' + str(inum))
567 rowno.append('L' + str(inum+1)) #Ingrid
568 inum += 1

569 if tpres:
570 title = 'Transmission line flow'
571 #Ingrid colind = ['FromBus', 'ToBus', 'Pfrom', 'Qfrom', 'Pto', 'Qto']
572 # colind = ['fromBus', 'toBus', 'Sfrom', 'Sto']#, 'Pto', 'Qto']

#Ingrid,!

573 # colind = ['Buses', 'Pfrom', 'Pto', 'Qfrom', 'Qto'] #Ingrid
574 colind = ['fromBus', 'toBus', 'P_{from}', 'P_{to}', 'Q_{from}',

'Q_{to}'] #Ingrid,!

575 #Ingrid self.tableplot(mainlist, title, colind, rowno, columncol=[],
rowcol=[], colw=[], case=case) #Ingrid, included case and colw.,!

576 self.tableplot(mainlist, title, colind, rowno, case, FLists) #Ingrid,
included case and FLists.,!

577 # Conduct a distribution system load flow based on FBS
578 def DistLF(self, epsilon=0.0001):
579 """ Solves the distribution load flow until the convergence criteria is

met for all buses.,!

580 The two first steps are to set up additions topology information and to
build the main structure,!

581 Next,it is switched between forward sweeps(Voltage updates) and backward
sweeps(load update and loss calcuation),!

582 """

583 # Flat start option has to be considered
584 self.flatStart()

585 diff = 10
586 iloop = 0
587 while diff > epsilon:
588 p1, q1, p2, q2 = self.accload(self.topology, self.BusList)
589 print('Iter: ', iloop + 1, 'Pload:', '{:7.4f}'.format(p1), 'Qload:',

'{:7.4f}'.format(q1),,!

590 'Ploss:', '{:7.4f}'.format(p2), 'Qloss:', '{:7.4f}'.format(q2))
591 oldVs = []
592 for i in range(0, len(self.BusList)):
593 oldVs.append(self.BusList[i].vomag)
594 self.UpdateVolt(self.topology, self.BusList)
595 newVs = []
596 iloop += 1
597 if iloop > 15:
598 print('Convergence could not be reached.')
599 return [] #Ingrid. Return empty list.
600 diffs = []
601 for i in range(0, len(self.BusList)):
602 newVs.append(self.BusList[i].vomag)
603 diffs.append(abs(oldVs[i] - newVs[i]))
604 diff = max(diffs)
605 # overload = self.checkOverLoad()
606 # if len(overload) > 0:
607 # self.handleOverload(overload)
608 print("****** Load flow completed in ", iloop, " iterations ******")
609 #Ingrid print('\n', "****** Load flow completed in ", iloop, " iterations

******", '\n'),!

B PYDSAL C PyDSAL’s laws and functions 125

610 sublist = ['{:7.4f}'.format(p1), '{:7.4f}'.format(q1),
'{:7.4f}'.format(p2), '{:7.4f}'.format(q2)]#Ingrid. Return total
loads and total losses in string format.

,!

,!

611 return sublist #Ingrid. Added this line in order to tabulate each case's
total power load and total loss.,!

612 # Visit all nodes in the reverse list.
613 def BackwardSearch(self, topologyList):
614 """ Visit all the nodes in a backward approach and prints the Bus name
615 """
616 for x in reversed(topologyList):
617 if len(x) > 1:
618 print('Bus' + str(x[0].busnum))
619 iloop = 1
620 while iloop < len(x): # Do for all branches of a bus
621 self.BackwardSearch(x[iloop])
622 iloop += 1
623 else:
624 print('Bus' + str(x[0].busnum))

625 # Visit all nodes in the forward list.
626 def ForwardSearch(self, topologyList):
627 """Visit all nodes in a forward approach and prints the Bus name
628 """
629 for x in topologyList:
630 if len(x) > 1:
631 print('Bus' + str(x[0].busnum))
632 iloop = 1
633 while iloop < len(x): # Do for all branches of a bus
634 self.ForwardSearch(x[iloop])
635 iloop += 1
636 else:
637 print('Bus' + str(x[0].busnum))

638 # Visit all nodes in the forward list.
639 def AddNodes(self, G=0, topologyList=[], tagBus=[]):
640 """Visit all nodes in a forward approach and build the graphic

representation,!

641 """
642 def tagNode(G=0, node=0, tagBus=[]):
643 # The colors are set at top of this .py-file.
644 # tagBus = [CINELDI124feeders, batteries, V2Gs, ferry, charging,

[feeder]] + VLists,!

645 # VLists = [zero, under, medium, large, over]
646 S = 20
647 M = 30
648 L = 40
649 XL = 50

650 busnr = node.busnum #To be uses many times below.

651 #-------label------------------color----size--
652 tag = [['B' + str(busnr) + '\n',buses,S],

B PYDSAL C PyDSAL’s laws and functions 126

653 ['***Bck feeder***', supply, M],
654 ['***Battery***', charge, M],
655 ['V2G', charge, M],
656 ['Ferry', charge, M],
657 ['---charging---', charge, M],
658 ['---supplying---', supply, XL],
659 ['Zero Volt', zero, XL],
660 ['Low Volt', small, XL],
661 ['Medium Volt', medium, S],
662 ['Large Volt', large, S],
663 ['Over Volt', over, XL]]
664 # ['LEC', lec, L]]

665 # If multiple labels per node, display them all:
666 indextags=[]
667 indextags.append(0) # Make sure the node's bus number is tagged.
668 for taglist in tagBus:
669 for bobj in taglist:
670 if busnr==bobj.busnum: #node is eaten by tagNode (currently

defined).,!

671 i = tagBus.index(taglist) + 1
672 if i not in indextags: #not get same label twice or

more.,!

673 indextags.append(i)
674 break
675 text=''
676 for ind in indextags:
677 label = tag[ind][0]
678 if ind==1 and busnr==1:
679 label = '***Main feeder***' # Overwrite if node is main

feeder, because CINELDI124 has its main feeder at bus1,
and its back up feeders at buses, 36, 62 and 88.

,!

,!

680 text += label + '\n'

681 # Tag node with attributes:
682 i = indextags[-1] # The last tag gets the highest color priority.
683 for ind in indextags:
684 if tag[ind][1]==charge: #Make sure that Ferry, V2G etc. is

visible on the tree.,!

685 i=ind
686 break
687 G.add_node(busnr,
688 label = text,
689 color = tag[i][1],
690 size = tag[i][2])

691 # Build network of nodes:
692 for x in topologyList:
693 if len(x) > 1:
694 # print('Bus' + str(x[0].busnum))
695 tagNode(G, x[0], tagBus)

696 iloop = 1
697 while iloop < len(x): # Do for all branches of a bus
698 self.AddNodes(G, x[iloop], tagBus)
699 iloop += 1
700 else:
701 # print('Bus' + str(x[0].busnum))

B PYDSAL C PyDSAL’s laws and functions 127

702 tagNode(G, x[0], tagBus)

703 # Visit all nodes in the reverse list.
704 def ConnectNodes(self, G=0, topologyList=[], tagLine=[]):
705 """ Visit all the nodes in a backward approach and prints the Bus name
706 """
707 def tagEdge(G=0, toLine=0, toNode=0, tagLine=[]):
708 # The colors are set at top of this .py-file.
709 #tagLine = [zero, small, medium, large, over]
710 value = 500
711 #--------label----------color-------value-arrows---
712 tag = [['', lines, value, True],
713 ['ZERO FLOW', zero, value, False],
714 ['', small, value, True],
715 ['', medium, value, True],
716 ['', large, value, True],
717 ['OVERLOADED', over, value, True]]

718 # Choose the appropriate tag:
719 i=0
720 for taglist in tagLine:
721 for lobj in taglist:
722 if lobj.fbus == toLine.fbus and lobj.tbus == toNode.busnum:
723 i = tagLine.index(taglist) + 1
724 break

725 # Tag line with attributes:
726 linenr = toLine.linenum
727 text = 'L' + str(linenr) + '\n' + tag[i][0]
728 G.add_edge(toLine.fbus,
729 toNode.busnum,
730 label = text,
731 color = tag[i][1],
732 value = tag[i][2],
733 arrows = tag[i][3])

734 # Connect nodes:
735 for x in reversed(topologyList):
736 if len(x) > 1:
737 # print('Bus' + str(x[0].busnum))
738 if x[0].toline:
739 tagEdge(G, x[0].toline, x[0], tagLine)

740 iloop = 1
741 while iloop < len(x): # Do for all branches of a bus
742 self.ConnectNodes(G, x[iloop], tagLine)
743 iloop += 1
744 else:
745 # print('Bus' + str(x[0].busnum))
746 if x[0].toline:
747 tagEdge(G, x[0].toline, x[0], tagLine)

748 def dispTree(self, topologyList=[], tagBus=[], tagLine=[], filename=None):

B PYDSAL C PyDSAL’s laws and functions 128

749 """
750 Builds and displays the graph as a HTML-file

751 """
752 G = nx.DiGraph()
753 self.AddNodes(G, topologyList, tagBus)
754 self.ConnectNodes(G, topologyList, tagLine)
755 nx.draw(G, with_labels = True)
756 nt = Network('2000px', '2000px', directed=True, layout="Hierarchcal")
757 nt.from_nx(G)

758 # Create hyperlink where network is displayed:
759 nt.show(filename+'.html')

760 # Calculations the load for the actual voltage at the bus
761 def getload(self, busobj):
762 """ Calculates the net voltage corrected load at the bus - currently a

simple ZIP model is applied.,!

