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Abstract

The goal of many Internet of Things (IoT) sensing applications, such as
environmental monitoring, is to support decision-making by providing valuable
information about various phenomena. One approach to achieve this goal is to
deploy a network of wireless sensors that collect and transmit measurements of the
phenomena. However, typical wireless sensors have limited energy, computation,
and communication resources, making it infeasible to measure continuously at a
high rate. Fortunately, we can use efficient sensing techniques to address these
resource constraints by selecting only the most informative measurements and
avoiding wasting resources on redundant or least informative measurements. Yet,
designing such sensing techniques often involves manually fine-tuned heuristics or
algorithms that are task-specific and non-adaptive. This approach is not scalable to
the IoT setting with a typically large number of devices deployed in dynamic and
non-stationary environments. There is a need for more autonomy to achieve scalable
sensing solutions, where individual sensors autonomously learn strategies suitable
for their specific environments and capabilities. Therefore, we investigate using deep
reinforcement learning to develop autonomous sensing solutions. We first address
the challenge of computational complexity by building a general-purpose simulator
to train the behavior of sensing agents. Through three use cases, we demonstrate
the feasibility of using deep reinforcement learning to achieve autonomous sensing.
We then explore using various reward functions that align with the application goals
and guide learning toward desired behaviors, including utility-based, information-
based, and value-based rewards. Finally, we show that explicitly representing
our understanding of a phenomenon can guide the autonomous sensing agent in
selecting informative measurements that maximally inform our prior knowledge of
the phenomenon. Overall, the results of this work show that deep reinforcement
learning can lead to increased autonomy and, thus, scalability in IoT sensing
applications while achieving comparable performance to conventional methods.
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Part 1
Research Overview






“Information is the resolution of uncertainty”
— Claude Shannon, 1948

Chapter 1
Introduction

The ultimate goal of many IoT sensing applications, such as environmental
monitoring [1], is to support decision-making. By providing valuable information
about phenomena, these applications help stakeholders make informed decisions
about various issues, such as managing resources more efficiently or responding
to potential hazards. For instance, policymakers of a municipality can use data
from an air quality monitoring system to decide when to close a road or start a
street cleaning initiative to reduce air pollution. The main challenge of IoT sensing
applications is providing access to information about the phenomena with minimal
cost and effort.

One approach to support decision-making is to deploy a network of wireless
sensors. These sensors provide information by collecting and transmitting
measurements of the phenomena. If the network of sensors has sufficient coverage
of the environment and the sensors are precise enough and measure at a high rate,
this approach would provide timely and accurate information. The stakeholders
would have “real-time” access to the actual value of the phenomena and can then
use this information to make informed decisions.

However, typical wireless sensors have limited energy, computation, and
communication resources. These resource constraints make it infeasible to measure
continuously at a high rate. With recent technological advances, computation time
and communication bandwidth are becoming cheaper and are, in practice, only
limited by energy resources. Thus, the energy constraint is the main bottleneck in
wireless sensor networks. We need to address the energy constraints to realize the
full potential of IoT sensing applications.

The act of sensing (i.e., taking a measurement) is the most energy-consuming
task in many applications. For instance, in an air quality monitoring system, the
energy consumed for measuring the air particles is often an order of magnitude
higher than the energy consumed for computation and communication. Additionally,
the energy consumed for computation and communication is often proportional
to the amount of data measured by the sensing module. Therefore, to address
the energy constraints in wireless sensor networks, we need to reduce the energy
consumption of the sensing module.

The most straightforward approach is to reduce the number of measurements.
But does this reduction lead to information loss and, therefore, to less accurate
decisions? Fortunately, not all data are equally informative regarding the application
goal. We have an opportunity to use efficient sensing techniques to only select the
most informative measurements [2]. In these techniques, sensors identify the most
informative data points and only measure at those points. Thus, we avoid wasting
resources on acquiring, processing, and communicating those unnecessary, redundant,
or least informative measurements. In wireless sensor networks, these techniques

3



1. Introduction

have been studied extensively in the literature under the term “data-reduction” [3,
4, 5, 6].

Despite the extensive research on efficient sensing, the design of such sensing
techniques often involves manually fine-tuned heuristics or algorithms. These
heuristics and algorithms are often task-specific and non-adaptive. However, IoT
presents a setting with a typically large number of devices deployed in dynamic
and non-stationary environments. It would be unfeasible to manually design
sensing policies for different phenomena, settings, sensors, and batteries. Even
dynamic optimization approaches do not scale well, as they require significant
domain knowledge and are not robust to major changes in the sensors’ environment,
configurations, or constraints. We, therefore, see a need for more autonomous
approaches to achieve scalable sensing solutions. The sensors themselves should be
able to learn efficient sensing strategies suitable for their specific environment and
capabilities.

Reinforcement learning provides an appealing approach to autonomy. It provides
a framework to learn good policies from data with less design effort. The sensors can
learn efficient sensing strategies by interacting with the environment and receiving
feedback. This way, we can achieve scalable sensing solutions without requiring
significant domain knowledge or manual intervention. Indeed, reinforcement learning
has already been successfully applied to many IoT sensing applications, such as
sensor power management [7, 8, 9, 10, 11, 12, 13, 14]. However, conventional
reinforcement learning approaches are limited in their ability to learn good policies
for ToT sensing. They require the state and action spaces to be finite and small
enough to be easily tabulated. This not only adds manual design effort but also
limits the scalability of the approach. To live up to the potential of reinforcement
learning, we need to develop new methods to learn good policies in an end-to-end
fashion without explicitly designing features or discretizing the state or action spaces.
Reinforcement learning methods should be able to sort out the complicated and
domain-specific technicalities on their own and abstract away most of the manual
design effort.

Luckily, we can use the recent advances in deep learning to achieve this goal
through deep reinforcement learning. In deep reinforcement learning, we leverage the
powerful representational learning of deep neural networks [15] to learn expressive
policies. The neural networks can represent complex non-linear functions that are
difficult to approximate using conventional function approximations methods. This
allows us to learn policies in an end-to-end fashion and to define reward functions
more aligned with the application goals. Indeed, deep reinforcement learning has
been successfully applied to various real-world autonomous applications [16]. This
success is mainly due to the scalability and efficiency of the recent deep reinforcement
algorithms [17, 18, 19, 20]. However, we see a gap between the full potential of
deep reinforcement learning and its application to IoT sensing. The existing studies
are limited to a few specific applications and do not address the unique challenges
of automating IoT sensing.

Therefore, we explore the potential of using deep reinforcement learning to
enable autonomous IoT sensing. We first formulate the sensing problem as a
deep reinforcement learning task and discuss the unique challenges of automating
IoT sensing. We then address these challenges by developing novel methods and

4



Research questions

frameworks for applying deep reinforcement learning in sensing problems to increase
autonomy and, thus, scalability in IoT. We evaluate our approaches on a real-world
ToT sensing application and show that they can reduce manual design effort while
achieving comparable performance to conventional methods. We also discuss our
approaches’ advantages and limitations and propose future research directions.

1.1 Research questions

This section describes the research questions we aim to answer in this thesis. We
start with the overall research goal of creating autonomous IoT sensing solutions
through deep reinforcement learning. We then break down the research goal into
more specific research questions. These research questions address the challenges of
applying deep reinforcement learning to the autonomous sensing problem.

The first challenge is formulating the sensing problem as a deep reinforcement
learning task. We need to define the input state of a sensing policy, the actions
that the policy can take, and the goal that the policy should optimize. We also
need to define what is being learned and how to learn it. One particular issue we
need to address is computational complexity. Deep reinforcement learning requires
many interactions with the environment to learn a good policy. This is unfeasible
in IoT sensing applications, as the sensors are typically resource-constrained and
have limited energy and computation capabilities to afford such a large number
of interactions. We need to build a framework or infrastructure to learn sensing
policies before deploying them to the sensors. We should demonstrate the feasibility
of using this framework in real use cases and evaluate its performance. We, therefore,
formulate the first research question as follows:

Research Question 1 (Feasibility of autonomous sensing):

How can we utilize deep reinforcement learning to autonomously learn
policies that control sensing of IoT devices?

The second challenge is designing a suitable reward function. This function
should be learnable and goal-oriented. It should be learnable since it provides the
feedback signal to the learning algorithms, for example, through gradient descent.
Most importantly, it should be goal-oriented by reflecting the application goals
and guiding the learning toward the desired behaviors. Therefore, we first need to
identify the correct application goals before framing them into a scalar reward signal.
In our case, we need to answer the question: what are the goals of IoT sensing? One
possible answer is to maximize the value of collected data. Specifically, we want the
sensing solution to maximize the value of collected data while maintaining stable
and perpetual operation. The aim is to ensure the stability and perpetual operation
of the IoT device to continue collecting valuable data over the long term. The main
challenge is how to quantify the value of collected data and encode the stability
and perpetual operation of the IoT device in a reward function. We formulate the
second research question as follows:
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Research Question 2 (Reward function design):

In the setting of RQ1, how can we define reward functions that support
application goals and lead to learning?

Generally, a data point or measurement’s value is the amount of information it
adds to or corrects our belief about a phenomenon. We usually have an implicit
understanding or prior belief about a phenomenon. This belief is uncertain and
imprecise. That is why we take measurements to get facts about the phenomenon
and update our understanding. The challenge is to make this understanding explicit
and use it to guide the sensing agent in selecting more informative measurements
that optimally update our understanding. To address this challenge, we need to
define a suitable representation model of the phenomena and an update mechanism
consistent with the prior belief and the new measurements. Then, we need to build
a framework for using the representation model to guide the sensing agent. We
formulate the third research question as follows:

Research Question 3 (Guided autonomous sensing):

How can we use our understanding about a phenomenon to guide an
autonomous sensing agent?

1.2 Overview of research contributions

This section provides a brief overview of the research contributions of this thesis.
The contributions are organized in six publications, presented in the second part
of this thesis. Table 1.1 shows the main contributions of each paper toward the
research questions. In Chapter 4, we discuss the contributions toward each research
question in more detail.

Table 1.1: Overview of the research contributions of each paper.

RQ Paper I Paper II Paper III Paper IV Paper V. Paper VI
RQ1: Feasibility of * % * *
autonomous sensing
RQ2: Reward * * * %
function design
RQ3: Guided * * *

autonomous sensing

The first paper motivates the need for scalable sensing solutions and how
automation is a key enabler for scalability. The paper formulates the sensing
problem as a deep reinforcement learning task and shows its feasibility through a
use case of power management for energy harvesting IoT nodes. The paper also
proposes using a reward function that reflects conflicting objectives of maximizing
the amount of collected data while maintaining stable and perpetual operation.
Finally, the paper shows how to tune the reward function to achieve different
trade-offs between the conflicting objectives.

6



Overview of research contributions

Paper I (Murad A, Kraemer FA, Bach K, Taylor G):

Title:
Autonomous Management of Energy-Harvesting IoT Nodes Using Deep
Reinforcement Learning

Published at:
13th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), IEEE, 2019

The second paper addresses the computational complexity challenge by building a
general-purpose simulator to learn sensing policies with deep reinforcement learning.
The simulator is based on the OpenAl Gym interface, which can be extended to
new applications and environments. The simulator comprises various modules
that can be combined and configured to match a specific use case. The main
modules of the sensor gym are energy harvesting prediction, energy storage, and
energy consumption. We use real data from a solar panel to train a sensor power
management agent.

Paper IT (Murad A, Kraemer FA, Bach K, Taylor G):

Title:
ToT Sensor Gym: Training Autonomous IoT Devices with Deep
Reinforcement Learning

Published at:
9th International Conference on the Internet of Things, ACM, 2019

The third paper addresses how to maximize the value of collected data while
minimizing energy consumption. It proposes a framework for learning adaptive
sensing by integrating a representation model of a phenomenon with a deep
reinforcement learning agent. The model quantifies the information gain, thus
guiding the agent to select the most informative measurements. Finally, the paper
demonstrates the approach’s feasibility in a case study of workplace noise monitoring
and discusses the proposed framework’s implementation and constraints.

Paper IIT (Murad A, Kraemer FA, Bach K, Taylor G):

Title:
Information-Driven Adaptive Sensing Based on Deep Reinforcement
Learning.

Published at:
10th International Conference on the Internet of Things, ACM, 2020

The fourth paper focuses on building representation models of environmental
phenomena with uncertainty quantification. It uses various probabilistic deep
learning models to quantify uncertainty in the representation models and investigate
the reliability of the uncertainty estimates. The paper uses an air quality forecasting
problem as a case study to demonstrate the practical impact of uncertainty
quantification for making informed decisions. Finally, the paper proposes improving
uncertainty estimation with adversarial training and defines the tools and metrics
for evaluating uncertainty quantification in data-driven models. The results from
this paper are also used in the fifth, more comprehensive paper.
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Paper IV (Murad A, Kraemer FA, Bach K, Taylor G):

Title:
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality
Forecasting.

Published in:
Sensors, 2021

The fifth paper combines the results of the previous papers (Paper III, Paper IV)
and presents the approach more comprehensively. It investigates the choice of
reward functions and proposes a simple reward that maximizes the value of collected
data while minimizing energy consumption. It defines value as capturing events of
interest while representing the phenomenon with a more credible model. The paper
applies the proposed framework to two use cases of indoor noise and air quality
monitoring. Finally, it demonstrates the adaptability and transferability of the
learned policies to new sensing stations.

Paper V (Murad A, Kraemer FA, Bach K, Taylor G):

Title:
Uncertainty-Aware Autonomous Sensing with Deep Reinforcement Learn-
ing

Submitted in:
Internet of Things Journal, IEEE, 2022

The sixth paper focuses on unsupervised reinforcement learning and how to
use data from expert-designed policies to guide learning without a reward function.
The paper discusses the challenges of designing a reward function and motivates
reward-free exploration for learning state representation and preparing the gent
for future tasks. Then, it proposes a new framework for using data from expert-
designed policies to learn state projection that guides the agent towards desired
behaviors.

Paper VI (Klemsdal E, Herland S, Murad A):
Title:

Learning Task Agnostic Skills with Data-driven Guidance.
Published at:

ICML Workshop on Unsupervised Reinforcement Learning, 2021

1.3 Research methodology

This section details the research methodology we used during the research project.
Given the research questions in Section 1.1, we observe that they are design tasks
because they imply concrete and action-oriented objectives. Such design tasks
typically have more than one solution because they can be answered in different
ways and with varying degrees of success. Specifically, we can refine the research
questions into design tasks as follows:

e Design a framework for utilizing deep reinforcement learning to autonomously
learn policies that control sensing of IoT devices
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e Design reward functions that support applications goals and lead to learning?

e Design a framework for using our understanding about a phenomenon to
guide an autonomous sensing agent.

The design science approach to research [21] can provide a structure for answering
the above design tasks. The design science methodology fits well with our research
topic because it defines a design cycle approach appropriate for answering or solving
our design tasks. In addition to answering design tasks, come knowledge questions
that ask for knowledge about the solutions, the problem context, and the interaction
between the two.

We use the design cycle to iterate over designing and investigating. We design
artifacts to change or improve the design problem and empirically investigate the
artifacts to answer some knowledge questions. We use the answers to the knowledge
questions to reiterate the design and improve the artifacts. There are many choices
of artifacts we can design, and these artifacts do not necessarily solve the design
problems, but they try to change or improve the problems. In more detail, we use
the following four steps to design and investigate the artifacts.

Step 1: problem investigation

We first identify the problem and knowledge context during the problem investigation
step. For instance, we conduct a literature review of autonomous sensing and (deep)
reinforcement learning. Then, we identify the challenges regarding the design
problems above, such as:

o Computational complexity of deep reinforcement learning makes it infeasible
to train agents on resource-constrained sensors.

e Energy-based reward functions lead to undesired emergent behavior, such as
duty cycles with high variance.

o Information-based reward functions require quantifying measurements’ infor-
mation gain, which is infeasible to do precisely in practice.

o Explicitly representing our prior belief about a phenomenon requires complex,
uncertainty-aware models. Additionally, it is not straightforward to choose
the correct input features and external information when building the model.

o It is challenging to update the representation model in a way that is consistent

with the prior belief and the new measurement.

Step 2: solution design

We design artifacts to address the design problems during the solution ' design step.
For example, we design the following artifacts to address the above challenges:

IThe design science literature uses the term “treatment” to refer to a “solution” to indicate
that it may partially or not solve the problem. We use the more colloquial term “solution.”
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We design the IoT Sensor Gym as a simulator to learn sensing policies with
deep reinforcement learning.

We design new goal-oriented reward functions, such as utility-based,
information-based, and value-based rewards. These rewards are intended
to support the application goals and exclude other side concerns, such as
energy.

We build several probabilistic models to represent our prior belief about the
phenomenon explicitly.

We define several metrics to evaluate the performance of the representation
model and the reliability of their uncertainty estimates.

Using the representation models, we define proxy measures to quantify the
information content of measurements, such as Fisher Information and relative
entropy.

We define new methods to update the representation model with new
measurements. For instance, we add the new measurements to the input
features of the model. Thus the model itself learns how to use new
measurements to refine its predictions and take account of the prior belief.

We design new frameworks to incorporate the representation model into the
IoT Sensor Gym and guide the autonomous sensing agent.

Step 3: solution validation

In this step, we empirically investigate the designed artifacts to answer knowledge
questions about these artifacts. We start by identifying the knowledge context (prior
knowledge) and the knowledge questions. Then, we use the artifacts to answer the
knowledge questions. We use the answers to the knowledge questions to reiterate
the design cycle and improve the artifacts. These knowledge questions ask for
knowledge about the artifacts, the problem context, and the interaction between the
two. We answer the knowledge questions using propositions or knowledge claims,
then justify these claims by empirical evaluation of the artifacts in real case studies.
Example of empirical investigations in our research include:

10

We use the IoT Sensor Gym in three use cases to empirically investigate
the different artifacts, such as frameworks, reward functions, representation
models, metrics, loss functions, and input features. We use the simulator to
quickly iterate over many design choices.

We evaluate the built representation models using various established metrics.

We evaluate the reward functions and the sensing frameworks based on their
utility to the application goals.

We conduct various ablation studies to investigate the impact of different
design choices on the performance of the artifacts.
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Step 4: solution implementation

We do not implement the artifacts in real-world settings during the solution
implementation step. However, we use real data in the IoT Sensor Gym to investigate
the artifacts. For example, we use real solar and weather data to evaluate the
sensing policies of energy-harvesting sensors. Additionally, we use data from four air
quality measurement stations in Trondheim in the air quality use case. We also use
noise data collected using a commercial system in the noise use case. Although we
do not implement the artifacts in real-world settings, we ask conceptional questions
about the implementation. For example, we ask questions about the following
aspects of the implementation:

o Computational complexity of the sensing policy and the representation model.
o Transferability and “out-of-the-box” deployment.

e« How to use data observed by the sensor after deployment to update the
simulator modules. Thus, addressing how to bridge the gap between simulation
and reality (“sim-to-real” gap).

1.4 Thesis structure

The format of this thesis is a compendium of publications. It consists of two
main parts: the first is an overview of the research project, and the second is a
compendium of six articles.

The first part includes five chapters. The first chapter introduces the
research project and discusses the research questions, a brief overview of research
contributions, research methods, and thesis structure. Then, the second chapter
presents the relevant background on deep reinforcement learning, prediction models
and uncertainty quantification, and IoT sensing. The third chapter is a literature
review of the related work in IoT sensing and the application of reinforcement in
ToT sensing. The fourth chapter presents the research contributions of the project
and how these contributions answer the research questions in the first chapter. The
fifth chapter concludes the thesis and discusses future work. Finally, the second
part of the thesis is the compendium of six publications.

11






“General methods that leverage computation are ultimately
the most effective, and by a large margin”
— Richard S. Sutton, 2019

Chapter 2
Background

2.1 (Deep) reinforcement learning

Our goal in this section is to provide a brief introduction to reinforcement learning
(RL) and deep reinforcement learning (DRL). We will first define the problem of
RL and then discuss the main approaches to solving it. We will not go into the
algorithms’ details but focus on the concepts and the intuition behind them.

2.1.1 Reinforcement Learning Problem

Reinforcement learning is a subfield of machine learning suitable for sequential
decision-making under uncertainty. The main idea is to learn by trial and error and
have a mechanism to increase the likelihood of “good” trajectories and decrease
the likelihood of “bad” trajectories. Concretely, an agent learns to take sequential
actions by interacting with an environment. The agent is given a reward signal
indicating how good or bad its choice of actions was. The agent’s goal is to maximize
an objective expressed in the total reward it receives over time. Figure 2.1 shows a
simple diagram of an agent-environment interaction in reinforcement learning.

Environment Agent

Ser1 ~ p(Sty1l5t, at)
S f——

vwnmwwmme\

r(s,ar) = R Policy

7

t ‘ ay ~ 7T<St)

Figure 2.1: An agent interacting with an environment to make sequential decisions,
modeled as a Markov Decision Process (MDP).

Mathematically, we specify a reinforcement learning problem as a Markov
Decision Process (MDP), which is an extension of a Markov chain in the setting of
sequential decision-making. The MDP consists of a set of states S, a set of actions
A, a transition function P, a reward function R, and a discount factor ~. In more
detail, an MDP is represented by a tuple M = (S, A, P, R,~) with the following
elements:

e State s € S is the set of all states the problem might have.
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o Action a ~ 7(s) is the set of all possible actions the agent can take in a given
state s.

o Transition probability p(s'|s,a) Vs',s € S,a € A is the probability of
transitioning from state s to next state s’ when taking action a.

e Reward r: § — R is the reward function that maps the current state to a
real number. For example, this reward can be a positive number in states
where the agent has achieved its goal and a negative number in states where
the agent has harmed itself. In this thesis, we use a reward function that
depends only on the current state r(s), but in general, the reward function
can also depend on action 7(s,a) and the next state r(s,a,s’).

o Discount factor v € (0,1) is the factor to discount future rewards. This
factor describes how much the agent prefers short-term rewards over long-term
ones. A discount factor of 1 means that the agent cares equally about the
current and future rewards. A discount factor of 0 means that the agent cares
only about the current reward.

The agent learns a behavior expressed as a policy « : S — A. This policy
maps the state space S to the action space A, specifying the action to take in each
state. The agent interacts with the environment by taking action and observing the
resulting state and reward. The agent uses this information to iteratively update its
policy until it converges to a policy that maximizes the expected cumulative reward
over a specified horizon T. Thus, we can express the objective of any reinforcement
learning algorithm as follows:

™ = arg max | [Z ’ytr(st)] (2.1)

P |ter

This objective implies finding a policy 7* that maximizes the expected cumulative
reward over the horizon T" where the expectation is under the policy distribution 7
and the transition probability p.

Although the reinforcement learning objective (2.1) is a starting point for
thinking about a reinforcement learning solution, it can be intractable to solve
directly. We need to derive a metric that evaluates the performance or quality of a
policy 7. One possible metric is the value function V™ (s), which is the expected
cumulative reward starting from a state s and following policy :

VT(s) =r(s)+ > wlals) D pls'[s,a)yV7(s) (2.2)
acA s'eS

Then, we can reformulate the reinforcement learning objective (2.1) as the value
function starting from the initial state si:

7 = argmax E
T mp

Z’ytr(st)]argmax E [V™(s1)] (2.3)

™ ~
teT s1~p(s1)

Another way to measure the quality of a policy is to use the Q-function Q™(s,a)
(action-value function), which is the expected cumulative reward starting from state
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s, taking action a and following policy m:
Q"(s,0) = r(s) + 3 plsls,a) D 7@ @Q7(s", ) (2.49)
s'eS a’'€eA

We can express the value function in terms of the Q-function or vice versa:

V7(s) = > m(als)Q" (s, a) (2.5)
acA
Q" (s,a )+ > p(s']s, )7V (s) (2.6)
s'eS

The value function and Q-function are also connected through the advantage function
A™(s,a):
A" (s,a) = Q™ (s,a) — V7 (s) (2.7)

The advantage essentially means how much better the action a in state s is compared
to the average performance of the policy 7 in state s.

The value function of a state is the expected cumulative reward that the agent
can expect to receive if it starts in that state and follows the policy 7. Thus, the
goal of any solution is to learn a policy that produces high value for all states.

2.1.2 Designing a reinforcement learning solution

At a high level, any reinforcement learning solution should optimize the application’s
objective expressed as maximizing the expected cumulative reward (2.1). But when
designing a reinforcement learning solution, there are several design choices to
consider regarding what is being learned and how it is being learned. These design
choices are easier to think about if we decompose a reinforcement learning solution
into three fundamental building blocks as follows:

1. Policy: Should our solution have an explicit representation of the policy?
Should our solution learn the parameters of a policy function that maps the
current state to an action?

2. Value function: Should our solution have an explicit representation of the
value function? Should our solution learn the parameters of a value function
that maps the current state to the predicted or expected cumulative reward?

3. Model: Should our solution explicitly represent the dynamics in the
environment? Should our solution learn the parameters of a model that
maps the current state and action to the next state and reward?

The combination of these three building blocks gives rise to various reinforcement
learning solutions and concrete algorithms. These blocks are not mutually exclusive,
and many solutions use a combination of these blocks. In the following sections, we
discuss how to build a reinforcement learning solution using these three building
blocks and how to choose the right combination of these blocks for a given application.
We start with conventional reinforcement learning methods in each section and
then progress to deep reinforcement learning methods. We have used many of these
methods in our research and settled on the more suitable for autonomous sensing
applications.
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2.1.3 Value-based methods

One way to approach a reinforcement learning problem is to start thinking from
the metric. Instead of directly learning a policy that picks actions, we can build a
mechanism to evaluate any policy, then use this mechanism to choose and improve
upon the policy.

Suppose we have a simple reinforcement learning problem with small and discrete
states and actions. We can represent the Q-function Q™ (s, a) as a table, where each
entry in the table is the Q-value of a state-action pair. We can then use this table
to pick actions by choosing the action with the highest Q-value for a given state:

a = argmax Q" (s,a) (2.8)
acA

The policy 7 is not explicitly represented in this approach. Instead, it is implicitly
represented by the Q-function. The question now is how to learn the Q-function.
We can learn the Q-function using on-policy methods, such as SARSA [22], or
off-policy methods, such as Q-learning [23].

SARSA

One approach to learn the Q-function is by trial and error: start with a random
policy 7, then collect trajectory samples using this policy and use these samples to
update the Q-function. The trajectory samples are of the form 7 = (s¢, as, ¢, Se41),
where ¢ denotes the timestep, and s¢, s¢11 € S,a: € A, 7 = R(s¢). We then use
these trajectory samples to update the Q-function as follows:

Qﬂ-(St, Cl,t) — Q’T(St, at) + Oé(;t (29)
where « is the learning rate, and ¢; is the temporal difference error:

0 = 1(s¢) +YQ7 (St41, apg1) — Q7 (54, ar) (2.10)

Essentially, we are updating the current estimate of the Q-value Q7 (s:, at) using
the observed reward r(s;) and the estimated Q-value of the next state-action pair
Q7 (S¢+1,a¢4+1). The learning rate a controls how much we update the current
estimate of the Q-value. The discount factor = controls how much we care
about future rewards. We can also find a better estimate of d; using multi-step
bootstrapping:

8 = 7(s0) + 97 (se41) + -+ YT (se0m) + 7T Q (504 41, arrmn) — Q7 (s, ar)
(2.11)
where H is the number of steps to look ahead.

The update rule (2.10) is called the SARSA (State-Action-Reward-State-Action)
algorithm [22]. One notable observation is that the trajectory samples are collected
using the policy 7; thus, SARSA is an on-policy algorithm. Consequently, using
on-policy can result in less efficient exploration of the state space since the agent
may not explore states that are not visited by the policy. To address this issue, we
can use various exploration strategies, such as e-greedy, annealing €, or Boltzmann
exploration [24]
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Q-learning

We can also use a different policy (#) to collect trajectory samples and use these
samples to update the Q-function of the policy 7:

o =7(se) + “Yglea}Qﬁ(StH,a) = Q" (s, a) (2.12)

This type of learning is called off-policy learning, such as the Q-learning algorithm
[23]. The main advantage of off-policy learning is sample efficiency. Since it is not
necessary to use the policy 7 to collect trajectory samples, we can use previously
collected data. This data can be collected using a previous version of the policy 7, or
even a different policy 7. Another advantage is that we can use a more exploratory
policy to collect trajectory samples and use these samples to update the Q-function
of the policy m without worrying about the exploration-exploitation trade-off.

In both SARSA and Q-learning, given Q-function approximations, a new and
likely-improved policy 7* is implied by 7*(s) = argmax,c 4 @™ (s,a). With a
sufficient sampling of the whole state space and alteration between sampling, policy
evaluation, and policy improvement steps, these approaches are proven to converge
to excellent policies. This is a convenient guarantee but requires the state and
action spaces to be finite and small enough to be easily tabulated.

In many real-world applications, the state space is usually large and continuous.
In these cases, it is not feasible to represent the Q-function as a table. Instead, we can
use a function approximation to approximate the Q-function. One possible function
approximator is a neural network. The only difference between conventional and deep
reinforcement learning methods is using a neural network. In deep reinforcement
learning, we use neural networks to represent the policy, value function, or model.
This way, we can leverage the powerful representation learning capabilities of
neural networks [15] in reinforcement learning. The main advantage of using neural
networks is that they can learn complex non-linear functions that are difficult to
learn using conventional methods. This is especially useful in continuous control,
where the state and action spaces are often continuous, very large, and complex.
Thus, we can perform end-to-end training without explicitly designing features or
discretizing the state and action spaces. The downside of using neural networks is
that they require a lot of samples to learn a good policy.

Deep Q-networks

In Deep Q-Networks, we use a neural network to approximate the Q-function. The
neural network takes the state as input and outputs the Q-values for all actions in
the state. This neural network can be trained with gradient descent using the same
update rules (2.12) as in the tabular case. Figure 2.2 shows a simple example of a
neural network that approximates the Q-function and policy deduction from the
Q-function.

We can represent the neural network as a function Q™ (s, a; ¢), where ¢ is the
set of neural network parameters. The update rule (2.12) can be written as:

0 =7(s¢) + Y max Q" (8141, a3 0) — Q™ (s¢, ar; d) (2.13)
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Environment
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Figure 2.2: Deep Q-Network
Then we can construct a loss function L(¢) as follows:
L(¢) = Erz [67] (2.14)

where 7 = (s¢, 4,7, S141) 18 a trajectory sample. This loss function minimizes
the mean squared error between the observed (target) Q-values and the estimated
Q-values. We can then use gradient descent to update the parameters ¢ of the
neural network:

¢ < ¢ —aVyL(9)

Since we use the same neural network to approximate the target Q-values and
the estimated Q-values, circular dependency can occur between the target and the
estimated Q-values. This can result in unstable learning. We can decouple this
circular dependency by using a separate neural network to approximate the target
Q-values [17]. The second network is called the target network. The target network
is updated periodically with the parameters of the main network. This way, the
target Q-values are updated sparingly, and the learning is more stable. The update
can occur at a regular interval, for example, every C step [17]. Alternatively, we
can do a soft update using a weighted average (polyak averaging) of the main and
target network.[25].

Another improvement we can make is to use a replay buffer to store the trajectory
samples. Then, we sample a batch of trajectories from this buffer to update the
neural network instead of using trajectories from the current policy. This way, we
can improve the stability of training and sample efficiency. The sampling from the
buffer can be done uniformly [17] or using a prioritized replay buffer [26], in which
the more important trajectories are sampled more frequently.

(2.15)

Double Q-learning & Dueling DQN

In (2.13), we are using the maximum Q-value of the next state to update the current
Q-value, which can result in an overestimation of the Q-values. To address the
overestimation issue, we can use two networks to estimate the target Q-values: one
network to select the action and another to evaluate the Q-value of the selected
action [27]. This way, we can decouple the action selection from the Q-value
estimation. A different approach is to use a single network that has two streams at
the end: one stream to estimate the value function V(s), and the other stream to
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estimate the advantage function A(s,a) [28]. Then, we estimate the Q-value using
the advantage function (2.7). This approach can lead to more stable training by
having a better policy evaluation because, in some states, it can be enough to have
a better estimate of the value function instead of a better estimate of the Q-value
of every action separately.

Limitations of deep Q-networks

These complex approaches of using neural networks to approximate the Q-function
allow state space to be continuous but result in a loss of the convergence guarantee.
In practice, we get good enough policies by training the neural network with more
and more data. However, applying value-based methods successfully to continuous
and complex domains remains fundamentally difficult.

Since the neural network needs to have one output node for each action, it is
infeasible to only use value-based methods in a continuous action space. We need to
either discretize the action space or use a different approach to handle continuous
actions, such as policy gradient or actor-critic methods.

2.1.4 Policy-based methods

Value-based methods (2.1.3) have inherent limitations, especially regarding
continuous action spaces, exploration, sample-efficiency, and convergence (training)
speed. We need to approach the problem from a different perspective. Instead of
first learning a value function, and then using the value function to derive policy,
we can directly learn the policy. This might seems infeasible since the reinforcement
learning objective 2.1 is intractable to solve directly. However, we can start thinking
of a different (or approximate) objective that is easier to solve.

Environment Agent

Ser1 ~ p(Ser1]st, ar)
o~ WV"[*""""“W

ﬂ.mwwwwwwymmww

r(st,at) = R

BINT S PSFIRITIY WV NI NY T e

TS R T GPPPIRPUIRY GPRUTIOTVT MBS VP

{ | ap ~ m(s¢)

Figure 2.3: Agent-environment interaction using a policy represented by a neural
network.

Policy gradient

Suppose we have a policy 7 that is parameterized by a set of parameters 6, then we
can start by rewriting the reinforcement learning objective in terms of the policy

19



2. Background

parameters:

Z’ytr(st)] = arggnax J(0) (2.16)

0" = argmax E
0 teT

o,P

The objective means: to search for a parameterized policy 7y that maximizes the
expected return J(#). Then, we can use gradient ascent to find the optimal policy
parameters 6*:

0« 0+ aVyJ(0) (2.17)

The main challenge is estimating the gradient of an intractable objective Vy.J(6).
One way is first to construct an unbiased estimate (Monte Carlo sampling) of the
objective using several collected trajectory samples:

J(0) ~ % SN Ar(sie) (2.18)

iEN teT

where N is the number of collected trajectory samples using the policy 7. Then,
we can estimate the gradient of the objective function using the trick proposed in
the REINFORCE algorithm [29]:

Vo (0) ~ % Z <Z Ve logﬁg(ai7t|3i7t)> (Z vtr(si,t)> (2.19)

iEN \teT teT

where Vg log mp(a;¢|s;+) is the gradient of the log probability of the action a; + given
the state s;; using samples collect by the policy mg. This trick is useful since it
enables us to estimate the gradient of an expected value in terms of an expectation
of a gradient. In turn, the expectation of a gradient can be estimated using the
collected trajectory samples (Monte Carlo sampling).

