
Data and text mining

Shuffle & untangle: novel untangle methods for solving

the tanglegram layout problem

Nghia Van Nguyen1, Kurdistan Chawshin1, Carl Fredrik Berg 1,* and

Damiano Varagnolo2,3

1Department of Geoscience and Petroleum, NTNU, 7031 Trondheim, Norway, 2Department of Engineering Cybernetics, NTNU, 7034

Trondheim, Norway and 3Department of Information Engineering, University of Padova, 35122 Padova, Italy

*To whom correspondence should be addressed.

Associate Editor: Alexandros Stamatakis

Received on November 1, 2021; revised on February 16, 2022; editorial decision on February 21, 2022; accepted on February 28, 2022

Abstract

Motivation: A tanglegram is a plot of two-tree-like diagrams, one facing the other, and having their labels connected
by inter-tree edges. These two trees, which could be both phylogenetic trees and dendrograms stemming from hier-
archical clusterings, have thus identically labelled leaves but different topologies. As a result, the inter-tree edges of
a tanglegram can be intricately tangled and difficult to be analysed and explained by human readers. To better visu-
alize the tanglegram (and thus compare the two dendrograms) one may try to untangle it, i.e. search for that series
of flippings of the various branches of the two trees that minimizes the number of crossings among the inter-tree
edges. The untanglement problem has received significant interest in the past decade, and several techniques have
been proposed to address it. These techniques are computationally efficient but tend to fail at finding the global opti-
mum configuration generating the least tangly tanglegram.

Results: We leverage the existing results to propose untanglement methods that are characterized by an overall
slower convergence method than the ones in the literature, but that produce tanglegrams with lower
entanglements.

Availability and implementation: One of the algorithms is implemented in Python, and available from https://github.
com/schlegelp/tanglegram.

Contact: carl.f.berg@ntnu.no

1 Introduction

A common strategy to visually compare two different dendrograms
relative to the same sets of terminal vertices is by using tanglegrams,
i.e. comparative drawings (embeddings) of a pair of dendrograms,
side-by-side, with matching objects connected by straight-line seg-
ments called inter-tree edges (Andreas et al., 2012). A crossing
occurs in a tanglegram when two inter-tree edges intersect, while
there is no crossing inside the individual trees. The number of cross-
ings, in its turn, depends on the layout (also known as drawing) of
the two dendrograms in the tanglegram. In practical terms, layouts,
which lead to a high number of crossings are harder to interpret
(Andreas et al., 2012). This calls for finding a drawing of the tangle-
gram with as few crossings as possible. Finding a tanglegram layout
(TL) of two trees that produces zero crossings, sometimes referred
to as a drawable layout (Fernau et al., 2010), is known as the planar
embedding problem (Andreas et al., 2012). It is known that every
pair of trees of size smaller or equal to three has a drawable layout
(Fernau et al., 2010). However, only special cases allow for a layout
with zero crossings. The problem of finding a graphical layout of

two trees that gives the minimum number of crossings is known as
the TL problem (Bansal et al., 2009), or the two-tree crossing mini-
mization (TTCM) problem (Fernau et al., 2010). The TTCM prob-
lem is known to be NP-complete, meaning that there is no known
algorithm to solve this problem in polynomial time with the tree
size, but only in exponential time (Fernau et al., 2010).

When one tree is fixed, the problem above is referred to as the
one-tree crossing minimization (OTCM) (Fernau et al., 2010). For
arbitrary trees, the OTCM problem can be solved in Oðn log nÞ time
(with n the number of leaves) as in Venkatachalam et al. (2009) and
Fernau et al. (2010). Bansal et al. (2009), instead, presented an
Oðn log 2n= log log nÞ algorithm for a generalized tanglegram.

A heuristics-based algorithm to tackle the TTCM problem was
proposed in Dwyer and Schreiber (2004). Here, the authors repeat-
edly solve the OTCM problem for each tree, and eventually provide
2:5D graphical representations of the results. Another approxima-
tion algorithm for complete tanglegrams is provided in Buchin et al.
(2009).

The TTCM for binary trees problem was shown in Fernau et al.
(2010) to be fixed parameter tractable (FPT) with parameter k (the

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2022, 1–7

https://doi.org/10.1093/bioadv/vbac014

Advance Access Publication Date: 28 February 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023

https://orcid.org/0000-0002-9223-8715
https://github.com/schlegelp/tanglegram
https://github.com/schlegelp/tanglegram
https://academic.oup.com/


number of crossings). A number of FPT algorithms have then been
introduced to address the TL problem. For example, an
Oð1:4656k þ kn2Þ FPT algorithm for binary OTCM was introduced
in Dujmovi�c et al. (2008). We also note that the TTCM problem is
solvable in Oð4kn2Þ time if the optimal TL with k inter-tree edge
crossings exists (Buchin et al., 2009).