763 Input: The busobject
764 Returns: pLoadAct, qLoadAct
765 """
766 # if busobj.vset > 0:
767 # self.voltCrtl(busobj)
768 qmod = 0.0
769 pmod = 0.0
770 # Include all possible local sources (SVC/Statcom, PV, Battery and V2G)
771 if busobj.comp:
772 qmod = self.SVCDroopCrtl(busobj) # Droop-based representation
773 if busobj.pv:
774 pvobj = busobj.pv
775 if pvobj.cmode == 2:
776 pvobj.qinj = self.PVDroopCrtl(busobj) * busobj.controlScale
777 pmod += pvobj.pinj
778 qmod += pvobj.qinj
779 if busobj.battery:
780 pvobj = busobj.battery
781 if pvobj.cmode == 2:
782 pvobj.qinj = self.BatteryDroopCrtl(busobj) * busobj.controlScale
783 pvobj = busobj.battery
784 pmod += pvobj.pinj
785 qmod += pvobj.qinj
786 if busobj.v2g:
787 pvobj = busobj.v2g
788 if pvobj.cmode == 2:
789 pvobj.qinj = self.V2GDroopCrtl(busobj) * busobj.controlScale
790 pmod += pvobj.pinj
791 qmod += pvobj.qinj
792 # Find the net load at the node (Note: load - injection)
793 pLoadAct = busobj.pload * (
794 busobj.ZIP[0] * busobj.vomag ** 2 + busobj.ZIP[1] * busobj.vomag

+ busobj.ZIP[2]) - pmod,!

795 qLoadAct = busobj.qload * (
796 busobj.ZIP[0] * busobj.vomag ** 2 + busobj.ZIP[1] * busobj.vomag

+ busobj.ZIP[2]) - qmod,!

797 dPdV = busobj.pload * (busobj.ZIP[0] * 2 * busobj.vomag + busobj.ZIP[1])
798 dQdV = busobj.qload * (busobj.ZIP[0] * 2 * busobj.vomag + busobj.ZIP[1])

B PYDSAL C PyDSAL’s laws and functions 129

799 return pLoadAct, qLoadAct, dPdV, dQdV

800 def voltCrtl(self, busobj, mode='Reactive'):
801 """ Changes the net injection at voltage controlled buses
802 Input: The busobject
803 mode - Control mode ('Active', 'Reactive', 'Both' - default =

'Reactive'),!

804 Returns: pLoadAct, qLoadAct
805 """
806 if busobj.vset > 0 and busobj.vomag < 1.0:
807 if np.abs(busobj.vomag - busobj.vset) > 0.0002:
808 if mode == 'Active':
809 deltap = (busobj.vset - busobj.vomag) / (busobj.dVdP * (1 +

busobj.dPlossdP)),!

810 busobj.pload += deltap
811 print('Load corr (Active): ', busobj.busnum, deltap,

busobj.pload),!

812 elif mode == 'Reactive':
813 deltaq = (busobj.vset - busobj.vomag) / (busobj.dVdQ * (1 +

busobj.dQlossdQ)),!

814 busobj.qload += deltaq
815 print('Load corr (Reactive): ', busobj.busnum, deltaq,

busobj.qload),!

816 def PVDroopCrtl(self, busobj):
817 """Calculates the PV/converter contribution to voltage control"""
818 pvobj = busobj.pv
819 if pvobj.stat:
820 qsens = busobj.dVdQ * (1.0 + busobj.dQlossdQ)
821 if qsens:
822 a = 1.0
823 b = -(pvobj.vprev + pvobj.slopeQ / qsens)
824 c = pvobj.slopeQ / qsens * busobj.vomag
825 v = (-b + np.sqrt(b ** 2 - 4 * a * c)) / 2.0
826 v2 = (-b - np.sqrt(b ** 2 - 4 * a * c)) / 2.0
827 # print('v1 :', v, ' v2 : ', v2)
828 else:
829 v = pvobj.vprev
830 # v = (busobj.vomag - qsens*svcobj.vprev/svcobj.slopeQ)/(1.0 -

qsens/svcobj.slopeQ),!

831 Qc = -1.0 / pvobj.slopeQ * v * (v - pvobj.vref)
832 pvobj.vprev = v
833 print(busobj.busname, ' Volt: ', v, ' Qinj = ', Qc)
834 pvobj.qinj = Qc
835 return Qc

836 def V2GDroopCrtl(self, busobj):
837 """Calculates the PV/converter contribution to voltage control"""
838 v2gobj = busobj.v2g
839 if v2gobj.stat:
840 qsens = busobj.dVdQ * (1.0 + busobj.dQlossdQ)
841 if qsens:
842 a = 1.0
843 #Ingrid b = -(v2gobj.vprev + v2gobj.slopeQ / qsens)
844 #Ingrid c = v2gobj.slopeQ / qsens * busobj.vomag
845 temp = qsens / v2gobj.slopeQ #Ingrid
846 b = -(v2gobj.vprev + temp) #Ingrid
847 c = temp * busobj.vomag #Ingrid

B PYDSAL C PyDSAL’s laws and functions 130

848 v = (-b + np.sqrt(b ** 2 - 4 * a * c)) / 2.0
849 v2 = (-b - np.sqrt(b ** 2 - 4 * a * c)) / 2.0
850 # print('v1 :', v, ' v2 : ', v2)
851 else:
852 v = v2gobj.vprev
853 # v = (busobj.vomag - qsens*svcobj.vprev/svcobj.slopeQ)/(1.0 -

qsens/svcobj.slopeQ),!

854 #Ingrid Qc = -1.0 / v2gobj.slopeQ * v * (v - v2gobj.vref)
855 Qc = -1.0 * v2gobj.slopeQ * v * (v - v2gobj.vref) #Ingrid
856 v2gobj.vprev = v
857 print(busobj.busname, ' Volt: ', v, ' Qinj = ', Qc)
858 v2gobj.qinj = Qc
859 return Qc

860 def BatteryDroopCrtl(self, busobj):
861 """Calculates the PV/converter contribution to voltage control"""
862 batobj = busobj.battery
863 if batobj.stat:
864 qsens = busobj.dVdQ * (1.0 + busobj.dQlossdQ)
865 if qsens:
866 a = 1.0
867 #Ingrid b = -(batobj.vprev + batobj.slopeQ / qsens)
868 #Ingrid c = batobj.slopeQ / qsens * busobj.vomag
869 temp = qsens / batobj.slopeQ #Ingrid
870 b = -(batobj.vprev + temp) #Ingrid
871 c = temp * busobj.vomag #Ingrid
872 v = (-b + np.sqrt(b ** 2 - 4 * a * c)) / 2.0
873 v2 = (-b - np.sqrt(b ** 2 - 4 * a * c)) / 2.0
874 # print('v1 :', v, ' v2 : ', v2)
875 else:
876 v = batobj.vprev
877 # v = (busobj.vomag - qsens*svcobj.vprev/svcobj.slopeQ)/(1.0 -

qsens/svcobj.slopeQ),!

878 #Ingrid Qc = -1.0 / batobj.slopeQ * v * (v - batobj.vref)
879 Qc = -1.0 * batobj.slopeQ * v * (v - batobj.vref) #Ingrid
880 batobj.vprev = v
881 print(busobj.busname, ' Volt: ', v, ' Qinj = ', Qc)
882 batobj.qinj = Qc
883 return Qc

884 def SVCDroopCrtl(self, busobj):
885 """Calculates the SVC contribution to voltage control"""
886 svcobj = busobj.comp
887 if svcobj.stat:
888 qsens = busobj.dVdQ * (1.0 + busobj.dQlossdQ)
889 if qsens:
890 a = 1.0
891 b = -(svcobj.vprev + svcobj.slopeQ / qsens)
892 c = svcobj.slopeQ / qsens * busobj.vomag
893 v = (-b + np.sqrt(b ** 2 - 4 * a * c)) / 2.0
894 v2 = (-b - np.sqrt(b ** 2 - 4 * a * c)) / 2.0
895 print('v1 :', v, ' v2 : ', v2)
896 else:
897 v = svcobj.vprev
898 # v = (busobj.vomag - qsens*svcobj.vprev/svcobj.slopeQ)/(1.0 -

qsens/svcobj.slopeQ),!

899 Qc = -1.0 / svcobj.slopeQ * v * (v - svcobj.vref)
900 svcobj.vprev = v

B PYDSAL C PyDSAL’s laws and functions 131

901 print(busobj.busname, ' Volt: ', v, ' Qinj = ', Qc)
902 svcobj.qinj = Qc
903 return Qc

904 def SVCCrtl2(self, busobj):
905 """Calculates the SVC contribution to voltage control"""
906 svcobj = busobj.comp
907 if svcobj.stat:
908 qsens = busobj.dVdQ * (1.0 + busobj.dQlossdQ)
909 v = (busobj.vomag - qsens * svcobj.vprev / svcobj.slopeQ) / (1.0 -

qsens / svcobj.slopeQ),!

910 Qc = -1.0 / svcobj.slopeQ * (v - svcobj.vref)
911 svcobj.vprev = v
912 print(busobj.busname, ' Volt: ', v, ' Qinj = ', Qc)
913 svcobj.qinj = Qc
914 return Qc

915 # Calculate the accumulated load and losses starting on the last node
916 def accload(self, topologyList, BusList):
917 """Calculates the accumulated downstream active and reactive load at all

buses,!

918 and calculates the active and reactive losses of lines and make an
accumulated equivalent load at the buses,!

919 """
920 pl1 = 0.0
921 ql1 = 0.0
922 ploss1 = 0.0
923 qloss1 = 0.0

924 for x in reversed(topologyList): # Start on last node
925 if len(x) > 1:
926 iloop = 1
927 while iloop < len(x): # Do for all branches at a bus
928 pl2, ql2, ploss2, qloss2 = self.accload(x[iloop], BusList)
929 pl1 += pl2 # Add accumulated powers and losses in a branch

to the node where the brancing accurs.,!

930 ql1 += ql2
931 ploss1 += ploss2
932 qloss1 += qloss2
933 iloop += 1
934 pla, qla, dPdV1, dQdV1 = self.getload(x[0]) # Add local loads
935 pl1 += pla # Add local loads
936 ql1 += qla
937 x[0].ploadds = pl1 # Add accumulated descriptions to the

branching node,!