The REINFORCE algorithm described above is sometimes called likelihood
ratio policy gradient method. It is similar to maximum likelihood estimation in
supervised learning (or imitation learning), which tries to maximize the likelihood
of the collected samples. The main difference is that the likelihood is multiplied
by the reward function, i.e., we increase the likelihood of a trajectory proportional
to the total reward along that trajectory. This insight allows us to implement the
policy gradient method using the same infrastructure used in supervised learning
with only a slight modification: multiply the gradient by the total reward along a
trajectory.

Although the REINFORCE algorithm is simple, it has several issues that make
it difficult to use in practice. First, the variance of the gradient estimate is high,
i.e., the gradient estimate is very sensitive to the trajectory samples. This high
variance makes it difficult to converge to the optimal policy. One improvement we
can make is to use the reward-to-go instead of the total reward along a trajectory,
which reduces the variance of the gradient estimate as first proposed and proofed
by [30]:

1
Vol (0) ~ >N Vologmo(aislsii)Gis (2.20)

€N teT
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where the reward-to-go G ; is the sum of the discounted rewards starting from the
current time step ¢ until the end of the trajectory ¢ [31]:

T
Gir =Y ""r(siv) (2.21)

t'=t

Another improvement we can make to reduce the variance of the gradient estimate
is to use a baseline [32]. This baseline is a constant (b) that is subtracted from the
reward-to-go G 4

Vo J(0) ~ % >N Velogmo(aiylsie) (Gie —b) (2.22)

ieN teT

For example, we can use the average reward over many trajectories as the baseline:

1
b= > r(sie) (2.23)

i€EN

This way, we only increase the likelihood of trajectories that are better than
the average and decrease the likelihood of trajectories that are worse than the
average. Before, we increased the likelihood of all trajectories with positive rewards
(proportional to the total reward along that trajectory). It is straightforward
to prove that subtracting a baseline from the reward-to-go does not change the
objective (unbiased estimate of the objective in expectation) [32]. We can further
reduce the variance by using a baseline that depends on the state, such as the value
function V'(s). However, we need to explicitly learn the value function and the
policy simultaneously, which is what actor-critic methods do [33].

Actor-critic

Environment
St41 ™~ p(8t+1 |St, at)

T AN Ay
ALJLA_M_.MMJ#A“_M_L T’(St, at) —R
= |....:‘L/w " o .A.nll uuuuu o

{ ar ~ 7(8¢)

Figure 2.4: Value function approximation using a neural network in an Actor-Critic
algorithm.

An actor-critic algorithm combines two building blocks: explicitly representing
the policy and the value function. It builds on the policy gradient method (2.22)
by using the value function as the baseline. Additionally, it uses the g-function
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instead of reward-to-go because the reward-to-go is only a single-sample estimate of
the return, while the g-function is an expectation of the return. This way, we can
reduce the variance of the gradient estimate and make the policy gradient method
more stable and improve the convergence rate.

1
VoJ(0) ~ N Z Z Vologmg(ait|sit) (Q™ (it ait) — V™ (sit))
iEN teT
1
~ N Z Z ve 1Og o (ai,t |si,t)ATr8 (Si,t7 ai,t)

i€EN teT

(2.24)

This policy gradient with the advantage function means: we increase the likelihood
of actions that have a high advantage (i.e., the action is better than the average
action in that state) and decrease the likelihood of actions that have a low advantage
(i.e., the action is worse than the average action in that state). We can approximate
the advantage using a single sample of the next state:

AT (s4,a1) = Q™ (s5¢,ar) — V7 (s¢)

= | r(sa) +7 > plseyalsea)V™(seqn) | = V™(s1)  (2.25)

s5t41€S
~ (s, ar) + V™ (se41) — V7™ (s¢)

The advantage approximation now is the expected return starting from state s;
and taking action a;, but using only a single sample of the next state s;11. This
is the idea behind the advantage actor-critic (A2C) or asynchronous advantage
actor-critic (A3C) algorithm [34].

Regarding implementation, we can use a neural network to represent the policy
mg(als), where 6 are the parameters of the network. The policy is trained using the
policy gradient objective (2.24). We also use a second neural network to represent
the value function V™ (s), where ¢ are the parameters of the network. Similar
to DQN (2.14), we use the mean squared error loss to train the value function
network. It is also possible to estimate the advantage (2.25) using a g-function
network instead of a value-function network. However, it is easier to train a value
function network than a g-function network because the value function network
only needs to predict the value of the current state, while the g-function network
needs to predict the value of all possible actions in the current state.

TRPO

The second issue with the policy gradient method (2.24) is that it is an on-policy
method: we are collecting trajectory samples using the same policy we are trying
to optimize. Consequently, we need to collect new trajectory samples after each
policy update and discard the old ones. This is because the objective (2.16) is an
expected value under 7y, which means that the gradient estimate is only valid for
the current policy. Therefore, policy gradient methods are inefficient and slow to
train, especially when approximating the policy using neural networks, since the
network’s parameters have only a small change with each gradient step. One way to
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mitigate this issue is to use importance sampling to estimate the gradient Vy.J ()
using samples from different policy mp: [35]:

1 . . Aﬂ'/e 9.9
Vo 0) = 5 330 T Vool o) (220)

1€N teT

This means: we are weighting the gradient estimate by the ratio of the probability
of the action under the current policy 7wy and the probability of the action under
the sampling policy mg.. The sampling policy my, can be any policy, but it is usually
a policy close to the current policy 7y, for example, the older version of the current
policy. This way, we can use the old trajectory samples to estimate the gradient
and update the network’s parameters.

The gradient estimate (2.26) is biased, but the bias is small (bounded) if
g, is close to my. The question is how close my: should be to my? The answer
to this question is the main idea behind the trust region policy optimization
(TRPO) algorithm [35]. The TRPO algorithm uses the KL divergence between the
current policy mp and the sampling policy 7y to constrain the change in the policy
parameters 6 between consecutive policy updates.

PPO

A new variant of TRPO called proximal policy optimization (PPO) [36] uses a
clipped (surrogate) objective instead of the KL divergence to constrain the change
in the policy parameters 6 between iterations. Thus, PPO is much simpler to
implement and is more efficient to train.

In this thesis, we mostly use PPO because it is very efficient to train and can be
used to solve complex, continuous tasks. It enables us to learn state abstractions and
effective policies directly from continuous input data. Additionally, PPO enables
inherent exploration by sampling actions from the policy’s probability distribution.
Therefore, using PPO eliminates the need for manual state-space discretization and
hand-tuning of exploration, which leads to a lower manual design effort and hence
scalable autonomy for IoT systems.

Off-policy actor-critic

TRPO and PPO algorithms mitigate the sample-inefficiency issue of on-policy
gradient methods by enabling us to use old trajectory samples to estimate the
gradient. However, these algorithms enforce a constraint on how distant the current
policy my can be from the old sampling policy mg-. Thus, it is impossible to use
trajectories sampled from different policies, such as exploratory ones. This limitation
can be an issue when it is expensive to get new trajectory samples, and we already
have some data collected from a different policy. We would like to have a method
that combines the strengths of policy gradient (i.e., supporting continuous action
spaces) and value-based methods (i.e., supporting off-policy learning). We can make
tradeoffs when combining policy gradient and value-based methods. This tradeoff
is essentially the idea behind off-policy actor-critic [37].
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DDPG

One approach that extends value-based methods to continuous action spaces is the
deterministic policy gradient (DPG) algorithm [38]. This algorithm is developed
to the deep deterministic policy gradient (DDPG) algorithm [25]. In DDPG, a
deterministic policy pp(s) is used to generate actions:

ar = pg(se) + ¢, e~ N(0,07%) (2.27)

where € is a noise term to encourage exploration. In contrast to policy gradient, the
policy pp(s) is trained to maximize the g-value predicted by a Q-function network
Qols,0):

0" = arg max [Qs (s, po(s))] (2.28)

where the Q-function parameters ¢ are fixed. Similar to DQN (2.13), the g-function
in DDPG is trained using the mean squared error loss between the target g-value
and the estimated g-value. However, the action is selected by the policy pg(s)
instead of argmax over all actions:

0 = 7(st) +7Qgp(st41, to(5141)) — Qe (5, ar) (2.29)

This is why DDPG can handle continuous action spaces while DQN can only handle
discrete action spaces: it is impossible to argmax over all continuous actions. DDPG
also uses other tricks to improve training stability, such as using separate target
networks for the policy and the g-function, using a replay buffer to store trajectory
samples, and using a soft update rule (polyak averaging) to update the target
networks.

TD3

Although DDPG is useful for enabling value-based methods to handle continuous
action spaces, it inherits some of the issues of DQN, such as over-estimating the
Q-values. This can leads to instability during training because the policy can exploit
the over-estimated Q-values and produces less optimal actions. To mitigate this
issue, we can use two Q-functions instead of one and use the minimum of the two
Q-values in the loss (2.29). Additionally, we can decouple the dependency between
the policy and the Q-function by delaying the policy update for a few iterations.
This delay allows the Q-value estimate to converge to more accurate values, thus
reducing per-update error. These are the main ideas behind the twin delayed deep
deterministic policy gradient (TD3) algorithm [39]. TD3 is an effective state-of-
the-art algorithm for solving complex, continuous tasks with sample efficiency in
mind.

Soft actor-critic

A fundamental problem in reinforcement learning is the exploration-exploitation
tradeoff. Most of the reinforcement learning algorithms suffers from premature
convergence to sub-optimal policies. Although existing exploration strategies can
help, they are not effective in complex tasks with sparse rewards or hierarchical
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behaviors. To address this issue, we can add an intrinsic reward or regularization
to encourage exploration. For example, we can add an entropy term to the reward
[40]:

Tnew(st) = (st) + BH (mo(-]s¢)) (2.30)

where H(mg(-|s;)) is the entropy of the policy at state s;:

H(mg(:|s1)) = — Z mo(alst) logme(alst) (2.31)
acA

while g is a hyperparameter that controls the tradeoff between the original reward
and the entropy term. The addition of the entropy term is reflected in the
reinforcement learning objective and the value function. This is the idea behind the
soft actor-critic (SAC) algorithm [19]. SAC similar to TD3 except that it uses a
stochastic policy instead of a deterministic policy and the addition of the entropy
term.

Reward-free exploration

We can take the exploration one step further in 2.30 by removing the original reward
term altogether:

Tncw(st) = ﬂH(ﬂ'O(lSt)) (232)

This new reward will encourage the agent to explore the state space by acting as
randomly as possible. The objective of this exploration is for the agent to learn
the state space representation in such a way that it will be maximally prepared to
perform any downstream task when introducing a reward function.

Additionally, we can introduce the idea of skills [41] to encourage the agent to
explore the state space in a more structured way. A skill (or option [42]) is sequence
of actions that the agent can perform to achieve a specific task. For example, a skill
can be a sequence of actions that the agent can perform to reach a specific location.
This intuition is the basis of the last paper in this thesis, where we introduce the
idea of data-driven guidance to encourage the agent to explore the state space in a
more structured way [43].

2.1.5 Model-based methods

In all the previous methods, the agent does not have access to the environment model
and does not explicitly try to learn it. This environment model is represented in the
MDP by the transition probability p(s'|s,a) Vs', s’ € S,a € A. Instead, the agent
learns through interaction with the environment and observing the rewards and
states. This type of learning is called model-free learning. However, in some cases,
the agent can benefit from having access to the environment model. For example, if
the environment model is known or can be learned, the agent can use it to plan and
make better decisions. This is the idea behind model-based reinforcement learning
[44, 45, 46]. Model-based methods are useful for sample-efficient learning because
they can use the model to simulate the environment and plan ahead. However, they
are computationally expensive and introduce another source of error that affects
the planning algorithms’ performance.

25



2. Background

This thesis uses model-free reinforcement learning, where the agent learns
through interaction with the environment without explicitly learning the transition
probability. However, we use prediction models that predict the evolution of a
phenomenon in the environment. These prediction models are used to guide the
agent’s actions. Thus, we gain some benefits from model-based methods without
the computational overhead. At the same time, we inherit some of the challenges of
model-based methods, such as the objective mismatch [47, 48] between the agent
and the prediction model. This is discussed in more detail in Paper V. In the
following section, we describe the relevant prediction models we use in this thesis.

2.2 Prediction models and uncertainty quantification

A key part of our work involves representing a phenomenon with an estimation or
prediction model informed by sparse measurements. We use these models to predict
the phenomenon’s future evolution and guide the agent’s actions. Since any human
being considers the prediction’s uncertainty when making decisions, we also envision
that autonomous sensing systems need to consider the prediction’s uncertainty when
making sensing decisions. Thus, these models also need to quantify their predictive
uncertainty. In this section, we describe the different types of prediction models
and uncertainty quantification methods used in our work. We also show examples
using these models to forecast Trondheim’s air quality.

2.2.1 Persistence model

We start with the simplest baseline predictor: a persistence model that predicts the
future value of a time series using the last observed value. We can also leverage the
diurnal patterns of a phenomenon to improve the persistence model. For example,
indoor noise level tends to have a diurnal pattern, where the noise level is higher
during the day and lower at night. Additionally, the noise level is higher on weekdays
than on weekends. Thus, we can predict the future value of a time series using the
observed value 24 hours ago (daily persistence model) or the last observed value of
the same day of the week (day-of-the-week persistence model). Figure 2.5 shows an
example of a daily persistence model for forecasting the air quality in Trondheim
over 20 days. The model achieves a root mean squared error (RMSE) of 12.04. This
is a reasonable baseline for many time series that exhibit diurnal patterns.
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Figure 2.5: Daily persistence model for forecasting air quality.
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2.2.2 XGBoost

Another simple yet powerful prediction model is XGBoost (eXtreme Gradient
Boosting) [49]. XGBoost is a gradient-boosting framework that uses decision trees
as base learners. XGBoost uses the same model representation and inference as
Random forests (i.e., gradient-boosted decision trees) but has a different training
mechanism since it uses the second-order approximation of the training objective.
This allows XGBoost to be much faster and more accurate than Random forests.
Figure 2.6 shows an example of XGBoost for forecasting the air quality in Trondheim
over 20 days. The model is trained on one year of data and achieves a RMSE of
8.81, which is a significant improvement over the daily persistence model.
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Figure 2.6: XGBoost model for forecasting air quality.

One advantage of using an XGBoost model is the feasibility of retrieving the
feature importance by assigning a score to each input feature, which indicates how
useful that feature is when making a prediction, thus contributing to prediction
interpretation. Figure 2.7 shows the feature importance of the XGBoost model for
forecasting the air quality in Trondheim. The model assigns higher importance
to the observed air quality of the previous day. This means that the model can
capture the diurnal patterns of the air quality, i.e., XGBoost learned by itself the
persistence model.
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Figure 2.7: Feature importance of the XGBoost model for forecasting air quality.
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2.2.3 Gaussian processes

The third prediction model we use (Paper III) is Gaussian processes (GP), a
non-parametric Bayesian method [50]. Essentially, GP defines a distribution over
functions, where each function is a possible trajectory of a phenomenon. This
means that we model the future evolution of the phenomenon as a random function
f drawn from a distribution p(f). We update the distribution to reflect the new
information as we observe new measurement data. This is done by computing a
posterior distribution p(f|D) where D is the set of observed measurements. We
then use the posterior distribution to predict the phenomenon’s future evolution.

More specifically, suppose the new measurements are D = {(x;,y;)}", where
x; is a feature vector consisting of explanatory variables and y; is the corresponding
measured value. We can write the posterior distribution p(f|D) as a Gaussian
distribution with mean p and covariance matrix 3:

p(fID) = N(p, %) (2.33)

where g and X are given by:
p=K'K;'y (2.34)
»=K-K'K;'K (2.35)

where Kp is the covariance matrix of the measurements data, K is the
covariance matrix of the prediction points, K is the covariance matrix between
the measurements data and the prediction points, and vy is the vector of observed
measurements. Essentially, GP produces a prediction distribution p(f|D) based on
similarity with the observed measurements data D (training examples).

GP measures the similarity using the kernel function, a positive definite function
that computes the covariance matrix between two feature vectors. The kernel
function is a crucial component for any successful GP application. It is often the
most challenging part since it requires domain knowledge about the phenomenon.
In this thesis, we use the Matern kernel function, a generalization of the radial basis
function (RBF kernel):

21—V d\” d
2 /57, /5,
Kmat(Xi7Xj) = O'matm < 2 p> KV < 2 p) (236)
where d is the Euclidean distance between x; and x;, p is the length scale, v is
the smoothness parameter, o2,,, is the variance, I" is the gamma function, and K,
is the modified Bessel function of order v. The kernel parameters o2,,,, p, and v
are hyperparameters that we need to tune for each application, either manually
or automatically, using the maximum likelihood method. Additionally, we add a
periodic kernel function to model the periodicity in the environmental variable.
) 2sin?( 7;7‘1)
err (Xia X]) = ape'r eXp _T (237)

where £ is the length scale, crf,er is the variance, and p is the period of the kernel.

Then, the final kernel function is given by:

K(Xi, X]‘) = Kmat (Xi, Xj) + err (X,;, Xj) (238)
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One limitation of using GP is the computational cost. Learning in GP involves
kernel matrix inversion, which has an asymptotic complexity of O(N?), where N is
the number of training examples. This is a major drawback, especially when working
with large datasets, such as air quality data. Luckily, there are several approaches
we can use to reduce computational costs. For example, we can use sparse online
GP to train incrementally without retaining the entire model when new data are
observed [51]. Another approach is to use model approximations or approximate
GP inference with cheaper complexity, such as Nystrom approximation [52], FITC
approximation [53], or variational sparse GP [54].

To show an example of how GP works, we use one year of air quality data from
Trondheim to train the GP model. This is equivalent to computing the posterior
distribution p(f|D) where D is the training data. Then, we sample a function from
the posterior distribution f ~ p(f|D) to make a prediction. Figure 2.8 shows an
example of two function samples from the posterior distribution
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Figure 2.8: A sample prediction from the GP model for forecasting air quality.

A better way to make a prediction is to compute the mean and standard
deviation of the posterior distribution p(f|D). Then, we can plot the prediction’s
mean function and confidence interval. Figure 2.9 shows an example of the mean
function and the confidence interval using one standard deviation above and below
the mean. The mean function is a smoother curve than the sample function in figure
2.8 because it represents the average prediction of the GP model. The confidence
interval is a band around the mean that expresses the uncertainty of the prediction:
the wider the interval, the more uncertain the prediction is.
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Figure 2.9: The mean function and the confidence interval of the prediction from
the GP model for forecasting air quality.
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Evaluation metrics

The mean prediction of the GP model achieves an RMSE of 9.4, which is comparable
to the XGBoost model. However, the RMSE metric only considers the mean value
of the prediction. We should therefore consider other metrics that also measure the
uncertainty of the prediction. One such metric is the negative log-likelihood (NLL).
Since we have a prediction mean fi;, a standard deviation ; and the true value y;
for each prediction point ¢, the NLL is given by:

1
NLL == log N'(yeliir,67) = = » _log .
teT teT V2167

The NLL measures how well the prediction distribution fits the true value, where a
lower NLL indicates a better fit. The NLL exponentially punishes overconfident,
incorrect predictions by emphasizing tail probabilities. Thus, it is sensitive to the
predicted probabilities of the infrequent periods with spikes or anomalously high or
low values.

For a given prediction interval, we would like to know the probability that the
true value falls within the interval. This is called the prediction interval coverage
probability (PICP). We can calculate the PICP using the upper U and lower L
bounds of the prediction interval:

exp <— (ye — ﬂt)2> (2.39)

)
267

1 R .
PICP = S UL <y <Ty) (2.40)

teT

where ﬂ(f/t <y < Ut) is an indicator function that is equal to 1 if Ly < yr < U,
and 0 otherwise. The higher the PICP, the better the prediction. In contrast, we
would like the prediction interval to be as narrow as possible. Thus, we can also
consider the average (mean) width of the prediction interval (MPIW) as a metric.
The MPIW is given by:

1 A
MPIW = — > (U~ Ly) (2.41)

teT

The lower the MPIW, the better the prediction.

Another metric that measures the prediction’s uncertainty is the continuous
ranked probability score (CRPS) [55]. The CRPS generalizes the mean absolute
error (MAE) to a probabilistic setting. It measures the accuracy of the prediction
distribution by comparing the cumulative distribution function (CDF) of the
prediction distribution with the CDF of the true value. Thus, the lower the
CRPS, the better the prediction. The CRPS is given by:

CRPS = / (Fy,62(2) = Fy, (2))%dz (2.42)

teT

where Fj,, ;2(2) is the CDF of the prediction distribution, and Fy, (2) = 1(z > y)
is the CDF of the true value. We can derive the CRPS analytically for parametric
distributions such as the normal distribution, but we can only approximate it for

non-parametric distributions using Monte Carlo sampling.
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In figure 2.9, we use a prediction interval of 1 standard deviation above and
below the mean, corresponding to a 68% prediction interval. We can get other
prediction intervals by changing the number of standard deviations. For example, a
98% prediction interval corresponds to 2 standard deviations above and below the
mean. Table 2.1 shows an example of a performance summary of the GP prediction
when using a 95% prediction interval. We will use these metrics throughout the
thesis to evaluate the performance of most prediction models.

Table 2.1: The performance of the GP model for forecasting air quality with 95%
prediction interval.

Metric RMSE| PICP+ MPIW| CRPS, NLLJ|
GP Prediction  9.46 0.85 42.30 055  1.51

2.2.4 Neural networks

We can also use neural networks to build a prediction model. We start with the
simplest neural network model, the multi-layer perceptron (MLP). The MLP is a
feed-forward neural network with multiple hidden layers. The essence of the MLP
is simply matrix multiplication and non-linear activation functions. Each layer has
a set of weights that multiply the input and add a bias. The output of each layer is
then passed through a non-linear activation function. We input the features x into
the first layer, and the output of the last layer is the prediction g.

We need to define a loss function to train the MLP (i.e., find the optimal weights
and biases). We can start with the simplest loss function: the mean squared error
(MSE) between the prediction § and the actual value y:

L= 23 G0 w)? (2.43)

teT

Then, we use gradient descent with respect to the weights and biases to minimize
the loss function. Figure 2.10 shows an example of predicting air quality with an
MLP model. We train the model using one-year data and test it for 20 days. The
model achieves an RMSE of 8.58, slightly better than the GP and XGBoost models.

—— Observed Value

6&‘40 —— Forecast

§20 | | \ A h ' N A‘ “[‘ | \ ’ A{" '

N oy ,"' Ih \ W\ / |
i Ly ’t' 'J “ M} \" A‘ | ' " ﬂ‘ ‘J' J MN JW\ { WY h'
Dec 03 05 07 09 11 13 15 17 19 21

2020-Dec
Figure 2.10: The prediction of the MLP model for forecasting air quality.
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Aleatoric uncertainty

We can also set the MLP to output the mean ji;, and standard deviation &; of the
prediction distribution [56]. We then use the NLL as the loss function:

1
L= > log N (weliie, 67) (2.44)

teT

We then use the estimated mean and standard deviation to construct the prediction
distribution. Figure 2.11 shows an example of predicting air quality. The uncertainty
of the prediction is known as aleatoric uncertainty, which is the uncertainty inherent
in the data. Aleatoric uncertainty is not due to the model but due to the intrinsic
randomness of the data.
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Figure 2.11: Estimated aleatoric uncertainty of the MLP model for forecasting air
quality. The prediction interval is estimated using the predicted standard deviation,
not the model uncertainty.

Epistemic uncertainty

We would also like to estimate the model or epistemic uncertainty. This uncertainty
is due to the model parameters. The epistemic uncertainty manifests in the model’s
inability to capture the true relationship between the input and the target, especially
in regions of the input space with low training data density. We can reduce this
type of uncertainty by increasing the amount of training data.

There exist several approaches to quantify the epistemic uncertainty of deep
neural networks. Most of these approaches use Bayesian methods to represent the
prediction uncertainty with probabilistic modeling. The main idea is to assume a
prior distribution over the model parameters and then use the training data to update
the prior distribution to a posterior distribution. However, the posterior distribution
is intractable for deep neural networks, so we must approximate it. There exists a
variety of approximation methods that use either variational inference [57, 58, 59],
Markov chain Monte Carlo (MCMC) [60, 61, 62], or Laplace approximation [63, 64].
In this thesis, we will use only those methods that use variational inference. The
following sections discuss these methods in more detail.

Bayesian Neural Networks (BNNs)

The most obvious choice for estimating the uncertainty in the model’s parameters
is to represent the parameters with a probability distribution instead of a point
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estimate. This is the idea behind Bayesian neural networks (BNNs) [63]. In BNNs,
we represent the weights of the neural network with a probability distribution p(w).
We then sample the weights from the distribution to make predictions. We sample
multiple times to get a distribution of predictions, which we use to estimate the
epistemic uncertainty.

To train the BNN, we need to find a way to approximate the posterior distribution
given the training data p(w|D). We can use variational inference [65, 66] to
approximate the posterior with a variational distribution ¢(w]|6), where 6 are
trainable parameters. Thus, the training objective is to minimize the KL divergence
between the posterior and the variational distribution. We can achieve this by
maximizing the evidence lower bound (ELBO) [57]:

L(0) = KL[g(wl|0)][p(w)] — q(gle)[logp(DIW)] (2.45)
where E(w|o) [log p(D|w)] is the log-likelihood of the training data. We can calculate
the ELBO analytically if we choose to use a Gaussian distribution for prior and
variational distribution. Then, we update the variational parameters 6 using the
gradient descent of the ELBO. Additionally, the distribution over activations will
also be a Gaussian distribution. This allows us to use the reparameterization trick
[67] to sample the weights from the activation distribution. This way, we reduce the
variance of the gradient estimator, which improves the convergence of the training.

To allow for more flexibility and adaptation to a broader range of problems, we
can use non-Gaussian distributions, such as a mixture of Gaussians or a mixture
of Laplace, to represent the prior and variational distribution. However, this will
require us to use Monte Carlo methods to approximate the ELBO since we cannot
analytically calculate the ELBO for non-Gaussian distributions [58]:

M
0) ~ 3 log a(w'l6) ~ ogp(w’) ~ g p(Dlw) (2.1

where w' are samples from the variational distribution q(w|f). The number of
samples M is a hyperparameter that needs to be tuned.

Figure 2.12 shows an example of the BNN air quality prediction. The uncertainty
of the prediction is the epistemic uncertainty, which is the uncertainty due to the
model. This uncertainty is different from the aleatoric uncertainty, which is the
uncertainty inherent in the data.

To also estimate the aleatoric uncertainty, we can use the BNN to predict the
mean fi; and standard deviation &; of the target distribution at time t. Then,
we sample the weights w ~ A (u, 02) multiple time (e.g., M samples). Then, we
measure the dispersion in predictions resulting from multiple forward passes using
the sampled neural networks. These multiple forward passes result in a (uniformly
weighted) mixture of normal distributions with the mean fis i, and variance 6,5277,”»1,
calculated as follows:

1 M
fitmiz = 37 Zﬂt,i (2.47)

M
Ut mixr Z Ut 7 + /“Lt 7 ﬂ?,mzx (248)
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Figure 2.12: Estimated epistemic uncertainty of the BNN model for forecasting air
quality. The prediction interval is estimated using the standard deviation of the
prediction distribution resulting from multiple samples of the weights.

In Paper IV and Paper V, we use BNN to predict air quality and indoor noise levels.
Figure 2.13 shows an example of the BNN prediction of air quality with estimated
aleatoric and epistemic uncertainty.
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Figure 2.13: Estimated epistemic and aleatoric uncertainty of the BNN model for
forecasting air quality. The prediction interval is estimated using the standard
deviation of the mixture distribution resulting from the predicted standard deviation
of the target distribution and multiple samples of the weights.
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One major drawback of BNNs is that they are computationally expensive to
train and take longer to converge than standard neural networks. This is especially
true for non-Gaussian distributions since we need to use Monte Carlo methods
to approximate the ELBO. Additionally, they require twice as many parameters
as standard neural networks since we need to estimate the mean and standard
deviation of the weights. A possible solution is to gracefully prune the weights with
the lowest signal-to-noise ratio [58], which leads to a loss in uncertainty information.
Still, BNNs is a popular choice for quantifying uncertainty in deep learning models
because they provide a principled way to reason about uncertainty.

Monte Carlo dropout

Due to the computational cost of BNNs, it would be convenient to have a
straightforward or approximate method to estimate uncertainty directly from
standard neural networks. One such method is Monte Carlo Dropout [68]. This
method uses the idea that we can use dropout [69] to estimate the uncertainty of the
prediction. Dropout is a regularization technique that prevents neural networks from
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overfitting by randomly dropping out (setting to zero) a set of nodes along with their
connection during training. We can use this method during inference to estimate
uncertainty by running multiple forward passes with different dropout masks. This
corresponds to sampling the nodes, equivalent to sampling from ensembles of
neural networks [69]. We then estimate the uncertainty of the prediction using
the standard deviation of the predictions resulting from multiple forward passes.
We can interpret the Monte Carlo Dropout method as performing variational
inference. More specifically, it is mathematically equivalent to an approximation of
a probabilistic deep Gaussian process [68]. In Paper IV and Paper V, we use Monte
Carlo Dropout to estimate the uncertainty of the prediction of air quality, as shown
in figure 2.14.
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Figure 2.14: Estimated epistemic and aleatoric uncertainty of the MC Dropout
model for forecasting air quality. The prediction interval is estimated using the
standard deviation of the prediction resulting from multiple forward passes with
different dropout masks.
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Deep ensembles

One perspective to sampling BNNs is that we get a different neural network for
each weights sample. Since BNNs have distribution over weights, sampling the
weights is equivalent to sampling from an infinite ensemble of networks. We can
use this insight to train multiple neural networks instead and use deviations in
predictions to estimate the epistemic uncertainty. This is the idea behind deep
ensembles [70] for estimating uncertainty. Ensembles are already an established
method for improving prediction performance through averaging predictions from
multiple models [71].

We train multiple neural networks with different random initializations using
the same training data during training. The stochasticity in the training process
and the random initialization ensure the results are distinct neural networks. Then,
we use the average prediction of the neural networks during inference. We estimate
the epistemic uncertainty using the standard deviation of the predictions resulting
from multiple neural networks. In Paper IV and Paper V, we use the deep ensemble
method to estimate uncertainty in the air quality prediction, as shown in figure
2.15.

One drawback of the deep ensemble method is the computational cost of training
multiple neural networks. Additionally, it requires more parameters (order of
magnitude) compared to standard neural networks. A possible solution is to use
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Figure 2.15: Estimated epistemic and aleatoric uncertainty of the deep ensemble
model for forecasting air quality. The prediction interval is estimated using the
standard deviation of the prediction resulting from multiple neural networks.
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knowledge distillation [72] to compress the knowledge of the ensemble into a single
neural network. However, this method is not guaranteed to preserve the information
about uncertainty.

Stochastic weight averaging—Gaussian (SWAG)

In BNNs, we approximate the posterior distribution of the weights using variational
inference. However, it would be more convenient to approximate the posterior
distribution using an easier way. Can we get information about the distribution of
the weights from the training process of a standard neural network? This is the
idea behind Stochastic Weight Averaging—Gaussian (SWAG) [73].

SWAG is a method for estimating the posterior distribution of the weights of a
neural network using the geometric information in the trajectory of a stochastic
optimizer. More specifically, SAWG approximates the posterior distribution of the
weights by a Gaussian distribution with mean and covariance matrix. We estimate
the mean by the running average of the weights along the trajectory of the stochastic
optimizer with a modified learning rate schedule (stochastic weight averaging [74]).
Additionally, we estimate the covariance matrix by a diagonal matrix plus a low-rank
deviation matrix using the information of the second moment of the weights along
the trajectory.

We train the neural network during training with stochastic gradient descent
(SGD). We sample the Gaussian distribution weights during inference to make
predictions. The standard deviation of the predictions resulting from multiple
samples of the weights estimate the uncertainty. In Paper IV and Paper V, we use
SWAG to estimate uncertainty in air quality prediction, as shown in figure 2.16.

2.2.5 Recurrent neural networks

Although standard neural networks are powerful tools for representation learning,
they are not well suited for sequential data. They do not have a memory mechanism
to store information from previous time steps. Thus they cannot capture the
temporal dependencies in the data. We can use recurrent neural networks (RNNs)
to exploit the inherent temporal correlation in time series data. RNNs are neural
networks with cyclic (recurrent) connections to store information from previous
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Figure 2.16: Estimated epistemic and aleatoric uncertainty of the SWAG model
for forecasting air quality. The prediction interval is estimated using the standard
deviation of the prediction resulting from multiple samples of the weights.

time steps. Another way to look at RNNs: they are neural networks with shared
layers across time steps where the output of the last time step is also used as the
input of the current time step.

In Paper IV, we use a specific type of RNNs called long short-term memory
(LSTM) [75]. LSTMs have gated memory cells that control information flow between
time steps. [76]. They can capture long-term dependencies in the data while avoiding
the vanishing and exploding gradients problems in standard RNNs [75, 77].

Figure 2.17 shows an example of the LSTM air quality prediction. We estimate
the epistemic uncertainty by the standard deviation of the predictions resulting from
multiple forward passes with different dropout masks. Additionally, we estimate the
aleatoric uncertainty by the predicted standard deviation of the target distribution.
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Figure 2.17: Estimated epistemic and aleatoric uncertainty of the LSTM model
for forecasting air quality. The prediction interval is estimated using the standard
deviation of the prediction resulting from multiple forward passes with different
dropout masks.

2.2.6 Graph neural networks

RNNs are powerful tools for modeling temporal correlations in time series data.
However, they are not suited for modeling spatial correlations in spatio-temporal
data. To address this shortcoming, we can use graph neural networks (GNNs)
to exploit the inherent spatial correlation in spatio-temporal data. GNNs are
neural networks that have connections between nodes in a graph. The connections
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propagate information between nodes. For example, in the air quality data, each
node represents a sensor in a specific location, while the connections represent the
spatial correlation between the sensors. We can learn the graph structure from the
data or use a predefined graph structure.