To the best of our knowledge, the latter and the algorithm in
Dwyer and Schreiber (2004) were first compared against the bb-1st-
sol algorithm (that has a running time of Oðn2Þ) in Nöllenburg et al.
(2009). Another fixed-parameter algorithm for TTCM problem
with a complexity OðcknOð1ÞÞ, where c is estimated to be 1024, was
proposed in Fernau et al. (2010). Besides, Scornavacca et al. (2011)
introduced a heuristic approach that can solve the general case
rooted phylogenetic networks and check if a tanglegram has a layout
of zero crossings.

As shown above, there is a range of different methods for solving
the TL problem. A suite of different algorithms are implemented in
the dendextend package in the R language (Galili, 2015). Such pack-
age allows to visualize and compare trees of hierarchical clustering
by offering a set of functions for extending dendrogram objects in R.
More precisely, this package currently offers the following methods
for solving the TL problem: labels, ladderize, random, DendSer,
step1side and step2side. As shown below, among these methods
step2side is the one that gives the lowest entanglement for our test
cases, however at the highest computational cost. However, even if
performing better in terms of returned entanglement levels, still
step2side may fail in detangling pairs of trees that are detanglable.
Our motivation is thus that of developing untangle methods that
lower the entanglement even further than step2side.

In this article, we then introduce three new concepts: first, an ex-
tension of step1side and step2side that allows for a rotation in both
dendograms simultaneously—a method that is denoted as
stepBothSides. Then, due to the high computational cost of such
stepBothSides method, we propose an additional strategy that shuf-
fles the tanglegrams to obtain new starting positions for the step2-
side approach—a method that is denoted as shufS2S. Finally, we
provide a final method that replaces the step2side method with a
new untanglement strategy—denoted below as Shuffle and
Untangle, and abbreviated with the name ShUnTan (this method is
implemented here: https://github.com/schlegelp/tanglegram). This
latter method aims at eliminating crossings that step2side fails to un-
tangle (at the cost, however, of higher computational requirements
than step2side for small tanglegrams).

The article is organized as follows: we first present fundamental
notations and equations related to dendrograms and tanglegrams in
Section 2. We then present the step2side algorithm in Section 3, and
continue with introducing a new method that utilizes the result of
step2side for further untangling in Section 4. In Section 5, we discuss
the shuffling scheme and how it can improve the step2side method.
We then introduce our proposed approach to sequentially shuffling
the layout in Section 6. In Section 7, we deal with numerical exam-
ples that illustrate the performance of the various methods, and fi-
nally draw some concluding remarks in Section 8, where we also
suggest some further research directions.

2 Preliminaries and notation

In this section, we will present the notation and background needed
for defining the algorithms discussed and proposed in the article.

Dendrograms and tanglegrams: A tanglegram is the visualization of
a pair of dendrograms side-by-side, with matching objects connected
by straight-line segments called inter-tree edges (Andreas et al.,
2012). A dendrogram is a graphical visualization of a linkage ma-
trix, which is a ðn� 1Þ � 4 matrix, here denoted by Z, where the
first two columns of Z store the indices of objects, which are com-
bined to create a new group, the third column stores the distance be-
tween these objects and the fourth column stores how many of the n
original objects end up being in the newly merged group. A toy

example of a linkage matrix resulting from clustering a set of four
objects (i.e. the indexes 1; 2;3 and 4) is

Z ¼
1 2 0:3 2
3 5 0:2 3
4 6 0:7 4

2
4

3
5: (1)

Note that the distance between the objects will not be used in
this article, as we are only interested in the topology of the
dendograms.

A tanglegram is uniquely defined by a matrix L ¼ ½Zl;Zr�, with
Zl and Zr the linkage matrices of the left and right dendrograms. To
such matrices correspond moreover the two sets Vl and Vr, denoting
the n-dimensional vectors of ordered leaf nodes appearing at the
ends of the left and right dendrograms.

As an example, consider the 16 samples from the Iris flower
dataset (Fisher, 1936) that appear as labels in Figure 1. The dendro-
grams on the left and right sides in Figure 1 correspond to clustering
using a single linkage and a complete linkage clustering, respective-
ly. The black lines in the middle represent the tanglegram connecting
these two dendrograms. Each ‘branching’ in each dendrogram (and
its height) reflects the values within the corresponding row in the
linkage matrix. The two side-by-side dendrograms shall be intended
as two distinct outputs of two different clustering algorithms on the
same set of original objects.