938 x[0].qloadds = ql1
939 x[0].pblossds = ploss1
940 x[0].qblossds = qloss1
941 if pl1 != 0:
942 x[0].dPdV = (x[0].dPdV * (pl1 - pla) + dPdV1 * pla) / pl1
943 if ql1 != 0:
944 x[0].dQdV = (x[0].dQdV * (ql1 - qla) + dQdV1 * qla) / ql1
945 if x[0].toline: # Follow the next node in the main path
946 lobj = x[0].toline
947 if lobj.ibstat:
948 ifr = lobj.fbus
949 itr = lobj.tbus

B PYDSAL C PyDSAL’s laws and functions 132

950 pto = x[0].ploadds + x[0].pblossds # Find the flow to
the downstream bus,!

951 qto = x[0].qloadds + x[0].qblossds
952 lobj.ploss = lobj.r * (pto ** 2 + qto ** 2) / x[
953 0].vomag ** 2 # Estimate the losses of the branch
954 lobj.qloss = lobj.x * (pto ** 2 + qto ** 2) / x[0].vomag

** 2,!

955 ploss1 += lobj.ploss
956 qloss1 += lobj.qloss
957 x[0].pblossds = ploss1 # Add the losses to the

downstream bus,!

958 x[0].qblossds = qloss1

959 else: # No branching at the bus
960 # pl1 += x[0].pload
961 # ql1 += x[0].qload
962 pla, qla, dPdV1, dQdV1 = self.getload(x[0])
963 pl1 += pla # Add local loads
964 ql1 += qla
965 x[0].ploadds = pl1
966 x[0].qloadds = ql1
967 if pl1 != 0:
968 x[0].dPdV = (x[0].dPdV * (pl1 - pla) + dPdV1 * pla) / pl1
969 if ql1 != 0:
970 x[0].dQdV = (x[0].dQdV * (ql1 - qla) + dQdV1 * qla) / ql1
971 if x[0].toline:
972 lobj = x[0].toline
973 if lobj.ibstat:
974 ifr = lobj.fbus
975 itr = lobj.tbus
976 pto = x[0].ploadds + ploss1
977 qto = x[0].qloadds + qloss1
978 lobj.ploss = lobj.r * (pto ** 2 + qto ** 2) / x[0].vomag

** 2,!

979 lobj.qloss = lobj.x * (pto ** 2 + qto ** 2) / x[0].vomag
** 2,!

980 ploss1 += lobj.ploss
981 qloss1 += lobj.qloss
982 x[0].pblossds = ploss1
983 x[0].qblossds = qloss1

984 return pl1, ql1, ploss1, qloss1 # Return the accumulated loads and
losses from the current branch,!

985 # Update the control scaling factors
986 def UpdateControl(self, BusList):
987 """ Updates the scaling factors used for Voltage and Minimum loss

purposes,!

988 Identifies number of control units on adjacent buses and updates the
scaling used to improve convergence,!

989 May be extended later
990 """

991 iloop = 0
992 while iloop < len(BusList):
993 iunit = 0
994 inext = BusList[iloop].tolinelist

B PYDSAL C PyDSAL’s laws and functions 133

995 # print(len(inext))
996 if len(inext) > 1:
997 for iloop2 in inext: # Find the number of buses
998 itr = iloop2.tbus
999 if BusList[itr - 1].iloss == 1:

1000 iunit += 1
1001 print(BusList[itr - 1].busname)
1002 if iunit > 1: # Update the scaling factors
1003 for iloop2 in inext:
1004 itr = iloop2.tbus
1005 if BusList[itr - 1].iloss == 1:
1006 BusList[
1007 itr - 1].controlScale = 1.2 / iunit # Use: 1.0

(default), 0.6, 0.4 and 0.3 depending on the
number of control buses

,!

,!

1008 iloop += 1
1009 # End

1010 # Update the voltage profile starting on the top node
1011 def UpdateVolt(self, topologyList, BusList):
1012 """Update the voltage profile based on the accumulated load on each bus
1013 """

1014 # Function for calculating the voltages and sensitivities in the single
phase case (modified sensitivity calculation),!

1015 def nodeVoltSensSPv2(BusList, ifr, itr, tline, obj):
1016 """
1017 Calculate the node voltages and sensitivities in the single phase

case - a more accurate sensitivity calculation (had just minor impact),!

1018 :param BusList:
1019 :param ifr:
1020 :param itr:
1021 :param tline:
1022 :param obj:
1023 :return:
1024 """

1025 vk2 = BusList[ifr].vomag ** 2
1026 tpload = obj[0].ploadds + obj[0].pblossds # Find the accumulated

loads and losses flowing on the branch,!

1027 tqload = obj[0].qloadds + obj[0].qblossds
1028 # Voltage calculation
1029 term2 = 2 * (tpload * tline.r + tqload * tline.x)
1030 term3 = (tpload ** 2 + tqload ** 2) * (tline.r ** 2 + tline.x ** 2) /

BusList[ifr].vomag ** 2,!

1031 BusList[itr].vomag = np.sqrt(
1032 vk2 - term2 + term3) # Update the bus voltage magnitude on the

down-stream bus,!

1033 # Calculate the sensitivities for changing the load
1034 # dvdp = (-tline.r + tpload * (tline.r ** 2 + tline.x ** 2) /

BusList[ifr].vomag ** 2) / BusList[,!

1035 # itr].vomag

1036 dqdp = (2 * tline.x * tpload / BusList[itr].vomag ** 2) * (
1037 1 + 2 * tline.x * tqload / BusList[
1038 itr].vomag ** 2) # The relation between the chang in q for a

change in p - simplified version to get a better dvdp,!

B PYDSAL C PyDSAL’s laws and functions 134

1039 dvdp = (-tline.r - tline.x * dqdp + (tpload + tqload * dqdp) *
(tline.r ** 2 + tline.x ** 2) / BusList[,!

1040 ifr].vomag ** 2) / BusList[
1041 itr].vomag

1042 dpdq = (2 * tline.r * tqload / BusList[itr].vomag ** 2) * (
1043 1 + 2 * tline.r * tpload / BusList[
1044 itr].vomag ** 2) # The relation between the change in p for a

change in q - simplified version,!

1045 # dvdq = (-tline.x + tqload * (tline.r ** 2 + tline.x ** 2) /
BusList[ifr].vomag ** 2) / BusList[,!

1046 # itr].vomag
1047 dvdq = (-tline.x - tline.r * dpdq + (tqload + tpload * dpdq) *

(tline.r ** 2 + tline.x ** 2) / BusList[,!

1048 ifr].vomag ** 2) / BusList[
1049 itr].vomag

1050 # dqdp = (2 * tline.x * tpload / BusList[itr].vomag ** 2) * (
1051 # 1 + 2 * tline.x * tqload / BusList[
1052 # itr].vomag ** 2) # The relation between the chang in q for a

change in p,!

1053 dqdp = ((2 * tline.x * tqload + 2 * tline.x * tpload * dpdq) *
BusList[itr].vomag ** 2 - (,!

1054 tline.x * tpload ** 2 + tline.x * tqload ** 2) * 2 *
BusList[itr].vomag * dvdp) / BusList[,!

1055 itr].vomag ** 4

1056 dpdq = ((2 * tline.r * tqload + 2 * tline.r * tpload * dqdp) *
BusList[itr].vomag ** 2 - (,!

1057 tline.r * tpload ** 2 + tline.r * tqload ** 2) * 2 *
BusList[itr].vomag * dvdq) / BusList[,!

1058 itr].vomag ** 4

1059 # dpldp = (2 * tline.r * tpload / BusList[itr].vomag ** 2) * (
1060 # 1 + 2 * tline.x * tqload / BusList[itr].vomag ** 2) #

Change in losses for a change in p,!

1061 dpldp = ((2 * tline.r * tpload + 2 * tline.r * tqload * dqdp) *
BusList[itr].vomag ** 2 - (,!

1062 tline.r * tpload ** 2 + tline.r * tqload ** 2) * 2 *
BusList[itr].vomag * dvdp) / BusList[,!

1063 itr].vomag ** 4

1064 BusList[itr].dVdP = BusList[ifr].dVdP + dvdp + dvdq * dqdp
1065 BusList[itr].dVdQ = BusList[ifr].dVdQ + dvdq + dvdp * dpdq
1066 # Calculate sensitivities for change in losses
1067 BusList[itr].dPlossdP = BusList[ifr].dPlossdP + dpldp
1068 BusList[itr].dPlossdQ = BusList[ifr].dPlossdQ + dpdq
1069 BusList[itr].dQlossdP = BusList[ifr].dQlossdP + dqdp
1070 # BusList[itr].dQlossdQ = BusList[ifr].dQlossdQ +

(2 * tline.x * tqload/BusList[itr].vomag**2) * (1 + 2 * tline.r *
tpload/BusList[itr].vomag**2)

,!

,!

1071 BusList[itr].dQlossdQ = BusList[ifr].dQlossdQ + 2 * tline.x * tqload
/ BusList[,!

1072 itr].vomag ** 2 + 2 * tline.x * tpload * BusList[itr].dPlossdQ /
BusList[itr].vomag ** 2,!

1073 # Calculate the second-order derivatives
1074 if tqload == 0:

B PYDSAL C PyDSAL’s laws and functions 135

1075 term1q = 0
1076 else:
1077 term1q = dpdq / tqload
1078 BusList[itr].dP2lossdQ2 = BusList[ifr].dP2lossdQ2 + term1q + (
1079 2 * tline.r * tqload / BusList[itr].vomag ** 2) * 2 * tline.r

* dpdq / BusList[itr].vomag ** 2,!

1080 if tpload == 0:
1081 term1p = 0
1082 else:
1083 term1p = dpldp / tpload
1084 BusList[itr].dP2lossdP2 = BusList[ifr].dP2lossdQ2 + term1p + (
1085 2 * tline.r * tpload / BusList[itr].vomag ** 2) * 2 * tline.x

* dqdp / BusList[itr].vomag ** 2,!