In Paper IV, we use a specific type of GNNs called Spectral Temporal Graph
Neural Networks (StemGNN) [78]. StemGNN is a GNN that uses spectral graph
theory to learn the graph structure from the data. StemGNN learns the structural
and temporal correlations in the frequency domain. StemGNN learns the structural
correlation using graph convolutional network (GCN) [79] while it learns the
temporal correlation using gated linear units (GLUs) [80]. Figure 2.18 shows
an example of the StemGNN air quality prediction. We estimate the epistemic
uncertainty by the standard deviation of the predictions resulting from multiple
forward passes with different dropout masks. Additionally, we estimate the aleatoric
uncertainty using the predicted standard deviation of the target distribution.
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Figure 2.18: Estimated epistemic and aleatoric uncertainty of the StemGNN model
for forecasting air quality. The prediction interval is estimated using the standard
deviation of the prediction resulting from multiple forward passes with different
dropout masks.

2.3 loT sensing

Internet of Things (IoT) is a broad term that essentially refers to embedding
physical objects (things) with sensors and connecting them to the internet. The
term is often used interchangeably with other terms, such as cyber-physical systems
and ubiquitous computing. However, the essence of all these terms is the same,
which is the integration of sensing, computing, and communication technologies to
enable the collection, processing, and analysis of data from the physical world for
decision-making.

Some IoT nodes can also perform control or actuation tasks. This thesis focuses
on IoT nodes that only collect data from the physical world in applications such as
environmental monitoring. These applications aim to get information about the
environment to help stakeholders make decisions. For example, policymakers can
use data from an air quality monitoring system to decide when to close a road
or start a street cleaning initiative. The challenge of environmental monitoring is
ensuring seamless access to the phenomenon’s value with minimal cost and effort.

The main constraints of deploying IoT nodes for environmental monitoring
are the limited energy, computation time, and communication bandwidth. With

38



loT sensing

recent technological advances, computation time and communication bandwidth
are becoming cheaper and are in practice only limited by energy resources. For
many applications, the act of sensing (i.e., taking a measurement) is the most
energy-consuming task. Additionally, the energy consumed for computation and
communication is often proportional to the amount of data collected by the sensing
module. Therefore, this thesis focuses on the scheduling of sensing actions for IoT
nodes.

2.3.1 Design choices for sensing solutions
Sensing actions

At a high level, a sensing policy is a set of rules that determine when and how the
sensor should collect data. We can formulate the sensing problem as a sequential
decision problem, where we have a sequence of time steps. At each time step, the
policy decides how to schedule the sensing actions. We have several design choices
for the sensing actions. For example, the policy can control the duty cycle, sensing
rate, or dynamic interval between measurements:

o Duty cycle: The duty cycle is the fraction of time that the sensor is active.
For example, a sensor with a duty cycle of 50% is active half the time and
inactive for the other half. At each time step, the policy decides the duty
cycle of the sensor for the next time step. The action space of the policy is
the set of all possible duty cycles: a; € A = [Dpin, Dimaz] where D,y and
D naz are the minimum and maximum duty cycles, respectively. The action
space can be continuous or discrete.

e Sensing rate: The sensing rate is the number of measurements per unit of
time. For example, a sensor with a sensing rate of 1 Hz makes one measurement
per second. At each time step, the policy decides the sensing rate of the
sensor for the next time step. The action space of the policy is the set of all
possible sensing rates: a; € A = [Rin, Rinaz] where Ry and Ryq. are the
minimum and maximum sensing rates, respectively.

e Dynamic interval: The measurement interval is the time between two
consecutive measurements. For example, at each time step, the policy decides
the time interval the sensor should wait or sleep before making the next
measurement. There are two possible choices to get a dynamic interval:

— One-step look-ahead: At each time step, the policy decides whether
to take a measurement or not: a; € A = {0,1} where 0 means no
measurement and 1 means take a measurement.

— Multi-step look-ahead: At each time step, the policy decides when to
measure in the future: a; € A = [0,7] where T is the maximum time
horizon. For example, if a; = 5, the sensor will measure after 5-time
steps.

This thesis uses the duty cycle as the sensing action in Paper I. The duty cycle is
a general action that reflects the amount of collected data, which is suitable for
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general-purpose applications. We use the dynamic interval as the sensing action
in Paper III and Paper V. More specifically, we use the multi-step look-ahead
dynamic interval. This choice is motivated by the need for fine-grained control of
measurement timing in value-based sensing.

Energy resource

We can categorize any sensing solution to either have battery-powered or energy-
harvesting sensors. Battery-powered sensors are powered only by fixed-size batteries
that have a limited lifetime. In contrast, energy-harvesting sensors are powered
by ambient energy sources such as solar, wind, or vibration. Additionally, energy-
harvesting sensors can have storage capacitors or rechargeable batteries to store
the harvested energy.

For battery-powered sensors, the following are the main design choices we need
to consider when designing a sensing solution:

e Energy dimensioning: We need to determine the battery size and, thus,
the energy budget available for the sensing solution.

e Energy consumption: We need to determine the energy consumption of
the sensing module when taking a measurement.

¢ Recharging or replacement: We need to determine whether the battery
needs to be recharged or replaced periodically.

For energy-harvesting sensors, in contrast, we have the following main design choices:

e Energy harvesting module: We need to determine the size and efficiency
of the energy harvesting module.

e Energy storage module: We need to determine the size and type of the
energy storage module. Additionally, we need to determine charge-discharge
efficiency and the rate of self-discharge.

e Energy consumption module: We need to determine the energy
consumption of the sensing module in terms of energy required to take a
measurement.

e Energy prediction module: We need to determine whether our sensing
solutions have access to an energy prediction model and how accurate it is.
The energy prediction model predicts the energy available for harvesting in
the future.

In our Sensor Gym simulator (Paper II), we simulate energy-harvesting sensors
with four modules: energy harvesting, energy storage, energy consumption, and
energy prediction module. We use real data from a solar panel for the energy
harvesting module and the weather forecast to predict the energy available for
harvesting in the future. Additionally, we use simple and ideal models for the
energy storage and consumption modules. For example, we do not consider the
charge-discharge efficiency of the energy storage module, and we assume that the
energy consumption of the sensing module is proportional to the amount of collected
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data. This choice is reasonable for our simulator because we are interested in the
design of the sensing policy and not the specific details of energy storage and energy
consumption. We focus on value-based sensing in Paper III and Paper V. Thus, we
simulate battery-powered sensors with fixed energy budgets without recharging or
replacement.

2.3.2 Sensing objectives

Overall, the objective of any sensing solution is to maximize the system’s utility,
given a resource constraint. The utility of a system depends on the value or amount
of collected data. The resource constraint depends on the energy budget available
for the sensing solution. We can roughly sort the sensing objective into three
categories:

e Maximize the amount of collected data while maintaining stable and perpetual
operation. This objective is suitable for general-purpose solutions with energy-
harvesting sensors. For example, we want to collect as much data as possible
from an energy-harvesting sensor while avoiding running out of energy. We
can measure the amount of collected data by the sensing rate, duty cycle,
or the number of measurements per unit of time. Running out of energy is
undesirable since it causes data loss or missing important events.

e Maximize the value of collected data while minimizing the energy consumption.
This objective is suitable for battery-powered sensors and applications where
we can measure the information content of a measurement. For example,
we want only to collect data that provide information for decision-making
and avoid wasting energy on unnecessary, redundant, or least informative
measurements.

e Maximize the value of collected data while maintaining perpetual operation.
This objective is suitable for energy-harvesting sensors and applications where
we can measure the information content of a measurement.

Our work in Paper I focuses on the first objective of maximizing the amount of
collected data while maintaining stable and perpetual operation. Our work in
Paper IIT and Paper V focuses on the second objective of maximizing the value of
collected data while minimizing energy consumption.
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“Internet of Things will become a global system of systems interconnecting people
and things in a way which helps everybody in their lives and hopefully makes the
plant a little bit smarter”

— Andy Stanford-Clark, 2012

Chapter 3
Related work

This chapter provides a brief overview of the related work in IoT sensing. IoT sensing
is a broad area that includes various research topics, such as power management,
adaptive sensing, sparse sensing, and data reduction. These topics are closely
related to each other and are often used interchangeably. We divide the related
work into three main categories: sensor power management, adaptive sensing, and
prediction-based sensing. We start each section with the conventional approaches
and then discuss the recent advances in using reinforcement learning in these areas.

3.1 Sensor power management

Sensor power management describes the techniques that control the power
consumption of sensors. The goal of sensor power management is to reduce the
energy consumption of sensors while maintaining the required performance or quality
of service. There has been extensive research on sensor power management in the
past decades, especially in the context of wireless sensor networks (WSNs) [81, 82,
83].

For battery-powered sensors, the main objective is to minimize energy
consumption by reducing the number of measurements while maintaining an
acceptable level of service. The main challenge in sensor power management
is finding the optimal tradeoff between energy consumption and quality of service
[84, 85, 86]. There are many different approaches to sensor power management
of battery-powered sensors, such as event-based sensing, adaptive sensing, and
prediction-based sensing. We discuss these approaches in later sections.

For energy harvesting sensors, the main objective is to maximize the system’s
utility while maintaining perpetual operation. One possible approach to power man-
agement of energy harvesting sensors is to control the energy expenditure through
duty cycling, which turns the sensor on and off periodically. Energy management
of energy-harvesting sensors presents a use case of a dynamic environment. The
node needs to decide on its energy allocation in a stochastic environment. Usually,
dynamic optimization methods, such as dynamic programming or adaptive control
theory, are used to manage the harvested energy [87, 88]. These methods usually
have some assumptions or require domain knowledge about the environment, such
as the energy profile.

Classic management of energy-harvesting nodes focuses on energy-neutral
operation (ENO) [89, 90]. Energy neutrality is concerned with the balance between
energy harvesting and energy consumption. It desires to keep the energy harvested by
the node equal to the energy consumed over some time. Many energy-management
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solutions use energy neutrality as an objective function. The goal is to find a
sensing policy that satisfies energy neutrality. This can be challenging because the
harvested energy is highly stochastic and difficult to predict.

Reinforcement learning provides an approach to solving energy management
problems in a dynamic environment. It does not require any assumptions about the
environment, thus reducing manual design effort. Indeed, many related works use
reinforcement learning for energy management [8, 9, 10, 13, 91, 92, 93]. The main
objective of these works is to achieve energy neutrality by encoding the reward
function to contain some energy-related terms. For example, the reward can be a
function of the distance from the energy-neutral point [13]. The closer the node is
to the energy-neutral point, the higher the reward. Other works also include quality
of service as part of the reward function. For example, the reward can be high if
the device meets the user demand while retaining long-term energy neutrality [94,
95, 96, 97].

Encoding the reward function to contain energy-related terms might seem like a
suitable reward function, but it can lead to undesired behaviors. One such undesired
behavior is the high variance in the node’s operation. The agent is trying to achieve
an energy-neutral operation at all costs. It will increase the energy consumption
to the maximum or shut down the node if there is a slight deviation from the
energy-neutral point. This is undesirable in many applications. For example, in
event-detection applications, the duty cycle should be stable over time to ensure
that the node can detect events. If a node has a 100% duty cycle for one hour and
then 0% duty cycle for the next hour, the node will not be able to detect events
compared to a node with a 50% duty cycle for two hours, even though the total
energy consumption is the same. Some works address this issue by modifying the
reward to have a smoother slope around the energy-neutral point [13]. However,
this approach involves domain-specific assumptions and is not general enough to
be applied to other applications. It also requires a lot of manual design effort,
and finding the optimal slope is difficult. Another issue with energy-based reward
functions is that they optimize the wrong objective. The energy is a resource to be
managed, not a goal to be optimized [98]. Energy management aims to maximize
the system’s utility; thus, the agent should optimize the utility function.

In this thesis, we address the above issues using a utility-based reward function
in Paper I. We propose a reward function that optimizes three conflicting objectives:
energy utilization, variance reduction, and avoiding node shutdown. We can control
the tradeoff between the three conflicting objectives using tunable parameters in the
reward function. Our work in Paper I is the first to use deep reinforcement learning
for autonomous management of energy harvesting sensors. Specifically, we use a
neural network to represent the management policy and train it using Proximal
Policy Optimization (PPO) [36]. Before our work, most of the related works used
tabular methods, such as SARSA or Q-learning, that require manual state-space
discretization. After we proved the feasibility of using deep reinforcement learning
for sensor power management, many recent works follow our approach and use deep
reinforcement learning for energy management [99, 100, 101]
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3.2 Adaptive sensing

Similar to sensor power management, adaptive sensing is concerned with reducing
the energy consumption of sensors while maintaining an acceptable level of service.
However, adaptive sensing is more concerned with the quality or value of information
in the measurements. The goal of adaptive sensing is to reduce the amount
of unnecessary, redundant, or least informative measurements. Thus, power
management answers the question of how much power we can (or should) use,
while adaptive sensing answers the question of how valuable the measurements are.
Still, sensor power management and adaptive sensing are closely related terms and
are often used interchangeably.

We can define adaptive sensing as the process of selecting when, where, or what
to sense, subject to some resource constraints. This corresponds to monitoring
temporally-varying, spatially-varying, or multiple data types-varying phenomena.
The resource constraints can be energy consumption, bandwidth, or storage capacity.
This thesis focuses only on temporally-varying phenomena with energy consumption
as the resource constraint.

A straightforward approach to adaptive sensing is to use variance-based methods
[102, 103, 104, 105]. The basic idea of variance-based adaptive sensing is to adjust
the sensing rate according to changes observed in the environment. For example,
the sensing rate can increase when the environment changes rapidly and decrease
when the environment is stable. Another naive approach is to use threshold-based
adaptive sensing. The sensing rate increases when the measured value is above
a certain threshold and decreases when the measured value is below a certain
threshold [106, 107]. Variance-based and threshold-based adaptive sensing methods
are simple, easy to implement, and suitable for some applications such as event
detection. However, they require domain-specific knowledge and thus imply design
effort. Other approaches use more complex techniques to estimate the state of the
environment and adjust the sensing rate accordingly. These techniques include,
but are not limited to, Kalman Filter-based methods [108, 109], Bayesian-based
methods [110, 111], Fisher information-based methods [112, 113] and Fuzzy logic-
based methods [114]. These methods are more complex and require more design
effort.

In contrast, our work aims to avoid or reduce the need for domain-specific
knowledge and design effort. We use reinforcement learning to learn the adaptive
sensing policy from interaction with the environment. This learning-based approach
is generic and applicable to a wide range of applications. Recent works have used
reinforcement learning for adaptive sensing [115, 116]. However, these works use
tabular methods, such as Q-learning, that require manual state-space discretization.
They also use an energy-based reward function that does not optimize the system’s
goal. Our work in Paper III uses an information-based reward function that
encourages the agent to select the most informative measurements. We also use
deep reinforcement learning to represent the policy and train it using the PPO
algorithm. After we published our work, other recent works followed our approach
and used deep reinforcement learning for adaptive sensing [117].
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3.2.1 Compressive sensing

Our goal in taking measurements is to get information about a phenomenon. Ideally,
we would like to have a complete description of the phenomenon. We can achieve
this by measuring at Nyquist rate [118]. The Nyquist rate implies sampling at twice
the highest frequency in the signal. For example, in indoor noise monitoring, the
Nyquist rate is 20 kHz. This means we must take at least 40,000 measurements per
second to reconstruct the signal without aliasing. This approach is impractical. We
cannot afford to take 40,000 measurements per second. Even in other applications,
real-world phenomena are often changing fast. We need to find a way to get
information about the phenomenon with a limited number of measurements. Our
goal is to find a way to reduce the number of measurements while preserving the
information content of the signal.

One way is to use the theory of compressive sensing [119]. Compressive sensing
allows us to reconstruct a signal from a small number of measurements, far fewer
than the Nyquist rate. The key idea is to exploit the sparsity of the signal [120],
which is the notion that the signal is composed of only a small number of non-zero
components in a certain projection space.

Although there is a large body of work on compressive sensing, we will not use
it in this thesis. The reason is that compressive sensing requires domain knowledge
of the signal. Additionally, it requires a high computational cost to reconstruct
the signal. Thus, compressive sensing is not the focus of this thesis. We want to
automate the process of deciding when to make measurements and remove most of
the human efforts.

Furthermore, the goal is to provide enough information to make decisions rather
than reconstruct the signal. In most IoT applications, we do not need to reproduce
the exact value of the phenomenon. This is why Nyquist rate and compressive
sensing are correct but distractions for designing an adaptive sensing system.

3.3 Prediction-based sensing

In many applications, we represent a phenomenon with an estimation or prediction
model. The prediction model is constructed and potentially adjusted over time
by measurements done by IoT sensing devices. This opens the possibility for
prediction-based sensing, where the prediction model guides the sensing devices
to make measurements most informative to the representation model. The goal of
prediction-based sensing is to select the most informative measurements that improve
the quality of the representation model while minimizing energy consumption.

In the literature, many works in wireless sensor networks use prediction-based
sensing. They usually call it prediction-based data reduction [5], where they
incorporate predictive models for inferring measurement values while infrequently
correcting the model using sparse measurements. The prediction models include,
but are not limited to, Gaussian Processes [121, 113, 122, 123], Holt’s Method
[124], Grey Models [125], and LSTMs [126]. Others use dual prediction schemes
[127] using naive models such as persistence forecasting or statistical properties
of the phenomenon such as fixed-weight moving average, least-mean-square, or
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auto-regressive integrated moving average [128, 129, 130, 131]. Most of these works
manually design heuristics or algorithms to select the sparse measurements.

In contrast, our work in Paper III and Paper V uses deep reinforcement learning
to learn the sensing policy guided by the prediction model. We build an uncertainty-
aware model of the phenomenon using probabilistic deep learning (Paper IV) and use
the model to guide the agent in selecting the most informative measurements. After
our work, recent works have also used deep reinforcement learning for prediction-
based sensing [132]. However, they do not quantify the prediction uncertainty,
which is essential for decision-making.

3.4 Reward function design

A successful application of reinforcement learning relies heavily on the design of
a suitable reward function. This function needs to frame the application’s goal
and guide the learning towards a desirable behavior. Designing a suitable and
learning-friendly reward function is a challenging task. It requires domain-specific
knowledge and design effort. In this section, we discuss the challenges of reward
function design, some common reward functions, and how we can use data to guide
the learning without a reward function.

3.4.1 Reward shaping

In many practical applications, it can be difficult or intractable to state the
application’s goal in a single reward function. In this case, we can use reward shaping
[133] to decompose the application’s goal into multiple sub-goals or approximate
goals and then reward the agent for achieving each individual sub-goal. Unless the
reward shaping is carefully designed, the agent may not learn the desired behavior
[133].

Almost all previous works on adaptive sensing with reinforcement learning use
reward shaping. They manually design a shaped reward function that produces
arguably acceptable results without justifying how well the reward frames the
application goal [8, 9, 10, 13, 91, 92, 93]. Some other works investigate the effect of
different reward functions on the learning performance of sensor power management
[134]. However, they only consider a few reward functions and do not provide a
general guideline for designing a suitable reward function.

3.4.2 Information-based rewards

We can summarize our sensing goal as selecting the most informative measurements
while minimizing energy consumption. The main challenge is how to quantify
the information content of a measurement. It is impossible to know the true
information content before taking the measurement. Otherwise, we would not need
to measure in the first place. However, we can quantify the information content
of a measurement based on how much our belief about the phenomenon changes
after taking the measurement. For example, suppose we represent our prior belief
about the phenomenon with a probabilistic model. In that case, we can quantify the
information content by measuring the model’s distribution change after taking the
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measurement. This corresponds to the reduction in the uncertainty or prediction
error of the model. We can use this reduction as a proxy for the information content
of the measurement.

One approach to measuring uncertainty reduction is using the Fisher Information
[135]. Some related works manually designed adaptive sensing heuristics using the
Fisher Information with assumptions about the smoothness of the phenomenon
[113]. Other works use the Kullback-Leibler divergence [136] between prior and
posterior distributions to quantify the information content [137, 138]. However,
these works do not use reinforcement learning to learn the sensing policy. They use
heuristic algorithms to select the most informative measurements.

In contrast, our work in Paper III uses the Fisher Information as a reward
function for the autonomous sensing agent. Additionally, our work in Paper V
discusses the challenges of using the Kullback-Leibler divergence as a reward function
and proposes a new reward function based on measured peaks-over-threshold.

3.4.3 Data-driven guidance

Although reinforcement learning enables autonomous learning of the sensing policy,
it requires an external reward function to guide the learning. Manually designing
such a reward function involves domain-specific knowledge that can hinder autonomy
and the adoption of reinforcement learning. On the other hand, we already have a
large amount of data from expert-designed sensing policies. Can we use this data to
reverse-engineer the reward function? This is the idea behind inverse reinforcement
learning [139, 140, 141, 142]. To our knowledge, no work in the literature uses
inverse reinforcement learning to reverse engineer the reward function for adaptive
sensing. Reverse engineering the reward function from data can be a challenging, if
not impossible, task.

Luckily, we do not need to reverse engineer the reward function. We can use the
data to guide learning without a reward function. For example, we can use imitation
learning to learn a policy from demonstration data [143]. Some prior works use
imitation learning to learn a sensor power management policy from oracle policies
[144]. They use dynamic optimization methods to generate the oracle policies offline
and then train an online policy using imitation learning.

Another way to use data is to pre-train the agent without a reward function.
This way, the agent can learn a representation of the environment to prepare for
future tasks maximally. For example, we can use empowerment as an intrinsic
motivation to explore and acquire abilities [145, 146, 41, 147, 148]. However, most
emergent behaviors are not useful because of under-constrained skill discovery in
complex and high dimensional state space. One possible solution is to bias skill
discovery towards the desired behavior using data from expert-designed policies.
This approach is the idea behind our work in Paper VI. However, more work is
needed to understand the effect of data-driven guidance on the resulting behavior.
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“Software 2.0 will become increasingly prevalent in any domain
where repeated evaluation is possible and cheap, and where

the algorithm itself is difficult to design explicitly”

— Andrej Karpathy, 2017

Chapter 4
Research results

This chapter describes the main research results done throughout this Ph.D.
project. We organize the results into three sections, where each section presents
the contributions towards the answer to one of the research questions set down in
section 1.1.

4.1 RAQ1: Feasibility of autonomous sensing

The first research question asks about the feasibility of using deep reinforcement
learning to learn sensing policies autonomously. We address this question in Paper I,
Paper II, Paper III and Paper V. To answer this question, we first formulate the
sensing problem as a deep reinforcement learning task. In this formulation, there is
an agent with a policy that controls the sensing of an IoT node. The agent interacts
with the environment through actions and receives observations and a reward signal.
We model the agent-environment interaction as a Markov Decision Process and
define the state and action spaces depending on the specific use case.

4.1.1 Sensor Gym: a simulator for learning sensing policies

The first challenge we address is computational complexity. Deep reinforcement
learning requires many interactions with the environment to learn a good policy.
This complexity is unfeasible in IoT applications, as the sensors are typically
resource-constrained and have limited energy and computation capabilities to afford
such a large number of interactions. Therefore, we build a framework to learn
sensing policies before deploying them to the sensors. We call this framework IoT
sensor Gym. Paper II details the design of the sensor gym as a general-purpose
simulator to learn sensing policies with deep reinforcement learning. The simulator
uses the OpenAl Gym interface, which can be extended to new applications and
environments. It comprises various modules that can be combined and configured
to match a specific use case.

Figure 4.1 illustrates the architecture of the IoT Sensor Gym framework and
the process of training and deploying sensing policies. In this specific figure, we use
energy management of energy-harvesting nodes as a use case. The main modules
in this use case are energy harvesting, energy storage, energy consumption, and
energy prediction. We use actual data from a solar panel for the energy harvesting
module and the weather forecast to predict future energy available for harvesting.
Additionally, we use simple and ideal models for the energy storage and consumption
modules. For example, we do not consider the charge-discharge efficiency of the
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energy storage module, and we assume that the energy consumption of the sensing
module is proportional to the amount of collected data. This choice is reasonable
for our simulator because we are interested in the design of the sensing policy and
not the specific details of energy storage and energy consumption.

The architecture in figure 4.1 also illustrates the interaction between the Sensor
Gym and the agent. This interaction starts with creating a simulated environment
and initializing it with the default values. Additionally, the architecture defines the
environment’s boundaries, such as allowed actions (action space), the environment’s
possible states (state space), sampling, and returning the first state. Then, the
interaction proceeds by running one epoch of the environment’s dynamics after
receiving an agent’s action. The training of agents occurs off-board on a server, for
instance as a part of the IoT device management [149]. The trained agents are then
deployed to devices in the field and updated regularly.

We use neural networks to approximate the agent’s policies. In particular,
we use neural networks that require acceptable computational effort and memory
footprint so they can also be deployed in modern, energy-efficient sensor devices.
After deployment, we can use data observed by the sensor to update the simulator
modules. This update process requires corresponding instrumentation, for instance,
by measuring its energy intake and consumption, indicated by the feedback in
figure 4.1.
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Figure 4.1: Architecture of the IoT Sensor Gym as a framework for training deep
reinforcement learning policies to control the sensing of sensor devices autonomously.
(Adapted from figure I1.8 in Paper II)

4.1.2 Use cases: feasibility of autonomous sensing

In the following, we present the results of the use cases we explored in Paper I,
Paper I1I, and Paper V. We adapt the IoT Sensor Gym to each use case. Then, we
use it to train agents that autonomously control the sensing of sensor devices. We
will discuss the choice of the reward function in the next section. For now, we want
to show, as a proof of concept, the feasibility of using deep reinforcement learning
to autonomously learn sensing policies for different use cases.

Energy-harvesting sensors

In Paper I, we explore the feasibility of using deep reinforcement learning to
autonomously manage energy-harvesting sensors. This is a general-purpose
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application where we want the agent to control the duty cycle of the sensor to
maximize the amount of collected data while maintaining stable and perpetual
operation. We encode the above three conflicting objectives in a single reward
function with tunable hyperparameters to control the trade-off between the
objectives. Then, we train several agents using different hyperparameters to explore
the trade-offs between the objectives. An agent controls the duty cycle of the node.
We use a neural network to represent the policy, which allows the agent to set
continuous duty cycles. This enables more accurate control of the consumed energy
and, therefore, the utility of a node. We define the agent’s state space as the current
energy level, harvested energy, future energy prediction, and the previous duty cycle.
As an example, figure 4.2 shows the performance of two agents over six days.
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Figure 4.2: Example performance of two agents trained with different hyperparame-
ters that weight the variance penalty in the reward function. The top row shows
the solar energy intake. The middle row shows the duty cycle of an agent trained
with a reward function that penalizes variance more than the agent in the bottom
row. The middle agent has a smoother operation but utilizes slightly less energy.
(Adapted from figure I1.10 in Paper II)

Indoor noise monitoring

In Paper III, we explore the feasibility of using deep reinforcement learning to
autonomously learn sensing policies for indoor noise monitoring. This use case
represents an application with battery-powered sensors that aims to maximize the
value of collected data while minimizing energy consumption. In many applications,
we want to collect valuable data for the application goal while reducing energy
consumption to maintain operation over the long term. We assume that we represent
the phenomenon with an estimation or prediction model informed by measurements
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done by the sensing device. Then, we define the value of a measurement by how
much it improves the representation model.

Figure 4.3 shows an example of a noise level prediction model fitted with
measurements selected using a deep reinforcement learning agent. The agent’s
goal is to schedule measurements contributing to the overall model quality. The
sensing actions in this use case set a dynamic interval with multi-step look-ahead
to schedule measurements. The state space consists of the future prediction, the
current energy level, and other external information.
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Figure 4.3: An example of a Gaussian Process prediction model of the noise level
over one week. The model is fitted with measurements selected using a deep
reinforcement learning agent. In contrast to uniform sensing, the learned sensing
policy achieves a better information gain and a lower RMSE. (Adapted from figure
II1.17 in Paper III)

Figure 4.4 shows another example of a prediction model with measurements
selected using a deep reinforcement learning agent. The agent’s goal, in this case,
is to schedule measurements that detect and dense-sense periods of interest when
the noise level is high. The learned policy also produces a better representation
model than the uniform policy. The reason is that a well-trained model is good
at modeling the phenomenon at regular (usual) periods but makes more mistakes
when modeling critical (unusual) periods with spikes or anomalously high or low
values. Therefore, taking more measurements during these periods of interest leads
to a more refined representation model.

Air quality monitoring

In Paper V, we also explore the feasibility of using deep reinforcement learning
to autonomously learn sensing policies for air quality monitoring. The goal is
also to capture periods of interest and represent the phenomenon with a credible
representation model. Figure 4.5 shows an example of an air quality prediction
model fitted with measurements selected using a deep reinforcement learning agent.
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Figure 4.4: An example of a Bayesian neural network prediction model of the
noise level over nine days. The top model is fitted with measurements selected
uniformly, while the bottom model is fitted with measurements selected using
a deep reinforcement learning agent. The dotted, green vertical lines show the
measurements’ time index. The learned policy detects and densely senses the
noise during periods when the level is high, while the uniform policy spreads its
measurements uniformly. (Adapted from figure V.62 in Paper V)

4.1.3 Summary

In summary, the above use cases and examples show that we can use deep
reinforcement learning to learn policies that autonomously control the sensing of
sensor devices. The sensing actions vary between the use cases. In energy-harvesting
use cases, the sensing actions set the operational duty cycle of the node. The duty
cycle is a general action that reflects the amount of collected data, which is suitable
for general-purpose applications. In contrast, we use a dynamic interval with multi-
step look-ahead to schedule measurements in indoor noise and air quality monitoring
cases. This design choice enables more fine-grained control of measurement timing.
Thus, it is suitable for value-based sensing applications. Finally, the results show
that we achieve the desired behavior by choosing a proper reward function. The
results also show that we can make trade-offs between conflicting objectives and set
the trade-off parameters more suitable for the application.

4.2 RQ2: Reward function design

The second research question asks how to define reward functions that support
application goals and lead to learning in autonomous sensing. We address this
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Figure 4.5: An example of a Bayesian neural network prediction model of the
air quality over one month. The top model is fitted with measurements selected
uniformly, while the bottom model is fitted with measurements selected using
a deep reinforcement learning agent. The dotted, green vertical lines show the
measurements’ time index. The learned policy detects and densely senses the
air quality during periods when it is high, while the uniform policy spreads its
measurements uniformly. (Adapted from figure V.61 in Paper V)

question in Paper I, Paper III, and Paper V. In this section, we summarize the
results of these papers regarding reward function design.

Before designing a goal-oriented reward function, we need to identify the goals of
the application. Overall, any sensing solution aims to maximize the system’s utility.
The systems’ utility is supporting decision-making by providing valuable information
to stakeholders. Thus, we can set the objective of any solution to maximize the
value of collected data. However, the definition of value and, more generally, utility
depends on the context of the application. In the following subsections, we discuss
the different reward functions that we derive from the utility of sensing systems.

4.2.1 Utility-based reward functions

In Paper I, we define the utility of sensing systems as maximizing the amount of
collected data while maintaining stable and perpetual operation of sensor devices.
This definition is reasonable for applications where the value is proportional to the
amount of collected data. In many applications, the more data we collect, the more
accurate information we can provide to stakeholders. This definition of utility is
especially true in applications with energy-harvesting sensors:
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o Maximizing the amount of collected data: we want to collect as much data as
possible from an energy-harvesting sensor. We can measure the amount of
collected data by the sensing rate, duty cycle, or the number of measurements
per unit of time.

e Maintaining stable operation: the amount of data is not the only factor that
matters, but also how the measurements are spread over time. Sometimes,
much data with high variance can be worse than fewer evenly spread
measurements. Thus, stable operation means there should be less variance in
the duty cycle over time. For example, in event-detection applications, the
duty cycle should be smooth over time to ensure that the node can detect
events. If a node has a 100% duty cycle for one hour and then 0% duty cycle
for the next hour, the node will not be able to detect events compared to
a node with a 50% duty cycle for two hours, even though the total energy
consumption is the same.

e Maintaining perpetual operation: the node should run perpetually to ensure
that it does not run out of energy. Running out of energy is undesirable since
it causes data loss or missing important events.

We summarize the above desirable properties into a single reward function:

D, — ([ Var,)? if B;>0
RA(St):{ o e B, =0 (4.1)

where D; is the duty cycle, ( is a hyperparameter, Var; is the variance of the duty
cycle, and F is a penalty for running out of energy. We use the duty cycle as a proxy
for the amount of collected data, which is a reasonable choice for general-purpose
applications. We can tune ¢ and F to control the trade-off between the amount
of collected data, stability, and perpetual operation. For example, we can set ¢ to
a low value to collect as much data as possible or to a high value to ensure that
measurements are equally spread over time. We can also set f to a high value to
avoid running out of energy. Finally, we can set ( and f to zero to disable the
corresponding objectives of stable and perpetual operations.

Figure 4.6 shows the performance summary of more than 300 different agents
over a whole year. These agents are trained using the reward function in I.14 but
with different hyperparameters. For deployment, we can choose the agent with the
trade-off performance that best suits the context of the application. For example,
we can choose an agent with a low ( to collect as much data as possible, or we can
choose an agent with a high f to be more conservative with energy consumption
and avoid running out of energy.

4.2.2 Information-based reward functions

Another way to define the utility of sensing systems is to maximize the information
provided to stakeholders. We want our sensors to provide more information about
the phenomenon of interest while using less energy. Thus, we can set the objective
of the sensing solution as selecting the most informative measurements given a
limited energy budget. The challenge is how to quantify the information content.
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Figure 4.6: Performance results of over 300 agents. The x-axis corresponds to the
mean variance of the duty cycle, and the y-axis to the yearly utilized energy. Each
dot represents an agent, and the color indicates the number of times an agent has
emptied its energy buffer, i.e., failed. (Adapted from figure I1.9 in Paper II))

A simple approach is to measure the change in our belief or understanding about
the phenomenon after taking the measurement. This change can be the amount of
reduction in the uncertainty or prediction error of a representation model about
the phenomenon.