Note that in the figures, the leaf nodes vectors Vl and Vr are rep-
resented with labels; actually this is a sort of abuse of notation, since
formally they are ordered sets of Indices 1;2; . . . ; n. The figures typ-
ically substitute then these indexes with the corresponding labels
through an opportunely defined look up table (e.g. in Fig. 1, ‘Setosa
9’ may correspond to Index 1, ‘Setosa 45’ to Index 2, etc.).

Untangling a tanglegram through swapping operations:
Tanglegrams help comparing trees and dendrograms defined on the
same sets of leaves, since they can highlight similarities and dissimi-
larities. However, to aid interpretability, one wishes to minimize the
crossings among the various inter-tree edges in a tanglegram. To do
so one may ‘swap’ two children clusters in an interior vertex in a
dendrogram, an operation that from a graphical perspective corre-
sponds to rotating a sub-tree in one of the dendrograms. Formally
this means opportunely swapping the values of the first two columns
in some of the rows of the linkage matrix. This function, denoted by
XiðZÞ, takes thus the linkage matrix Z as input, and returns an
updated linkage matrix Z0 whose first two elements of the ith row of
Z are swapped. Note that these rotation operations change the
ordered leaf nodes vector V, but do not change the splittings (and
thus the topology) of a dendrogram. In other words, applying a ser-
ies of swaps XiðZÞ’s does not alter the interpretability of the results
of a clustering algorithm.

Fig. 1. An example of a tanglegram obtained by performing a single linkage cluster-

ing (left dendrogram) and a complete linkage clustering (right dendrogram) on 16

samples of the Iris flower dataset (Fisher, 1936)

2 N.V.Nguyen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023

https://github.com/schlegelp/tanglegram


Displacement and entanglement: Minimizing the number of cross-
ings among the inter-tree edges in tanglegrams aids interpretability.
Counting the number of crossings is a Oðn logðnÞÞ problem, where
n is the tree size (Barth et al., 2002). If this operation is repeatedly
performed inside some untangling algorithms, then this could lead
to a significant computational cost. Entanglement is an alternative
measure that may be obtained with a lower computational cost
and that may still indicate how tangled the two dendrograms are
through an index that varies between 0 (drawings with no
crossings) and 1 (a drawing with the worst layout possible) (Galili,
2015).

The definition of entanglement requires the definition of displace-
ment; the displacement of L ¼ ½Zl;Zr� is calculated as the p-norm dis-
tance of Vl and Vr (Galili, 2015) (recall that the labels seen in the
figures actually correspond to natural numbers, so that Vl may be
thought as the vector Vl ¼ ½1;2; . . . ;n� and Vr as a shuffling of these
indexes). For simplicity of treatment, though, in this study, we consider
p¼ 2 (i.e. Euclidean norms).

The entanglement of L, indicated with �ðLÞ, is then the ratio be-
tween its displacement, as defined above, over the worst displace-
ment possible for tanglegrams of that size (i.e. the displacement that
would be obtained when Vr is the inverse of Vl). This ratio guaran-
tees that �ðLÞ 2 ½0; 1�. As an example, the Iris example in Figure 1
has an entanglement of 0.207.

3 The step2side algorithm

As said above, untangling helps interpretability. However, untan-
gling by hand is time consuming and prone to suboptimal results (as
a riddle, the interested reader may try to untangle the tanglegram in
Fig. 1). A series of algorithms that automate this task are imple-
mented in the R package dendextend (see Galili, 2015), among with
functions and tools for manipulating dendrograms structures.
Among the six untangle methods implemented in this R package, to
the best of our knowledge, the most effective and commonly used
one is the so-called step2side.

For the pseudo-code of this algorithm and for subsequent devel-
opments, we will use a function nðL1; . . . ;LmÞ that selects the tangle-
gram with the smallest entanglement among a set of m candidates.
Formally,

n : fL1; . . . ;Lmg7!arg min
L
�ðLÞ: (2)

The step2side method basically executes three main steps, start-
ing from an original tanglegram L0 ¼ ½Zl;Zr�:

Step 1: create new alternative TLs where the left dendrogram Zl is

unchanged, while the right dendrogram layout Zr is altered

by rotating one after the other the inner branches via the

use of XiðZrÞ, with 1 � i � n� 1. If �ð½Zl;XiðZrÞ�Þ
< �ð½Zl;Zr�Þ, then Zr is replaced by XiðZrÞ, thus

½Zl;Zr� ¼ nð½Zl;Zr�; ½Zl;XiðZrÞ�Þ.
Step 2: similar to Step 1, but this time keeping the right dendrogram

Zr unchanged and rotating the left one, and then compute

the new entanglement level: ½Zl;Zr� ¼ nð½Zl;Zr�;
½XiðZlÞ;Zr�Þ 8i 2 ½1;n� 1�.