1086 # Estimate the required injection to reach minimum loss
1087 BusList[itr].lossRatioQ = BusList[itr].dPlossdQ /

BusList[itr].dP2lossdQ2 # Check this one,!

1088 BusList[itr].lossRatioP = BusList[itr].dPlossdP /
BusList[itr].dP2lossdP2,!

1089 # Update the voltage for the purpose of loss minimization - adjust
the sensitivity acording to the chosen step.,!

1090 if BusList[itr].iloss:
1091 # if np.abs(BusList[itr].dPlossdQ) >= 1.0 / BusList[
1092 # itr].pqcostRatio: # Equivalent to that the dP cost more

than pqcostRatio times dQ,!

1093 qcomp = BusList[itr].dPlossdQ / (
1094 BusList[itr].dP2lossdQ2 - 1.0) # Estimate the

toerethically required adjustment,!

1095 # BusList[itr].dPlossdQ = 0.0 # In general case we should find
better solution,!

1096 # Assign the correction to the right source and scale according
to the choosen strategy,!

1097 if BusList[itr].pv:
1098 pvobj = BusList[itr].pv
1099 if pvobj.cmode == 1: # Update only ot the cmode = 1 - NB

Other objects may be added under this section when iloss
= 1

,!

,!

1100 pvobj.qinj += qcomp * BusList[itr].controlScale
1101 BusList[itr].dPlossdQ = 0.0 # In general case we should

find better solution,!

1102 if BusList[itr].battery:
1103 pvobj = BusList[itr].battery
1104 if pvobj.cmode == 1: # Update only ot the cmode = 1 - NB

Other objects may be added under this section when iloss
= 1

,!

,!

1105 pvobj.qinj += qcomp * BusList[itr].controlScale
1106 BusList[itr].dPlossdQ = 0.0 # In general case we should

find better solution,!

1107 if BusList[itr].v2g:
1108 pvobj = BusList[itr].v2g
1109 if pvobj.cmode == 1: # Update only ot the cmode = 1 - NB

Other objects may be added under this section when iloss
= 1

,!

,!

1110 pvobj.qinj += qcomp * BusList[itr].controlScale

B PYDSAL C PyDSAL’s laws and functions 136

1111 BusList[itr].dPlossdQ = 0.0 # In general case we should
find better solution,!

1112 # Voltage angle calculation
1113 busvoltreal = BusList[ifr].vomag - (tpload * tline.r + tqload *

tline.x) / BusList[ifr].vomag,!

1114 busvoltimag = (tqload * tline.r - tpload * tline.x) /
BusList[ifr].vomag,!

1115 BusList[itr].voang = BusList[ifr].voang + np.arctan2(busvoltimag,
busvoltreal) # Update voltage angles,!

1116 return

1117 # End

1118 for obj in topologyList:
1119 if len(obj) > 1:

1120 if obj[0].toline:
1121 tline = obj[0].toline
1122 ifr = tline.fbus - 1
1123 itr = tline.tbus - 1

1124 # Update voltages and sensitivities Single Phase
1125 nodeVoltSensSPv2(BusList, ifr, itr, tline, obj)

1126 iloop = 1
1127 while iloop < len(obj): # Update voltages along the branches
1128 self.UpdateVolt(obj[iloop], BusList)
1129 iloop += 1
1130 else: # Continue along the current path
1131 if obj[0].toline:
1132 tline = obj[0].toline
1133 ifr = tline.fbus - 1
1134 itr = tline.tbus - 1

1135 # Update voltages and sensitivities Single Phase
1136 nodeVoltSensSPv2(BusList, ifr, itr, tline, obj)

1137 # Estimate the losses of each line based on voltage level and accumulated
flow,!

1138 def lossEstimate(self, busobjects, lineobjects):
1139 """Estimates the losses of each line based on voltage level and

accumulated flow,!

1140 """
1141 for lobj in reversed(lineobjects):
1142 ifr = lobj.fbus - 1
1143 itr = lobj.tbus - 1
1144 pto = busobjects[itr].ploadds
1145 qto = busobjects[itr].qloadds
1146 lobj.ploss = lobj.r * (pto ** 2 + qto ** 2) / busobjects[itr].vomag

** 2,!

1147 lobj.qloss = lobj.x * (pto ** 2 + qto ** 2) / busobjects[itr].vomag
** 2,!

1148 busobjects[ifr].ploadds += lobj.ploss
1149 busobjects[ifr].qloadds += lobj.qloss

1150 # Display the voltages.

B PYDSAL C PyDSAL’s laws and functions 137

1151 def dispVolt(self, fromBus=0, toBus=0, tpres=False, case=None, VLists=[]):
#Ingrid, included case.,!

1152 """
1153 Desc: Display voltages at all buses
1154 Input: tpres= False (Display in tableformat if True)
1155 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1156 Returns: None
1157 """
1158 mainlist = []
1159 rowno = []
1160 if toBus == 0:
1161 toBus = len(self.BusList)
1162 # if tpres:
1163 #Ingrid toBus = np.minimum(fromBus + 13, toBus)
1164 toBus = np.minimum(fromBus + 62, toBus)#Ingrid

1165 iloop = fromBus
1166 print(' ')
1167 while iloop < toBus:
1168 oref = self.BusList[iloop]
1169 if not tpres:
1170 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1171 ' Vmag :', '{:7.5f}'.format(oref.vomag),
1172 ' Theta :', '{:7.5f}'.format(oref.voang * 180 / np.pi))
1173 # Prepare for graphics presentation
1174 #Ingrid sublist = ['{:4.0f}'.format(oref.busnum),
1175 #Ingrid '{:7.5f}'.format(oref.vomag),
1176 #Ingrid '{:7.5f}'.format(oref.voang * 180 / np.pi)]
1177 sublist = ['{:7.5f}'.format(oref.vomag),
1178 '{:7.5f}'.format(oref.voang * 180 / np.pi)]
1179 mainlist.append(sublist)
1180 #Ingrid rowno.append('Bus ' + str(iloop + 1))
1181 rowno.append('B' + str(iloop + 1)) #Ingrid
1182 iloop += 1
1183 # Present table
1184 if tpres:
1185 title = 'Bus Voltages'
1186 #Ingrid colind = ['Bus nr', 'Vmag', 'Theta']
1187 #Ingrid colw = [0.12, 0.22, 0.22, 0.22, 0.22]
1188 colind = ['V_{mag}', 'Θ_{V}'] #Ingrid
1189 self.tableplot(mainlist, title, colind, rowno, case, VLists) #Ingrid,

included case and VLists.,!

1190 # Display the voltages.
1191 def dispLowVolt(self, fromBus=0, toBus=0, tpres=False, vmax=1.1):
1192 """
1193 Desc: Display voltages at all buses below or equal to the limit vmax
1194 Input: tpres= False (Display in tableformat if True)
1195 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1196 vmax = Upper voltage limit (default 1.1 pu)
1197 Returns: None
1198 """
1199 mainlist = []
1200 rowno = []
1201 if toBus == 0:

B PYDSAL C PyDSAL’s laws and functions 138

1202 toBus = len(self.BusList)
1203 # if tpres:
1204 # toBus = np.minimum(fromBus + 13, toBus)

1205 if fromBus < len(self.BusList): # Check legal range
1206 iloop = fromBus
1207 else:
1208 print(' Bus :', fromBus, ' does not exist')
1209 return()

1210 print(' ')
1211 while iloop < toBus:
1212 oref = self.BusList[iloop]
1213 if oref.vomag <= vmax:
1214 if not tpres:
1215 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1216 ' Vmag :', '{:7.5f}'.format(oref.vomag),
1217 ' Theta :', '{:7.5f}'.format(oref.voang * 180 / np.pi))
1218 # Prepare for graphics presentation
1219 sublist = ['{:4.0f}'.format(oref.busnum),
1220 '{:7.5f}'.format(oref.vomag),
1221 '{:7.5f}'.format(oref.voang * 180 / np.pi)]

1222 mainlist.append(sublist)
1223 rowno.append('Bus ' + str(iloop + 1))
1224 iloop += 1
1225 # Present table
1226 if tpres:
1227 title = 'Bus Voltages'
1228 colind = ['Bus no', 'Vmag', 'Theta']
1229 colw = [0.12, 0.22, 0.22, 0.22, 0.22]
1230 #Ingrid self.tableplot(mainlist, title, colind, rowno,

columncol=[], rowcol=[], colw=colw),!

1231 # Display the voltages.
1232 def dispVoltRange(self, fromBus=0, toBus=0, tpres=False, vmin=0.9, vmax=1.1,

case=None):,!

1233 """
1234 Desc: Display voltages at all buses below or equal to the limit vmax
1235 Input: tpres= False (Display in tableformat if True)
1236 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1237 vmax = Upper voltage limit (default 1.1 pu)
1238 vmin = Lower voltage limit (defualt 0.9 pu)
1239 Returns: None
1240 """
1241 mainlist = []
1242 rowno = []
1243 if toBus == 0:
1244 toBus = len(self.BusList)
1245 # if tpres:
1246 # toBus = np.minimum(fromBus + 13, toBus)

1247 if fromBus < len(self.BusList): # Check legal range
1248 iloop = fromBus
1249 else:
1250 print(' Bus :', fromBus, ' does not exist')
1251 return()

B PYDSAL C PyDSAL’s laws and functions 139

1252 print(' ')
1253 while iloop < toBus:
1254 oref = self.BusList[iloop]
1255 if vmax >= oref.vomag >= vmin:
1256 if not tpres:
1257 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1258 ' Vmag :', '{:7.5f}'.format(oref.vomag),
1259 ' Theta :', '{:7.5f}'.format(oref.voang * 180 / np.pi))
1260 # Prepare for graphics presentation
1261 #Ingrid sublist = ['{:4.0f}'.format(oref.busnum),
1262 #Ingrid '{:7.5f}'.format(oref.vomag),
1263 #Ingrid '{:7.5f}'.format(oref.voang * 180 / np.pi)]
1264 sublist = ['{:7.5f}'.format(oref.vomag),
1265 '{:7.5f}'.format(oref.voang * 180 / np.pi)]
1266 mainlist.append(sublist)
1267 #Ingrid rowno.append('Bus ' + str(iloop + 1))
1268 rowno.append('B' + str(iloop + 1)) #Ingrid
1269 iloop += 1
1270 # Present table
1271 if tpres:
1272 title = 'Bus Voltages'
1273 #Ingrid colind = ['Bus nr', 'Vmag', 'Theta']
1274 #Ingrid colw = [0.12, 0.22, 0.22, 0.22, 0.22]
1275 colind = ['Vmag', 'Theta'] #Ingrid
1276 #Ingrid self.tableplot(mainlist, title, colind, rowno,

columncol=[], rowcol=[], colw=colw),!