Fisher Information

In Paper III, we use Fisher Information as a proxy for the information content of
collected data and use it as a reward function. Fisher Information measures the
reduction in the uncertainty of a representation model about the phenomenon. For
example, figure 4.7 shows two different Gaussian Process predictive distributions of
noise levels over one day. The upper model has less confident predictions and, thus,
less Fisher Information than the lower model.

Using the Fisher Information as a reward function is reasonable since we
are basing the reward function on the quality of the resulting model. In many
applications, the goal is to represent a phenomenon with a credible representation
model informed by the selected measurements. In that case, there is a good
alignment between the application goal and the reward function. That means the
reward function is optimizing the agent to select measurements that will contribute
optimally to the quality of the resulting model. Practically, we can use the Fisher
Information as a reward function by using the following equation:

Rest)= 7 (1.2

T 7t
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Figure 4.7: Two different Gaussian Process predictive distributions of noise levels
over one day. (Adapted from figure II1.13 in Paper III))

where 0—12 is the prediction confidence at point ¢. This function means we reward the
t

agent after a period of T', a day in our case, based on the quality of the representation

model. Observations selected by the agent fit this model, and the quality of the

model is abstracted by the mean Fisher information over T'.

The Fisher information does not depend on unobserved samples compared to
the RMSE and decodes the application goal into a scalar value that is easy to learn.
Hence, it eliminates the need for reward shaping and applies to large, scalable
applications without requiring system-specific knowledge. Under some assumption
about the smoothness of the monitored phenomenon, we show in Paper III that
this technique performs favorably compared to uniform sensing methods.

The downside of the Fisher information reward is the assumption that the
model is correct when its confidence is high. This assumption is reasonable if the
phenomenon is smooth but does not hold in general. For example, in a phenomenon
with high spikes or outliers, the model may be confident about the mean but wrong
about the outliers. In that case, the Fisher information will be high even though
the model is inaccurate. To use the Fisher Information as a reward function, we
should ensure that the model is confident only when it is accurate. This reliability
of confidence estimate is an active research topic in probabilistic machine learning.
We discuss this topic in Paper IV, and we briefly summarize it here.

Generally, we want to avoid over-confident, incorrect predictions. Therefore,
we evaluate the reliability of a confidence estimate when selecting a probabilistic
prediction model. One approach to evaluate reliability is to measure the amount of
loss (or the number of incorrect predictions) a model makes when its confidence is
above a certain threshold. In detail, we plot the number of inaccurate predictions
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the model makes when its confidence is above 7. We expect the curve to decrease
monotonically for a reliable confidence estimate since a rational model has fewer
incorrect predictions at high confidence. Additionally, we plot the total number
of predictions as a function of 7. This curve is monotonically decreasing, but the
decreasing rate indicates the amount of confidence in a model. The decreasing rate
would be high in a model with lower confidence since it makes fewer predictions
with high confidence. Figure 4.8 show plots of loss vs. confidence and count vs.
confidence in air quality prediction using different probabilistic models. We observe
that a Bayesian neural network (BNN) model is more reliable. Still, most of the
selected models produce rational behaviors.
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Figure 4.8: An example for evaluating the reliability of confidence estimates for
different probabilistic models in air quality prediction task. Left: loss versus
confidence. Right: count versus confidence. (Adapted from figure IV.45 in
Paper IV)

Kullback-Leibler Divergence

Ideally, we want to use an information-theoretic metric to quantify the information
content. We take what we know before measuring (e.g., entropy before taking a
measurement) and subtract what we know after measuring. The difference is the
information content. In the same vein, we can use the relative entropy between
a representation model and the target (true) distribution as a measure of the
information content. The relative entropy is known as the Kullback-Leibler (KL)
divergence, which measures the difference between two probability distributions.
It is intuitive to use the KL divergence between a representation model and the
target distribution as the reward function. This way, the agent gets more rewards if
it makes measurements during points when the divergence is high. Thus, the agent
will seek out states where the predictor makes mistakes. For example, suppose the
agent decides to measure at a time ¢. In that case, the resulting target distribution
will be N (yy, €2), assuming a measurement error of € and a normal distribution. The
reward will be the KL divergence between the prediction and the target distribution:

R(St) = DKL(N(yta 62)|N(ﬂt,mizv6t2,mim)) (43)

Figure 4.9 shows an example visualization of the reward value as the KL divergence.

Although the KL divergence is a theoretically appealing reward, it does not
work in practice. We observe an undesired behavior where the agents exploit the

58



RQ2: Reward function design

Dy (N0, 0.1)| Nt mix, OF i) R(s¢)

>1.0 >10
0.8
x 06 6
g
%
04
3
0.2
: 0
<-1.0 -0.5 0.0 0.5 >1.0
IJt, mix

Figure 4.9: Reward value as the KL divergence between a target distribution
N(y; = 0.0,62 = 0.1), and a predicted distribution N'(fis mic, &imiw), where the
predicted variance is not less than the measurement error.

predictor’s inaccuracies. The agent encourages inaccuracies in the prediction model
so that it gets more rewards when it corrects the more severe inaccuracies later
on. This challenge is closely related to the objective mismatch problem [47, 48] in
model-based reinforcement learning. The problem arises when there is a discrepancy
between the predictor and policy objectives. We are using the KL divergences as
the agent’s objective in the hope that it will also optimize the predictor. But the
predictor’s objective is to minimize the negative log-likelihood, which is uncorrelated
with the agent’s objective of maximizing the KL divergence.

4.2.3 Value-based reward functions

In Paper V, we discuss the challenge of using the KL divergence as a reward
function and propose a new reward function based on measured peaks-over-threshold
(MPOT). This reward function is motivated by many applications’ goal of detecting
and dense-sensing the phenomenon during periods when it exceeds a certain
threshold. For example, in indoor noise monitoring, we want to detect and dense-
sense events when the noise levels are high to get more granular details. Therefore,
we simply reward the agent if it selects a measurement during a period of interest
when the phenomenon exceeds the threshold. We define the reward function as

follows: ( Q) if
. T(y: — it E; >0
Rlse) = { —F it B =0 (44)

where 1(+) is the indicator function, y; is the measurement value, @ is the threshold,
E; is the energy budget, and F is a hyperparameter for the penalty term. The
reward is positive if the measurement exceeds the threshold and the energy budget
is positive. Otherwise, the reward is negative. The reward function encourages
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the agent to select measurements when the phenomenon exceeds the threshold.
The reward function also discourages the agent from wasting its energy budget on
non-valuable measurements. Otherwise, the agent will get a negative reward if it
exhausts its energy budget too early.

By using the MPOT as a reward function, we disentangle the agent’s objective
from the predictor and prevent the issue of exploiting the predictor’s inaccuracies, as
in the KL divergence reward. This way, we base our reward on facts, not predictions.
And to get these facts, the agent needs to make measurements. We also show in
Paper V that the MPOT reward function leads to a more accurate representation
model. This behavior is because the predictor is usually good at modeling the
phenomenon at regular periods and makes more mistakes during critical periods
when there are spikes or high values. Simultaneously, the agent will measure when
the phenomenon exceeds the threshold and when the prediction model is more
likely to be inaccurate. Thus, the agent will provide more informative inputs for
the model to refine its future prediction.

In summary, we define the value of collected data as capturing periods of interest
while representing the phenomenon with a credible representation model. Then,
we design a reward function that encourages the agent to exhibit these behaviors.
We show that the MPOT reward function is a good candidate for this purpose. It
is goal-oriented since it maximize the value of collected data. Additionally, it is
learnable since it is differentiable and provides an instant feedback signal to the
learning algorithms. Finally, it is stable since it does not depend on the predictor’s
accuracy. This way, the agent will not exploit the predictor’s inaccuracies to get
more rewards.

4.2.4 Data-driven guidance

We see from the above discussions that designing a reward function is challenging.
It requires a deep understanding of the application goals and the intricate interplay
between the different components of that autonomous sensing framework. Manually
designing reward functions adds design efforts that can hinder autonomy and the
adoption of reinforcement learning.

Meanwhile, we have a large amount of data from expert-designed sensing policies
in wireless sensor networks. It can be worth exploring how to use this data to guide
the learning process without a reward function. This idea is explored in recent
works [144], where they use imitation learning to learn a sensor power management
policy from oracle policies. They use dynamic optimization methods to generate
the oracle policies offline and then train an online policy using imitation learning.

In Paper V, we explore using data to guide learning without a reward function.
We propose a new framework for using data from expert-designed policies to learn
state projection that guides the agent towards desired behaviors. Although we do
not apply the framework to IoT sensing problems, we evaluate it on continuous
control problems that involve substantially different locomotion behaviors. We show
that the framework can learn a projection that guides the agent toward the desired
behaviors.
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4.3 RQ3: Guided autonomous sensing

Normally, we have an implicit understanding or prior belief about a phenomenon.
This belief is uncertain and imprecise. That is why we take measurements to get
facts about the phenomenon and update our belief. The third research question
asks how to make this belief explicit and how to use it to guide an autonomous
sensing agent. We address this question in Paper III, Paper IV, and Paper V. This
section summarizes the main contributions of these papers related to the third
research question.

4.3.1 Representation model

In many applications, we want to provide anytime access to information about
the phenomenon with minimal cost. To achieve this objective, we represent
a phenomenon with an estimation or prediction model informed by sparse
measurements. This model corresponds to an explicit representation of our belief
or understanding about the phenomenon. The challenge is how to design a suitable
representation model and how to update it given new measurements.

Probabilistic models

“All models are wrong, but some are useful” [150]. This quote expresses the context
behind the challenge of designing a suitable representation model. The goal is
to design a model that is useful for decision-making while taking into account
its uncertainty. Thus, a useful model provides accurate enough estimates of the
phenomenon while providing credible uncertainty quantification.

In Paper IV, we build various probabilistic deep learning models that also
quantify their predictive uncertainty. We define the tools and metrics for evaluating
performance and uncertainty quantification in these models. We also investigate the
reliability of the uncertainty estimates and propose improving these estimations using
adversarial training. Finally, we demonstrate the practical impact of uncertainty
quantification for making informed decisions. This ties back to the ultimate goal of
ToT sensing applications: to support decision-making. For example, we show that
probabilistic models can quantify both aleatoric and epistemic uncertainty. This
way, probabilistic models provide stakeholders with a wider area of control over
the decision’s risk profile. The stakeholders can choose to what extent their model
should be confident about its predictions to make a decision. This trade-off can be
based on the costs of false positives versus false negatives. Figure 4.10 shows an
illustrative example of this trade-off in the air quality application.

Refinement with new measurements

When taking a new measurement, we get an actual numerical value of the
phenomenon. This measurement establishes a new fact about the phenomenon
at a specific time. Thus, we can use this fact to update our prior belief about
the phenomenon. This update is done by refining the representation model. The
challenge is updating the model in a way consistent with the prior belief and the
new measurement.
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Figure 4.10: Illustrative example of how probabilistic models can provide more
information to support decision-making. The figure shows the trade-off between
false positives and negatives using the decision F1 score as a function of normalized
aleatoric and epistemic confidence thresholds. (Adapted from figure IV.19 in

Paper 1IV)

One approach is to add the new measurements to the input features of the
model. This way, the model itself learns how to use new measurements to refine
its predictions and take account of the prior belief. For example, in Paper V, we
use a Bayesian neural network (BNN) model to predict air quality. The model
takes as input the recent measurements, their elapsed time, and other explanatory
variables. The recent measurements are stored in a queue (FIFO). Thus, the oldest
measurements are removed from the queue when new measurements arrive. Figure
4.11 shows an example prediction for air quality using BNNs, with a prediction
horizon of three days and an hourly prediction granularity. The figure also shows
the prediction progress over a month, where the model refines its future prediction
once a new measurement becomes available. In Paper III, we use a Gaussian process
to build a representation model. Conventional Gaussian processes require retraining
the entire model when new data arrives. However, other approaches exist to train
the model incrementally, such as sparse online Gaussian processes [51].

4.3.2 Guiding autonomous sensing agents

After building a representation model, we want to use it to guide the deep
reinforcement learning agent in taking more informative measurements. For instance,
we want to guide the agent to take measurements that are more informative for the
prediction model or the application goal (e.g., detecting periods of interest). The
challenge is designing a suitable framework for integrating the representation model
with the deep reinforcement learning agent.

In Paper IIT and Paper V, we design a framework for autonomous sensing with
deep reinforcement learning guided by an uncertainty-aware prediction model. The
framework is an extension of the IoT Sensor Gym we introduced in Paper II. Figure
4.12 depicts the key components of the designed framework. The high-level idea is
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Figure 4.11: An example prediction for air quality using BNNs. ¢,,,,, represents the
current time step when the model performs future predictions using explainable
variables, the latest measurements (green stars), and the difference in time (elapsed
time) between the prediction points and these latest measurements. The Selected
measurements provide input features to refine future predictions. The prediction
is more confident when the prediction point is close to the recent measurements
(shorter elapsed time). (Adapted from figure V.59 in Paper V)
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to build a prediction model that forecasts the future evolution of the monitored
phenomenon. Then, a deep reinforcement learning agent selects measurement data
points that optimize the application goal subject to resource constraints. The agent
leverages the prediction to focus its constrained resources on selecting the most
informative measurements. These new measurements provide input features to
refine future predictions, similar to a feedback loop.

The framework is generic to apply to various application domains. For example,
in Paper III, we use a Gaussian process to build a representation model and apply
the framework for autonomous sensing in indoor noise monitoring with Fisher
information as the reward function. In Paper V, we use a BNNs model to build
a representation model and apply the framework to air quality and indoor noise
monitoring with MPOT as the reward function.
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Figure 4.12: A framework for autonomous sensing with deep reinforcement learning
guided by an uncertainty-aware prediction model. (Adapted from figure V.57 in
Paper V)

4.3.3 Discussion

One could argue that it is possible to use deep reinforcement learning for autonomous
sensing without a representation model. Indeed, we can use deep reinforcement
learning in an end-to-end fashion where we feed the input features to the agent
directly without the need for the representation model. Thus, it seems redundant to
incorporate the model, even contradicts our goal of reducing manual design efforts.
To address this concern, we offer the following arguments.

First, one of the application goals is to construct a representation model of the
phenomena informed by sparse measurements. We need this model to infer missing

64



RQ83: Guided autonomous sensing

data that we don’t measure. We can use the model to provide the stakeholders
with anytime access to information about the phenomenon with minimal cost. The
sensing policies aim to schedule fewer measurements that contribute optimally to
the quality of the resulting model. Therefore, it is a good use to construct a model
in the first place.

Second, training end-to-end would overfit the sensing policy to the training
location. The policy would not generalize to new sensing locations. In contrast,
incorporating a representation model enables the policy to transfer to new sensing
locations with different dynamic environments or air quality patterns. For example,
we show in Paper V that a policy trained in one station can transfer to a new station
that is spatially distant and has a different air quality pattern. Figure 4.13 shows
that the two stations “Elgeseter”, and “Tiller” are spatially distant (approximately
7 km apart), and figure 4.14 shows that the air quality pattern is quite different.
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Figure 4.13: Locations of air quality sensing stations in Trondheim, Norway. The
two stations “Elgeseter”, and “Tiller” are spatially distant.

The policies are transferable because they depend mainly on the output of
the representation model, thus, relying on fewer bits of information and avoiding
overfitting the training task. This is similar to the information bottleneck technique
used in RL to improve generalization [151, 152]. Another explanation is that the
policies reduce the modeling gap between a source station and a new station by
relying only on the predictor. This transferability can lower the cost of fine-tuning
policies required in RL when deployed to different locations, enabling “out-of-the-
box” deployment.

Third, end-to-end training requires the agent to learn a good state-space
representation from scratch. This task is challenging because the state space
is high-dimensional and the agent has limited feedback information through the
reward signal. In contrast, the prediction model has more feedback information
through the loss function. It can learn a good state-space representation faster and
more efficiently. Thus, we can consider the agent as a fine-tuning that selects new
measurements to refine the predictors best while the predictor guides the agent
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Figure 4.14: Air quality patterns of two sensing stations in Tron(ﬁlelm We train
the RL and the prediction model using Elgeseter, the source (training) station.
Then, we test the ability of the policy to transfer to a new station (Tiller) with
different air quality patterns.
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in the high-dimensional state space. Finally, we can see the representation model
as our prior belief or understanding of the phenomena. The agent uses this belief
to make better decisions. This is similar to the idea of using a prior in Bayesian
optimization.
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“Cut until there is nothing left to cut and all there
is left is principled and fundamental”
— Bjarne Stroustrup, 2019

Chapter 5
Concluding remarks

5.1 Summary of research contributions

This section summarizes the main research contributions described in Chapter 4.
We organize the research contributions into three main categories that correspond
to the three research questions of this thesis.

RQ1: Feasibility of autonomous sensing

How can we utilize deep reinforcement learning to autonomously learn
policies that control sensing of IoT devices?

e Our work in Paper I is the first demonstration of the feasibility of using deep
reinforcement learning for autonomous sensing in (energy-harvesting) sensor
devices.

e We address the challenge of computational complexity by building a general-
purpose simulator to train deep reinforcement learning agents.

e Through three different use cases, we show that using deep reinforcement
learning for autonomous sensing leads to increased autonomy and, thus,
scalability by reducing manual engineering efforts involved in designing sparse
sensing policies.

o We demonstrate that we can achieve the desired behavior by choosing a
proper reward function. Additionally, we show how to make trade-offs between
conflicting objectives and set the trade-off parameters more suitable for the
application.

RQ2: Reward function design

In the setting of RQ1, how can we define reward functions that support
application goals and lead to learning?

o We demonstrate that deep reinforcement learning enables using learnable
reward functions that are more aligned with the application goals.

e We show that we can design utility-based reward functions that balance the
trade-offs between conflicting objectives and avoid including side concerns in
the reward function, such as energy.
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¢ Information-based reward functions are more suitable for applications where
we can quantify the information gain of a measurement, such as applications
that incorporate representation models. We show that we can use information-
based rewards to learn sensing policies for selecting informative measurements
with regard to the representation model.

o We demonstrate the benefits of using value-based rewards, such as measured
peaks-over-threshold, in capturing events of interest and leading to more
accurate representation models while reducing energy expenditure.

RQ3: Guided autonomous sensing

How can we use our understanding about a phenomenon to guide an
autonomous sensing agent?

o We introduce a framework for explicitly representing our understanding about
a phenomenon and use this representation to guide the autonomous sensing
agent in selecting informative measurements with regard to the representation
model.

o We use probabilistic deep learning to build data-driven representation models
that also quantify their predictive uncertainty. These models learn how to use
new measurements to refine their predictions and take account of the prior
knowledge about the phenomenon.

o We demonstrate that incorporating a representation model enables learning
sensing policies that adapt and transfer to new sensing stations.

5.2 Limitations and future directions

This section discusses the limitations of the proposed approaches and future
directions for improving the results presented in this thesis. We also discuss
promising applications that we foresee for the proposed approaches in various
domains.

Stability

We observed throughout the research project that the performance of trained agents
varies significantly due to the algorithm’s sensitivity to hyperparameters and the
intricate interplay between the policy and the prediction model. Similar to model-
based reinforcement learning, our approach has more “moving parts” than model-
free reinforcement learning or a manually-engineered algorithm. This performance
fluctuation, however, does not necessarily prohibit the proposed approach since the
training takes place on a server, and it is sufficient to choose the best-performing
policy before deploying it on a sensor. This also suggests that a promising direction
for future work is improving stability and reducing complexity while maintaining
autonomy.
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Objective mismatch

A promising direction for future work is to address the objective mismatch problem
that arises when there is a discrepancy between the prediction model and policy
objectives. We encountered this problem when we used KL divergence as a reward
function. We observe an undesired behavior where the agents exploit the predictor’s
inaccuracies. The agent encourages inaccuracies in the prediction model so that
it gets more rewards when it corrects the more severe inaccuracies later on. One
possible approach to address this problem is to use a single objective that jointly
optimizes the policy and the predictor [48] or use Nash equilibrium between two
players: predictor and sensing agent.

Hybrid prediction models

In our work, we only explored data-driven probabilistic models. However, a
promising future direction would include hybrid models that combine physics-
based and data-driven models. There is a need for further investigation into how
to use existing knowledge to constrain deep learning models. For example, by
leveraging structure in the data, we can impute our prior knowledge, such as
invariance, equivariance, or scale separation into the models. These inductive priors
will make our models more sample-efficient and generalize better by ignoring harmful
or irrelevant information. Accordingly, this will reduce the required training data
and result in stable and predictable performance.

Robust prediction models

Future work should address uncertainty estimation with out-of-domain or seasonal
variations in prediction models. This is commonly referred to as robustness to
covariate shift, where input data distribution changes over time. Thus, further
studies are required in fine-tuning predictors to adapt to new downstream tasks.
One possibility is using reinforcement learning to decide when to fine-tune the
predictor. In our experiments, we test the transferability of the learned policies to
new sensing stations. We compare the performance with and without fine-tuning the
predictor. We observe that fine-tuning the predictor improves the performance of
the resulting representation model. However, there is a need for further investigation
into how to fine-tune the predictor incrementally and more efficiently.

Sparse sensing for data management

Sparse sensing is particularly useful in addressing the problem of data swamps in
many industrial IoT applications. These applications often have abundant energy
resources and can afford to collect more data. However, collecting more data from
many sensors at a high rate results in data lakes that are difficult to manage. Sparse
sensing techniques can reduce the amount of data collected, thus reducing the
cost of data storage and management. Therefore, a promising direction for future
work is to investigate the benefits of our proposed frameworks for sparse sensing
in data management. Further studies are required on the trade-off between the
amount of data collected and the cost of data management. For example, we can
use reinforcement learning to decide when to collect data, how much to collect, and
how to collect data.
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Autonomous sensing for active learning

The sensing formulation has a compelling similarity to the active learning problem.
In active learning, we want to select the most informative data to train a machine
learning model. We select a data point from a pool of unlabeled data at each time
step. The selected point is labeled and added to the training set. The goal is to
reduce the number of labeled data points while maintaining the model’s performance.
This is usually done using manually-designed heuristics, for example, by selecting
the data points far from the decision boundary. A promising future direction is
formulating the active learning problem as MDP and using reinforcement learning
to learn a data selection policy. We can use our proposed framework in such a
formulation.

Data-driven guidance for autonomous sensing

In Paper V, we explore using data to guide learning without a reward function.
However, we do not apply the framework to IoT sensing problems. Thus, a promising
direction for future work is to explore how to use data to guide learning without a
reward function in IoT sensing problems. In particular, we can leverage the large
amount of data we already have from expert-designed sensing policies in wireless
sensor networks.

In conclusion, this thesis investigates the use of deep reinforcement learning
to develop autonomous sensing solutions and shows that it is a viable approach
for addressing the scalability challenges of IoT sensing applications. By enabling
individual sensors to learn sensing strategies suitable for their specific environments
and capabilities, deep reinforcement learning can increase autonomy and reduce
the need for manual design efforts. Through our investigation of three different use
cases and various reward functions, we have demonstrated the feasibility of using
deep reinforcement learning to achieve comparable performance to conventional
methods while increasing autonomy and scalability. Additionally, we have shown
that explicitly representing our understanding about a phenomenon can guide the
autonomous sensing agent in selecting informative measurements that maximally
inform our prior knowledge of the phenomenon. Overall, this work highlights the
potential for deep reinforcement learning to lead to more scalable sensing solutions
that align with supporting application goals of decision-making.
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Introduction

Abstract

Reinforcement learning (RL) is capable of managing wireless, energy-
harvesting IoT nodes by solving the problem of autonomous management
in non-stationary, resource-constrained settings. We show that the state-
of-the-art policy-gradient approaches to RL are appropriate for the IoT
domain and that they outperform previous approaches. Due to the ability
to model continuous observation and action spaces, as well as improved
function approximation capability, the new approaches are able to solve harder
problems, permitting reward functions that are better aligned with the actual
application goals. We show such a reward function and use policy-gradient
approaches to learn capable policies, leading to behavior more appropriate for
IoT nodes with less manual design effort, increasing the level of autonomy in
IoT.

.1 Introduction

Digitizing domains like smart cities, precision agriculture, manufacturing, and
healthcare requires the instrumentation of the physical world with wireless IoT
nodes to sense environmental variables. The actual logic of an IoT device can be
rather simple, as they usually make measurements, prepare the data and send it
into a central fusion center for aggregation. However, challenges arise from the
limited energy resources of the wireless and miniaturized nodes. Therefore, the
choice of parameters like duty cycle (percentage of time a node is active) and
sampling frequency is crucial since they have a dominant effect on the energy
consumption and performance of the node. Currently, such parameters are often
assigned manually to an entire family of IoT devices, and stay constant during
deployment, or are determined by manually fine-tuned algorithms. However, IoT
in its full scale presents a setting where nodes are placed in dynamic and non-
stationary environments, so that a one-fits-all approach and manual design efforts
are impossible. Future solutions should instead be based on autonomous nodes that
optimize their behavior by learning within their specific environment.

Our vision for a more autonomous and hence scalable 10T is inspired by recent
developments in deep reinforcement learning (RL), and its success in building
capable autonomous agents with little manual design effort in complex domains.
Instead of manually adapting IoT nodes, we want engineers to only formulate the
goal in the form of a reward function for the IoT nodes as close to the actual
application goal as possible.

Reinforcement learning has indeed been used to control IoT nodes by various
works, especially for power management [14, 13, 96]. However, these approaches
use older RL techniques like SARSA and are constrained by coarsely discretized
action and observation spaces, and tackle only simpler problems. Many approaches
[95, 97, 12] thus formulate reward functions in terms of indirect indicators like
energy budget. Those are often easier to learn, but are imperfectly correlated with
actual goals. This not only adds manual design effort, but also doesn’t live up to
the potential of RL. Instead, RL should be used to sort out the complicated and
node-specific technicalities on its own through learning.
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In this paper, we explore deep RL as an end-to-end approach to enable autonomy
within IoT nodes. For the training, we use a policy gradient method, namely
Proximal Policy Optimization (PPO, [36]). We use neural networks as function
approximators to learn state abstractions and effective policies directly from
continuous input data. We also develop a reward function that closely reflects
application goals. We automated the search for the best reward signal by defining
it as hyperparameters from the application perspective. Additionally, we conduct a
series of simulations to explore the influence of reward function design on a node’s
behavior.

To manage the computational complexity, we propose training the agent on a
server as a part of device management [149] and update the node regularly based
on a static or dynamic update interval [14]. To this end, we built a sensor simulator,
called Sensor Gym (based on OpenAl Gym [153]), as a toolkit for training and
comparing various RL algorithms in an IoT context.

The results in this paper show that modern and more successful deep RL
techniques outperform the older ones, and that they make it possible to use more
sensible reward functions that are based on IoT application goals. This leads to
tractable learning, less manual design efforts, and hence scalable autonomy for IoT
systems.

The rest of this paper is organized as follows: Sect. II provides a brief overview
of deep reinforcement learning, and Sect. III presents related work that adopted RL
to optimize energy-harvesting sensor nodes. In Sect. IV, we describe the proposed
system setup, and in Sect. V we present a baseline for performance and suitability of
PPO in an IoT by comparing it to an older RL technique and study the performance
with a reward function based on energy neutrality. We then introduce a reward
function closer to the application goals in Sect. VI, and present the results in
Sect. VII.

.2 Deep Reinforcement Learning

In reinforcement learning an agent learns to better perform a task by learning from
its experiences in interacting with that task. Mathematically, the task is expressed
with a Markov Decision Process (MDP). An MDP is a tuple M = (S, A, P, R,7),
where S is the set of all states the problem might be in; A is the set of all
actions the agent might take in response; P is a transition kernel describing
the probabilities of transitioning between two states when performing an action
(p(s'|s,a) Vs,s" € S,a € A); R: S — RN is a reward function (for example, positive
numbers in states where the agent has achieved its goal, and negative numbers in
states where the agent has harmed itself); and v € (0,1) is a discount factor, which
is used to describe how much the agent prefers rewards in the short term to rewards
in the long term. The behavior of the agent is expressed as a policy w: S — A.

The quality of a policy can be measured using the value function of a state
V7 (s), or, the Q-value of a state-action pair Q™ (s, a):

V7™ (s) =R(s) +[Sp(s'|s,w(s))V”(s')ds' (L.1)
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Q" (5,0) =R(s) + /s p(s']s, )Q7 (', m(s"))ds’ (12)

The goal of the agent is to learn a policy which produces high value for all states
by collecting trajectory samples of the form (s¢, at, 7, S¢+1), where ¢ denotes the
timestep, and s¢, s¢11 € S,ar € A, 1 = R(8¢).

A variety of learning algorithms for RL exist. One traditional approach is to begin
by learning Q-functions as accurately as possible using function approximation
techniques; some are used in previous work applying RL to IoT, and will be
introduced here.

Samples are themselves collected using a policy Tsqmp, where a; = Tsamp(St)-
The Q-functions of this sampling policy can be learned using an algorithm called
SARSA; this is known as on-policy learning. Alternatively, the Q-functions of an
improved policy may be learned using an algorithm known as Q-learning; this is
known as off-policy learning. In either case, given Q-function approximations, a new
and likely-improved policy 7* is implied by 7*(s) = argmax,c 4 Q™ (s,a). With
sufficient sampling, alterations to allow for exploration of the full state space, and
(in the on-policy case) alternation between sampling, Q-function approximation
and policy improvement steps, these approaches are proven to converge to excellent
policies. This is a convenient guarantee, but requires the state and action spaces
to be finite and small enough to be easily tabulated. More complex approaches to
value learning exist which allow state and action spaces to be continuous, but this
results in a loss of these guarantees, and potentially much less capable policies. In
recent years, these approaches have been further improved upon by approximating
functions with deep neural networks [17], but they remain fundamentally difficult
to apply successfully to continuous and complex domains.

In contrast with value-based methods, policy-search methods directly search for
a parameterized policy my. The result is a stochastic policy that learns a direct
mapping from states to a probability distribution over actions, where preferred
actions have a higher probability of being sampled. This output of a distribution
makes it suitable for continuous domain tasks.

Policy gradient methods are the most prominent of policy-search methods.
They optimize a policy by maximizing the value of sampled states V7 (s;) by
performing gradient ascent over the parameters €. Various approximations to this
basic approach exist, with advantages in training time and sample efficiency. In
this paper, we use Proximal Policy Optimization (PPO), one of the most successful
of these approaches[36]. PPO is a trust region method, which seeks to iteratively
maximize performance of 7y compared to its previous iteration, without changing it
too much. This allows for continuous, stable improvement, even in continuous and
complex domains such as robotic running and difficult Atari games. This success in
demanding domains make RL ready for application to real-world problems such as
IoT.

.3 Related Work

Several works have already adopted RL within various contexts of IoT. An example
is a dynamic power manager for energy-harvesting wireless sensor networks [7]. Here
Hsu et al. used the Q-learning algorithm to train an agent to choose an action from
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four levels of duty cycles. Their environment state space is based on the distance
from energy neutrality (i.e., the difference between harvested and consumed energy),
the harvested energy, and the current battery level, while the reward function is
based on the distance from energy neutrality and the current energy storage level.
They extended this work in [94] to include quality of service (QoS), both in the
state space and the reward function. Additionally, in [96], they included meeting
a requested throughput along with the energy level in the reward function and
added penalizing terms for overcharging, deep-discharge, and depletion of the energy
storage. Furthermore, in [95] and [97], they used fuzzy decision processes to model
an energy harvesting node as a fuzzy environment and used a modified Q-learning
with fuzzy reward to train an RL agent.

Since the reward function formalizes the goal of an RL setup, Rioual et al. [134]
discussed the choice of the reward function in the management of energy-harvesting
IoT nodes but covered a limited range of design choices. To avoid intractable
learning in old RL approaches when using an application-level reward, most of the
previous work used reward shaping, which is an alternative method to guide the
learning process by rewarding the agent for achieving subgoals or developing an
approximation to the desired behaviors. Unless the reward shaping function is based
on a state-dependent potential, it may lead to learning suboptimal or locally-optimal
policies [133]. Almost all previous work of using RL in IoT uses manually-designed
shaped functions that produce arguably acceptable results without justifying how
well the reward frames the application goal.

RL has also been used for power allocation in energy-harvesting communication
systems. Ortiz et al. [154] used the SARSA algorithm with linear function
approximation to learn a power allocation policy in two-hop communication. The
objective of their policy is to maximize throughput of a communication system, but
they designed a reward function based on the total power assigned to transmissions,
which they claimed was correlated. They simulated a communication environment
and approximated the state space with discrete features that indicate battery
level and its constraints, harvested energy over an hour, characteristics of the
communication link, data arrival process, and the data buffers at the communicating
nodes. Similarly, Aoudia et al. [12], used an actor-critic method with linear function
approximation to learn approximation for both policy and value function. They
used a Gaussian policy to generate continuous values of bounded packet rates and
summarized the state space by continuous values of the current residual energy.
The objective is to maximize transmitted packet rate while sustaining perpetual
operation; hence they designed a reward function to be a multiplication of normalized
residual energy and the packet rate.

Shresthamali et al. [13] used a SARSA(A) RL algorithm to develop adaptive
power management for a solar-energy harvesting sensor node. To simulate a sensor
node, they used a scaled-up version of a real sensor powered by a battery and a
solar panel, and used solar radiation data to calculate hourly harvested energy.
They designed a reward function based the distance from energy neutrality, defined
as the difference between the current level of energy and the optimum battery level,
which they calculated to be 60 % of the battery’s maximum level. They trained
an agent in episodes of 24 hours and rewarded it at the end of a training episode.
The state space consisted of discretized information about the battery level, the

90



System Setup

distance from energy neutrality, the harvested energy, and the weather forecast,
which they approximate by calculating the total amount of energy harvested in a
particular day.

Fraternali et al. [14] focused on the configuration of the sampling rate of indoor
energy harvesting sensors. The objective of their agent is to maximize the number of
samples while avoiding power failure, by designing a reward function that depends
on the sampling rate and a penalty for power failure. They used Q-learning with
a state space that included light intensity, the voltage level of the energy storage,
and the current sampling rate. Another example of using RL for adaptive sampling
can be found in [115]. Here Dias et al. proposed using Q-learning for adaptive
sampling rate adaption to avoid oversampling, while not missing environmental
changes. They introduced a variable that describes the quality of measurement as
the difference between two consecutive measurements and, depending on a specific
application, this difference should be less than a threshold value. The action space
is a range of possible sampling intervals, while the reward function is based on the
transmission avoided and the quality of measurements.