Step 3: repeat Steps 1 and 2 until the entanglement does not reduce

any further (i.e. the algorithm has found a local optimum).

As an example, applying step2side to the tanglegram in Figure 1
leads to the result in Figure 2. We can note that step2side reduces
the entanglement value from 0.207 to 0.185, which could be consid-
ered marginal. It is also hard to distinguish the difference in com-
plexity of the two tanglegrams from a visual inspection. Moreover,
one can notice that step2side did not find the best layout possible,
since the entanglement can be decreased further by simultaneously
rotating clusters at the root of the left dendrogram and at the second
last interior vertex of the right dendrogram, as also specified in the

caption of the figure. This indicates that in general step2side reaches
local minima, and thus there is room for potential improvements.

The step2side algorithm presented above may stop in local op-
tima: to prove this, consider Figure 3, with a tanglegram L ¼
½Zl;Zr� consisting of three objects, A, B and C [thus, a tanglegram
for which the optimal layout with zero crossing exists (Fernau
et al., 2010)]. Starting from the initial layout of Figure 3, the zero
crossing layout can be found by first rotating the left tree at its
root, and then rotating the green split in the right diagram. In
other words, the optimum may be found first performing a ‘shuf-
fling’ operation, and then applying the step2side algorithm. This
realization leads to the consideration that it may be beneficial to
carry on an additional ‘shuffle’ step, where two swaps are per-
formed simultaneously. This consideration leads then to the first
algorithm we propose in this manuscript, formalized in details in
Section 5.

4 The stepBothSides algorithm

Recall the simple example in Figure 3, where the zero entanglement
layout can be found by first swapping the left tree at the root and
then applying step2side. Inspired by this improvement, below we ex-
tend step2side into a new algorithm that introduces an additional
step rotating both sides simultaneously. The new algorithm thus still
uses step2side to reduce the entanglement before applying the more
computationally costly rotation at both sides. This algorithm will be
referred to as stepBothSides, to highlight the similarity and distinc-
tions from step2side.

Consider receiving the same input tanglegram as step2side, i.e.
L0 ¼ ½Zl;Zr�. The stepBothSides algorithm performs then the fol-
lowing steps:

Fig. 2. The resulting TL after using step2side on the layout shown in Figure 1.

Applying the method lowers the entanglement to a value of 0.185. However, this

may be lowered even further by simultaneously applying X14ðZlÞ (i.e. swapping the

‘virginica’ and ‘versicolor’ blocks in the left dendrogram by rotating the second

splitting, denoted by the left yellow dot) and X15ðZrÞ (i.e. swapping also the ‘virgin-

ica’ and ‘versicolorþsetosa’ blocks in the right dendrogram by rotating the first split-

ting, denoted by the right dot). This highlights that step2side suffers from stopping

in local optima

Fig. 3. A simple tanglegram of three objects showing the limitation of step2side al-

gorithm, that indeed fails in finding the 0 crossing TL given that the initial layout is

not shuffled

Shuffle & untangle 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023



Step 1: run the step2side algorithm until convergence;

Step 2: create new alternative tanglegrams Lij ¼ ½XiðZlÞ;XjðZrÞ�
for all 1 � i � n� 1 and 1 � i � n� 1. Whenever

�ðLijÞ < �ðL0Þ, then replace L0 with Lij, i.e.

L0 ¼ nðL;LijÞ8i; j 2 ½1;n� 1�.
Step 3: repeat Steps 1 and 2 until the entanglement does not reduce

any further.

Step 2, that represents an addition to the step2side algorithm,
helps exiting the basin of attraction of the local optima encountered
in the examples shown in Figures 2 and 3. Indeed, applying
stepBothSides on the tanglegram in Figure 1 leads to the result
shown in Figure 4—a tanglegram with zero crossings, thus, an en-
tanglement value of 0.

This improvement comes though at a significant computational
cost. Indeed, while the number of layouts to test in Step 1 is 2n, the
number of test cases in Step 2 is n2. Step 1 is similar to the step2side
algorithm and thus has a similar computation cost from an order of
OðnÞ operations. Considering though Step 2 above, the overall num-
ber of test cases for stepBothSides is of the order Oðn2Þ.

One may also generalize stepBothSides as follows: instead of
rotating two, one may rotate four branches simultaneously. This
would increase the computational cost even further, with the num-
ber of entanglement calculations of the order of Oðn4Þ, but at the
same time this would add flexibility in the search for the global
optimum.

The generalization above may be pushed even further, with even
more branches rotating simultaneously. This would though lead to a
growth in the computational costs that may make this class of algo-
rithms prohibitive for larger tree sizes. Inspired by these considera-
tions, in the next sections, we thus introduce iterative algorithms
that test deeper into the tree only when increasing such exploration
depth shows potential for improvements.