1277 self.tableplot(mainlist, title, colind, rowno, case)

1278 # Display voltage estimate for a changes in active or reactive load on a bus
1279 def dispVoltEst(self, bus=0, deltap=0.0, deltaq=0.0, tpres=False):
1280 """ The method estimates the voltages for a change in active or reactive

load at a bus,!

1281 deltap and deltaq must reflect the change (negative by load reduction)
1282 """
1283 itr = bus - 1
1284 mainlist = []
1285 rowno = []
1286 iloop = 0
1287 while self.BusList[itr].toline:
1288 busobj = self.BusList[itr]
1289 voltest = busobj.vomag + deltap * (1 + busobj.dPlossdP) * busobj.dVdP

+ deltaq * (,!

1290 1 + busobj.dQlossdQ) * busobj.dVdQ
1291 if not tpres:
1292 print(' Bus no :', '{:4.0f}'.format(busobj.busnum),
1293 ' Vmag :', '{:7.4f}'.format(busobj.vomag),
1294 ' Vest :', '{:7.4f}'.format(voltest))
1295 # Prepare for graphics presentation
1296 if iloop < 14:
1297 sublist = ['{:4.0f}'.format(busobj.busnum),
1298 '{:7.4f}'.format(busobj.vomag),
1299 '{:7.4f}'.format(voltest)]
1300 mainlist.append(sublist)
1301 rowno.append('Bus ' + str(iloop + 1))
1302 iloop += 1
1303 itr = busobj.toline.fbus - 1

B PYDSAL C PyDSAL’s laws and functions 140

1304 # Present table
1305 if tpres:
1306 title = 'Voltage estimat for changed injection of P and Q'
1307 colind = ['Bus no', 'Bus volt', 'Volt est']
1308 colw = [0.12, 0.22, 0.22, 0.22, 0.22]
1309 #Ingrid self.tableplot(mainlist, title, colind, rowno,

columncol=[], rowcol=[], colw=colw),!

1310 # Display the voltage sensitivities
1311 def dispVoltSens(self, fromBus=0, toBus=0, tpres=False):
1312 """
1313 Desc: Display Load sensitivities for change in voltage at all buses
1314 Input: tpres= False (Display in table format if True)
1315 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1316 Returns: None
1317 """
1318 mainlist = []
1319 rowno = []
1320 if toBus == 0:
1321 toBus = len(self.BusList)
1322 if tpres:
1323 toBus = np.minimum(fromBus + 13, toBus)

1324 if fromBus < len(self.BusList): # Check legal range
1325 iloop = fromBus
1326 else:
1327 print(' Bus :', fromBus, ' does not exist')
1328 return()

1329 print(' ')
1330 while iloop < toBus:
1331 oref = self.BusList[iloop]
1332 if not tpres:
1333 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1334 ' dV/dP :', '{:7.5}'.format(oref.dVdP * (1.0 +

oref.dPlossdP)),,!

1335 ' dPloss/dP :,{:7.5}'.format(oref.dPlossdP),
1336 ' dPloss/dQ :,{:7.5}'.format(oref.dPlossdQ),
1337 ' dV/dQ :', '{:7.5}'.format(oref.dVdQ * (1.0 +

oref.dPlossdQ)),,!

1338 ' dQloss/dQ :,{:7.5}'.format(oref.dQlossdQ),
1339 ' dQloss/dP :,{:7.5}'.format(oref.dQlossdP))

1340 # Prepare for graphics presentation
1341 sublist = ['{:4.0f}'.format(oref.busnum),
1342 '{:7.5}'.format(oref.dVdP * (1.0 + oref.dPlossdP)),
1343 '{:7.5}'.format(oref.dPlossdP),
1344 '{:7.5}'.format(oref.dPlossdQ),
1345 '{:7.5}'.format(oref.dVdQ * np.sqrt((1.0 + oref.dPlossdQ)

** 2 + oref.dQlossdQ ** 2)),,!

1346 '{:7.5}'.format(oref.dQlossdQ),
1347 '{:7.5}'.format(oref.dQlossdP)
1348]

1349 mainlist.append(sublist)
1350 rowno.append('Bus ' + str(iloop + 1))
1351 iloop += 1

B PYDSAL C PyDSAL’s laws and functions 141

1352 # Present table
1353 if tpres:
1354 title = 'Bus Voltage sensitivites to changes in load and loss'
1355 colind = ['Bus no', 'dV/dP', 'dPloss/dP', 'dPloss/dQ', 'dV/dQ',

'dQloss/dQ', 'dQloss/dP'],!

1356 #Ingrid self.tableplot(mainlist, title, colind, rowno,
columncol=[], rowcol=[]),!

1357 # Display loss sensitivities
1358 def dispLossSens(self, fromBus=0, toBus=0, tpres=False):
1359 """
1360 Desc: Display Loss sensitivities for change in active or reactive

injection at all buses,!

1361 Input: tpres= False (Display in tableformat if True)
1362 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1363 Returns: None
1364 """
1365 mainlist = []
1366 rowno = []
1367 if toBus == 0:
1368 toBus = len(self.BusList)
1369 if tpres:
1370 toBus = np.minimum(fromBus + 13, toBus)

1371 if fromBus < len(self.BusList): # Check legal range
1372 iloop = fromBus
1373 else:
1374 print(' Bus :', fromBus, ' does not exist')
1375 return()

1376 print(' ')
1377 while iloop < toBus:
1378 oref = self.BusList[iloop]
1379 if not tpres:
1380 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1381 ' dV/dP :', '{:7.5}'.format(oref.dVdP * (1.0 +

oref.dPlossdP)),,!

1382 ' dPloss/dP :,{:7.5}'.format(oref.dPlossdP),
1383 ' dPloss/dQ :,{:7.5}'.format(oref.dPlossdQ),
1384 ' dV/dQ :', '{:7.5}'.format(oref.dVdQ * (1.0 +

oref.dQlossdQ)),,!

1385 ' dP2loss/dP2 :,{:7.5}'.format(oref.dP2lossdP2 - 1.0),
1386 ' dP2loss/dQ2 :,{:7.5}'.format(oref.dP2lossdQ2 - 1.0))

1387 # Prepare for graphics presentation
1388 sublist = ['{:4.0f}'.format(oref.busnum),
1389 '{:7.5}'.format(oref.dVdP * (1.0 + oref.dPlossdP)),
1390 '{:7.5}'.format(oref.dPlossdP),
1391 '{:7.5}'.format(oref.dPlossdQ),
1392 '{:7.5}'.format(oref.dVdQ * (1.0 + oref.dQlossdQ)),
1393 '{:7.5}'.format(oref.dP2lossdP2 - 1.0),
1394 '{:7.5}'.format(oref.dP2lossdQ2 - 1.0)
1395]

1396 mainlist.append(sublist)
1397 rowno.append('Bus ' + str(iloop + 1))
1398 iloop += 1

B PYDSAL C PyDSAL’s laws and functions 142

1399 # Present table
1400 if tpres:
1401 title = 'Bus Voltage sensitivites to changes in load and loss'
1402 colind = ['Bus no', 'dV/dP', 'dPloss/dP', 'dPloss/dQ', 'dV/dQ',

'd2Ploss/dP2', 'd2Ploss/dQ2'],!

1403 #Ingrid self.tableplot(mainlist, title, colind, rowno,
columncol=[], rowcol=[]),!

1404 # Display loss sensitivities for active power injection
1405 def dispLossSensP(self, fromBus=0, toBus=0, tpres=False):
1406 """
1407 Desc: Display Loss sensitivities for change in active or reactive

injection at all buses,!

1408 Input: tpres= False (Display in tableformat if True)
1409 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1410 Returns: None
1411 """
1412 mainlist = []
1413 rowno = []
1414 if toBus == 0:
1415 toBus = len(self.BusList)
1416 if tpres:
1417 toBus = np.minimum(fromBus + 13, toBus)

1418 if fromBus < len(self.BusList): # Check legal range
1419 iloop = fromBus
1420 else:
1421 print(' Bus :', fromBus, ' does not exist')
1422 return()

1423 print(' ')
1424 while iloop < toBus:
1425 oref = self.BusList[iloop]
1426 if not tpres:
1427 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1428 ' dV/dP :', '{:7.5}'.format(oref.dVdP * (1.0 +

oref.dPlossdP)),,!

1429 ' dPloss/dP :,{:7.5}'.format(oref.dPlossdP),
1430 ' dP2loss/dP2 :,{:7.5}'.format(oref.dP2lossdP2 - 1.0),
1431 ' Loss Ratio P :,{:7.5}'.format(oref.lossRatioP))

1432 # Prepare for graphics presentation
1433 sublist = ['{:4.0f}'.format(oref.busnum),
1434 '{:7.5}'.format(oref.dVdP * (1.0 + oref.dPlossdP)),
1435 '{:7.5}'.format(oref.dPlossdP),
1436 '{:7.5}'.format(oref.dP2lossdP2 - 1.0),
1437 '{:7.5}'.format(oref.lossRatioP)
1438]

1439 mainlist.append(sublist)
1440 rowno.append('Bus ' + str(iloop + 1))
1441 iloop += 1
1442 # Present table
1443 if tpres:
1444 title = 'Bus Voltage sensitivites to changes in load and loss'
1445 colind = ['Bus no', 'dV/dP', 'dPloss/dP', 'd2Ploss/dP2',
1446 'Loss Ratio P']

B PYDSAL C PyDSAL’s laws and functions 143

1447 colw = [0.12, 0.22, 0.22, 0.22, 0.22]
1448 #Ingrid self.tableplot(mainlist, title, colind, rowno,

columncol=[], rowcol=[], colw=colw),!