.4 System Setup

In this paper, we propose and apply deep RL solutions for training RL agents to
control ToT nodes autonomously. We use PPO as a policy gradient method for
optimizing the agent’s policy, using neural networks as function approximators.
Executing the agent’s policy corresponds to inference in a neural network which has
become feasible even for computationally- and energy-constrained IoT nodes [155].
We propose to integrate the much more computation-intensive training phase on a
server, as a part of the IoT device-management [149], illustrated in Fig. I.1. The
deployed agents can be updated regularly based on a static or dynamic update
interval [14].

To train the agent, we built a simulator of a general sensor node with an energy-
harvesting solar panel, an ideal energy buffer, and a load with variable duty-cycles.
We base the simulator on the OpenAI Gym, which is a toolkit for developing and
comparing RL algorithms [153]. We base our sensor specification on a realistic
energy-harvesting IoT node. The simulated sensor has an energy buffer with a
maximum capacity of B,q; = 40 W and has a load that consumes energy during a
time step according to its duty cycle. The maximum consumed energy in an hour is
Ecpaz: = 0.5 Wh, which corresponds to a duty cycle of D, = 100 % during that
hour. We simulate the harvested energy by calculating the energy generated by a
6 W solar panel using solar radiation data. At time step ¢, we represent the level of
the energy buffer as By, the harvested energy as Fh;, the consumed energy as Fc;,
and the duty cycle, which is determined by the node’s policy, as D;. The consumed
energy is calculated according to:

| 5Dy if By >5D;
Ee: = { 0 if B,<5D, (L.3)
The next level of the energy buffer is calculated according to:
Bt+1 = min(Bt + Eht - E1Ct7 Bmaz)- (14)
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Figure I.1: System setup of agent-environment interaction

To handle a continuous action space A = [0, Dy,qz], the policy resulting from
PPO is defined as a Gaussian distribution with mean p(s;) and standard deviation
o(st), both of which are approximated by a neural network with parameters 6:

S S S CY)
mo(as|s) = o (5)v/2m p( 20 (s¢)* )

Thus, the actions are real numbers, chosen from the normal distribution in I.5. Our
neural network architecture has an output layer with two neurons which are the
approximation of the mean and standard deviation of the Gaussian policy.

In Section 1.5, we demonstrate that PPO outperforms older RL approaches on
previously-proposed reward functions. Then, in Section 1.6, we demonstrate that
PPO can develop good policies for reward functions that make the domain more
difficult, but better capture desired behavior. We also illustrate that older RL
approaches cannot produce similarly competent policies.

(15)

1.5 Reward Function Based on Energy Neutrality

To get a baseline for the performance and suitability, we first apply PPO in the
same setting as Shresthamali et al. [13], who used the SARSA()) algorithm and
designed a reward function based on the distance from energy neutrality. The
concept of energy-neutrality was introduced by Kansal et al. [89], which states that
a node is in energy-neutral operation if the consumed energy is less than or equal to
the harvested energy. Accordingly, the distance from energy neutrality is redefined
as the difference between the current level of the energy buffer B; and the optimum
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buffer level By to account for the variance in the harvested energy over a period:

In [13], the reward function is formulated in terms of this distance to energy
neutrality:

500 if Edist, =0Wh
500 — £distt if OWh < Edist, <1Wh
10 — £dish ¢ 1Wh < Edist;, < 5Wh
—500 if 5Wh < Edist,

The action space is defined as discrete values of five duty cycles, which are

RE(st) = (L.7)

a; € A= {20%,40 %, 60 %, 80 %, 100 %} (L.8)
The observation space contains vectors with four observations:
St — [Bt, EdiStt, Eht, Wfday]7 (19)

where Wfy,, represents the weather forecast of the day. In [13], actual harvested
energy data in a day are calculated before the training and used to give information
about the expected weather. The agents can leverage this information to plan their
energy expenditure accordingly.

While the state space requires discretization for SARSA with a hand-designed
mapping, policy approximation has the advantage of handling continuous state
spaces by generalization, hence eliminating another step of manual mapping an IoT
problem to RL.

To compare the capabilities of SARSA and PPO, we trained 20 agents with
PPO and 20 with SARSA with data of Tokyo 2010 and evaluated their policies on
data of Tokyo 2011, using the same settings and data as [13]. Figure 1.2 represents
a histogram for performance results of both policies. Here, the root mean square
(RMS) of Edistqq, values are used to measure the deviation from energy-neutrality
after a one-day window and the mean of daily deviation over the whole year to
compare policies. We observe that the average PPO agent is considerably better
than the best SARSA policy and that almost all PPO agents are better than the
average SARSA agent. These excellent results support our motivation to use PPO
for IoT agents.

We also take a more detailed look at the behavior of the agents by comparing
their results over a one-week window. Figure 1.3 shows the performance results
of PPO, SARSA policies, and linear programming when running them over one
week of Tokyo weather data in February of 2011. The linear programming policies
are presented in [89], and use linear programming and acausal data (i.e., the exact
future energy intake, hence not practical) to determine the optimal duty cycle given
the energy neutrality constraint; this represents the upper limit of performance.
The three policies started the week off with an energy level of By = 60 % of Bjas
and try to maintain them at this level. RMS Edist,, values are used to measure
the deviation from energy-neutrality over the whole week, and we observe that the
SARSA-trained policies have the highest deviation of (5.59 %), PPO-trained policies
have (5.43 %) and the optimal policy based on linear programming has (4.17 %).
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Figure 1.3 illustrates a problem with the reward function based on distance
from energy neutrality (I.7): The duty cycles of both RL policies are subject to
high variance, often oscillating between highest and lowest duty cycle, instead of
choosing a smoother course with more mid-range values. From an RL point-of-view,
this maximizes the reward, but it is not a behavior appropriate for IoT nodes.
Typically, we want to cover a phenomenon as continuously as possible, and spread
out measurements over time, which corresponds to a smoother duty cycle.

Because PPO is so capable on this easier problem, in the next section we design
a new, more difficult reward function, which no longer rewards the intermediate
goal of energy neutrality, but more clearly expresses the goals for the agent.

.6 Reward Function Based on Application Goals

Our objective in this section is to create a reward function that is closer to the
actual application goals of an IoT system in order to encourage more desirable
behavior. In particular, we want to depart from the inclusion of energy terms in
the reward function, since energy is only a resource to be managed, but not a goal
to be optimized. Instead, we want the agent to maximize the sum of the duty cycle
over time I':

Gp=) D (1.10)

At the same time, IoT nodes must not empty their energy buffer completely. Not
only would this prevent the node from taking any measurements until enough energy
is harvested again, but it could also lead to the loss of data or leave the node in an
undefined state. Since the sensor gym simulates a failure when the idealized buffer
is emptied, we want to minimize the occurrence of failures over time I'

r
G Z{ 0 if B;>0 (L.11)

t=0

To ensure a smooth course of the duty cycle, corresponding to a continuous stream
of measurements, we want to minimize the variance of the selected duty cycles, and

SO minimize
r

Gvar = Z Vary, (1.12)
t=0
where the variance in the duty cycle is defined in an epoch t as the absolute difference

to the previous duty cycle
Vart = |Dt — Dt,]“. (113)

We combine the conflicting objectives (I1.10), (I.11), (I.12) into one reward
function R4:

-?t — C[V(Z’ft]Q if Bt >0 (114)

RA(St):{ r it B,=0

The agent receives its reward by maximizing the duty cycles D;. To punish variance,
we reduce the reward with the squared variance, scaled by a damping factor ¢. In
the case of a failure, the reward is negative, using the punishment term f. The
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actual values of F and ( are hyperparameters of the reward function, and we will
have a detailed look at them in the next section.

We generalized the reward function in (I.14) to accommodate other RL techniques
of sparse reward assignments. In these techniques, the agent gets a reward at the
end of a training episode E. An episode consists of a set of epochs (time steps) that
range from t =1 to t =T, thus E = {1,2,...,¢t,....,T}

T 5 .
Ra(sr) = tZl { l_)} ¢[Var] i gﬁ - 8 (1.15)
If the reward is assigned at every epoch, T'=1 and (I.15) reduces to (I.14).

We considered the relevant attributes of the environment in the definition of
state space. These attributes are observations of the current level in the energy
buffer, current harvested energy, and the weather forecast of the whole episode. To
simulate the harvested energy, we use solar radiation data to calculate the harvested
energy in every hour. The weather forecast information is included to enhance
performance by giving an estimate of the expected solar energy for that particular
episode. This weather information can be acquired from external sources or real
prediction algorithms with sufficient accuracy as the one presented in [156]. For
our case study, we simulate weather information by calculating the total harvested
energy in a particular day and introduce a 20 % error to mimic inaccuracies in the
weather forecast. We also include the previous duty cycle D;_; in the state space,
so the agent makes an informed decision to avoid high variability in the duty cycle.
The agent takes the observation as input summarized in a vector of four continuous
values

st = [By, Ehy, Wiy, Di—q]. (I.16)

PPO allows us to use a continuous action space corresponding to setting the
operational duty cycle of a node. This enables more accurate control of the consumed
energy, and therefore the utility of a node. Therefore, the action space is

a; € A= [Din, Dimaz)- (I.17)

Depending on IoT application requirements, the minimum value of the duty cycle
can be set accordingly. For our case, we set it to D, = 0.

.7 Results and Discussion

We conducted a series of simulations to systematically explore the influence of the
designed reward function R4 and training hyperparameters on the agent behavior.
In total, we trained more than 300 agents on data of the year 2010 and tested their
performance on data of the year 2011, using different values for the damping factor
(¢) for the reward function. For the PPO algorithm, we also trained with different
values for the hyperparameters, namely the learning rate («), batch size (number
of state transitions used to calculate policy gradient),

discount factor () and trace decay parameter (\) of the advantage function
[36]. In the following, we discuss the learning rate « and damping factor ¢ in more
detail.
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The learning rate («) has a significant impact on the learning process as shown
in Fig. I.4. The x-axis corresponds to the learning rate, which we chose to tune
in the range of 107° to 10~!. The y-axis in the upper plot corresponds to the
yearly utilized energy (normalized by the maximum possible utilization), the y-axis
in the lower plot corresponds to the mean-variance in duty cycle over the whole
year. Each dot in the figure represents a single agent, and its color indicates the
number of times the agent has emptied the energy buffer, i.e., failed. Training
with low learning rates (o < 1073) results in agents that learn poorly or not at all.
These agents pick constant and low duty cycles, which results in low variance and
few power failures, thus fulfilling application goals (I.11) and (I1.12), but failing to
achieve the goal of maximizing utilized energy in (I1.10).

Power
Failures (Year)

@
o [ ]
) ¢
: 80 'i . o.... A o
£ B L
> 60 o ... °
2 °eq °
w40 “;
B ® =
= 20 !. - 10
= 0a® °
o %o
[ o o
0 ." ®oe o o )
-1
35
o® o®
- 1000
30 ‘~..’ °
— [ ]
& 25 . <.
> & r SR
c 20 » - 100
© o af. ¢ °
2 ° °
g 15 e
C
@© @
& 10 ‘so’: .!' () - 10
> .0. o . W
5 ) 8.,
ﬁl:"o ¢
) s e 0P ° 1
107° 107 107 1072 107"

Learning rate ()

Figure 1.4: Influence of the learning rate («) on agent’s learning process in terms of
variance in duty cycle and utilized energy.

The choice of damping factor ¢ in the reward function also has a significant
impact on the resulting behavior. Figure 1.5 shows the results of all trained agents
running over the whole year of 2011 for different damping factors ¢ on the x-
axis. We observe that agents trained with values of ¢ in the approximate range

97



Paper I: Autonomous Management of Energy-Harvesting IoT Nodes Using Deep
Reinforcement Learning

(1072 < ¢ < 1071) display the desired behavior of less variability and better energy
utilization, which translates to an appropriate, continuous measurement coverage
of the IoT node. We also observe that training with ¢ in the approximate range
(¢ > 1071) leads to overdamped agents, which have less variance and fewer power
failures, but also less energy utilization. Contrarily, most agents trained with values
of ¢ in the approximate range (¢ > 0.1) are underdamped, with few exceptions
as outliers. These underdamped agents have high utilized energy, but also higher
variability in the duty cycle and more frequent power failures.
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Figure L1.5: Influence of the damping factor (¢) in R(¢) on an IoT node’s behavior
in terms of utilized energy and variance in duty cycle.

Depending on the choice of damping factor ¢ and failure penalty f in the
reward function R4, agents try to maximize rewards by prioritizing among the
conflicting objective (1.10), (I.11), (I.12). Accordingly, agents learn various policies
that achieve different performance on each objective, as shown in Fig. 1.6. This
enables choosing between different trade-off agents based on the context of individual
ToT applications.

In comparison, using the same reward function R4 for SARSA-trained agents,
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achieves mediocre results at best, as shown in Fig. I.6. The SARSA agents (shown
as crosses) score poorly in terms of energy utilization and have a high variance. We
attribute their relatively low failure rate to low utilization. This is as expected since
the discretization necessary for SARSA does not offer the granularity needed for
effective learning.
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Figure 1.6: Performance comparison of SARSA(\) agents with PPO agents using
the reward function R4

We also take a more detailed look at the behavior over a one-week window.
Figure 1.7 shows the performance of four selected agents trained with different
damping factors (. The first day yields much solar power, so all agents utilize this
energy by setting their duty cycles to high values. Since the weather forecast for
the next day indicates less energy, all agents reduce their duty cycles. However, the
pattern of the decrease differs according to the damping factor. Efficiently damped
agents show the desired gradual decrease, while underdamped agents increase
sharply and oscillate between maximum and minimum duty cycles. When more
energy is available again, we see analogous behavior when the duty cycles increase.
The overdamped agents appear unaffected by the variance in energy supply, but
they exhibit an overall low energy utilization. For example, the agent trained with
¢ = 0.1 avoids a high variance penalty by setting its duty cycle to a constant value,
which leaves energy unutilized in times when much solar energy is available. Table
1.1 summarizes the overall performance of the agents in Fig. 1.7 over the whole year.

To investigate the effect of the neural network architecture of the policy
approximation on performance, we trained with a different number of hidden
layers and units. Our results show that shallower networks perform as well as deeper
networks. We ended up using an architecture layout with two hidden layers of 64
units and a tanh activation function. The output layer has two units computing
the mean and standard deviation of the Gaussian policy (1.5). Therefore, we
substantiate that an agent’s policy can be approximated with a neural network that
requires low computational effort and memory footprint, which makes it feasible for
deployment also in resource-constrained sensor nodes.
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Figure 1.7: Performance results over one week (Tokyo 2011) of four selected agents
trained with different damping factors (¢) in their reward function R4 (t)

Table I.1: Summary of performance results over a year of four selected agents
trained with different damping factors (¢)

¢ Utilized Energy  Variance Mean Power Failures
0.1 7% 2.5 11

0.05 94% 9.7 14

0.01 95% 12 17

0.001 98% 25.6 23

1.8 Conclusion

Using reinforcement learning (RL) to manage constrained IoT nodes provides a
path to learn optimal behavior without careful human attention. To the best of
our knowledge, this is the first application of a policy-gradient method to this
problem. We have shown that state-of-the-art policy-gradient RL methods such
as PPO which use neural networks as function approximators are suitable for
the use in IoT, that they outperform older RL approaches, and that they can
solve more difficult problems which better describe and encourage desired behavior.
Additionally, their suitability for continuous problems removes another manual
design step of discretization. We also investigated the influence of hyperparameters
on the resulting policies. While we have focused on the maximization of duty cycle
with minimal variance, we believe there is potential to solve much more complex
problems. The work presented hence leads to more autonomy in IoT systems,
in which RL takes care of technicalities so that engineers can focus on the real
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application goals. This will allow a broader application of IoT in complex domains.
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Introduction

Abstract

We describe [oT Sensor Gym, a framework to train the behavior of constrained
IoT devices using deep reinforcement learning. We focus on the main
architectural choices to align problems from the IoT domain with cutting-
edge reinforcement learning algorithms and exemplify our results with the
autonomous control of a solar-powered IoT device.

II.1  Introduction

With constrained resources and the need for scalable solutions, individual and
autonomous control through behavior learning is crucial for IoT devices so that they
can optimally act in dynamic and non-stationary environments. However, current
ToT solutions often rely on manual, static configurations or fined-tuned algorithms
that fail to suit all nodes of large-scale IoT systems. Fortunately, reinforcement
learning emerged as a promising approach to automate IoT control, and it has
already been used in various IoT applications [14] to solve simpler problems. Lately,
deep reinforcement learning (DRL) proved to be effective in also solving harder
problems due to its ability to model continuous observation spaces, as well as
improved function approximation, which lead to its application in many fields, from
continuous control tasks [157] to Atari games [158]. In this work, we explore how
to apply DRL to the domain of IoT, inspired by the analogy between gaming and
ToT, illustrated in Table 11.2. !

Table I1.2: Analogy between gaming concepts and resource-constrained IoT devices.

Games — IoT

Player & — IoT Device Agent

World =ZZL8 —  Weather and other relevant conditions.

-
Reward == — Data measurements
Control O Duty cycle, sensing frequency,...

I.2 The Sensor-Gym Design

We built the IoT Sensor Gym as an extension to the OpenAI Gym framework [153].
Sensor Gym provides an environment specific to constrained IoT devices, with an
emphasis on their energy budget. In DRL, an agent is built using a neural network
and learns a policy through experience by interacting with the environment. At

IThe source code is available at https://github.com/Abdulmajid-Murad/IoT-Sensor-Gym.
The code provides the functionality to train agents using OpenAl baseline implementations of
reinforcement learning algorithms [159], including PPO [36]. Further, it provides functionality to
evaluate the trained agents, as well as saving and restoring them.
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each time step, the agent observes the environment’s state sy and selects an action
a¢. Depending on the state and the selected action, the agent receives a reward
value Ry. This reward is used for learning via various learning algorithms. One
recent algorithm is Proximal Policy Optimization (PPO) [36]. It is a policy-gradient
method able to solve also harder learning problems with little problem-specific
engineering and is capable of using continuous values for states and actions.

Figure I1.8 illustrates the architecture of the IoT Sensor Gym framework and
the process of training and deploying RL agents. IoT devices are simulated using
a variety of models which can be combined and configured to match various use
cases. The energy-buffer model simulates an energy buffer of a maximum capacity
B4z, and provides the level of energy at each time-step B;. The energy-harvesting
model calculates the harvested energy Eh;, using a selected solar panel and location-
dependent solar radiation data. The energy-consumption model simulates a load
that consumes energy at each time step Ec; according to a selected duty cycle
D, (i.e., Ec; x D;). Accordingly, the next level of the energy buffer is given by
B¢11 = min(B¢ + Eh¢ — Ect, Bimax). The weather forecast model provides general
information about the expected weather in terms of estimated solar energy, and
it can be acquired from external sources or prediction algorithms as in presented
in [156]. More specific models can be added to suite also other settings.

The Update Step calculation acts as a bridge between Sensor Gym and an external
DRL agent to run one step of the environment’s dynamics. The interaction between
Sensor Gym and an RL agent starts with creating a simulated IoT environment
and initializing it with the default values. It also defines the boundaries of the
environment, such as allowed actions (action space), the environment’s possible
states (state space), as well as sampling and returning the first state. Then, the
interaction proceeds through Update Step by running one epoch of the environment’s
dynamics after receiving an action from the agent. The training of agents occurs
off-board on a server, for instance as a part of the IoT device management [149].
The trained agents are then deployed to real IoT devices and updated regularly.
The agent’s policies can usually be approximated with neural networks that require
acceptable computational effort and memory footprint, so that they can also be
deployed in modern, energy-efficient IoT devices. The models required for the
simulation in the IoT Sensor Gym can be updated with data observed by the sensor
device. This requires corresponding instrumentation, for instance by measuring its
energy intake and consumption, indicated by the feedback in Figure I1.8.

IoT Device Management Platform Field Operation

Sensor Gym OpenAl Gym

Weather state S,

Harvesting Forecast
Models Models

policy

2 R, P dat
Update Step Reward L Training via update
> — > —
Calculation Calculation PPO

action a, J]

Energy
Consumption
Models Models

data collection

Figure I1.8: Architecture of the IoT Sensor Gym as a framework to train the
behavior of constrained IoT devices using deep reinforcement learning.
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I.3 Use Case: Duty-Cycle Optimization Under Uncertain
Energy-Harvesting

In this use case, a solar-powered IoT device with relatively small energy buffer
should maximize its duty cycle, i.e., utilize as much of the incoming solar energy as
possible, but without failing by depleting its buffer. At the same time, the duty
cycle should have a low variance to ensure steady data collection. For that, we
designed a corresponding reward function that reflects these application goals [98],
using hyperparameters to balance between them. Figure I1.9 shows the performance
of more than 300 different agents over a whole year, using different hyperparameters.
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Figure I1.9: Performance results of over 300 agents. The x-axis corresponds to the
mean variance of the duty cycle, the y-axis to the yearly utilized energy. Each
dot represents an agent, and the color indicates the number of times an agent has
emptied its energy buffer, i.e., failed.

Figure II1.10 shows the resulting duty cycles of two selected agents over six days.
The first day is sunny, so the agents utilize this energy by selecting a high duty-cycle.
Then, they reduce their duty cycles, since the weather forecast indicates less energy.
The agents have different hyperparameters that model the tradeoff between energy

utilization and low variance, hence illustrating the tradeoffs that the approach
enables.

.4 Conclusion
The IoT Sensor Gym provides the basic mapping of behavior control of constrained

IoT devices using energy harvesting to cutting-edge reinforcement learning
algorithms. This opens for the control IoT devices by autonomous agents that are
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Figure I1.10: Solar energy intake and resulting duty cycle selection of two agents.
The red agent receives more penalty for duty cycle variance than the blue one and
is hence smoother, but utilizes slightly less energy.

able to make complex decisions and learn in non-stationary environments also for
more difficult problems.
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Introduction

Abstract

In order to make better use of deep reinforcement learning in the creation of
sensing policies for resource-constrained IoT devices, we present and study
a novel reward function based on the Fisher information value. This reward
function enables IoT sensor devices to learn to spend available energy on
measurements at otherwise unpredictable moments, while conserving energy
at times when measurements would provide little new information. This is a
highly general approach, which allows for a wide range of use cases without
significant human design effort or hyperparameter tuning. We illustrate the
approach in a scenario of workplace noise monitoring, where results show that
the learned behavior outperforms a uniform sampling strategy and comes
close to a near-optimal oracle solution.

lll.1 Introduction

A fundamental use case in the Internet of Things (IoT) is to represent a phenomenon
of the real world with an estimation or prediction model informed by measurements
done by IoT sensing devices. When the phenomenon is measured and predicted
over time, the sensor devices therefore need to decide when they should make
a measurement. More frequent measurements often allow for more accurate
predictions; however, to spend their constrained resources as frugally as possible,
sensor devices should avoid acquiring, processing, and transmitting measurements
which are already accurately and confidently predicted by the representation model.

Generally, the optimal placement of measurements depends on the phenomenon
to be observed. In noise monitoring of working environments, for example,
measurements during nights or holidays are less relevant and more predictable
than those during office hours. An optimal sensing strategy may also depend on
the local environment and situation of each sensor individually, such as its energy
budget. Learning these strategies is a complex task, which may also vary with each
use case and specific sensor instance, due to local differences. We therefore see a
need for more autonomy through learning, so sensor devices can exhibit appropriate
behavior for their specific situation without human guidance [160, 161, 162, 163].

Reinforcement learning (RL) is one way to achieve such individual autonomous
behavior. It has proven suitable for sequential decision-making under uncertainty,
and has been applied in IoT and wireless sensor networks for a variety of problems [12,
11, 14, 7, 13, 98]. Current approaches, however, focus on generic performance
measures, such as maximum duty cycle or optimal network traffic. Such metrics
can be useful if they are well correlated with the goals the system should achieve,
but such correlation is not guaranteed, and their optimization may diverge from
optimizing the true goals of the system.

Instead, we consider a system in which a continuous prediction is made of a
phenomenon only sporadically measured by the IoT device in its entirety. The goal
is not to measure as frequently as possible, as in optimizing duty cycle or network
activity; the goal is to make the prediction as accurate as possible. Therefore, we
want to make the IoT device learn how to schedule measurements so that they
contribute in times when the prediction is unconfident or inaccurate, contributing
optimally to the quality of the overall prediction.
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For that, we define a novel reward function inspired by the work of Kho et
al. [113] that is based on the Fisher Information of the observed phenomena. This
constitutes a novel and general approach for the application of RL in IoT that can
be applied to a wide variety of use cases. Results show that the learned policies
outperform uniform sampling for a case study with regard to model quality, and
come close to oracle solutions.

In Sect. I11.2, we will outline related work, before defining our system setup
and problem in Sect. II1.3. We then present our prediction model and evaluation
criteria in Sect. II1.4, which is the basis for the frugal operation policy presented in
Sect. II1.5. We close with an evaluation of our results and a discussion.

lll.2 Related Work

Adaptive sampling addresses the problem of when, where, or what to sample, subject
to some sampling budget constraints. This corresponds to, respectively, monitoring
temporally-varying, spatially-varying, or multiple data types-varying environmental
fields. Within the context of adaptive sampling, a large number of prior works
have applied RL for power management of constrained, wireless sensors. In energy-
harvesting sensors, one objective may be to increase the number of samples while
maintaining perpetual operation [11, 14, 7, 13]. These works use tabular methods,
such as SARSA or Q-learning, in which the state and action spaces are discrete and
small enough to express the value function in tabular form. Other works [12, 154]
use linear functions to approximate power-managing policies. Most of the previous
works include energy directly in the reward function, while work in [98] proposes a
utilitarian reward function that maximizes a system’s utility based on the achieved
duty cycle.

With respect to battery-powered sensors, the main objective is to minimize energy
consumption by reducing the number of samples while maintaining an acceptable
level of service. For example, Dias et al. [115] use a Q-learning algorithm to learn
an adaptive sampling policy to minimize power consumption while not missing
environmental changes. They define the action space to be a range of possible
sampling intervals, and the reward function to be proportional to the amount
of energy saved, subject to a constraint that the difference between consecutive
measurements is less than a threshold value. Cobb et al. [116] apply RL to learn
a sampling policy on accelerometer data on lions and show that it is feasible to
achieve a reconstruction accuracy of 51 % with 73% reduction in energy consumption.
They propose a reward function based on the sampling rate and data variance,
then test tabular Q-learning, Deep Q-learning with NN, and Deep Q-learning with
LSTM. They also present a heuristic sampling algorithm that outperforms these RL
methods. However, they argue that using a heuristic algorithm would be restrictive
and not very adaptable.

We observe an increasing attention in IoT towards incorporating prediction
models with adaptive sampling, i.e., model-driven adaptive sampling. Ling et
al.  [123] address adaptive sampling when predicting an environmental field
by presenting an adaptive GP planning framework. They integrate planning
and learning by framing the problem as a Bayesian sequential decision with a
value function. However, they do not derive an exact planning policy due to the
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uncountable set of candidate measurements, and thus large possible sequences of
posterior GPs. Instead, they use a Lipschitz-continuous reward function to derive
an asymptotically-optimal policy. They evaluate their framework, among others,
on a simulated energy-harvesting task in which a rover harvests wind energy while
exploring a polar region. Muttreja et al. [121] model sensor data using sparse
Gaussian processes and propose an active-learning based sampling algorithm. The
objective of the sampling algorithm is to maintain the model confidence within
pre-specified bounds while minimizing energy consumption. Similarly, Monteiro et
al. [124] combine a data prediction model with adaptive sampling, where they build
a model based on an extension of Holt’s Method. The algorithm greedily samples
until it keeps the prediction error under a threshold value. Most similar to our
work are those that use Gaussian processes in each sensor for prediction models and
Fisher information as a basis for the sampling algorithms [113, 122]. In contrast
to our work, where we use a learned sampling policy, these works use manually
fine-tuned sampling algorithms.

In a somewhat different setting, some other works use variance-based adaptive
sampling without prediction models [102, 103, 104]. They manually designed
sampling algorithms that adjust the sampling rate according to the variation in the
environment. Salim et al. [105] propose an algorithm that uses analysis of variance
with Fisher test to adapt the sensing frequency according to the environmental
variation. Harb et al. [104] developed three variance-based sampling algorithms,
which, separately, uses a statistical test of data variance, set-similarity functions, or
distance function.

.3 System Setup

The system in our case study measures the noise levels in a working environment,
and we study the operation of a single conceptual sensor device. The data that is
the basis for the case study was collected using a commercial system and is further
detailed in [86]. The noise levels are aggregated as so-called equivalent continuous
sound levels L geq, which is a standard indicator used for noise measurement [164].
For this case study, we select time slots with a length of 15 minutes. This seems
an appropriate resolution for use cases where the working environment should be
evaluated. This means there are 96-time slots during a day, or 672 per week.
Often, we are not just interested in measuring a phenomenon, such as the
noise levels here. We rather want a model of the phenomena which can predict
or estimate noise levels based on explanatory variables, even when the IoT device
has not recently made measurements, providing a service as close as possible to
a continually-monitoring sensor. For many application use cases, such predictive
power is more useful than only retrospective logging: A noise monitoring application
can for instance recommend silent workplaces, or detect significant outliers in noise
corresponding to what is usual. A forecast model implies uncertainty; we do not
expect it to represent only points of actual observations, but estimated values
that correspond to the actual ones with some certainty. This different view on an
ToT sensing system allows us to optimize the behavior of a sensing device. When
its energy budget is constrained so that it can only sample a subset of the time
slots, the sensor device must be strategic about which time slots to observe. The

115



Paper IlI: Information-Driven Adaptive Sensing Based on Deep Reinforcement
Learning

hypothesis—which we confirm in this paper—is that once the sensor device selects
the time slots to sample wisely, it can produce prediction models with high accuracy
and high certainty with only a subset of possible observations. Intuitively speaking,
the sensor should only spend energy on observations that are “interesting” with
respect to the prediction model, where the prediction is uninformed or unconfident.
The challenge is developing such a sampling policy that can anticipate time slots
worth covering.

An overview of our process is illustrated in Fig. II1.11.2 The sensor takes a noise
measurement during a 15-minute time slot and stores the observed value. As a
prediction model, we use a Gaussian process (GP) with explanatory variables as
inputs. Given the explanatory variables and the output of the Gaussian process, the
sensor then chooses the number of time steps to sleep before the next measurement;
this decision-making is the frugal policy w. It outputs a; = 1 to observe the
immediate next time slot, or a; = 2 to hop over one-time slot, and so on. The higher
a¢, the longer the sensor device can stay in sleep mode. After the sensor wakes
up, it makes a measurement, and the GP is updated with the latest observation to
make a new prediction.

The policy 7 is the result of reinforcement learning, encoded as a neural network.
We will detail this step in Sect. III.5.1. Training a reinforcement learning agent
is a computationally intensive phase and hence best executed on a server with
sufficient computational resources, for instance, as part of the device management.
The training step requires training data as input, both for the reinforcement step
that creates the policy and to train an initial version of the Gaussian process as
a prediction model. For that, we use two weeks of data that the sensor collected
uniform sampling before going into frugal mode.

To be explicit, a sample during the frugal policy has the following three purposes:

e The data point provides an entirely accurate measurement for that time
period.

e The data point provides a training point for the refinement of the Gaussian
process for future predictions.

e The data point provides a training point for the refinement of the RL policy.

In the following, we have a close look at the Gaussian process as a prediction
model, the use of RL for building the frugal policy and especially the design of the
reward function.

Ill.4 Gaussian Processes as Predictors

We use a Gaussian process (GP) as a representation model of the monitored
phenomenon [50]. The GP produces a Bayesian probabilistic model of the monitored
phenomenon over a period of time by predicting a Gaussian distribution over possible
measurements with expected value p, and variance 02 at every time slot.
Figure II1.12 shows the estimation of noise levels of a GP over several days. The
blue line shows the true value, the red line shows the mean of the GP’s estimation,

?Data and code is available at https://github.com/Abdulmajid-Murad /adaptive-sensing
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Figure III.11: Overview of the system and the sensor operation.

and the red shading indicates the standard deviation of the GP’s estimation. The
GP is trained on the observations of the true value marked with filled circles until
trnow- Until that time, the GP’s estimation works as an interpolation between the
observations, deviating from occasional outliers. Beyond t,,,,,, the GP’s estimation
works as a forecast. As the uncertainty of the GP increases, the variance becomes
larger after 0.
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Figure I11.12: Gaussian Process regression applied to the noise monitoring and
performing short-term prediction

Before using the GP for estimation, it must be trained with a training dataset
D = {X,y}, which consists of measurement collectiony = [y1  y2 ... yn]T, and
their corresponding inputs X = [x; X2 ... xx|’. Every entry of the input x;, is
a feature vector that consists of measurement time and other explanatory variables
[86]. The GP produces a prediction distribution based on similarity with training
examples, where similarity is defined by the kernel function. In our case, we chose
the commonly used Matern kernel function, which is a generalization of the radial
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basis function (RBF kernel):

Koot (Xi, %) = o—fmil(;; (ﬁi)yKU <ﬁj> (IT1.18)

Where d = ||x; —x;|| is the Euclidean distance between the two measurement points
x; and x;. The kernel’s parameters o2, p, and v can be hand-tuned or estimated
by maximizing the likelihood of the observations in the training dataset. I is the
gamma function, and K, is the Bessel function. Due to its finite differentiability,
the Matern kernel is better able to capture a phenomenon than RBF. The Bessel
and gamma functions are derived from the Fourier transform of a finite positive
measure. The measure is a stochastic differential equation of Laplace type that
works well in more than one dimension.

Additionally, we added a periodic kernel function to model the periodicity in
the environmental variable.

) 2 sin?( ”}Td)
Kper(xi, %) = 0y, €xp —n (II1.19)
Where £ is the length scale, o2 is the variance, and p is the period of the kernel. Again,
these parameters can be hand-tuned or estimated by maximizing the likelihood.
The resulting overall kernel is a combination of the Matern and the periodic kernels.