5 The shufS2S algorithm

As mentioned at the end of Section 3, adding an additional ‘shuffle’
step to the step2side algorithm can aid reaching lower entanglement
levels. In other words, inspired by the same considerations motivat-
ing the stepBothSides, the intuition is that allowing for swaps in
both tanglegrams simultaneously may increase the chance of reach-
ing better entanglement minima. Though, this shuffling means start-
ing the untangling process from four possible TLs, increasing the
computational cost. Moreover, shuffling for all possible internal
connections in the two tanglegrams, would make the computational
cost prohibitive. There is the need therefore for a heuristic that pre-
vents excessive computational loads. Our proposal is then to start
shuffling at the nodes near the roots of the two trees, and continue
step-wise away from the root with an increasing number of shuffle

operations if an improvement is observed, otherwise stop this
process.

This intuition is the backbone of the algorithms detailed in the
remainder of the article, where we introduce the ‘shuffle’ step
above in two different ways, and describe how this type of step
can be combined with step2side algorithm. We start with a first
approach, referred as the shuffle and step2side algorithm (or
shufS2S algorithm). To detail the method, we start by defining
some ancillary functions invoked in the various individual steps
of this algorithm.

5.1 Ancillary functions
Both the shufS2S and ShUnTan methods (the latter to be introduced
in the next section) leverage the following set of functions:

1. The shuffle operation lijðLÞ, that takes as input a tanglegram L

and returns four different tanglegrams, corresponding to rotating

the left dendrogram at vertex i or not (i.e. applying or not XiðZÞ
on the left) and rotating the right dendrogram at vertex j or not

(i.e. applying or not XjðZÞ on the right dendrogram). Formally,

lijðL ¼ ½Zl;Zr�Þ ¼

L1 ¼ L ¼ ½Zl;Zr�;
L2 ¼ ½XiðZlÞ;Zr�;
L3 ¼ ½Zl;XjðZrÞ�;
L4 ¼ ½XiðZlÞ;XjðZrÞ�

8>><
>>:

9>>=
>>;
: (3)

When i ¼ j, we simply denote the function as li;

2. The function sði;ZÞ, which returns the location of node i in the

dendrogram Z (in other words, at which row of Z the object i

appears). As an example, if Z is given by the matrix in (1), then

sð5;ZÞ ¼ 2. Formally,

sði;ZÞ ¼ t where t is s:t:Z½t; 1� ¼ i or Z½t; 2� ¼ i: (4)

5.2 The shufS2S in pseudo-code
Starting with the tanglegram L0 ¼ ½Zl;Zr�, the shufS2S algorithm
contains the following steps:

Step 1: initiate m ¼ 0 and Lð0Þini ¼ fL0g. The physical meaning of the

parameter m will be further discussed in Subsection 6.2;

Step 2: increase m by 1 and shuffle all TL(s) in Lðm�1Þ
ini , i.e.

Li 2 Lðm�1Þ
ini , at the ðn�mÞth interior vertex by using the

swap function ln�m

LðmÞini ¼ [
k

i¼1
ln�mðLiÞ; Li 2 Lðm�1Þ

ini ; (5)

where k is the length of Lðm�1Þ
ini ;

Step 3: optimize each shuffled TL in LðmÞini by the step2side algorithm;

Step 4: terminate the algorithm if the increased m does not result in

any improvement or if the current entanglement is zero.

Otherwise, go to Step 2.

Just as with the stepBothSides algorithm, also shufS2S yields zero
entanglement when applied to the Iris example visualized in
Figure 1. However, the increase in computational cost with tree size
is lower for shufS2S, and we will see later that on other datasets it
tends to give lower entanglements. Due to their similarities, we will
discuss the application and computational cost of the shufS2S algo-
rithm together with the discussion on the algorithm introduced in
the next section.

6 The shuffle & untangle algorithm

The example visualized in Figure 3 highlighted why step2side fails to
untangle the drawn tanglegram. The discussion above also highlighted
that stepBothSides improves the performance of step2side (as in
Fig. 4), and that it may be extended opportunely to gain even more

Fig. 4. The TL after applying stepBothSides on the original layout in Figure 1.

Contrary to step2side, stepBothSides succeeds in achieving zero entanglement

4 N.V.Nguyen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023



flexibility in searching for maximally untangled representations. Due
to the computational cost of stepBothSides, we introduced the shuffle
method in the previous section. In this section, we alter the previous
method by replacing the step2side submethod by a new untangle
method, and call this novel strategy Shuffle & Untangle (abbreviated
later on with ShUnTan). Below we show that this scheme tends to give
slightly better results than shufS2S, however at an increased computa-
tional cost.