1449 # Display loss sensitivities for reactive power injections
1450 def dispLossSensQ(self, fromBus=0, toBus=0, tpres=False):
1451 """
1452 Desc: Display Loss sensitivities for change in active or reactive

injection at all buses,!

1453 Input: tpres= False (Display in tableformat if True)
1454 fromBus and toBus defines the block, If tpres=True, it will

display 13 lines from fromBus,!

1455 Returns: None
1456 """
1457 mainlist = []
1458 rowno = []
1459 if toBus == 0:
1460 toBus = len(self.BusList)
1461 if tpres:
1462 toBus = np.minimum(fromBus + 13, toBus)

1463 if fromBus < len(self.BusList): # Check legal range
1464 iloop = fromBus
1465 else:
1466 print(' Bus :', fromBus, ' does not exist')
1467 return()

1468 print(' ')
1469 while iloop < toBus:
1470 oref = self.BusList[iloop]
1471 if not tpres:
1472 print(' Bus no :', '{:4.0f}'.format(oref.busnum),
1473 ' dV/dQ :', '{:7.5}'.format(oref.dVdQ * (1.0 +

oref.dQlossdQ)),,!

1474 ' dPloss/dQ :,{:7.5}'.format(oref.dPlossdQ),
1475 ' dP2loss/dQ2 :,{:7.5}'.format(oref.dP2lossdQ2 - 1.0), #

1.0 ref value,!

1476 ' Loss Ratio Q :,{:7.5}'.format(oref.lossRatioQ))

1477 # Prepare for graphics presentation
1478 sublist = ['{:4.0f}'.format(oref.busnum),
1479 '{:7.5}'.format(oref.dVdQ * (1.0 + oref.dQlossdQ)),
1480 '{:7.5}'.format(oref.dPlossdQ),
1481 '{:7.5}'.format(oref.dP2lossdQ2 - 1.0),
1482 '{:7.5}'.format(oref.lossRatioQ)
1483]

1484 mainlist.append(sublist)
1485 rowno.append('Bus ' + str(iloop + 1))
1486 iloop += 1
1487 # Present table
1488 if tpres:
1489 title = 'Bus Voltage sensitivites to changes in load and loss'
1490 colind = ['Bus no', 'dV/dQ', 'dPloss/dQ', 'd2Ploss/dQ2',
1491 'Loss Ratio Q']
1492 colw = [0.12, 0.22, 0.22, 0.22, 0.22]
1493 #Ingrid self.tableplot(mainlist, title, colind, rowno, columncol=[],

rowcol=[], colw=colw),!

B PYDSAL C PyDSAL’s laws and functions 144

1494 # General table controlled by the application
1495 #Ingrid def tableplot(self, table_data, title, columns, rows, columncol=None,

rowcol=None, colw=None),!

1496 def tableplot(self, table_data=[], title=None, columns=[], rows=[],
case=None, Lists=[]): #Ingrid,!

1497 """
1498 Desc: Make a table of the provided data. There must be a row and a

column,!

1499 data correpsonding to the table
1500 Input: table_data - np.array
1501 title - string
1502 columns - string vector
1503 rows - string vector
1504 columncol - colors of each column label (default [])
1505 rowcol - colors of each row lable
1506 """

1507 rowcol=[]
1508 new_rows=[]
1509 new_table=[]

1510 iloop = 0
1511 limitbreach=0

1512 colLists = [zero, small, medium, large, over]
1513 colstandard = [buses, lines, cases]
1514 if rows[iloop][0]=='B':
1515 x = 0
1516 elif rows[iloop][0]=='L':
1517 x = 1
1518 else:
1519 x = 2

1520 tdim = np.shape(table_data)

1521 while iloop < tdim[0]:
1522 c = colstandard[x]

1523 if len(Lists) > 0:
1524 #Lists = [zero, small/under, medium, large, over]
1525 for List in Lists:
1526 ind = Lists.index(List)
1527 for obj in List:
1528 if rows[iloop][0]=='B':
1529 if int(rows[iloop][1:])==obj.busnum:
1530 c = colLists[ind]
1531 if rows[iloop][0]=='L':
1532 if int(rows[iloop][1:])==obj.linenum:
1533 c = colLists[ind]

1534 if rows[iloop][0]=='B':
1535 vomag = float(table_data[iloop][0])
1536 voang = float(table_data[iloop][1])
1537 if vomag==1.0 and voang==0.0:
1538 c = supply

B PYDSAL C PyDSAL’s laws and functions 145

1539 #if c in colLists and case[0:2]!='sp': # or case[:6]=='impact' or
case[0:2]=='su':,!

1540 # if c in colLists or case[:6]=='impact':
1541 if case[0:2]=='su':
1542 limitbreach=1
1543 rowcol.append(c)
1544 new_rows.append(rows[iloop])
1545 new_table.append(table_data[iloop])
1546 iloop += 1
1547 # print(rowcol)

1548 #Tabulate:
1549 if limitbreach==1:
1550 para = ''
1551 fr=''
1552 w=.2
1553 pad=0
1554 columncol = [cases]*len(columns)
1555 if title=='Bus Voltages':
1556 para = 'v_'
1557 fr = rows[0]
1558 elif title=='Transmission line flow':
1559 para = 'f_'
1560 fr = rows[0]
1561 w=.16
1562 if case[-1]=='V' or case[-1]=='F':
1563 columncol = colLists
1564 if case[-1]=='V':
1565 w=.26
1566 colw = [w]*len(columns)

1567 fig = plt.figure(dpi=150)
1568 ax = fig.add_subplot(1, 1, 1)
1569 ax.axis('off')
1570 table = ax.table(cellText=new_table, rowLabels=new_rows,

colColours=columncol, rowColours=rowcol, colLabels=columns,
colWidths=colw, loc='center', cellLoc='center')

,!

,!

1571 table.set_fontsize(12)
1572 #Ingrid table.scale(1,1.5)
1573 #Ingrid ax.set_title(title, fontsize=14)

1574 #Ingrid-------------------
1575 fig.savefig('/Users/ingrid/Documents/stud/prog/fig/' + case + para +

fr + ".png", bbox_inches='tight',pad_inches=pad),!

1576 plt.close(fig)
1577 #Ingrid plt.show()
1578 #--------------------------

1579 # Display total losses
1580 #Ingrid def dispLosses(self):
1581 def dispLoss(self):
1582 pline = 0.0
1583 qline = 0.0
1584 for x in self.LineList:
1585 pline += x.ploss
1586 qline += x.qloss

B PYDSAL C PyDSAL’s laws and functions 146

1587 #Ingrid print('\n', 'Ploss:', pline, ' Qloss:', qline)

1588 P_Loss = '{:7.4f}'.format(pline)
1589 Q_Loss = '{:7.4f}'.format(qline)
1590 return P_Loss, Q_Loss #Ingrid

1591 # Display total load (no voltage correction)
1592 def dispLoad(self):
1593 aload = 0.0
1594 rload = 0.0
1595 for x in self.BusList:
1596 pla, qla, dPdV1, dQdV1 = self.getload(x)
1597 aload += pla # Add local loads
1598 rload += qla
1599 #Ingrid print('\n', 'Total load P: ', aload, ' Q: ', rload, ' Losses:

P',,!

1600 #Ingrid BusList[1].pblossds, ' Q: ', BusList[1].qblossds)
1601 P_Load = '{:7.4f}'.format(aload)
1602 Q_Load = '{:7.4f}'.format(rload)
1603 return P_Load, Q_Load #Ingrid

1604 def zeroxq(self):
1605 for a in self.LineList:
1606 a.x = 0.0
1607 for a in self.BusList:
1608 a.qload = 0.0
1609 # Prepare the case
1610 def initialize(self, startBus):
1611 """
1612 Builds the system, creates the loafd flow object and prepared the

additional configuration,!

1613 """
1614 self.flatStart() # be sure to have a flat start with topology changes
1615 self.config3() # Set up additional configuration based on input data
1616 self.findtree(startBus) # Identify the tree from the given starting

point,!

1617 # if startBus != 1:
1618 self.config3() # Update based on the the starting point
1619 self.topology = self.mainstruct4(startBus = startBus) # Build the

structure,!

1620 #
1621 # Demo case (Illustration of how to build up a script)
1622 #
1623 # BusList, LineList = BuildSystem3() # Import data from Excel file
1624 # dlf = DistLoadFlow3(BusList, LineList) # Create object
1625 # dlf.config3() # Set up additional configuration
1626 # dlf.findtree(1)
1627 # #svc = DistribObjects3.SVC(dlf.BusList[43], svcstat=1, vref=1, injQmax=1.0,

injQmin=0.0, slopeQ=0.05),!

1628 # #dlf.BusList[43].comp = svc
1629 # dlf.config3()
1630 # dlf.topology = dlf.mainstruct4(startBus = 1)

1631 #BusList, LineList = BuildSystem3() # Import data from Excel file
1632 #dlf = DistLoadFlow3(BusList, LineList) # Create object
1633 #

B PYDSAL C PyDSAL’s laws and functions 147

1634 #dlf.initialize(startBus=1) # Initialize
1635 #
1636 #dlf.DistLF(epsilon=0.00001) # Solve the case
1637 #
1638 #dlf.dispTree(dlf.topology, feeders=[1], LEC= [31, 48], lowVolt = [52, 53, 65,

64], overload=[(62, 63), (63, 64)]),!