K(XZ‘, Xj) = Kmat (Xi, X]‘) -+ err (Xi, Xj) (11120)

ll.4.1 Evaluating Prediction Models

To assess the quality of the representation model generated by a GP, we can use
the root mean square error (RMSE) between the predicted mean p; and the true
values y; over a period of time T

1
RMSE = /f > (ue—ye)? (I11.21)
T

However, the RMSE metric overlooks an important feature of a Bayesian
probabilistic model, which is its prediction interval +02. In other words, a prediction
should be both accurate and confident. Therefore, we want a metric that also
quantifies the uncertainty represented by the model. Figure II1.13 shows two
different GP predictive distributions of noise levels over one day. The lower model
was built with more observations, resulting in more certain predictions with smaller

uncertainty o2 (or higher precision %) As a metric for the certainty of a model

over a time period T we can take the precision mean:

1 1
FI = — — 111.22
R e

This metric is called Fisher information, and has been used in many previous works
in the field WSN for data fusion, sensor selection, or adaptive sensing [165, 113,
166, 167].
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Figure I11.13: Comparison of two different predictive models. The top model has a
less certain predictions with FI = 167.84, and RMSE = 1.42. The bottom model
has more certain prediction with FI = 1111.73, and RMSE = 0.70.

.5 Frugal Operation Mode

In the frugal operation mode, the sensor device only has a limited energy budget
over a period T. We assume that the sensor can make no more than N observations
in T, and each observation costs a constant amount of energy. By executing a
policy, the sensor device decides which time slots will be sampled.

A straightforward sampling policy is uniform sampling, in which a time period
T is divided by N equidistant measurements. Figure II1.14 shows a GP prediction
model fitted from 100 observations distributed uniformly over a one-week period. It
results in an RMSE of 0.94 and an FI of 4826.50. This approach provides a steady
flow of information, but may result in samples being taken where the prediction is
already confident and accurate, and therefore sufficient without the sample.

To gain an understanding of the potential optimal sampling, Kho et al. [113]
describe greedy optimal adaptive sampling. It is an offline oracle solution that requires
knowledge of future observations and is hence not usable during operation, but
establishes a near-optimal baseline. (The authors also outline an optimal solution,
which is computationally unfeasible, even offline.) Greedy optimal adaptive sampling
greedily allocates samples based on the mean FI gain over a day. Figure I11.15
shows the same GP prediction model, again fitted with 100 observations. When
trained with observations with this oracle policy, the GP’s RMSE is reduced to 0.85
compared to that of one trained with samples from the uniform policy; additionally,
the uncertainty is reduced, i.e., the predictor has a higher FI of 7331.03. This is a
considerable improvement over the uniform policy.

119



Paper IlI: Information-Driven Adaptive Sensing Based on Deep Reinforcement
Learning

65 —— True value @ Selected sample y;
—— Predicted mean p¢ Prediction interval (£0)
S 60
)
3
-1 55
o
L
5}
Z 50
=
(o]
g
- 45

40
2019-03-04 2019-03-05 2019-03-06 2019-03-07 2019-03-08 2019-03-09 2019-03-10 2019-03-11
Time

Figure TII.14: GP model updated with uniform non-adaptive sampling, having FI
= 4826.50, and RMSE = 0.94

—— True value ® Selected sample y;
65 —— Predicted mean ¢ Prediction interval (£0)
o
z
=~ 60
[
>
3
o 955
L
o
Z 50
o
g
= 45

40
2019-03-04 2019-03-05 2019-03-06 2019-03-07 2019-03-08 2019-03-09 2019-03-10 2019-03-11
Time

Figure II1.15: GP model updated with an offline oracle sampling, having FI =
7331.03, and RMSE = 0.85

ll.5.1 Deep Reinforcement Learning Policies

The sampling policies described above outline the task for a reinforcement learning
agent in the system: it should learn a sampling policy that is close to the optimal
one, but without using knowledge of the future.

Figure III.16 illustrates the process of training a reinforcement learning agent
to learn an adaptive sampling task, which is based on the IoT Sensor Gym [168].
Generally, a reinforcement learning task is modeled as a Markov decision process
M = (S8, A,P,R,~), where S is the set of the problem’s states; A is the set of
actions an agent can take; P is the states’ transition probability; R : § — R is
the reward function; and v € (0, 1) is a discount factor. In our case study, at each
time t, the state (s; € S) consists of: the GP’s future prediction (uf, o) over a
prediction horizon h; the battery level B;; and the explanatory variables x/, which
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consist of weekday, time of day, and whether a given day is a holiday.
s =[ul ol By xP (II1.23)

In response to receiving the state s;, the agent takes an action (a; € A = (1,h))
which is the index for the next time step to make a sample, i.e., sleep a; time
slots. The environment, then, transits to a new state according to the transition
probability (p(s'[s,a) Vs,s" € S,a € A), and the agent receives a reward r; = R(s;)
according to the reward function R, explained later in detail. By interacting with
the environment, the agent learns a policy 7 : § — A, which can be evaluated using
the value function of a state V7™ (s):

V™ (s) =R(s) —I—/Sp(sl|s,7r(s))V”(s’)ds/ (I11.24)

By learning, the agent tries to find a behavior policy that maximizes the value
for all states; there exist a variety of learning algorithms in RL [169], which
intend to produce such policies. In this paper, we use a policy gradient algorithm,
specifically Proximal Policy Optimization (PPO) [36]. In PPO, policies (mg) are
represented by deep neural networks, parameterized by 6, which can produce actions
for any state from a continuous state space. Compared to tabular methods such as
SARSA or Q-learning, which are sometimes seen in literature applying RL to IoT,
PPO eliminates the need for manual state-space discretization, allowing for better
generalization and potentially less hand-tuning by the user.

l11.5.2 Information-Based Reward Function

A key requirement for a successful application of reinforcement learning is to design
a reward function that frames the goal of an application and guides the learning
towards a desirable behavior. However, many goals are difficult to translate into
scalar values or are intractable to learn. To overcome this difficulty, many of
the previous works use reward shaping, which is a way of incorporating domain
knowledge by rewarding easily quantified subgoals to accelerate learning, such as
energy-based reward [115, 7, 154, 13]. Although effective in specific domains, energy-
based rewards can be restrictive and may lead to undesired emergent behavior in
new domains, such as high variance in duty cycle which is not appropriate for IoT
nodes. This is because energy is only a resource to be managed, not a goal to be
optimized. In our previous work [98], we addressed this issue by introducing a
utilitarian reward function that maximizes the utility of a system by rewarding it
for high duty cycles. This means, a system gets more reward the more samples it
manages to take, no matter if these samples are valuable or not.

The reward functions outlined above only utilize metrics that are more or less
correlated with the application goal, but not identical to it. In our setting, the
system’s goal is to construct a model that represents the underlying phenomenon
as closely as possible. Since the sensor has a limited sampling budget, and not all
samples are valuable, the objective of the reinforcement learning agent is to select
the most informative observations concerning the representation model. Therefore,
we design a new reward function that reflects this goal, i.e., rewarding the agent
based on the information content of its selected observations. By doing so, we judge
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Figure I11.16: Architecture for training a model-driven sampling policy with
reinforcement learning

the agent’s performance by the metric that we are trying to maximize, and there is
a good alignment between maximizing reward and the true goal of the system. Our
hypothesis is that this leads to a better performance of the device, as it will learn
to spend its constrained energy budget where it has the best-expected effect. Going
back to Sect. I11.4.1 where we defined the metric for the prediction model, we see
that the proposed metric can also work as a reward function. At the end of a period
of time T, a day in our case, the RL agent receives a reward based on the quality
of the representation model, which is fitted by observations selected by the agent.
The quality of the model is abstracted by the mean Fisher information over T

R(sy) = 1 > % (I11.25)

T o}
T

where 0—12 is the prediction confidence at point t. Accordingly, we propose to use

the Fisher information directly as a reward function. Fisher information does
not depend on unobserved samples as compared to the RMSE, and decodes the
application goal into a scalar value that is easy to learn. Hence, it eliminates the
need for reward shaping, and it can be applied to large, scalable applications without
requiring a system-specific knowledge.
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1.6 Evaluation Results

After training approximately 120 RL agents with different hyperparameters, we
tested their performance over a different one-week period. Figure II1.17 shows a
GP prediction model with observation selected using an RL agent. The GP trained
on data chosen using an RL sampling policy achieved a better information gain (FI
= 7274.84) and a lower RMSE (RMSE = 0.86) compared to the uniform sampling,
and approaches the near-optimal policy implemented by the oracle.
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Figure I11.17: GP model fitted with observations selected using an RL sampling
policy, collecting information value of FI = 7274.84, and RMSE = 0.86

We also take a more detailed look at the progress of training and how the reward
function guides the agents to reach their goals. Figure III.18 shows smoothed
learning curves of four sampled agents, trained with different hyperparameters. The
x-axis shows the number of training episodes experienced so far, and the y-axis
shows the corresponding reward achieved in each episode. The original curves are
in shaded colors, while the smoothed versions are on top in solid colors. After
sufficient episodes, all four agents reach near-optimal policies that achieve rewards
close to the oracle solution.

lIl.7 Discussion

The results show that using the mean Fisher information as a reward function is
effective in learning desirable policies. To investigate the effectiveness and constraints
of using this reward function, we can take a close look at its definition in (I11.22).
Most important for IoT in a setting where taking samples is energy-intensive, the
reward function does not depend on unobserved samples, only on the confidence of
the resulting model over a period of time. Because model confidence can only come
about when measurements taken at similar moments have low variance, we assume
the model is close to correct when it is confident. This assumption may occasionally
be unfounded in outlier moments, but measuring and hoping for an outlier which
is, by definition, unlikely to occur, is not intelligent or desirable behavior.
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The main contribution of our paper regards the development of the frugal policy,
which is encoded as a neural network. This network can be easily implemented
on IoT hardware. For example, one exemplar of a good performing policy was
a network with 4 hidden layers with 32 neurons and ReLU activation functions.
We have implemented this network on an Arduino NANO 33 BLE Sense, where it
only requires 5+1 ms to evaluate. Compared with the estimated execution time to
measure, aggregate, calculate and send noise data, this overhead is acceptable. The
compiled flash memory consumption was 115 KB (11 %) and the RAM Memory was
50 KB (20 %). With regards to the GP, learning involves an inversion of the kernel
matrix, which has an asymptotic complexity of O(n?), where n is the number of
training examples. However, the GP can be trained off-device before deployment,
80 it doesn’t have to store its history of measurements. Additionally, sparse online
GP can be exploited to train incrementally without retaining the entire model when
new data are observed [51]. Furthermore, there are many model approximations
or approximate GP inference with cheaper complexity that can be utilized such as
Nystrom approximation [52], FITC approximation [53], or variational sparse GP
[54].
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Figure II1.18: Smoothed learning curves of four agents, where the episode reward is
the collected Fisher information.

In general, finding good values for hyperparameters can be challenging during
training. In our setting, we first required suitable types and parameters for the
kernels of the GP. We found these through optimization by maximizing the likelihood
of the data, using the GPy framework [170]. Secondly, we had to dimension the
environment’s parameters, such as energy capacity, prediction horizon, range and
resolution for states and actions. For that, we used an iterative process of tuning
with randomized values. Finally, learning an RL policy can be unstable due to the
algorithm’s sensitivity to hyperparameters and their intricate interplay. Hence only
a subset of the policies performs well, and not all of them are useful. This, however,
is not a problem since the training takes place on a device management server, and
we can choose the best performing policy before deployment.
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1.8 Conclusion

In this work, we have introduced a novel reward function for learning adaptive
sensing policies with deep reinforcement learning. This reward function is based
on the mean Fisher information value of a probabilistic model of an environmental
phenomenon. The model is fitted with observations selected by the learning agent.
Using a case study of workplace noise monitoring, we demonstrated that this reward
function led to a learned sampling policy that outperforms a uniform strategy
and is close to a near-optimal oracle solution. Our results indicate that using
this information-based reward function along with policies approximated by neural
networks can achieve more generalization and autonomy in IoT applications. Finally,
we discussed the implementations and the constraints of the proposed framework.
While the presented work uses a case study with a temporally-varying phenomenon,
it can be applied in a wide range of adaptive sensing applications. Overall, this
approach leads to an increased level of autonomy in IoT by reducing manual design
effort through information-driven behavior learning.
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Introduction

Abstract

Data-driven forecasts of air quality have recently achieved more accurate
short-term predictions. Despite their success, most of the current data-driven
solutions lack proper quantifications of model uncertainty that communicate
how much to trust the forecasts. Recently, several practical tools to estimate
uncertainty have been developed in probabilistic deep learning. However,
there have not been empirical applications and extensive comparisons of
these tools in the domain of air quality forecasts. Therefore, this work
applies state-of-the-art techniques of uncertainty quantification in a real-world
setting of air quality forecasts. Through extensive experiments, we describe
training probabilistic models and evaluate their predictive uncertainties based
on empirical performance, reliability of confidence estimate, and practical
applicability. We also propose improving these models using "free" adversarial
training and exploiting temporal and spatial correlation inherent in air quality
data. Our experiments demonstrate that the proposed models perform
better than previous works in quantifying uncertainty in data-driven air
quality forecasts. Overall, Bayesian neural networks provide a more reliable
uncertainty estimate but can be challenging to implement and scale. Other
scalable methods, such as deep ensemble, Monte Carlo (MC) dropout, and
stochastic weight averaging-Gaussian (SWAG), can perform well if applied
correctly but with different tradeoffs and slight variations in performance
metrics. Finally, our results show the practical impact of uncertainty
estimation and demonstrate that, indeed, probabilistic models are more
suitable for making informed decisions. Code and dataset are available at
https://github.com/Abdulmajid-Murad/deep_probabilistic_forecast.

IV.1 Introduction

Monitoring and forecasting real-world phenomena are fundamental use cases
for many practical applications in the Internet of Things (IoT). For example,
policymakers in municipalities can use forecasts of ambient air quality to make
decisions about actions, such as informing the public or starting emission-reduction
measures. The problem is that forecasts are both uncertain and intended for human
interpretation, so decisions about specific actions should take forecast confidence
into account. For instance, it may be best to only start a costly initiative for cleaning
streets of dust when the forecast of air pollutants exceeds a certain threshold and
the reported confidence is high. Therefore, quantifying the predictive confidence is
crucial for learning, providing, and interpreting reliable forecasting models.

Progress in probabilistic machine learning [171] and, more recently, in
probabilistic deep learning led to the development of practical tools to estimate
uncertainty about models and predictions [63, 58, 68, 70, 172, 73]. These tools
have been successfully used in various domains, such as computer vision [173, 174],
language modeling [175, 176], machine translation [177] and autonomous driving
[178]. All of these tools address quantifying predictive uncertainty but differ in
techniques, approximations, and assumptions when representing and manipulating
uncertainty.

The successful application of probabilistic models to real human problems
requires us to bridge the gap from the theory of these disparate approaches to
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practical concerns. In particular, we need an empirical evaluation and comparison
of these many techniques. We want to know how they perform with respect to
prediction accuracy, uncertainty quantification, and other requirements. Specifically,
we want to know the reliability of their confidence estimate, meaning if they are
actually more accurate and trustworthy when their confidence is high. This is
practically important for policymakers to make risk-informed decisions. Such an
empirical evaluation, especially in the domain of air quality, is currently lacking.

Existing studies already incorporate aspects of uncertainty into their data-driven
forecasts, but they often only quantify aleatoric uncertainty. This uncertainty is
inherent in the observed data and can be quantified by a distribution over the
model’s output using softmax or Gaussian. There is also epistemic uncertainty
that we can and should quantify as well. This type of uncertainty represents how
much the model does not know, for instance, in regions of the input space with
little data. Probabilistic models can capture both types of uncertainties, which
makes them practically appealing since they convey more information about the
reliability of the forecast. They also provide a wider area of control over the decision
boundary and the risk profile of a decision. For instance, Figure IV.19 illustrates
the potential of quantifying both types of uncertainties in decision making. It
shows the decision F1 score as a function of normalized aleatoric and epistemic
confidence thresholds in a probabilistic model. Each point on the surface represents
the resulting score of accepting the model predictions only where its confidence is
above specific thresholds (71 and 72). Expressing both uncertainty dimensions gives
more control regarding false positives and false negatives and their associated risks.
We will come back to this Figure in Section IV.5.3.

09— T
oo 02 0 % matize
Figure IV.19: Tlustrative example: decision F1 score as a function of normalized
aleatoric and epistemic confidence thresholds.

In this work, we develop a set of deep probabilistic models for air quality
forecasting that quantify both aleatoric and epistemic uncertainties and study how
to represent and manipulate their predictive uncertainties. Our contributions are
the following:

e We conduct a broad empirical comparison and exploratory assessment of
state-of-the-art techniques in deep probabilistic learning applied to air quality
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forecasting. Through exhaustive experiments, we describe training these
models and evaluating their predictive uncertainties using various metrics for
regression and classification tasks.

o We improve uncertainty estimation using adversarial training to smooth the
conditional output distribution locally around training data points.

o We apply uncertainty-aware models that exploit the temporal and spatial
correlation inherent in air quality data using recurrent and graph neural
networks.

o We introduce a new state-of-the-art example for air quality forecasting by
defining the problem setup and selecting proper input features and models.

Our results show that all the considered probabilistic models perform well on
our application, with slight variations in different performance metrics. Bayesian
neural networks perform slightly better in proper scoring rules that measure the
quality of probabilistic predictions. In addition, we show that smoothing predictive
distributions by adversarial training improves metrics that punish incorrect,
overconfident predictions, especially in regression tasks, since the forecasted
phenomena are inherently smooth.

The rest of this paper is organized as follows: In Section IV.2, we outline the
related work in uncertainty estimation and air quality forecasting. We then define
the problem setup and introduce non-probabilistic baselines and evaluation metrics
in Section IV.3. In Section IV.4, we present deep probabilistic models applied to
the air quality forecast, describe their training, evaluation, and how to improve
their uncertainty estimate. We close with a comparative analysis to compare the
selected models in Section IV.5 and a conclusion in Section IV.6.

IV.2 Related Work

Forecasting ambient air quality is crucial to support decision-making in urban
management. Therefore, a sizeable body of work addresses building air quality
forecasting models. For example, MACC (Monitoring Atmospheric Composition
and Climate) [179] is a European project that provides air quality analysis and
forecasting services for the European Continent. It uses physics-based modeling
that combines transport, chemistry, and satellite data to provide a multi-model
ensemble forecast of atmospheric composition (daily forecasts with hourly outputs
of 10 chemical species/aerosols). Walker et al. [180] used the output of MACC
ensemble-based probabilistic forecasting of air pollution and performed statistical
post-processing, calibrated predictive distribution using Box-Cox transformation for
correcting the skewness of air pollution data. Additionally, they discussed model
selection and verification using Akaike and Bayesian information criteria. To obtain
the ensemble forecast from MACC, they introduced stochastic perturbations to the
emissions. Garaud et al. [181] performed a posterior calibration of multi-model
ensembles using a mixed optimization algorithm to extract a sub-ensemble.
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The official air quality forecasting service in Norway [182] 3 uses a Gaussian
dispersion modeling that provides a 2-day hourly forecast with high-resolution
coverage (between 250 and 50 m grid) over the entire country [183, 184]. The forecast
is based on weather conditions, polluting emissions, and terrain. In particular,
it uses the chemical transport model uEMEP (urban European Monitoring and
Evaluation Program) [183] and a road dust emission model [185]. Denby et al. [186]
analyze the accuracy of the Norwegian air quality forecasting by comparing model
calculations with measurements. They show that the model s forecast on particle
dust is marginally better than the persistent forecast and give some assumptions
about why model calculations deviate from the observations.

Although physics-based models [187, 183, 184] can provide long-range air pollu-
tion information, they require significant domain knowledge and complex modeling of
dispersion, chemical transport, and meteorological processes. Additionally, physics-
based models involve structural uncertainty, low spatial resolution, and do not
capture abrupt and short-term changes in air pollution. Data-driven modeling
based on historical data [188, 189, 190] can complement physics-based modeling
by learning directly from air quality measurements and providing a more reliable
short-term prediction. For example, Lepperod et al. [188] deployed stationary and
mobile micro-sensor devices and used Narrowband IoT (NB-IoT) to aggregate air
quality data from these sensors. Then, they applied machine learning methods to
predict air quality in the next 48 hours using observations of sensors’ measurements,
traffic, and weather data. Zhou et al. [190] used long short-term memory (LSTM)
to forecast multi-step time-series of air quality, while Mokhtari et al. [191] proposed
combining a convolutional neural network (CNN) with LSTM for air quality predic-
tion and quantified the uncertainty using quantile regression and MC dropout. Tao
et al. [192] used 1D CNNs and a Bidirectional gated recurrent unit (GRU) for a
short-term forecast of fine air particles. Pucer et al. [193] used Gaussian Processes
(GP) to forecast daily air-pollutant levels, and Aznarte et al. [194] proposed using
quantile regression for probabilistic forecasting of extreme nitrogen dioxide (NOs)
pollution.

Most of the current data-driven forecasts give point predictions of a deterministic
nature. Thus, they lack useful estimates of their predictive uncertainty that convey
more information about how much to trust the forecast. Recently, quantifying
prediction uncertainty has garnered increasing attention in machine learning fields,
including deep learning. Bayesian methods are among the most used approaches
for uncertainty estimation in neural networks. Given a prior distribution over the
parameters, Bayesian methods use training data to compute a posterior distribution.
Using the obtained distribution, we can easily quantify the predictive uncertainty.
This approach has been extended to neural networks, theoretically allowing for the
accuracy of modern prediction methods with valid uncertainty measures; however,
modern neural networks contain many parameters, and obtaining explicit posterior
densities through Bayesian inference is computationally intractable. Instead, there
exist a variety of approximation methods that estimate the posterior distributions.
These methods can be decomposed into three main categories, either based on
variational inference [57, 58, 59], Markov chain Monte Carlo (MCMC) [60, 61, 62],

3https://luftkvalitet.miljodirektoratet.no/kart/59,/10/5/aqi
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or Laplace approximation [63, 64]. In this paper, we will use variational Bayesian
methods and approximate Bayesian inference methods.

IV.3 Air Quality Prediction, Base Models and Metrics
IV.3.1 Problem Setup

We are trying to build a model for forecasting air quality trends at pre-defined
locations and for a specified forecast horizon. In our case study, we want to forecast
the level of microscopic particles in the air, known as particulate matter (PM).
These are inhalable particles with two types: coarse particles with a diameter less
than 10pm (P»Mjo) and fine particles with a diameter less than 2.5 pm (PMs5).
The forecast predicts pollutant levels for the next 24h at four monitoring stations in
the city of Trondheim, as shown in Figure IV.20. The stakeholders, policymakers of
the municipality, would like to estimate if the concentration of air particles exceeds
certain thresholds following the Common Air Quality Index (CAQI) used in Europe
[195], as shown in Table IV.3. This can be achieved through value regression or by
directly classifying threshold exceedance levels. We will explore probabilistic models
that forecast air quality values and predict threshold exceedance events. Using
probabilistic models provides more qualitative information since decision-making
largely depends on the credibility intervals of specific predictions. The forecast
is based on explanatory variables, such as historical air quality measurements,
meteorological data, traffic, and street-cleaning reports from the municipality.
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Figure IV.20: Air quality monitoring stations in Trondheim, Norway.

Although the CAQI (Table IV.3) specifies five levels of air pollutants, the air
quality in the city of Trondheim is usually at Very Low and rarely exceeds the
Low level. For example, Figure IV.21 shows the air quality level over one year of a
representative monitoring station (Elgeseter). Therefore, instead of a multinomial
classification task (with five classes), we transform the problem into a threshold
exceedance forecast task in which we try to predict the points in time where the air
quality exceeds the Very Low level.
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Table IV.3: European Common Air Quality Index
PMa.5(ng/m®)

Index PMio(ug/m®)

50-90 30-55
High 90-180 55-110

Monitoring Station: Elgeseter(PM; 5) CAQl
I*Very High(>110)

~ High(55-110)
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Figure IV.21: Air quality level over one year of one representative monitoring station
in Trondheim, where the air pollutant is commonly at a Very Low level and rarely
exceeds Low.

The air quality dataset we use is a part of the official measuring network in
Europe. Specifically, we use the open database of air quality measurements offered
by the Norwegian Institute for Air Research (NILU) [196]*. The meteorological
data are based on historical weather and climate data offered by the Norwegian
Meteorological Institute [197]°. The traffic data are based on aggregated traffic
volumes offered by the Norwegian Public Roads Administration [198]°. A more
detailed description of the used datasets can be found in Appendix IV.7.1.

IV.3.2 Epistemic and Aleatoric Uncertainty

Before quantifying the predictive uncertainty, it is worth distinguishing the different
sources of uncertainty and the appropriate actions to reduce them. The first source
is model or epistemic uncertainty, which is uncertainty in the model parameters
in regions of the input space with little data (i.e., data sparsity). This type
of uncertainty can be reduced given enough data. By estimating the epistemic
uncertainty of a model, we can obtain its confidence interval (CI). The second source
of uncertainty is data or aleatoric uncertainty. It is essentially a noise inherent in the
observations (i.e., input-dependent) due to either sensor noise or entropy in the true
data generating process. By estimating the aleatoric and epistemic uncertainties, we
can obtain the prediction interval (PI) [199, 174]. Accordingly, prediction intervals
are wider than confidence intervals. The third source of uncertainty is model

4https://www.nilu.com/open-data/
Shttps://frost.met.no
Shttps://www.vegvesen.no/trafikkdata/start /om-api
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misspecification, i.e., uncertainty about the general structure of the model, such as
model type, number of nodes, number of layers. It is also related to the bias-variance
tradeoff [200].

1V.3.3 Non-probabilistic Baselines

As a baseline for comparison and to motivate the use of evaluation metrics, we
test the performance of non-probabilistic models, such as persistence, XGBoost,
and gradient boosting models. A simple baseline predictor is a persistence forecast,
which uses the diurnal patterns of the observations. To predict a value in the future,
we use the value observed 24 hours earlier. Figure IV.22 shows the results of the
persistence model when forecasting the PM-value over one month (January 2020).
Suppose g; € R is the forecast value, while y, € R is the true observed value at
time t, then we can evaluate the aggregated accuracy over a time period T using
the root-mean-square error:

T
1 .
RMSE =\ = ;:1(% — ). (IV.26)
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—— Poersistence forecast
—— Observed value

W ) |
)(‘
.l“,l"'whwl’\‘ ‘n""ﬂ&"‘m" i "n } M/ h\*lw "“ .‘-lW“"M»f‘nwku‘l\ /W

202001-05 2020-01-09 20200113 20200117 20200121 2020-01-25 2020-01-29 202002:01
Time

3

Air pollutant PM; 5 (ug/m3)

Monitoring Station (Elgeseter): RMSE = 9.75

&

—— Persistence forecast
—— Observed value

w‘&"MtMMA ’.MW“MM»/A,V‘m"ﬂ‘ Wl MJ‘*MM,«.«)\MKM\ ‘A‘M\

2020-01-05 2020-01-09 2020-01-13 2020-01-17 2020-01-21 2020-01-25 2020-01-29 2020-02:01
Time

Air pollutant PMyq (ug/m?)
=

Figure IV.22: Persistence forecast of air pollutant over one month in one
representative monitoring station.

Next we evaluate the performance of XGBoost (eXtreme Gradient Boosting)
[49] as a non-probabilistic baseline in our problem setting. XGBoost uses the
same model representation and inference as Random forests (i.e., gradient-boosted
decision trees) but has a different training mechanism since it uses the second-order
approximation of the training objective. We train the model over one year of data
(2019) and test its performance over one month (January 2020) of a 24-hour forecast
horizon. Figure IV.23 shows the results of the XGBoost model in one representative
monitoring station. The results show an improved prediction accuracy compared
to the persistence forecast, which illustrates the value of a learned predictor for
time-series forecasting of air quality.

One advantage of using an XGBoost model is the feasibility of retrieving the
feature importance by assigning a score to each input feature, which indicates how
useful that feature is when making a prediction, thus contributing to prediction
interpretation. Figure IV.24 shows the feature importance of the XGBoost forecast
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Figure 1V.23: PM-value regression using the XGBoost model over one month in
one representative monitoring station.

shown in Figure IV.23 (a more detailed description of the features can be found in
Appendix IV.7.1.
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Figure 1V.24: Feature importance of a trained XGBoost model indicating how
useful each input feature when making a prediction.

For the threshold exceedance prediction task, we can use XGBoost to train a
binary classifier to predict the probability of threshold exceedance. By using a
proper scoring rule [55], such as the cross-entropy as a training criterion, we obtain
predictive probabilities. Notably, these probabilities do not represent the model
(epistemic) uncertainty. Rather, they represent data (aleatoric) uncertainty. In
addition to cross-entropy, we need to evaluate performance using another metric
that the model was not optimizing. We can use the Brier score [201], which is a
strictly proper scoring rule [55] and metric to evaluate the reliability of predictive
probabilities. Suppose at a time, ¢, the true class label is represented by o; (1 when
pollutant level exceeds the threshold, 0 if not), while the predicted probability is
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represented by p; € [0, 1]. Then we calculate the cross-entropy (CE) and Brier Score
(BS) as follows:

T
1 .
CE =~ ;(ot x log(py)) (IV.27)
1 T
BS = - > (o0 —pr)? (IV.28)
t=1

Both metrics heavily punish overconfident, incorrect predictions. Cross-entropy
uses exponential punishment (heavily emphasizes tail probabilities) since it is a
negative log-likelihood loss. Thus, it is sensitive to the predicted probabilities of
the infrequent class (i.e., threshold exceedance events). In contrast, the Brier score
uses quadratic punishment since it is a mean square error in the probability space.
Thus, it treats the predicted probabilities of both classes equally.

Additionally, we can use the commonly used metrics for classification tasks
[202] to evaluate the performance of a deterministic prediction. By converting the
predictive probabilities into predictive class labels, we can calculate the true-positive
rate tp, the false-positive rate fp, and the false-negative rate fn. Then, we can use
the metrics of Precision : R — [0, 1], Recall : R — [0,1], and F1:R — [0, 1] score
to evaluate the threshold exceedance prediction as following:

Precision = 24 (Iv.29)
tp+ fp
tp
Recall = ———— V.30
eca bt n ( )
p (IV.31)

1= tp+0.5x (fp+ fn)
Figure IV.25 shows the results of the XGBoost model when predicting threshold
exceedance probability. The blue dots indicate the points in time (hours) when
air pollutants actually exceeded the threshold level. The red line represents the
predicted probability in percentages. We see that with higher probability, the model
predicts a more likely event of threshold exceedance at that specific time.
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Figure IV.25: Predicting the threshold exceedance probability of the air pollutant
level using an XGBoost model in one representative monitoring station.
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IV.3.4 Quantile Regression

Using an XGBoost model leads to an improved prediction accuracy (Figure IV.23),
but with a caveat that it only produces point estimates of the mean. To address this,
we can use quantile regression [203] to estimate a specific percentile (i.e., quantile)
of the target variable. The quantile regression estimates the conditional quantile
by minimizing the absolute residuals. In contrast, regular regression estimates the
conditional mean by minimizing the least squared residuals (focuses on central
tendency). The advantages of using quantile regression are that it focuses more on
dispersion or variability, does not assume homoscedasticity in the target variable
(i.e., having the same variance independent of the input variable), and is more
robust against outliers. We use a Gradient Tree Boosting model [204] to estimate
the 5% and 95% percentiles, as shown in Figure IV.26.

Given a predicted lower L, € R and upper bound U, € R, we can assess the
quality of the generated prediction interval using metrics, such as Prediction Interval
Coverage Probability (PICP : R — [0,1]) and Mean Prediction Interval Width
(MPIW :R — [0,00)):

T
1 . R
PICP = - ; 1y — Le) x 1(0; — ) (IV.32)
1 T
MPIW = ;(Ut — L) (IV.33)

where 1 is the Heaviside step function. PICP indicates how often the prediction
interval captures the true values, ranging from 0 (all outside) to 1 (all inside).
Intuitively, we seek a model with a narrow prediction interval (i.e., smaller MPIW)
while capturing the observed data points (i.e., larger PICP). For example, when
forecasting PM s 5 pollutants in Figure IV.26, PICP = 0.61 indicates that in 61% of
the time-steps, the observed values are inside the predicted intervals, as compared
to 72% when forecasting PM1q. In contrast, the predicted intervals are smaller
(MPIW = 17.49) when forecasting PMs 5 as compared to wider predicted intervals
(MPIW = 14.67) when forecasting PMj.

Monitoring Station (Elgeseter): RMSE = 4.79, PICP = 0.62, MPIW = 7.57

202001-01 2020-01-05 2020-01-09 -01- 20200117 20200121 202001-25 202001-20 202002-01

5

—— Forecast
—— Observed value
95% Prediction interval

Air pollutant PMyq (ug/m?)

o X ¥
2020-01-01 2020-01-05 2020-01-09 2020-01-13 2020-01-17 20200121 202001-25 202001-29 202002:01

Figure IV.26: Air quality prediction interval using quantile regression of a Gradient
Tree Boosting model.
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IV.4 Deep Probabilistic Forecast

This section explores probabilistic models for air quality forecasting and describes
how to quantify their predictive uncertainty. We assume we have a training dataset
D = {x¢,y:}1, with an input feature x, € RP and a corresponding observation
yr € R for each monitoring station. For the time-series forecasting task, we estimate
the aleatoric uncertainty by employing the Mean-Variance Estimation method [56],
in which we have a neural network with two output nodes (for every individual
time-series) that estimates the mean fi; € R and variance 67 € (0,00) of the
target probability distribution. Additionally, we use the negative log-likelihood
(NLL : (0,00) — (0,00)) as a training criterion since the RMSE does not capture
the predictive uncertainty. By treating the observed value y; as a sample from the
target distribution, we can calculate NLL as follows:

~ N2
NLL =05 <1og 2152 + (yt;;“)> (IV.34)

i
Notably, we treat the target distributions as having heteroscedastic uncertainty
(i.e., non-constant variance) and diagonal covariance matrices, which simplifies
the training criterion of multivariate time-series. For the threshold exceedance
prediction task, we estimate the aleatoric uncertainty by having a neural network
that outputs the predictive probability in terms of cross-entropy.