6.1 The ShUnTan algorithm in pseudo-code
From a bird-eye viewpoint ShUnTan performs similar steps as in
shufS2S, except for a new untangle scheme in Step 3. More precise-
ly, ShUnTan implements the following operations, starting from an
initial tanglegram L0 ¼ ½Zl;Zr�:

Step 1: initiate m ¼ 0 and Lð0Þini ¼ fL0g;
Step 2: increase m by 1 and shuffle all TL(s) in Lðm�1Þ

ini , i.e.

Li 2 Lðm�1Þ
ini , at the ðn�mÞth interior vertex by using the

swap function ln�m

LðmÞini ¼ [
k

i¼1
ln�mðLiÞ; Li 2 Lðm�1Þ

ini ; (6)

where k is the length of Lðm�1Þ
ini ;

Step 3: optimize each shuffled TL in LðmÞini by an approach will be

explained in detail below to choose the best optimized layout;

Step 4: terminate the algorithm if the target layout is found or the

increased m does not result in any improvement. Otherwise,

go back to Step 2.

We note that Step 3 above builds a new set LðmÞunt by taking each
element in LðmÞini and applying to it two consecutive untangling opera-
tions. More precisely, assume L to be the element in LðmÞini under con-
sideration, and remember the definition of nð�Þ in (2). Then:

Substep 3.1: (symmetric optimization) Find the optimal layout
L0 by optimizing the layout L as

Lð1Þ ¼ n
�
l1ðLÞ

�
(7a)

Lð2Þ ¼ n
�
l2ðLð1ÞÞ

�
(7b)

..

.

L0 ¼ Lðn�m�1Þ ¼ n
�
ln�m�1ðLðn�m�2ÞÞ

�
: (7c)

After (7c), assign L0 to L and repeat this sequence of equations
until no further improvements can be made. Note that the operator
l is executed in the opposite direction of how it was used to find
LðmÞini , starting from the leaves l1 and moving towards the root. Also,
the rotations li happen simultaneously at the same interior vertices
for both the dendrograms. This is different from step2side and
stepBothSides, where the former applies rotations to only one tree,
while the later rotates both trees at all pairs of vertices;

Substep 3.2: (asymmetric optimization) build the new temporary
set LðmÞ0 starting from L0 computed in the substep above and operat-
ing as follows:

a. for every object k ¼ 1; . . . ;n (i.e. for each individual leaf node)

find sðk;ZlÞ and sðk;ZrÞ (note that these indices may be different

in the two dendrograms of L0);

b. for each couple of such indexes sðk;ZlÞ and sðk;ZrÞ compute a

new tanglegram through the asymmetric rotations function

lsðk;ZlÞ;sðk;ZrÞðL0Þ;
c. repeat the two steps above until the resulted layout is unchanged

in two consecutive iterations, and then update LðmÞ0 to be this

final layout.

The asymmetric rotation was introduced after observing that it

could lead to further improvements;

Substep 3.3: add the best element in LðmÞ0 to the set LðmÞunt .
Just as with stepBothSides and shufS2S, also shUnTan yields

zero entanglement when applied to the Iris example visualized in
Figure 1. However, its computational cost is even higher than the
one from shufS2S.

6.2 Some comments on the parameter m used in

shufS2S and ShUnTan
The index m is likely the most relevant parameter among the ones
characterizing algorithms embedding the ‘shuffle’ step, and it
plays a key role in defining how large the search space is. In Step 2
of both shufS2S and ShUnTan, the starting value of m is 1, mean-
ing that both algorithms first consider all the potential swappings
at the root of the two dendrograms, getting thus Lð1Þini including
four different layouts. By increasing m by 1 (and thus iterating
Step 2), we take each of the four layouts in Lð1Þini , considering all
the potential swappings at the second last vertex of the two den-
drograms, getting thus a Lð2Þini that includes 16 layouts, and so on.
Note that this means shuffling starting from the outer sides of the
tanglegram (ln�1) and continuing towards its leafs. Briefly put, m
indicates how far we shuffle the tanglegram from the root. For
ShUnTan, moreover, m defines also how deep the algorithm
should untangle the shuffled layouts starting from the first interior
vertex. More precisely, m has the following simultaneous roles for
every L in LðmÞini :

1. during the initialization m defines the number of interior vertices

that will be shuffled in the following steps;

2. during the shuffling performed in Step 2, m affects the usage of

the function l [that in its turn shuffles the TL L0 at m interior

vertices from the root to get a set of 4m different TLs including

the layout L0, see Equation (6)];

3. during the optimization process performed in Step 3, m reveals

the amount of interior vertices (i.e. n� 1�m) that are not

examined in Step 2, and thus determines the number of times the

Equations (7a)–(7c) are being computed;

4. m does however not impact the asymmetric optimization pro-

cess, as this optimization step scans through all the potential

labels independently of m.