1639 #
1640 # New feeder

1641 #dlf.initialize(startBus=50) # Initialize

1642 #dlf.DistLF(epsilon=0.00001) # Solve the case

1643 #dlf.dispTree(dlf.topology, feeders=[50], LEC= [31, 48], lowVolt = [52, 53, 65,
64], overload=[(62, 63), (63, 64)]),!

1644 # dlf.checkOverLoad()
1645 # dlf.checkOverflow()
1646 # dlf.resetBuses()
1647 # dlf.resetBuses()
1648 # dlf.resetBuses()
1649 # dlf.neededInjection(42, 'reactive')
1650 # dlf.neededInjectionLine2(11)
1651 #dlf.dispVolt(fromBus=35, tpres=True)
1652 #dlf.dispLossSens(fromBus=35, tpres=True)
1653 #dlf.dispFlow(fromLine=10, tpres=True)
1654 # dlf.disconnectBus(53)
1655 # dlf.connectLine2(70)
1656 #dlf.findtree()
1657 #dlf.config3()
1658 #dlf.topology = dlf.mainstruct4() # Set up the configuration for recursive

1659 #Checking for splitting the network
1660 #BusList2, LineList2 = BuildSystem3()
1661 #dlf2 = DistLoadFlow3(BusList2, LineList2)
1662 #dlf2.config3()
1663 #dlf.disconnectBus(10)
1664 #dlf2.disconnectBus(10)
1665 #dlf2.connectLine2(69)
1666 #dlf.findtree(1)
1667 #dlf2.findtree(11)
1668 #dlf.config3()
1669 #svc = DistribObjects3.SVC(dlf.BusList[59], svcstat=1, vref=0.97, injQmax=1.0,

injQmin=0.0, slopeQ=0.05),!

1670 #dlf.BusList[44].comp = svc
1671 #dlf2.config3()
1672 #dlf.topology = dlf.mainstruct4()
1673 #dlf2.topology = dlf2.mainstruct4(11)
1674 #print('Topology first network: ')
1675 #dlf.ForwardSearch(dlf.topology)
1676 #print('Topology second network: ')
1677 #dlf2.ForwardSearch(dlf2.topology)
1678 # dlf.ForwardSearch(dlf.topology)
1679 # dlf.UpdateControl(BusList) # Update the scaling factors in

case of voltage control,!

1680 #dlf.DistLF(epsilon=0.00001) # Solve load flow
1681 #dlf.overflow()
1682 #connected = dlf.connectedBuses(dlf.topology)

B PYDSAL C PyDSAL’s laws and functions 148

1683 #dlf.potential(dlf.BusList[60])
1684 #dlf.highestPotential(connected)
1685 #dlf.findCompensation(dlf.BusList[61])
1686 #dlf.resetBuses()
1687 #dlf.dispVolt(fromBus=0, tpres=True) # Display voltages for the firste 13 buses
1688 #dlf.dispVolt(fromBus=15, tpres=True)
1689 #dlf.dispVolt(fromBus=38, toBus=46, tpres=True)
1690 #dlf.dispFlow(tpres=True)
1691 #dlf.dispLossSens(fromBus=15, tpres=True)
1692 #dlf.dispLossSens(fromBus=38, toBus=46, tpres=True)
1693 #dlf.dispVoltSens(fromBus=15, tpres=True)
1694 #dlf.dispVoltSens(fromBus=38, toBus=46, tpres=True)
1695 #dlf2.DistLF(epsilon=0.00001) # Solve load flow
1696 #dlf2.resetBuses()
1697 #dlf2.dispVolt(fromBus=0, tpres=True) # Display voltages for the firste 13

buses,!

1698 #dlf2.dispVolt(fromBus=15, tpres=True)
1699 #dlf2.dispVolt(fromBus=50, tpres=True)
1700 #dlf.ForwardSearch(dlf.topology)
1701 # dlf.dispVolt(fromBus=53,toBus=65, tpres=True)
1702 # dlf.dispVoltSens(fromBus=53,toBus=65,tpres=True)
1703 # dlf.dispLossSens(fromBus=53,toBus=65,tpres=True)
1704 ##dlf.dispVoltSens(fromBus=10, toBus=23, tpres=True) # Voltage sensitivities for

reduced load at the same bus and the sensitivity in reduced losses,!

1705 ##dlf.dispLossSens(fromBus=10, toBus=23, tpres=True) # Loss sensitivities for
reduced load at the same bus and the rate of change of loss sensitivities,!

1706 #dlf.dispFlow(tpres=True) # Display flow on transmission
lines (in graphic pres only 13 is deplayed (spes start point),!

1707 ##dlf.dispFlow(fromLine=10, tpres=True)

Return to the preface, Section 1.2, Section 2.1 or Algorithm B.2’s flow chart in Figure 2.2.

B PYDSAL D PyDSAL’s class objects 149

D PyDSAL’s class objects

See Table 1.2 for an overview of PyDSAL’s scripts. Algorithm B.4 is commented on in Section 4..

Algorithm B.4: DistribObjects-vIngrid.py

1 #!/usr/bin/python
2 # Copyright (c) 2021, Olav B. Fosso, NTNU
3 #
4 # All rights reserved.
5 #
6 # Redistribution and use in source and binary forms, with or without

modification,,!

7 # are permitted provided that the following conditions are met:
8 #
9 # * Redistributions of source code must retain the above copyright notice,

10 # this list of conditions and the following disclaimer.
11 # * Redistributions in binary form must reproduce the above copyright

notice,,!

12 # this list of conditions and the following disclaimer in the
documentation,!

13 # and/or other materials provided with the distribution.
14 # Definition of common classes

15 class Bus:
16 'Common base class for all distribution buses'
17 busCount = 0

18 def __init__(self, busnum=0, pload=0.0, qload=0.0, ZIP=[0.0, 0.0 ,1.0],
vset=0.0, iloss=0, pqcostRatio=100,vmin=0.9,vmax=1.1, island=0):,!

19 self.busnum = busnum
20 self.busext = 0
21 self.pload = pload
22 self.qload = qload
23 self.ZIP = ZIP
24 self.vset = vset
25 self.iloss = iloss
26 self.pqcostRatio = pqcostRatio
27 self.vmin = vmin
28 self.vmax = vmax
29 self.controlScale = 1.0 # Scaling factor to be used during voltage

control and loss minimization,!

30 self.comp = 0 # Compensation present
31 self.pv = 0 # PV present
32 self.battery = 0 # Battery present
33 self.v2g = 0 # V2G present
34 self.ploadds = 0.0
35 self.qloadds = 0.0
36 self.pblossds = 0.0
37 self.qblossds = 0.0
38 self.dPdV = 0.0
39 self.dQdV = 0.0
40 self.dVdP = 0.0
41 self.dVdQ = 0.0
42 self.dPlossdP = 0.0
43 self.dPlossdQ = 0.0
44 self.dQlossdP = 0.0

B PYDSAL D PyDSAL’s class objects 150

45 self.dQlossdQ = 0.0
46 self.dP2lossdP2 = 1.0 # To be able to run the voltage optimization also

in the first iteration,!

47 self.dP2lossdQ2 = 1.0 # To be able to run the voltage optimization also
in the first iteration,!

48 self.lossRatioP = 0.0
49 self.lossRatioQ = 0.0
50 self.voang = 0.0
51 self.vomag = 1.0
52 self.busname = 'Bus' + str(busnum)
53 self.toline = 0
54 self.fromline = 0
55 self.tolinelist = []
56 self.nextbus = []
57 Bus.busCount += 1

58 class Line:
59 'Common base class for all distribution lines'
60 lineCount = 0

61 def __init__(self, fbus=0, tbus=0, r=0.0, x=0.0, ratea=0.0, ibstat=1, reserve
= 0):,!

62 self.fbus = fbus
63 self.tbus = tbus
64 self.linenum = 0 #Ingrid. To use in AddEdges (dispGraph).
65 self.r = r
66 self.x = x
67 self.ratea = ratea
68 self.ibstat = ibstat
69 self.ploss = 0.0
70 self.qloss = 0.0
71 self.reserve = reserve
72 Line.lineCount += 1

73 class Statcom:
74 'Common class for Statcom'
75 statcomCount = 0
76 def __init__(self, bus, scstat = 1, vref=0.0, injQmax = 0.0, injQmin = 0.0,

slopeQ = 0.0):,!

77 self.bus = bus
78 self.scstat = scstat
79 self.vref = vref
80 self.injQmax = injQmax
81 self.injQmin = injQmin
82 self.qinj = 0.0
83 self.slopeQ = slopeQ
84 Statcom.statcomCount += 1

85 class SVC:
86 'Common class for Static Var Compensator'
87 svcCount = 0
88 def __init__(self, bus, cmode = 0, svcstat = 1, vref=0.0, injQmax = 0.0,

injQmin = 0.0, slopeQ = 0.0):,!

89 self.bus = bus
90 self.cmode = cmode #La til denne.
91 self.stat = svcstat

B PYDSAL D PyDSAL’s class objects 151

92 self.vref = vref
93 self.vprev = vref
94 self.injQmax = injQmax
95 self.injQmin = injQmin
96 self.qinj = 0.0
97 self.slopeQ = slopeQ
98 SVC.svcCount += 1

99 class Battery:
100 'Common class for Batteries'
101 batteryCount = 0
102 def __init__(self, bus, cmode = 0, svcstat = 1, vref=0.0, injPmax = 0.0,

injPmin = 0.0, injQmax = 0.0, injQmin = 0.0, slopeP = 0.0, slopeQ = 0.0
):

,!

,!