Although epistemic uncertainty is model-dependent, it is essentially estimated
by measuring the dispersion in predictions when running several inference steps over
a specific data point. For the PM-value regression task, every single forward pass
(4) outputs a normal distribution (with mean f;; and variance 67 2 ). Thus, multiple
forward passes result in a (uniformly weighted) mixture of normal distributions
with the mean fi; i, € R and variance 67,,,;, € (0,00) calculated as follows:

. 1 .
Mt miz = M Z;Nt,i (IV35)
1‘ miz M Z Ut i + :ut ,t ﬁ’%,’mm‘ (IV36)

Given a predicted mean and variance, we can then estimate a point prediction
Ut = [, miz, @ lower bound Lt = [, miz — 20t miz, and an upper bound Ut =
fit,miz + 20¢miz, Where z is the standard score of a normal distribution. For
example, with 95% prediction interval (i.e., P(L: < y: < U) = 0.95), we use
z = 1.96. For the threshold exceedance prediction task, every single forward pass
outputs a predictive probability. Thus, we can combine predictions from multiple
forward passes by simply averaging the predicted probabilities.

For empirical evaluation, we use the NLL and cross-entropy as evaluation metrics.
Additionally, we use the Continuous Ranked Probability Score (CRPS) [55]. It is a
widely used metric to evaluate probabilistic forecasts that generalizes the MAE to a
probabilistic setting. CRPS measures the difference in the cumulative distribution
function (CDF) between the forecast and the true observation. It can be derived
analytically for parametric distributions or estimated using samples if the CDF is
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unknown (e.g., originating from VI or MCMC). Given a forecast CDF F and an
empirical CDF of scalar observation y:

CRPS(F,y) = / (F(§) - 105 — )2 dg (1v.37)

IV.4.1 Bayesian Neural Networks (BNNs)

In BNNs, we use Bayesian methods for inferring a posterior distribution over the
weights p(w) rather than being constrained to weights of fixed values [63]. These
weight distributions are parameterized by trainable variables 6. For example, the
trainable variable can represent the mean and variance of a Gaussian distribution
0 = (u,0?), from which the weights can be sampled w ~ N (i, 02).

The objective of training is to calculate the posterior, but obtaining explicit
posterior densities through Bayesian inference is intractable.  Additionally,
using Markov chain Monte Carlo (MCMC) to estimate the posterior can be
computationally prohibitive. Instead, we can leverage new techniques in variational
inference [65, 66] that make BNNs computationally feasible by using a variational
approximation ¢(w]|f) to the posterior. Thereby, the goal of learning is to find
the variational parameters that minimize the Kullback—Leibler (KL) divergence
between the variational approximation ¢(w|@) and the true posterior distribution
given training data p(w|D). This can be achieved by minimizing the negative
variational lower bound of the marginal likelihood [57]:

Loss(0) = K L[g(w|0)||p(w)] — q(ge)[logP(DIW] (IV.38)

Assuming Gaussian prior and posterior, we can compute the KL divergence in a
closed-form:

z + (/—l'q - /-l'p)2

o o
K Llg(w|0)[[p(w)] = log = + —— 5 —0.5 (IV.39)
q P

Additionally, the distribution over activations will also be Gaussian. Thus, we
can take advantage of the local reparameterization trick [67], in which we sample
from the distribution over activations rather than sampling the weights individually.
Consequently, we reduce the variance of stochastic gradients, resulting in faster and
more stable training. However, to allow for more flexibility and adaptations to a
wide range of situations, we can use non-Gaussian distributions over the weights
and MC gradients, as proposed by [58]:

M
Loss(0) ~ Z log g(w'|0) — log P(w") — log P(D|w") (IV.40)
i=1

where —log P(D|w') is the NLL for time-series forecasting (Equation IV.34) or
the cross-entropy for the threshold exceedance prediction (Equation IV.27).

Our implementation uses Laplace distributions as priors and Gaussian as
approximate posteriors in time-series forecasting, resulting in better empirical
performance. For threshold exceedance prediction, using Gaussian for both the
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priors and posteriors and using the local reparameterization trick results in better
performance. During inference, we sample the weight distributions and perform
a forward pass to obtain a prediction. We use (M = 1000) samples for every
data point to estimate the model’s uncertainty. This corresponds to sampling
from infinite ensembles of neural networks. Therefore, combining the outputs from
different samples gives information on the model’s uncertainty.

We train the BNN model using training data of one year (2019). Figure IV.27
shows the learning curves for the PM-value regression task. Then we evaluate the
model using data of one month (January 2020). Figures IV.28 and IV.29 show
the results of PM-value regression and threshold exceedance classification in one
representative monitoring station. Table IV.4 shows a summary of performance
results in all monitoring stations. The arrows alongside the metrics indicate which
direction is better for that specific metric.
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Figure IV.27: Learning curve of training a BNN model to forecast PM-values. Left:
negative log-likelihood loss; Center: KL loss estimated using MC sampling; Right:
learning rate of exponential decay.
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Figure IV.28: Probabilistic forecasting of multivariate time-series of air quality
using a BNN model in one representative monitoring station.

IV.4.2 Standard Neural Networks with MC Dropout

Although BNNs are more flexible in reasoning about the model’s uncertainty
with Bayesian analysis, they are computationally less efficient and take longer to
converge than standard (non-Bayesian) neural networks. Additionally, they require
double the number of parameters at deployment compared to neural networks
of the same size. A possible solution is to gracefully prune the weights with the
lowest signal-to-noise ratio [58], but this leads to a loss in uncertainty information.
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Monitoring Station(Elgeseter - PM2.5): Brier = 0.03, Precision = 0.88, Recall= 0.42, F1 = 0.56, CE = 0.12
- .

Forecast threshold -

exceedance probabilty

Observed threshold
®  exceedance event
60% 95% Prediction interval

20200101 2020-01-05 2020-01-09 20200113 20200117 20200121 2020-01-25 202001-29 2020-02-01
Monitoring Station(Elgeseter - PM10): Brier = 0.03, Precision = 0.55, Recall= 0.19, F1 = 0.29, CE = 0.12

Al

202001:01 2020-01-05 2020-01-09 20200113 2020-01-17 20200121 2020-01-25 2020:01-29 2020-02-01

Forecast threshold
exceedance probabily
Observed threshold

exceedance event
60% 95% Prediction interval

Figure IV.29: Predicting threshold exceedance probability of air pollutant level
using a BNN model.

Table IV.4: Summary of performance results when forecasting the PM-value and
threshold exceedance using a BNNs model.

PM-Value Regression Threshold Exceedance Classification
RMSE] PICPt MPIW | CRPS| NLLJ Brier| Precisiont Recallt F11t CEJ]
PMs 5 4.81 0.99 17.62 0.51  1.29 0.04 1.00 0.44 0.61 0.13

Station  Particulate

Using The's 0 5.86 0.94 26.12 0.50 1.28 0.03 1.00 0.30 0.47 0.09
B6.Tiller  PMzs 377 092 1325 054 1.39 002 0.0 0.00 0.00 0.08
PMio 940 0.92 3418 048 1.26 0.06  0.00 0.00 0.00 0.23

Blgosoter P M2 393 091 1279 053 136 003 0.8 0.42 0.56 0.12
P Mg 517 0.90 25.07 047 1.28 0.03  0.55 0.19 0.29 0.12

Torvet PM,s 407 000 10.83 048 1.30 0.03  0.75 0.46 0.57 0.13

PMig 5.25 0.93 18.47 0.43 1.17 0.03 0.50 0.23 0.32 0.10

Therefore, it would be more convenient to obtain uncertainty directly from standard
neural networks. One simple approach we can use is Monte Carlo dropout as an
approximate Bayesian method for representing model uncertainty. As shown in
[68], MC dropout can be interpreted as performing variational inference. More
specifically, it is mathematically equivalent to an approximation of a probabilistic
deep Gaussian process.

Essentially, we train a standard neural network model with dropout. Then we
keep the dropout during inference and run multiple forward passes using the same
data input. This corresponds to sampling nodes, which is equivalent to sampling
from ensembles of neural networks [69]. By measuring the spread in predictions, we
estimate the predictive uncertainty. In our implementations, we train a standard
neural network model with a 50% dropout rate. Then we evaluate it with 50%
dropout and (M = 1000) samples. Figures IV.30 and IV.31 show the results of the
PM-value regression and threshold exceedance classification in one representative
monitoring station. Table IV.5 shows a summary of performance results in all
monitoring stations.

IV.4.3 Deep Ensembles

An established method to improve performance is to train an ensemble of neural
networks with different configurations [71]. Additionally, many model types can be
interpreted by using ensemble methods. For example, sampling weights of BNNs is
equivalent to sampling from an infinite ensemble of networks, while sampling the
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Figure IV.30: Probabilistic forecasting of multivariate time-series air quality using
a standard neural network model with MC dropout.
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Figure IV.31: Predicting the threshold exceedance probability of air pollutants level
using a standard neural network with MC dropout.

Table IV.5: Summary of performance results when forecasting the PM-value and
threshold exceedance using a standard neural network with MC dropout.

PM-Value Regression Threshold Exceedance Classification
RMSE| PICPt MPIW| CRPS| NLL| Brier] Precision? Recallt F11 CE]
PMs 5 5.34  0.69  9.40 0.60 2.30 0.04 0.65 0.51 0.57 0.31
PM;io 6.42 0.66 12.45 0.59 3.35 0.03 0.67 0.48 0.56 0.10
PMs .5 3.75 0.72 7.26 0.60 2.24 0.01 0.00 0.00 0.00 0.24

Station  Particulate

Bakke kirke

E6-Tiller — "par ™ 949 071 1662 051 230 007 018  0.04 006 0.57
Elgsotr  PMas 443 070 720 057 212 005 057 038 0.45 0.3

PMy 559 069 1211 051 238 0.04 037 032 034 0.17
Toes  PMys 460 055 526 057 201 004 068 044 053 033

PMig 5.63 0.62 8.94 0.51 2,51 0.03 0.56 0.35 0.43 0.14
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nodes in MC dropout compares to sampling from a finite ensemble [69]. Remarkably,
we can also use (deep) ensembles to estimate the predictive uncertainty in neural
network models [70].

Essentially, we train multiple neural networks with different parameter
initialization on the same data. The stochastic optimization and random
initialization ensure that the trained networks are sufficiently independent. During
inference, we run a forward pass on the multiple neural networks using the same
data input. We estimate the uncertainty by measuring the dispersion in predictions
resulting from the multiple neural networks. In our implementation, we train an
ensemble of 10 networks. Figures IV.32 and 1V.33 show the results of PM-value
regression and threshold exceedance classification in one representative monitoring
station. Table IV.6 shows a summary of performance results in all monitoring
stations.

The main drawback of the deep ensemble method is the computational cost and
number of parameters required at run time compared to standard neural networks,
which is an order of magnitude in our case. One solution is to use knowledge
distillation [72] to compress the knowledge from the ensemble into a single model,
but this also leads to a loss in uncertainty information.
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Figure IV.32: Probabilistic forecasting of multivariate time-series air quality using
a deep ensemble.
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Figure IV.33: Predicting threshold exceedance probability of air pollutants level
using a deep ensemble.
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Table IV.6: Summary of performance results when forecasting the PM-value and
threshold exceedance using a deep ensemble.

PM-Value Regression Threshold Exceedance Classification
RMSE| PICPt MPIW| CRPS| NLL| Brier| Precision? Recallt F11 CE]
PM;. 5 5.29 0.77 11.65 0.57 1.67 0.05 0.69 0.53 0.60 0.55
PDM;g 6.21 0.70 14.00 0.57 2.46 0.03 0.60 0.36 0.45 0.26
PMs . 5 3.78 0.77 8.46 0.58 1.84 0.01 0.00 0.00 0.00 0.34
PDMig 9.44 0.72 16.07 0.50 2.14 0.07 0.31 0.08 0.12 1.16
Elgeseter PMs . 5 4.46 0.71 7.99 0.58 2.00 0.05 0.68 0.28 0.40 0.66

PMio 5.53 0.69 1247 0.52 248 0.04 0.45 0.32 0.38 0.35
PMs. 5 4.45 0.57 5.13 0.56 2.66 0.04 0.73 0.31 0.43 0.55
PM;o 5.39 0.64 8.68 0.49 219 0.03 0.62 0.19 0.29 0.30

Station  Particulate

Bakke kirke

E6-Tiller

Torvet

IV.4.4 Recurrent Neural Network with MC Dropout

While standard neural networks are powerful models at representational learning,
they do not exploit the inherent temporal correlation in air quality data since they
act only on static, fixed contextual windows. To address this shortcoming, we
can use recurrent neural networks (RNNs), which have cyclic connections from
previous time steps, to learn the temporal dynamics of sequential data. Specifically,
a hidden state from the last time step is stored and used in addition to the input to
generate the current state and output. One class of RNNs is the long short-term
memory (LSTM), which is used extensively in sequence modeling tasks, such as
modeling language [205], forecasting weather [206] and traffic [207], recognizing
human activity [208], and recently forecasting COVID-19 transmission [209]. An
LSTM has gated memory cells to control how much information to forget from
previous states and how much information to use to update current states [76].

A simple approach to capture uncertainty within an LSTM model is to use Monte
Carlo dropout to approximate Bayesian inference [172]. To implement dropout, we
apply a mask that randomly drops some network units with their inputs, output
and recurrent connections [210]. Our implementation trains a model of two LSTM
layers with a 50% dropout rate and evaluates it with 50% dropout and (M = 1000)
samples. Figures 1V.34 and IV.35 show the results of the PM-value regression and
threshold exceedance classification in one representative monitoring station. Table
IV.7 shows a summary of performance results in all monitoring stations.
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Figure IV.34: Probabilistic forecasting of multivariate time-series air quality using
an LSTM model with MC dropout.
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Figure IV.35: Predicting threshold exceedance probability of air pollutants level
using an LSTM model with MC dropout.

Table IV.7: Summary of performance results when forecasting PM-value or
threshold exceedance using an LSTM model with MC dropout.

PM-Value Regression Threshold Exceedance Classification
RMSE| PICPT MPIW| CRPS| NLL| Brier] Precision? Recallt F11 CEJ|
PMs 5 5.01 0.88 14.01 0.53 1.47 0.05 0.66 0.53 0.58 0.25

Station  Particulate

Bakke kirke ", 6.25 0.82 19.28 0.54 1.78 0.03 0.59 0.48 0.53 0.14
B6.Tiller PMes 390 072 745 062 231 002  0.00 0.00 0.00 0.11
PMig 9.68 0.74 18.96 0.53 2.03 0.08  0.24 0.12 0.16 0.43

Elgoscter  PMzs 432 072 89T 059 210 005  0.58 0.40 0.47 0.28
P Mo 5.98  0.73 15.14 0.55 2.64 0.05  0.30 0.29 0.30 0.24

Torvet PM,s 419 056 6.88 058 479 005 058 0.42 0.49 0.30

P Mg 5.81 0.61 11.33 0.54 4.03 0.03 0.43 0.35 0.38 0.1

IV.4.5 Graph Neural Networks with MC Dropout

By using RNNs, we can capture the temporal (i.e., intra-series) correlations in
the time-series of air quality data. However, we need also to exploit the inherent
structural (i.e., inter-series) correlations between multiple sensing stations. We can
use Graph Neural Networks (GNNs) to address this, which operate on graph-
structured data. In essence, GNNs update the features of a graph node by
aggregating the features of its adjacent nodes. For example, a node can be a
single monitoring station in our case. In the end, GNNs apply a shared layer on
each node to obtain a prediction for each node.

In our setting, we assume each sensing station to be a node in a weighted
and directed graph, represented by a learnable adjacency matrix. We use a slight
variation of the GNNs suggested by Cao et al. [78] to forecast multivariate time-
series of air quality. The main idea is to learn a correlation graph directly from
data (i.e., learn a graph of sensor nodes without a pre-defined typology) and then
learn the structural and temporal correlation in the frequency domain. To capture
the temporal correlations, we use a layer of 1D convolution, and three sub-layers
of Gated Linear Units (GLUs) [80], while we use Graph Convolutional Networks
(GCNs) [79] to capture the structural correlations. In the end, we use two shared
layers of fully connected neural networks to predict each node’s output.

We use the MC dropout applied to the GLUs, GCNs, and to the fully connected
layers to estimate model’s uncertainty [211]. We train the model with a 50% dropout
rate and evaluate it with 50% dropout and (M = 1000) samples. Figures IV.36
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and IV.37 show the results of the PM-value regression and threshold exceedance
classification in one representative monitoring station. Table IV.8 shows a summary
of performance results in all monitoring stations.

Monitoring Station (Elgeseter): RMSE = 3.98, PICP = 0.83, MPIW = 9.37, CRPS =0.54, NLL = 1.51

—— Forecast

% 25— Observed value

25 95% Prediction interval

T 15

§10

3

i e !

z, iy A m.!,'-‘) J A

20200101 2020-01-05 202001-09 20200113 20200147 20200121 2020-01-25 20200129 20200201

© Monitoring Station (Elgeseter): RMSE = 5.80, PICP = 0.79, MPIW = 15.07, CRPS =0.50, NLL = 1.60

—— Forecast
—— Observed value
95% Prediction interval

Air pollutant PMyq (ug/m?)
N

2020-01:01 2020-01-05 2020-01-09 2020:01-13 2020-01-17 202001-21 2020-01-25 202001-29 2020-02:01

Figure IV.36: Probabilistic forecasting of multivariate time-series air quality using
a GNN model with MC dropout.
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Figure IV.37: Predicting threshold exceedance probability of air pollutants level
using a GNN model with MC dropout.

Table IV.8: Summary of performance results when forecasting the PM-value or
threshold exceedance using a GNN model with MC dropout.

PM-Value Regression Threshold Exceedance Classification
RMSE| PICPt+ MPIW| CRPS| NLL| Brier| Precision? Recallt F11 CE]
Bakke kirke PM; 5 4.70 0.88 12.33 0.52 1.41 0.05 0.61 0.53 0.56 0.21

PDMig 6.26 0.79 16.10 0.54 1.83 0.03 0.43 0.36 0.39 0.11

E6-Tiller PM; 5 3.80 0.83 9.14 0.57 1.60 0.02 0.00 0.00 0.00 0.11
PMio 9.46 0.80 19.89 0.48 1.59 0.07 0.19 0.06 0.09 0.35
PMsj.5 3.98 0.83 9.37 0.54 1.51 0.04 0.65 0.45 0.53 0.19
PMio 5.80 0.79 15.07 0.50 1.60 0.04 0.35 0.23 0.27 0.17
PMs 5 4.27  0.68 6.19 0.50 2.04 0.05 0.55 0.46 0.50 0.22
PM;o 5.55 0.70 10.39 0.47 1.83 0.03 0.36 0.35 0.35 0.11

Station Particulate

Elgeseter

Torvet
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IV.4.6 Stochastic Weight Averaging—Gaussian (SWAG)

An alternative approach to estimate uncertainty in a neural network is to
approximate (Gaussian) posterior distributions over the weights using the geometric
information in the trajectory of a stochastic optimizer. This approach is named
Stochastic Weight Averaging—Gaussian (SWAG) [73]. Notably, SWAG does not
optimize the approximate distributions directly, such as in BNNs. Instead, it
estimates the mean by calculating a running average of the weights traversed by
the optimizer with a modified learning rate schedule (stochastic weight averaging
[74]). In addition, SWAG estimates the standard deviation by a diagonal covariance
plus of a low-rank deviation matrix using information from a running average of
the second moment of the traversed weights.

During inference, we run multiple forward passes using the same data input while
drawing samples of the weights from the approximate posterior. By measuring the
spread in predictions, we estimate the predictive uncertainty. In our implementations,
we train a simple feed-forward neural network model with SWAG and evaluate
it with (M = 1000) samples. Figures IV.38 and IV.39 show the results of the
PM-value regression and threshold exceedance classification in one representative
monitoring station. Table IV.9 shows a summary of performance results in all
monitoring stations.

Monitoring Station (Elgeseter): RMSE = 4.53, PICP = 0.73, MPIW = 9.33, CRPS =0.59, NLL = 1.97
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Figure IV.38: Probabilistic PM-value regression using a SWAG model.

Monitoring Station(Elgeseter - PM2.5): Brier = 0.05, Precision = 0.54, Recall= 0.26, F1 = 0.35, CE = 0.57
- . .

100% - - . . -
Forecast threshold
75% exceedance probability
Observed threshold
50% ~  exceedance event
95% Prediction interval
25%
0% 1 n

2020-01-01 2020-01-05 2020-01-09 2020-01-13 2020-01-17 2020-01-21 2020-01-25 2020-01-29 2020-02-01

Monitoring Station(Elgeseter - PM10): Brier = 0.04, Precision = 0.45, Recall= 0.32, F1 = 0.38, CE = 0.27
-
exceedance event

100% - - -
Forecast threshold
75%  exceedance probabiliy
. Observed threshold
50%
95% Prediction interval
25%
- ]

2020-01-01 2020-01-05 2020-01-09 2020-01-13 2020-01-17 2020-01-21 2020-01-25 2020-01-29 2020-02-01

Figure IV.39: Probabilistic threshold exceedance classification using a SWAG model.
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Table IV.9: Summary of performance results when using a SWAG model with
adversarial training.

PM-Value Regression Threshold Exceedance Classification
RMSE| PICPt MPIW| CRPS| NLL| Brier| Precision? Recallt F11 CE]
PM;. 5 5.51 0.79 13.13 0.58 1.64 0.04 0.66 0.64 0.65 0.20
PMio 6.66 0.78 17.95 0.57 2.03 0.04 0.49 0.61 0.54 0.12
PM; 5 3.76 0.79 9.25 0.59 1.82 0.01 0.00 0.00 0.00 0.10

Station Particulate

Bakke kirke

B6-Tiller — “ppry 035 082 2128 049 173 008 0.9 0.08 0.11 0.49
lgoscter  PMas 453 073 933 059 197 004 060 045 052 0.1

PMyy 576 076 1661  0.53 1.96 0.04 037 045 0.41 0.18
Toreer  PMag 458 079 1033 054 163 004 067 050 057 0.20

PMio 5.62 0.71 12.48 0.50 1.76 0.03 0.50 0.42 0.46 0.13

IV.4.7 Improving Uncertainty Estimation with Adversarial Training

Generally, it is desirable to have a model with a smooth conditional output
distribution with respect to its input because most measured phenomena are
inherently smooth. This idea of distributional smoothing has been used as a
regularization technique by encouraging a model to be less overconfident, for
example, using label smoothing [212, 213] or virtual adversarial training [214].

For uncertainty estimation, distributional smoothing can improve the quality
of the predictive uncertainty depending on the direction of smoothing. For
example, smoothing along a random direction can be less effective while being
computationally expensive in all directions. Lakshminarayanan et al. [70] propose
using adversarial training with the fast gradient sign method [215] to smooth
the predictive distribution along the direction where the loss is high. Qin et al.
[216] investigate the relationship between adversarial robustness and predictive
uncertainty. They show that inputs that are sensitive to adversarial perturbations
are more likely to have unreliable predictive uncertainty. Based on this insight, they
propose a new training approach that smooths training labels based on their input
adversarial robustness.

In this paper, we instead propose using the “free” adversarial method [217],
which recycles the gradient information from regular training to quickly generate
adversarial data. Thus, we locally smooth the prediction distribution along the
adversarial direction with virtually no additional cost. Figures IV.40 illustrates the
improvement in uncertainty estimation when using adversarial training in PM-value
regression task, while figure IV.41 in threshold exceedance classification (using MC
dropout as an example).Generally, we observe that adversarial training improves the
NLL and CE (i.e., making less overconfident predictions) with negligible effects on
other metrics. This, of course, depends on the size of the adversarial perturbation,
which can be tuned accordingly. We observe that increasing the perturbation size
can have adverse effects on the accuracy metrics, which is expected [218]. We
also observe that adversarial training led to more improvements in the PM-value
regression than in the threshold exceedance classification. This is because threshold
exceedance events are rare, and smoothing the predictive distribution does not help
catch these events.
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Figure IV.40: Comparison of uncertainty estimation in PM-value regression when
training (top) without adversarial training versus (bottom) with adversarial
training. Using Adversarial training leads to smoother predictive distribution; thus,
lower NLL (less overconfident predictions).

IV.5 Discussion

In this section, we investigate some of the implications of the study. In particular,
we perform a comparative analysis to evaluate the selected probabilistic models
based on empirical performance, reliability of confidence estimate, and practical
applicability. Then we close by investigating the practical impact of uncertainty
quantification on decision-making.

IV.5.1 Empirical Performance

In Section IV.4, we summarized the performance of each model in a tabular format.
Here, we compare all the models according to their empirical performance in a
single monitoring station.

Figure IV.42 shows a comparative summary of empirical performance in the
PM-value regression task. We observe that all models perform consistently well
with slight variations. The BNN model performs better in metrics that assess the
quality of a probabilistic forecast (i.e., in CRPS and NLL). This is expected since
BNNs provide the closest approximation to Bayesian inference, while other models
provide only a crude approximation. Interestingly, the GNNs with MC dropout
perform very closely to BNNs in CRPS and NLL. By scoring better in CRPS, BNNs
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Figure 1V.41: Comparison of uncertainty estimation in threshold exceedance
classification when training (top) without adversarial training versus (bottom)
with adversarial training. Using Adversarial training leads to smoother predictive
distribution; thus, lower CE (less overconfident predictions).

also score better in accuracy metrics (i.e., RMSE) since the CRPS generalizes the
MAE to a probabilistic setting.

The PICP and MPIW are conflicting metrics that simultaneously assess the
quality of the generated prediction interval. For example, by increasing the width
of a prediction interval (higher MPITW), more values will be inside the predicted
intervals (higher PICP). Thus, we observe that BNNs perform well in PICP but
poorly in MPIW.

Figure 1V.43 shows a comparative summary of empirical performance in the
threshold exceedance classification task. We observe that the BNN model performs
better in metrics that measure the quality of probabilistic predictions (scoring rule):
Brier score and cross-entropy. We also observe that the performance is inconclusive
in metrics intended for deterministic classification (F1, precision, recall). This shows
that these metrics are not appropriate for probabilistic prediction. Additionally,
these metrics are biased by class imbalance since threshold exceedance is a rare
event.

IV.5.2 Reliability of Confidence Estimate

In Section IV.5.1, we evaluate the selected models using metrics of accuracy and
predictive probabilities separately. However, for decision-making, it is crucial to
avoid over-confident, incorrect predictions. Therefore, evaluating the reliability of
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Figure IV.42: Comparison of empirical performance of the selected probabilistic
models in the PM-value regression task. The comparison is according to five
performance metrics (left to right): CRPS, NLL, RMSE, PICP, and MPIW. Blue
highlights the best performance, while red highlights the worst performance. The
arrows alongside the metrics indicate which direction is better for that specific
metric.
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Figure 1V.43: Comparison of empirical performance of the selected probabilistic
models in the threshold exceedance classification task. The comparison is according
to five performance metrics (left to right): Brier score, cross-entropy, FI score,
precision, and recall. Blue highlights the best performance, while red highlights the
worst performance.

a confidence estimate is indispensable when selecting probabilistic models. One
approach to evaluate reliability is to measure the amount of loss (or the number
of incorrect predictions) a model makes when its confidence is above a certain
threshold. This is a slight variation of the accuracy-versus-confidence technique
suggested by Lakshminarayanan et al. [70] for the classification task.

For the threshold classification task, the confidence interval is bounded between
0 and 1 (0 < CI < 1). Thus, we can define a model confidence to be:
confidence = 1 — CI and a confidence threshold 0 < 7 < 1. Then we plot the
number of incorrect predictions the model makes when its confidence is above
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7. We expect the curve to be monotonically decreasing for a reliable confidence
estimate since a rational model has fewer incorrect predictions at high confidence.
Additionally, we plot the total number of predictions (in our case, number of hours
in a month of test set) as a function of 7. This curve is monotonically decreasing, but
the decreasing rate indicates the amount of confidence in a model. The decreasing
rate would be high in a model with lower confidence since it makes fewer predictions
with high confidence. Figure IV.44 shows plots of loss vs. confidence and count vs.
confidence in the threshold classification task. We observe that the BNN model is
more reliable by making fewer incorrect predictions at high confidence but that it
has the lowest confidence.

For the PM-value regression task, the confidence interval is unbounded (0 <
CI < o0). However, to compare models, we can normalize and calculate their
relative confidence to be bounded between 0 and 1. Then we plot the regression loss
as a function of the confidence threshold 7. Figure IV.45 show the plots of loss vs.
confidence and count vs. confidence in the PM-value regression task. We observe
that the selected models produce rational behaviors and that the BNN model is
more reliable but has the lowest confidence. The curves are smooth since the loss is
continuous in the regression task.
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Figure IV.44: Comparison of confidence reliability for the selected probabilistic
models in the threshold exceedance task. Left: loss versus confidence. Right:
count versus confidence. The selected models produce are rational, which means
the loss-vs-confidence curves are monotonically decreasing.

Figure IV.46 shows the impact of adversarial training in the PM-value regression
task, with deep ensembles as an example. We observe that adversarial training can
reduce overconfident predictions.
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Figure IV.45: Comparison of confidence reliability for the selected probabilistic
models in the PM-value regression task. Left: loss versus confidence. Right: count
versus confidence.
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Figure IV.46: Impact of adversarial training on predictive uncertainty in PM-value
regression, using deep ensemble as an example. Left: loss versus confidence. Right:
count versus confidence.

IV.5.3 Risk-informed Decisions

The primary motivation of quantifying epistemic uncertainty is to represent how
much the model does not know. Evaluating specific decision policies is out of the
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scope of this paper, as they depend on the specific costs of countermeasures or
the cost of high pollution values. Nonetheless, to show the value of probabilistic
models, we investigate the practical impact on decision-making using a case of
urban management. Recently, the Norwegian government has proposed strict
regulations for particle dust thresholds. That means if the particle dust exceeds a
specific threshold, the government will impose a penalty on the municipality for
violating pollution regulations. Therefore, the municipality has to decide whether
to implement countermeasures in advance if a forecasting model predicts threshold
exceedance events.

The challenge is that not all forecasts are correct and occasionally result in
false positives and false negatives. A false positive is associated with implementing
unnecessary countermeasures, while a false negative is associated with violating
pollution regulations. The costs of these two scenarios are context-dependent.
Therefore, it is helpful to have a forecasting model that also provides potential
flexibility and tradeoffs depending on the cost of false positives and false negatives.

Non-probabilistic models already offer some aspect of this tradeoff by leveraging
the aleatoric uncertainty. For example, we can adjust the probability threshold
in a binary classification, i.e., implement countermeasures, only if the predictive
probability is above 71. Figure IV.48a shows the decision score (in terms of F1,
precision, and recall) as a function of aleatoric confidence in a non-probabilistic
model. Accepting the model decision even when its predictive probability is low will
result in more false positives and thus higher costs of unnecessary countermeasures.
On the other hand, accepting the model decisions only when its predictive probability
is high will result in more false negatives, thus increasing the risk of violating
pollution regulations.

In probabilistic models, we can also leverage epistemic uncertainty to obtain
a higher degree of tradeoffs. That means we implement countermeasures only if
the predictive probability is above 7 and the model confidence is above a certain
threshold 7. Figure IV.48b shows the resulting decision score as a function of
aleatoric and epistemic confidence in a probabilistic model. We use a BNN model
as a representative example. To allow a fair comparison, we use a non-probabilistic
model with the same architecture and trained with the same conditions. We
observe that the probabilistic model provides a wider area of control over the
risk profile based on the costs of false positives versus false negatives. In this
case, the probabilistic model scores better over a wider range of 71 and 75 than a
non-probabilistic model. This confirms that probabilistic models are more suitable
for making more informed and risk-aware decisions.

IV.5.4 Practical Applicability

In Section IV.5.1, we observe that a BNN model performs better in a variety of
metrics. Further, BNNs offer an elegant approach to represent model uncertainty
without strong assumptions. However, they are computationally demanding, require
more parameters, are sensitive to hyperparameter choices, and take longer to
converge than non-Bayesian neural networks. Thus, BNNs are difficult to work with,
especially on larger datasets. Additionally, the nature of variational approximation
and the choice of the prior or posterior distributions bias the predictive uncertainty.
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Figure IV.47: Decision score in a non-probabilistic model as a function of class
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Figure IV.48: Decision score in a probabilistic model as a function of both class
probability threshold (71) and model confidence threshold ( 72 corresponding to
epistemic uncertainty).

From a practical perspective, MC Dropout, SWAG, and deep ensemble are
convenient and scalable approaches to obtain uncertainty directly from standard
neural networks without changing the optimization. Additionally, they have fewer
hyperparameters and can be applied independently from the underlying network
architecture (such as standard neural network, LSTM, and GNNs). However, these
approaches require strong assumptions and provide a crude approximation of the
Bayesian inference. During inference, they have high computational costs during
inference (proportional to the number of samples M). Further, the uncertainty is
estimated by measuring the diversity of predictions that depends on the network’s
architecture, size, and properties of the training data and initialization parameters.
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Accordingly, there is no guarantee that they produce a diverse prediction for an
uncertain input.

The deep ensemble is a convenient non-Bayesian approach that captures
aspects of multi-modality. It is better than the bootstrap ensemble in which
independent models are trained using independent datasets. The deep ensemble
trains every model using the whole dataset since stochastic optimization and random
initialization make the models sufficiently independent. However, training deep
ensemble is more expensive than SWAG or MC dropout since we need to train M
different models.

The underlying assumption used in MC dropout is that it approximates a
probabilistic deep Gaussian process. This assumption is based on the idea that a
single-layer neural network tends to converge to a Gaussian process in the limit of an
infinite number of hidden units [219]. Our results show that MC dropout provides
less reliable uncertainty estimates (Figures 1V.44 and IV.45), which confirms the
results recently presented in other domains, such as computer vision [220] and
molecular property prediction [221].

The related works that address quantifying uncertainty in a data-driven forecast
of air quality uses either quantile regression (QR) [194], Gaussian processes (GP)
[193], or ConvLSTM with MC dropout [191]. We have reimplemented these methods
in our problem setting to compare them to the proposed models since we have
different datasets and different data inputs. We use a Gradient Tree Boosting
[204] for quantile regression and GPyTorch [222] for Gaussian processes. Table
IV.10 summarizes the comparison results in the PM-value regression task in one
representative monitoring station. We observe that the proposed models perform
better, especially in metrics that assess the quality of a probabilistic forecast (i.e.,
in CRPS and NLL). Quantile regression only estimates the conditional quantile
and not a probabilistic distribution. Thus, we can only assess the quality of its
prediction interval and not a probabilistic forecast. Gaussian processes offer a
Bayesian formalism to reason about uncertainty. However, they have the highest
computational cost since they require an inversion of the kernel matrix, which has
an asymptotic complexity of O(n?), where n is the number of training examples.