We also note that increasing m reduces the number of times the
operations in (7a)–(7c) are executed, but increases the number of
permutations to be computed in Step 2. Importantly, it is possible to
pre-set a limit to the computational costs by introducing a cut-off
value m that terminates the execution of the algorithm when m
increases too high. This is an additional possibility compared to
stepBothSides, as both these algorithms suffer from a steep increase
in computational time with the size of the trees. For the cases, we
tested the algorithm converged before reaching high values of m,
typically for m around 2 or 3. However, we note that some outliers
with higher values of m occurred, with associated high computation-
al cost. We note that it is immediate to force the algorithm to con-
tinue to higher values of m and check whether the overall results
improve; however, it is outside the scope of this article investigating
automatic strategies for determining optimal m-values from the
data.

7 Experimental results

Figure 5 indicates step2side as the best (in terms of lowest reached
entanglement levels) method in the dendextend R package, at the
highest computational cost. As shown in the same plot, the compu-
tational cost for shUnTan is even higher for this example with 20
leaves. We also recall that applying step2side to the motivating ex-
ample in Figure 1 led to the result shown in Figure 2, while applying

Shuffle & untangle 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023



stepBothSides led to Figure 4 with a drawable layout. As with
stepBothSides, also shufS2S and ShUnTan reach the global opti-
mum, a situation for which there is zero entanglement, i.e. a draw-
able layout.

We are thus interested in characterizing when our introduced meth-
ods yield a lower entanglement than step2side. To this aim, we per-
formed an experimental comparison using Wisconsin Breast Cancer
Database as a primary source of information (Wolberg and
Mangasarian, 1990). More precisely, the experiment was performed
on various trees sizes. For each of them (20, 40, 60 and so on), we then
consider 40 different tanglegrams obtained implementing single and
complete hierarchical clustering obtained using random samples from
the Wisconsin Breast Cancer Database. We note that the actual source
of data is irrelevant for the purpose of comparing ShUnTan against
other untangle algorithms, since the unique object that is manipulated
by these methods is actually the topology of the resulting dendrograms
(in other words, we used the Breast Cancer Database as a proxy to gen-
erate 40 random initial tanglegrams for a range of different leaf sizes).
We then compare the entanglement values and average execution time
for step2side, stepBothSides, shufS2S and ShUnTan.

Figure 6, that plots the average entanglement levels obtained for
each untangle method for different dendrograms sizes, shows that the
step2side method returns the highest entanglements amongst all
studied algorithms. These entanglements are clearly lowered by other
methods. In particularly, for small tree sizes, i.e. 20, 40 and 60 leaves,
stepBothSides tends to improve the results of step2side most effectively.
For larger trees, the algorithms embedding the shuffle step tend to give

better results than step2side and stepBothSides. Between shufS2S and
ShUnTan, the latter is markedly better than the former for small tree
sizes, while such difference vanishes as the tree sizes enlarges.

A reasonable explanation for why the two algorithms embedding
the shuffling step, i.e. shufS2S and ShUnTan, typically achieve a bet-
ter final entanglement is that they use a more thorough strategy to
optimize the entanglement value. As mentioned before, step2side
only optimizes the original TL, while shufS2S and ShUnTan first
generate a set of TLs from the original tanglegram by shuffling it at
one or several interior vertices from the root, and then optimize
every single TL in this set. Thus, shufS2S and ShUnTan also examine
layouts that may be obtained by changes that actually lead to larger
entanglements, and this enables them to exit local minima. step2side
is not provided with this capability, and by considering successions
of TLs whose entanglement is smaller and smaller it is more prone
to local optima, as the search path cannot switch to layouts that
might provide a path to more optimal layouts.

Figure 7 shows the average computational time for the different
algorithms and tree sizes, and highlights that all the introduced algo-
rithms have higher computational cost than step2side. The figure
moreover shows that the costs associated to the non-shuffling meth-
ods follow a power law trend—a phenomenon to be discussed below.

In terms of execution times, we first note that the average com-
putational time for stepBothSides grows one order faster than step2-
side, i.e. as Oðn3:08Þ, compared to Oðn1:95Þ, as shown in Figure 8.
Note that the slope values are dependent on the dataset, as we
obtained slightly different slopes when we used the Iris dataset. This
is in line with the number of test cases, being Oðn2Þ for
stepBothSides versus OðnÞ for step2side.