103 self.bus = bus
104 self.cmode = cmode #La til denne.
105 self.stat = svcstat
106 self.vref = vref
107 self.vprev = vref
108 self.injPmax = injPmax
109 self.injPmin = injPmin
110 self.injQmax = injQmax
111 self.injQmin = injQmin
112 self.pinj = 0.0
113 self.qinj = 0.0
114 self.Estorage = 0.0
115 self.slopeP = slopeP
116 self.slopeQ = slopeQ
117 Battery.batteryCount += 1

118 class V2G:
119 'Common class for Electrical Vehicles'
120 v2gCount = 0
121 def __init__(self, bus, cmode = 0, v2gstat = 1, vref=0.0, injPmax = 0.0,

injPmin = 0.0, injQmax = 0.0, injQmin = 0.0, slopeP = 0.0, slopeQ = 0.0
):

,!

,!

122 self.bus = bus
123 self.cmode = cmode #La til denne.
124 self.stat = v2gstat
125 self.vref = vref
126 self.vprev = vref
127 self.injPmax = injPmax
128 self.injPmin = injPmin
129 self.injQmax = injQmax
130 self.injQmin = injQmin
131 self.pinj = 0.0
132 self.qinj = 0.0
133 self.Estorage = 0.0
134 self.slopeP = slopeP
135 self.slopeQ = slopeQ
136 V2G.v2gCount += 1

137 class Capacitor:
138 'Common class for capacitors'
139 capacitorCount = 0
140 def __init__(self, bus, capstat = 1, vref=0.0, blockSize = 0.0, numBlocks =

1):,!

B PYDSAL D PyDSAL’s class objects 152

141 self.bus = bus
142 self.capstat = capstat
143 self.vref = vref
144 self.blockSize = blockSize
145 self.numBlocks = numBlocks
146 self.currentStep = 0
147 Capacitor.capacitorCount += 1

148 class PV:
149 'Common class for PhotoVoltaic (PV)'
150 pvCount = 0
151 def __init__(self, bus, pvstat = 1, cmode = 1, vref=0.0, convCap = 0.0,

injPmax = 0.0, injPmin = 0.0, injQmax = 0.0, injQmin = 0.0, slopeP = 0.0,
slopeQ = 0.0):

,!

,!

152 self.bus = bus
153 self.stat = pvstat
154 self.cmode = cmode # cmode = 1 (PV) , cmode = 2 (P - droop Q,

cmode = 3 (Droop P, droop Q),!

155 self.vref = vref # Voltage reference - interpreted according
to the control mode (cmode),!

156 self.vprev = vref # Needed for droop control - iterative
procedure,!

157 self.convCap = convCap # Total converter capability - S^2 = P^2 +
Q^2 - limits calculated accordingly or specified,!

158 self.injPmax = injPmax
159 self.injPmin = injPmin
160 self.injQmax = injQmax
161 self.injQmin = injQmin
162 self.pinj = 0.0
163 self.qinj = 0.0
164 self.slopeP = slopeP
165 self.slopeQ = slopeQ
166 PV.pvCount += 1

B PYDSAL E PyDSAL’s selector of spreadsheets 153

E PyDSAL’s selector of spreadsheets

See Table 1.2 for an overview of PyDSAL’s scripts.

Algorithm B.5: MenuFunctions-v2.py

1 # Copyright (c) 2021, Olav B. Fosso, NTNU
2 #
3 # All rights reserved.
4 #
5 # Redistribution and use in source and binary forms, with or without

modification,,!

6 # are permitted provided that the following conditions are met:
7 #
8 # * Redistributions of source code must retain the above copyright notice,
9 # this list of conditions and the following disclaimer.

10 # * Redistributions in binary form must reproduce the above copyright
notice,,!

11 # this list of conditions and the following disclaimer in the
documentation,!

12 # and/or other materials provided with the distribution.

13 from tkinter import *

14 from tkinter.colorchooser import askcolor
15 from tkinter.filedialog import askopenfilename

16 def GetFileName(filext="*"):
17 """ Returns a file name - a file has to be chosen
18 Input: filext = "*" - File extention in the first list
19 """
20 root = Tk()
21 file = ""
22 if filext == "*":
23 fileclass = "All Files"
24 fitype = "*.*"
25 if filext == "xls":
26 fileclass = 'Excel File'
27 fitype = "*." + filext
28 while file == "":
29 file = askopenfilename(filetypes=((fileclass,fitype),
30 ("Text File","*.txt*"),
31 ("LP Files","*.lp")),
32 title= "Choose a file")
33 root.withdraw()
34 print(file)
35 return file

36 def ViewFileName(filext="*"):
37 """ View files - Choose one or cancel
38 Input: filext = "*" - File extention in the first list
39 """
40 root = Tk()
41 file = ""
42 if filext == "*":

B PYDSAL E PyDSAL’s selector of spreadsheets 154

43 fileclass = "All Files"
44 fitype = "*.*"
45 elif filext == "xls":
46 fileclass = "Excel File"
47 fitype = "*." + filext
48 file = askopenfilename(filetypes=((fileclass,fitype),
49 ("Text File","*.txt*"),
50 ("LP Files","*.lp"),
51 ("Excel Files","*.xls")),
52 title= "Choose a file")
53 root.withdraw()
54 print(file)
55 return file

56 #file = ViewFileName()

57 def OpenFile():
58 # from tkinter import filedialog
59 # from tkinter import *

60 root = Tk()
61 root.filename = filedialog.askopenfilename(title = "Select file",filetypes =

(("Excel Files","*.xls"),("all files","*.*"))),!

62 return root.filename

B PYDSAL F PyDSAL’s reader of selected spreadsheet 155

F PyDSAL’s reader of selected spreadsheet

See Table 1.2 for an overview of PyDSAL’s scripts.

Algorithm B.6: BuildSystem-vIngrid.py

1 #!/usr/bin/python
2 # Copyright (c) 2021, Olav B. Fosso, NTNU
3 #
4 # All rights reserved.
5 #
6 # Redistribution and use in source and binary forms, with or without

modification,,!

7 # are permitted provided that the following conditions are met:
8 #
9 # * Redistributions of source code must retain the above copyright notice,

10 # this list of conditions and the following disclaimer.
11 # * Redistributions in binary form must reproduce the above copyright

notice,,!

12 # this list of conditions and the following disclaimer in the
documentation,!

13 # and/or other materials provided with the distribution.

14 import numpy as np
15 from DistribObjects_vIngrid import *
16 import pandas as pd

17 #from MenuFunctions_v2 import ViewFileName #Jeg endret dette, for å slippe å
velge xcel-filen hele veien.,!

18 def BuildSystem3():
19 def renumber(BusList, LineList):
20 iloop1 = 0
21 sbase = 1 # assume that input values of load are in PU.
22 temp = np.zeros(2000,dtype=int)
23 while iloop1 < len(BusList):
24 obj = BusList[iloop1]
25 obj.busext = obj.busnum
26 obj.busnum = iloop1 +1
27 temp[obj.busext] = obj.busnum
28 obj.pload = obj.pload/sbase
29 obj.qload = obj.qload / sbase
30 iloop1 += 1

31 iloop1 = 0
32 while iloop1 < len(LineList):
33 obj = LineList[iloop1]
34 obj.fbus = temp[obj.fbus]
35 obj.tbus = temp[obj.tbus]
36 iloop1 += 1
37 return

38 BusList = []
39 LineList = []
40 # file = ViewFileName(filext="xls") #Ingrid
41 file = "Cineldi124BusPyDSAL_Load_65.xls" #Ingrid

B PYDSAL F PyDSAL’s reader of selected spreadsheet 156

42 xls = pd.ExcelFile(file)
43 df2 = pd.read_excel(xls, 'Bus')
44 values = df2.values
45 # Read Bus data --
46 iloop = 0
47 # print(' ')
48 while iloop < len(values):
49 BusList.append(Bus(busnum=int(values[iloop, 0]), pload=values[iloop, 2],

qload=values[iloop, 3],,!

50 vmax=values[iloop, 7], vmin=values[iloop, 8]))
51 iloop += 1
52 df2 = pd.read_excel(xls, 'Branch')
53 values = df2.values
54 # Read Bus data --
55 iloop = 0
56 # print(' ')
57 while iloop < len(values):
58 LineList.append(Line(fbus=int(values[iloop, 0]), tbus=int(values[iloop,

1]), r=values[iloop, 2],,!

59 x=values[iloop, 3], ratea=values[iloop, 5],
ibstat=int(values[iloop, 10]),,!

60 reserve=int(values[iloop, 11])))
61 iloop += 1

62 renumber(BusList, LineList)

63 return BusList, LineList

	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Terminology
	Introduction
	Motivation
	PyDSAL
	Forward-Backward Sweep and a simulation's outputs
	A simulation's sensitivities and power loss minimization
	Grid specification and input parameters
	The main branch
	Per unit measurement

	Loads
	Standard loads
	Added loads
	Charging and discharging

	Software development
	Shell development
	Function development
	Tree pattern development
	Color-categorization development

	Simulation scenarios
	Scenario: Change of supply bus
	Scenario: Splitting of the grid
	Scenario: Local storage as backup feeders
	Scenario: Battery powered ferry
	Scenario: Vehicles to grid

	Scenario implementation
	... of a change of supply bus
	... of a splitting of the grid
	... of local storage as backup feeders
	... of a battery powered ferry
	... of vehicles to grid

	Simulation results
	... of a change of supply bus
	... of splitting of the grid
	... of local storage as backup feeders
	... of a battery powered ferry
	... of vehicles to grid
	Simulation results summary
	The shell's summary tables
	Grid load and loss and any added loads
	Color-categorized line flows
	Color-categorized node voltages

	Future software development
	Future shell development
	... of a change of supply
	... of splitting of the grid
	... of local storages as backup feeders
	... of a battery powered ferry
	... of vehicles to grid

	Future function development
	flatStart
	getload
	dispTree
	... of the color-categorization

	Conclusion
	Bibliography
	HTML files of tree patterns
	PyDSAL
	PyDSAL's previous version of the function dispTree
	PyDSAL's shell
	PyDSAL's laws and functions
	PyDSAL's class objects
	PyDSAL's selector of spreadsheets
	PyDSAL's reader of selected spreadsheet