Table IV.10: Comparison of the previous works and the proposed models when
quantifying uncertainty in data-driven forecast of air quality

Metric QR[194] GP [193] ConvLSTM[191] BNN Deep Ensembles GNN SWAG

RMSE| 6.17 6.45 6.46 5.17 5.59 5.80 5.76
PICP?T 0.72 0.92 0.71 0.90 0.69 0.79  0.76
MPIW]| 14.79 36.96 12.18 25.07 12.11 15.07 16.61
CRPS/| NA 0.53 0.56 0.47 0.51 0.50  0.53
NLL] NA 1.36 2.48 1.28 2.38 1.60 1.96

IV.6 Conclusion

This work presents a broad empirical evaluation of the relevant state-of-the-art
deep probabilistic models applied in air quality forecasting. Through extensive
experiments, we describe training these models and evaluating their predictive
uncertainties using various metrics for regression and classification tasks. We
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introduce a new state-of-the-art example for air quality forecasting by defining
the problem setup and selecting proper input features and models. Then, we
apply uncertainty-aware models that exploit the temporal and spatial correlation
inherent in air quality data using recurrent and graph neural networks. We propose
improving uncertainty estimation using "free" adversarial training to locally smooth
the prediction distribution along the adversarial direction with virtually no additional
cost. Finally, we show how data-driven probabilistic models can improve the current
practice using a real-world example of air quality forecasting in Norway. Particularly,
we show the practical impact of uncertainty quantification and demonstrate that
probabilistic models are more suitable for making informed decisions.

The results show that the proposed models perform better than previous works
in quantifying uncertainty in data-driven air quality forecasts. BNNs provide
a more reliable uncertainty estimate but with challenging practical applicability.
Additionally, the results demonstrate that MC Dropout, SWAG, and deep ensemble
have less reliable uncertainty estimates, but they are more convenient in practical
applicability. Our contribution hereof is not about specific model selection but
more about navigating the larger design space and the different tradeoffs offered by
various probabilistic models.

Future work includes exploring hybrid air quality forecasting combining physics-
based and data-driven probabilistic models. Additionally, future work should
address uncertainty estimation with out-of-domain or seasonal variations in air
quality forecasting. In our experiments, we used a reasonable search space for
hyperparameters and network architectures. Thus, future work could target an
exhaustive search of hyperparameters, additional data sets, and models (e.g.,
transformers).
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IV.7 Supplementary Materials

IV.7.1 Datasets

This section shows additional figures explaining the used dataset of air quality,
meteorological data, traffic, and street-cleaning reports from the municipality.

IV.7.1.1 Air Quality Data

Figure IV.49 shows the air quality data of PMs 5 and PMi(, measured over two
years in four different sensing stations in the city of Trondheim (IV.20). The figure
shows a clear temporal and spatial correlations between the four sensing stations.
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Figure IV.49: Air quality data of PMs 5 and P Mg, measured over two years in four
different sensing stations in the city of Trondheim. These data are offered by the
Norwegian Institute for Air Research (NILU) (https://www.nilu.com/open-data/).
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IV.7.1.2 Weather data

We use weather data observations at four monitoring stations in the city of
Trondeheim (Voll, Sverreborg, Gloshaugen, Lade). These observations include:
air temperature, relative humidity, precipitation, air pressure, wind speed, wind
direction, snow thickness, and duration of sunshine. Figure IV.50 summarize all
these observations.
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Figure IV.50: Weather data observations over two years at four monitoring station
in the city of Trondeheim (Voll, Sverreborg, Gloshaugen, Lade). These data are
offered by the Norwegian Meteorological Institute (https:/frost.met.no).
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IV.7.1.3 Traffic data

We also used traffic volume as an input feature for the forecasting models. We
used the data of the traffic volume recorded at eight streets of Trondheim. Figure
IV.51 shows the traffic volume recorded over two years. The figure shows a clear
correlation of traffic between streets. It also shows the drop in traffic during the
pandemic lockdown in Trondheim (after March 12, 2020).
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Figure IV.51: Traffic volume recorded at eight streets of Trondheim over two
years. These data are offered by the Norwegian Public Roads Administration
(https://www.vegvesen.no/trafikkdata/start/om-api).
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IV.7.1.4 Streets-cleaning data

We also used data of street-cleaning at main streets of Trondheim, as shown in
Figure IV.52. These data are reported by the municipality and include the duration
of time in which a street-cleaning is taking place.
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Figure IV.52: Data of the duration of time in which a street-cleaning is taking place
on the main streets of Trondheim, reported by the municipality.

IV.7.2 Reliability of Confidence Estimate: Additional Plots

This section presents additional plots for comparison of confidence reliability in all
monitoring stations. Figure IV.53 shows the comparison of confidence reliability
in the PM-value regression task while Figure IV.54 in the threshold exceedance
classification task.
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Figure IV.53: Comparison of confidence
models in the PM-value regression task in all monitoring stations.
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Figure IV.54: Comparison of confidence reliability for the selected probabilistic
models in the threshold exceedance classification task in all monitoring stations.
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IV.7.3 Justification for Threshold-Exceedance Classification

Recently, the Norwegian government has proposed even stricter regulations for
particle dust thresholds. Therefore, we want to estimate if the concentration of
air particles exceeds certain thresholds following the Common Air Quality Index
(CAQI) used in Europe [195], as shown in Table IV.3.

The CAQI specifies five levels of air pollutants, but the air quality in the city
of Trondheim is usually at Very Low and rarely exceeds the Medium level. Figure
IV.56 shows the air quality level over one year in all monitoring stations. Generally,
air quality data have right-skewed distributions, with the degree of skewness
(asymmetry) differing among different cities. Figure IV.55 shows histograms that
approximately represent the distribution of air quality at four monitoring stations in
the city of Trondheim. The figure clearly shows heavily right-skewed distributions,
in which higher CAQI classes are under-represented. Therefore, instead of a
multinomial classification task (with five classes), we transform the problem into a
threshold exceedance forecast task in which we try to predict the points in time
where the air quality exceeds the Very Low level.
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Figure IV.55: Histograms that approximately represent the distribution of air
quality at four monitoring stations in the city of Trondheim. The air quality data
come from heavily right-skewed distributions, in which higher CAQI classes are
under-represented.
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Figure IV.56: Air quality in the city of Trondheim over one year in all monitoring
stations. The data are decomposed into the five CAQI levels of air pollutants. It is
usually at Very Low and rarely exceeds the Medium level.
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Introduction

Abstract

To increase autonomy in reinforcement learning, agents need to learn useful
behaviours without reliance on manually designed reward functions. To that
end, skill discovery methods have been used to learn the intrinsic options
available to an agent using task-agnostic objectives. However, without the
guidance of task-specific rewards, emergent behaviours are generally useless
due to the under-constrained problem of skill discovery in complex and high-
dimensional spaces. This paper proposes a framework for guiding the skill
discovery towards the subset of expert-visited states using a learned state
projection. We apply our method in various reinforcement learning (RL) tasks
and show that such a projection results in more useful behaviours.

VI.1 Introduction

While autonomous learning of diverse and complex behaviors is challenging,
significant progress has been made using deep reinforcement learning (DRL). The
progress has been accelerated by the powerful representational learning of deep
neural networks [15], and the scalability and efficiency of RL algorithms [17, 18,
19, 20]. However, DRL still involves an externally designed reward function that
guides learning and exploration. Manually engineering such a reward function is a
complex task that requires significant domain knowledge in such a way that hinders
autonomy and adoption of RL. Prior works have proposed using unsupervised
skill discovery to alleviate these challenges by using empowerment as an intrinsic
motivation to explore and acquire abilities [145, 146, 41, 147, 148].

Although skill discovery without a reward function can be helpful as a primitive
for downstream tasks, most of the emergent behaviours in the learned skills are
useless or of little interest. This is a direct consequence of under-constrained skill
discovery in complex and high dimensional state space. One possible solution is
to leverage prior knowledge to bias skill discovery towards a subset of the state
space through a hand-crafted transformation of the state space [41, 148]. However,
utilizing prior knowledge to hand-craft such a transformation contradicts the primary
goal of unsupervised RL, which is reducing manual design efforts and reliance on
prior knowledge.

Instead, we explore how to learn a parameterized state projection that directs
skill discovery towards the subset of expert-visited states. To that end, we employ
examples of expert data to train a state encoder through an auxiliary classifier,
which tries to distinguish expert-visited states from random states. We then use the
encoder to project the state space into a latent embedding that preserves information
that makes expert-visited states recognizable. This method extends readily to other
mechanisms of learned state-projections and different skill discovery algorithms.
Crucially, our method requires only samples of expert-visited states, which can
easily be obtained from any reference policy, for example expert demonstrations.

The key contribution of this paper is a simple method for learning a parameterized
state projection that guides skill discovery towards a substructure of the observation
space. We demonstrate the flexibility of our state-projection method and how it
can be used with the skill-discovery objective. We also present empirical results
that show the performance of our method in various locomotion tasks.
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VI.2 Related Work

Unsupervised reinforcement learning aims at learning diverse behaviours in a
task-agnostic fashion without guidance from an extrinsic reward function [239].
This can be accomplished through learning with an intrinsic reward such as
curiosity [240] or empowerment [145]. The notion of curiosity has been utilized for
exploration by using predictive models of the observation space and providing a
higher intrinsic reward for visiting unexplored trajectories [241]. Empowerment
addresses maximizing an agent’s control over the environment by exploring states
with maximal intrinsic options (skills).

Several approaches have been proposed in the literature to utilize empowerment
for skill discovery in unsupervised RL. Gregor et al. [146] developed an algorithm
that learns intrinsic skill embedding and used generalization to discover new goals.
They used the mutual information between skills and final states as the training
objective and hence used a discriminator to distinguish between different skills.
Eysenbach et al. [41] used mutual information between skills and states as an
objective while using a fixed embedding distribution of skills. Additionally, they
used a maximum-entropy policy [19] to produce stochastic skills. However, most of
the previous approaches assume a state distribution induced by the policy itself,
resulting in a premature commitment to already discovered skills. Campos et al.
[148] used a fixed uniform distribution over states to break the dependency between
the state distribution and the policy.

Certain prior work has addressed the challenge of complex and high dimensional
state space by constraining the skill-discovery in a subset of the state space. Sharma
et al. [147] learned predictable skills by training a skill-conditioned dynamic model
instead of a discriminator to model specific behaviour in a subset of the state space.
Eysenbach et al. [41] proposed incorporating prior knowledge by conditioning the
discriminator on a subset of the state space using a hand-crafted and a task-specific
transformation. Our work addresses this challenge by guiding the skill discovery
towards the subset of expert-visited states. In contrast to inverse reinforcement
learning, [242], we do not explicitly infer the extrinsic reward. Crucially, we do not
try to learn the expert policy directly in contrast to behaviour cloning or imitation
learning [143]. Our proposed method resembles the algorithm proposed by Li et
al. [243] in which they used a Bayesian classifier that estimates the probability of
successful outcome states, resulting in a more task-directed exploration. However,
their algorithm does not optimize the mutual information; hence it does not learn
diverse skills via the discriminability objective.

VI.3 Preliminaries

In this paper, we formalize the problem of skill discovery as a Markov decision
process (MDP) without a reward function: M = (S, A, P), where S is the state
space, A is the action space, and P : S xS x A — [0, 00) is the transition probability
density function. The RL agent learns a skill-conditioned policy my(a|s, z), where
the skill z is sampled from some distribution p(z). A skill, or option (as first
introduced in [42]), is a temporal abstraction of a course of actions that extends
over many time steps. We will also consider the information-theoretic notion of
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mutual information between states and skills Z(S; Z) = H(Z) — H(Z|S), where H()
is the Shannon entropy.

VI.3.1 Skill Discovery Objective

The overall goal of skill discovery is to find a policy my capable of carrying out
different tasks that are learned without extrinsic supervision for each type of behavior.
We consider policies of the form 7y(als, z) that specify different distributions over
actions depending on which skill z they are conditioned on. Although this general
framework does not constrain how z should be represented, we define it as a discrete
variable since it has been empirically shown to perform better than continuous
alternatives [41].

We follow the framework proposed by the "diversity is all you need" (DIAYN)
algorithm [41], in which skills are learned by defining an intrinsic reward that
promotes diversity. Intuitively, each skill should make the agent visit a unique
section of the state space. This can be expressed as maximising the mutual
information Z(S; Z) of the state visitation distributions for different skills [145]. To
ensure that the visited areas of the state space are spaced sufficiently far apart, we
use a soft policy that maximises the entropy of the action distribution. Formally,
we maximize the following objective function:

F(0) £ 1(S;2) + H(A|S) — I(A; Z]9) (V153)
= H[A|S, Z] — H[Z|S] + H[Z] ’

The first term H[A|S, Z] means that the policy should act as randomly as possible
and can be optimized by maximizing the policy’s entropy. The second term —H[Z|S]
dictates that each visited state should (ideally) identify the current skill. The third
term is the entropy of the skill distribution, which can be maximized by deliberately
sampling skills from a uniform distribution during training. Unfortunately, —H[Z|S]
requires knowledge about p(z|s), which is not readily available. Consequently, we
approximate the true distribution by training a classifier g4(z|s), leading to a lower
bound:

F(6) = HIAIS. Z] + E, logp(z]3)] ~ E, og ()] N
> H[A|S, Z] + E,[log g4 (2]5)] — Ep[log p(2)] '
The lower bound follows from the non-negative property of the Kullback-Leibler
divergence Dgr(p|lg) = Ep[log p(z|s) — log g(z|s)] > 0, which can be rearranged to
E,[log p(=]s)] > E, [log q(2]s)] [244].

The classifier g4 is fitted throughout training with maximum likelihood
estimation over the sampled states and active skills. This leads to a scenario
where the policy is rolled out for a (uniformly) sampled skill, and the classifier is
trained to detect the skill based on the states that were visited. The policy is given
a reward proportional to how well the classifier could detect the skill in each state.
In the end, this should make the policy favor visiting disjoint sets of states for each
skill, leading to a cooperative game between ¢4 and my.
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VI.3.2 Limitations of existing methods

A major challenge that arises when maximizing the objective in Equation VI.54,
particularly in applications with high-dimensional spaces, is that it becomes trivial
for each skill to find a sub-region of the state space where it is easy to be recognised by
ge- In preliminary experiments, we observed that the existing methods discovered
behaviours that covered small parts of the state space. For the HalfCheetah
environment [245] this resulted in many skills generating different types of static
poses (see Figure VI.65) and not many skills exhibiting "interesting" behaviour such
as locomotion.

Optimising for H[A|S, Z] should mitigate this issue to some extent. Increasing
the policy’s entropy incentivises the skills to progressively visit regions of the state
space that are so far apart that not even highly stochastic actions will cause them
to overlap accidentally. However, it has been shown that mutual information
based algorithms have difficulties spreading out to novel states due to low values of
log g4(z|s) for out-of-sample states [148].

Figure VI.65: Cheetahs frozen in various configurations for 6 unique skills. When
sampled, the policy generates actions that "shake" around these positions. However,
they are still distinguishable by the classifier g4 with over 90% accuracy.

VI.4 Proposed Method

The main idea of our approach is to focus the skill discovery towards certain parts
of the state space by using expert data as a prior. The DIAYN algorithm can be
biased towards a user-specified part of the state space by changing the discriminator
to maximize E[log ¢y (2| f(s))], where f represents some transformation of the state
space [41]. Instead of using a hand-crafted f to improve the skills discovered for a
navigation task, we aim to learn a parameterized f, by using expert data.
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VI.4.1 State Space Projections

We consider linear projections of continuous factored state representations on the
form f, : RISl — RIEl with e = f,(s) = xs, x € RIEXISI and |E| < |S]. In
principle, the idea should apply to more complex mappings, such as a multi-layer
perceptron. However, we want to limit the scope of skill discovery to a hyperplane
within the original state space.

For the same reason, we also omit any non-linearities in the encoder. Squeezing
the output through a Sigmoidal function would limit discriminability at the
(potentially interesting) extremes of the encoding. Similarly, a ReLU function
would effectively eliminate all exploration along the negative direction of f,,. In
summary, the objective of the DIAYN skill classifier becomes:

max E[log g4(z|e)] (VL55)

We learn the parameters y for the projection through an auxiliary discriminative
objective. ~Specifically, a binary classifier hy, : REl — {0,1} is trained to
predict whether an (encoded) state was sampled from the marginal state visitation
distribution of a random policy 7,qnq or from the distribution of a reference (expert)
policy 7*. Let x ~ D denote whether a state s was visited by the reference policy or
not (in dataset D), then the parameters of f, are obtained through joint pretraining
with h, by maximizing the log likelihood over D:

max E, s~plzloghy(zle) + (1 — z)log(1l — hy(zle))] (VI.56)
X

where the dataset D is collected prior to training the main RL algorithm. The
first half (random samples) are collected by rolling out 7,4,4 whereas the second half
(reference samples) are collected by rolling out 7*. After the objective in Equation
VIL.56 is optimized, the discriminator h is discarded and the projection encoding
fx(s) is extracted to be used for the objective in Equation VI.55. Analogous to
autoencoders [246], the idea is that the embeddings produced by f,(s) should now
contain a more compact representation of the state space without collapsing the
dimensions that make "interesting" behaviour stand out.

While the use of a reference data changes our approach from a strictly
unsupervised skill discovery algorithm, the discriminative objective in equation
VL.56 resembles the objectives used in adversarial inverse reinforcement learning (e.g.
[242]). However, it differs in that it makes no attempts at matching the behaviour
of a reference policy as it is used only as a prior for simplifying the state space. This
approach could also be used with samples from several different reference policies
with substantially different marginal state distributions. As long as their variation
can be explained sufficiently without full use of the entire state space, a projection
should simplify skill discovery.

Vi.4.2 Implementation

For learning diverse skills, we use DIAYN as a basis framework. DIAYN uses
the Soft Actor-Critic (SAC) algorithm [19] that is optimized using policy gradient
style updates in contrast to the reparameterized version (DDPG style updates
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[20]). They also use a Squashed Gaussian Mixture Model to represent the policy
a ~ my = tanh GM M (119(s),09(s)). The learning objective is to maximize the
mutual information between the state and skill 7(.S; Z). This objective is optimized
by replacing the task rewards with a pseudo-reward

r.(s,a) 2 log pg(z|s) — log p(2) (VL.57)

where g, is trained to discriminate between skills and p(z) is the fixed uniform
prior over skills [41]. A skill is sampled from z ~ p(z) and used throughout a full
episode.

In contrast to DIAYN, we use two Q-functions Qp(s,a) & Q%(s,a) where both
Q-functions attempt to predict the same quantity. This allows us to sample
differentiable actions and climb the gradient of the minimum of the two Q-functions
(DDPG-style update [20]), giving us this objective:

J(m) = min Qilmo(als)) + aH(my(als)

Like in DIAYN, we also use a Squashed Gaussian Mixture Model to promote diverse
behaviour.

Figure VI.66 illustrates the training process of the proposed expert-guided
skill discovery. First, we train the encoder f, jointly with the auxiliary classifier
h. using the external dataset D. Secondly, we train the agent using an offline
policy algorithm (SAC), in which the agent samples a skill z ~ p(z), and then
interacts with the environment by taking action a; according the skill-conditioned
policy my(a¢|st, z). The environment, then, transits to a new state according to the
transition probability s;y1 ~ p(St41]8¢, at). We add this transition (s, z, at, S¢41) to
the replay buffer B. Simultaneously, the policy is updated by sampling a mini-batch
from the replay buffer M ~ B, then encoding the next states e;+1 = fy(s441) and
passing them through the discriminator g4(z|e;+1 to get the intrinsic reward. This
reward is used by the Q-functions Qg(s;, at, z) to minimize the soft Bellman residual
and update the policy. A pseudocode 3 for the proposed approach can be found in
the supplementary material.

VI.5 Experiments

In our experimental evaluation, we aim to demonstrate the impact of our approach
of restricting skill discovery to a projection subspace. We verify our method on
both point-mazes and continuous control locomotion tasks. All the code for running
the experiments are publicly available on GitHub®.

VI.5.1 Point Maze

As an illustrative example, we begin by testing the algorithm on a simple 2D point-
magze problem. The term maze is used very generously here, as the environment

consists of an open planc in R? enclosed by walls that restrict the agent to

% <z < g and % <y < g. At initialization, the agent is dropped down at

8Project code base: https:/github.com/sherilan/cs285-project/tree/master
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Figure VI.66: Framework for training expert-guided skill discovery. Green arrows
show the training of the encoder, red arrows show the agent-environment interaction,
while the blue arrows show the interactions for the offline policy training. Note
there is no gradients through the encoder in the offline training.

T,y = 71_:15,6 ~ U(—1,1) and incentivized to move towards the lower right by a
reward proportional to a gaussian kernel centered at (%, %) The agent is free to

move by :|:7—10 in both the x and y direction.
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Figure VI.67: The learned projection axis (in red), which is the output of the
encoder when trained from the discrimination of the green and blue points.

We train a SAC agent against the extrinsic environment reward to convergence
and set its final policy as the reference policy m. We then sample 10 trajectories
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of length 100 (green dots in Figure VI.67) with 7%, as well as 10 trajectories of
length 100 (blue dots in Figure VI.68) from a uniform random policy mqnq. The
resulting dataset D consists of 2000 samples and is used to train hy(z|e) until
it can distinguish states from 7% and 7,4,q With around 98% accuracy. For this
experiment, we project down from 2D to 1D, making x € R'*2. The resulting
projection axis is visualized as a red line in Figure VI.67 and is the only thing
exported to the next stage of the algorithm.

We then train two versions of the DIAYN algorithm; a baseline using the states
as-is in the classifier (¢4(z|s)) and our proposed method using the state projections
(gs(=]fx(s))). All other hyperparameters are held equal in the two experiments, and
the algorithms are trained for 400,000 environment interactions, each attempting to
learn 10 distinct skills.

DIAYN DIAYN + state projection
0.8 Ry | —— proj. axis
0.75 .
® Skillo
0.6 .
> 0.50 > ® Skill1
0.4 ® Skill2
0.25 ® Skill 3
0.2 wowessn | @  Skill 4
0.25 0.50 0.75 0.75 ® Skill 5
X X ® Skille
40 ® Skill7
100 Skill 8
z 2 e skill9
2 2
S 20 S s0
o [a)
. A . ANUIILAA
0.00 0.25 0.50 0.00 0.25 0.50
e = f(s) e = f(s)

Figure VI.68: State visitation visualization for 10 skills learned with baseline DIAYN
(left) and DIAYN with state projection (right). The top row shows the actual states
visited in R?, whereas the bottom row shows the same data linearly mapped onto
the projection axis obtained in Figure VI.67.

Figure VI.68 visualizes the results of the baseline and the state projection to the
left and right, respectively. The top row shows the states that were visited for five
rollouts of each skill. As expected, the baseline skills spread out in all directions
(albeit slightly more so towards the left) and converge on locations that are easy to
distinguish with a 2D state representation. In contrast, the skills generated in the
left plot form lines along the state projection axis. Their wide lateral spread follows
from the (unbounded) entropy maximization objective. Besides, any movement
perpendicular to the projection axis will not affect the 1D vector passed to the
classifier.
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VI.5.2 Mujoco Environments

Next, we evaluate the algorithm on three continuous control problems from the
OpenAl gym suite. [245]. The environments include HalfCheetah (S = RI7,
A = RS), Hopper (S = R, A =R?) and Ant (S = R?*", A = R®). We choose
these environments because they involve substantially different locomotion methods.
Additionally, they have observation spaces with different dimensionality, which
enable us to better investigate the projection impact.

Figure VI.69: Continuous control environments from the Mujoco part of the OpenAl
gym suite. Left: HalfCheetah-v2. center: Hopper-v2, right: Ant-v2.
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Figure VI.70: Impact of state-space projection illustrated as distribution of
displacements along the locomotion axis used to calculate the extrinsic reward
of the environments. By introducing a projection step, the skill search gets focused
towards locomotion skills, resulting in a larger spread of displacements.

We do one baseline run without any state projection for all three problems, one
with a projection down to R®, and one with a projection down to R3. We use our
base SAC implementation to obtain reference policies 7* and sample 10 trajectories
of length 1000 with fairly high returns (Ant: 5063.94+469.8, Cheetah: 10656.4+673.5,
Hopper: 3348.0 + 316.0). The DIAYN algorithm is otherwise identical to [41] in
terms of hyperparameters; @, 7, g4, and hy, use MLP architectures with 2 hidden
layers of width 300, the entropy bonus weight « is set to 0.1, and the number of skills
is set to 50. We limit each skill-discovery run to 2.5 million environment interactions
but repeat each experiment 5 times with different random seeds (including training
of SAC agents for 7*).

For quantitative evaluation, we look at the displacement along the target
locomotion axis for the extrinsic objective. In our approach, we would expect
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Table VI.18: Summary statistics for displacement (along the locomotion axis used
to calculate the extrinsic reward of the environments) across the 50 skills learned.
The values to the right of + indicate standard deviation across 5 seeded runs.

min 25% 50% 75% max
HalfCheetah-v2 DIAYN -9.7 £ 11.1 -0.1 0.0 0.0+ 0.1 0.3+£0.1 76.6+ 46.6
DIAYN + ENC(3) -88.6 +42.1 -0.4 0.4 0.2+ 0.1 3.9+ 4.7 99.0 + 37.5
DIAYN + ENC(5) -129.0 + 48.5 -6.1 9.5 0.7 £ 1.2 6.6 £ 5.1 121.2 + 44.7
Hopper-v2 DIAYN -1.0 &£ 1.1 -0.0 £ 0.1 0.1 =£0.0 0.2 £ 0.1 3.7+ 14
DIAYN + ENC(3) -4.3 = 1.8 -0.0 £ 0.1 0.2+£0.2 0.9 £ 0.6 10.1 = 6.1
DIAYN + ENC(5) -3.1+1.4 -0.1 £ 0.0 0.1 =£0.0 0.4 £ 0.1 7.0 £ 3.2
Ant-v2 DIAYN -0.3 = 0.0 -0.1 £ 0.0 0.0 £ 0.0 0.1 £ 0.0 0.3 £0.1
DIAYN + ENC(3) -0.3 = 0.1 -0.1 = 0.0 -0.0 = 0.0 0.1 £ 0.0 0.3 £ 0.1
DIAYN + ENC(5) -0.5 = 0.5 -0.1 = 0.0 -0.0 &= 0.0 0.1 £+ 0.0 0.3 £ 0.1

to observe skills that cover this axis well, i.e., skills that run forward and backward
at different speeds. To test this, we roll out each skill deterministically®, record its
movement over 1000 time steps (or until it reaches a terminal state) and observe
the inter-skill spread. A similar assessment is possible by only looking at the
environment’s rewards. However, the environment reward also includes terms for
energy expenditure, staying alive (for Ant/Hopper), and collisions (Ant), which
would obscure the results. Figure VI.70 shows the displacement distribution of the
50 skills across all runs. The same information is summarized numerically in Table
VI.18.

For a qualitative evaluation, we have also composed a video with every skill

across all runs'®.

V1.6 Discussion

For HalfCheetah and Hopper, the runs with state encoding (+ ENC(3|5)) exhibit
a substantially larger spread than the baseline. The best forward-moving cheetah
skill moves 178 units forward (= 3311 environment return), and the best backwards-
moving cheetah skill moves 186 units backwards (= —4025 environment return).
For the hopper environment, the best forward-moving skill manages to jump 20
units forward, which corresponds to an environment reward of 3268, which is on
the same level as the reference data used to fit its encoder.

The results in the Ant environment are less impressive. There is hardly any
difference in how the displacements are distributed for the three approaches, and
the total movement is almost negligible. For reference, a good Ant agent trained
against the extrinsic reward should obtain displacements in the 100s when evaluated
over the same trajectory horizon.

Looking at the generated Ant behaviour, we found that the skills produced with
encoders typically moved even less than those generated by the baseline. This is not
because it is impossible to generate a linear projection that promotes locomotion at
various speeds, as the state representation of all three problems contains a feature

9Deterministic sampling from our GMM-based policy implies taking the mean of the component
with the highest mixture probability.
10Video of skills: https://www.youtube.com/watch?v=Xx7RVNmv1tY
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for linear velocity along the target direction. Moreover, the skill classifier does
reach a high accuracy (some breaking 90%), so the algorithm manages to find
distinguishable skills. We, therefore, suspect that the procedure used to fit the
encoder is insufficient for this environment. While it does pick up on linear velocity,
it also picks up on several other features from the state space, which might have
made it easier for the algorithm to make the skills distinguishable.

To better understand the results of the Ant experiment, we investigate the
projection matrix learned at the start of the algorithm. Figure VI.71 gives a
representative example of a projection learned for an ENC(3) run. In the diagram,
each bar indicates the impact each feature of the state space has on the final
embedding. The orange bar highlights the feature corresponding to linear torso
velocity in the x-direction, i.e. the direction in which the extrinsic objective rewards
an agent for running in. All the bars to the left correspond to joint configurations,
link orientations, and all the bars to the right correspond to other velocities.

The feature for velocity in the target direction is well represented. However, so
are the features for the 8 joint velocities (8 rightmost bars in each group). Since it
is a lot easier to move a single joint than to coordinate all of them for locomotion,
the algorithm might more easily converge to this strategy than figure out a way
to walk. Moreover, because the projection mixes features for movement of single
joints with features for locomotion of the entire body, it becomes more difficult for
the classifier to distinguish the two. For instance, an ant that figures out how to
walk may (in the projected space) look similar to one that only twitches some of its
joints.

0.75
0.50
0.25

0.00 v

-0.25

Feature weight

-0.50

-0.75

o — o

Embeddings

Figure VI.71: Embedding weights for a linear projection of the Ant state space down
to R3. Only weights for the first 27 (standardized) state features are visualized since
the remaining 84 are always zero. The feature that corresponds to (whole body)
velocity in the same direction as the main environment objective is highlighted in
orange.
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VI.7 Conclusion

In this work, we propose a data-driven approach for guiding skill discovery towards
learning useful behaviors in complex and high-dimensional spaces. Using examples
of expert data, we fit a state-space projection that preserves information that
makes expert behavior recognizable. The projection helps discover better behaviors
by ensuring that skills similar to the expert are distinguishable from randomly
initialized skills. We show the applicability of our approach in a variety of RL tasks,
ranging from a simple 2D point maze problem to continuous control locomotion.
For future work, we aim to improve the embedding scheme of the state projection
to be suitable for a wider range of environments.

Acknowledgment. We would like to thank Kerstin Bach and Rudolf Mester for
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V1.8 Supplementary Materials
VI.8.1 Pseudocode

Algorithm 3: Skill Discovery with Data-Driven Guidance
input :Replay buffer B, dataset of expert states D.
Initialize policy g, Q-functions {Qf, Q3}, discriminator g4, encoder fy.
Function Pre-train-Encoder(fy,D):

Initialize classifier h.

Sample actions from a random policy: a¢ ~ Trand(ac|st).

Step environment using the random actions: si41 ~ p(Se+1|st, at).

Add visited states to the dataset: D < DU {(s¢+1,0)}.

Update encoder (fy) through joint training with the classifier hy to maximize
the likelihood of D.

Discard the classifier hy,.

return f,

for epoch < 1 to num_of__epochs do

for t < 1 to environment__steps_per__epoch do

Sample a skill: z ~ p(z).

Sample action from the skill-conditioned policy: a: ~ my(at|st, 2).

Step environment: siy1 ~ p(Sit1]se, at).

Add a transition to the replay buffer: B < B U {(st, 2, at, st41) }.

end

for i < 1 to train__steps_per__epoch do

Sample batch of transitions from the replay buffer: M ~ B.

Encode states: e;11 = fy(S¢41).

Compute intrinsic reward: r = log g¢(z|et+1) — log p(2).

Update Q-functions {Qj,Q3} to minimize the soft Bellman residual.

Update policy 7y using the minimum of the two Q-functions.

Update discriminator g4 with MLE.

end

end
output: Learned skill-conditioned policy 7y.

V1.8.2 Additional Experimental Details

This appendix extends VI.5 with additional plots and commentary. Figure VI.72,
VI.73, VI.74 show maximum, average and minimum return for the three
environments.

VI1.8.3 Implementation Details

Conceptually, our skill-discovery algorithm is the same as DIAYN [41]. There are,
however, a few implementation differences that we empirically found to work just
as well. Below follows a brief rundown of the key implementation details of the
algorithm used in the documented experiments.

1. Two Q-functions Q}(s,a) & Q3(s,a) are used, both with target clones Q}, &
Q% that are continuously updated with polyak averaging. Both Q-functions
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Figure VI.72: Maximum, average, and minimum return (computed over all 50 skills)
for HalfCheetah-v2 during training. Shaded areas correspond to + standard
deviation across 5 random seeds.
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Figure VI.73: Maximum, average, and minimum return (computed over all 50 skills)
for Hopper-v2 during training. Shaded areas correspond to + standard deviation
across b random seeds.
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Figure VI.74: Maximum, average, and minimum return (computed over all 50 skills)
for Ant-v2 during training. Shaded areas correspond to + standard deviation
across b random seeds.

attempt to predict the same quantity:

Qy2(st,a1) = B gy [1(51, 1)

+ 39" (aM(ar) + r(sv.an))

t'>t

2. The policy distribution is a mixture of Gaussians with four components. The
policy network predicts the mixture logits, as well as the means and log
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standard deviations of the Gaussians. The output is squashed through a
hyperbolic tangent function, similar to [19].

The policy is updated by climbing the gradient of the minimum of the two Q
functions (DDPG-style (Lilli-crap et al.)).

J(mo) = igr{llig}%(ﬂe(m)) + aH(mg(als))

This requires that the actions sampled from the policy are differentiable. Each
gaussian component of the mixture is reparametrized the standard way, and
the mixture is reparametrized with Gumbel-Softmax [247].

Qé’Q is trained by descending on the squared temporal difference (TD) errors
generated by the minimum of the target networks Qp, & Q3
TD(Sa a,T, S/) = Q;’Z(S,a) -—r - ’Y(

min Qp (s',mo(a’|s")) + aH(mg(a'|s))
ie{1,2}

)
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