The computational cost of the two algorithms embedding the
shuffling steps is not as easily analysable, as the computational time
is heavily dependent on the depth given by the parameter m.

Fig. 5. Comparison of the optimal entanglements and average execution times of the

existing untangle methods in the dendextend R package. The dots inside the box-

plots represent the average values of each group of optimal entanglements computed

with each method. The experiment was carried on 100 random tanglegrams stem-

ming from the Iris flower dataset (Fisher, 1936)

Fig. 6. Average optimized entanglement of 40 random tanglegrams generated from

the Wisconsin Breast Cancer Database (Wolberg and Mangasarian, 1990) as a func-

tion of the number of leaves (from 20 to 300)

Fig. 7. Empirical average computational time to obtain the optimized entanglement

values, computed from the information plotted in Figure 6

Fig. 8. Average computational time for the step2side and stepBothSides methods, to-

gether with fitted slopes in log–log space

6 N.V.Nguyen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023



Figure 9 plots the average m-value for the two shuffling algorithms
for different tree sizes, and shows that after an initial rise, the aver-
age m-value seems to stabilize.

Plotting then the computational time for subsets with different m-
values, it is possible to note that such computational times follow specif-
ic power laws. Figure 10, that plots the computational time for shufS2S
for two different m-values, shows indeed that both slopes are lower
than the slope for stepBothSides, which indicates that shufS2S will over-
take stepBothSides in computational efficiency if the average m-value is
stable. Indeed, the shufS2S algorithm has typically a lower computa-
tional cost than stepBothSides from around 60 leaves.

Moreover, the ShUnTan algorithm associates to slopes of 2.00
and 2.02 for m ¼ 2 and 3, respectively. Such slopes are lower than
the ones associated to shufS2S, and this indicates that the former
typically requires lower computational times for larger tree sizes.
However, cross-overs were not observed up to a tree size of 300.
Finally, while the computational cost of ShUnTan is higher than
shufS2S for our data, it has lower computational cost than
stepBothSides for the largest tree sizes in our dataset.

8 Conclusions

This study introduced a few alternative algorithms to address the TL
problem, and compared them against existing untangle methods
available in R (in particular step2side, that was selected as a bench-
mark as it was the best performing algorithm among the existing
ones in R for our test sets).

We highlighted how, despite being selected as benchmark, step2-
side may perform poorly and stop in local minima with high en-
tanglement values also on simple tanglegrams. We thus identified
how to enhance it by introducing opportune steps that enable exit-
ing combinations associated with local minima. Summarizing, the

critical point, we identified was the need for introducing methods
swapping vertices in the two trees simultaneously.

Such swapping steps were then implemented by our proposed algo-
rithms, stepBothSides, shufS2S and ShUnTan, all of which were shown
capable of untangling crossings that step2side fails to eliminate.
Unfortunately, the lower entanglements obtained by these new methods
come at a high computational cost relative to the step2side method.

More precisely, our findings suggest that the ShUnTan algorithm
produces the lowest entanglement values among all these algo-
rithms. The stepBothSides method instead tends to perform better
than ShUnTan for networks up to around 60 leaves, and gradually
worse as the size increases—but still better than step2side. The com-
putational requirements of stepBothSides reflect the same structure:
it is smaller than the shuffling methods up to around 60 leaves, after
which it is overtaken by the shufS2S algorithm first, and later by the
ShUnTan algorithm too. The novel proposed algorithms are thus
deemed to be useful in situations where users are most interested in
obtaining a better final result than having fast computations.
Moreover, if time requirements are not an issue, then ShUnTan is
preferrable for larger tree sizes.

Future works include the characterization of the trade-offs intro-
duced by the parameters that define the novel algorithms, and find
implementation strategies that may reduce their computational costs
without leading to adverse effects on their final results.

Acknowledgements

This research is a part of BRU21—NTNU Research and Innovation Program

on Digital and Automation Solutions for the Oil and Gas Industry (www.

ntnu.edu/bru21).

Funding

This work was supported by the Research Council of Norway [Centers of

Excellence funding scheme, project number 262644, PoreLab to C.F.B.].

Conflict of Interest: none declared.

References

Andreas,W. et al. (2012) Generalized k-ary tanglegrams on level graphs: a

satisfiability-based approach and its evaluation. Discret. Appl. Math., 160,

2349–2363.

Bansal,M.S. et al. (2009) Generalized binary tanglegrams: algorithms and

applications. Bioinform. Comput. Biol., 14–125.

Barth,W. et al. (2002) Simple and efficient bilayer cross counting. Graph

Drawing, 130–141.

Buchin,K. et al. (2009) Drawing (complete) Binary Tanglegrams: Hardness,

Approximation, Fixed-Parameter Tractability. Springer-Verlag, Berlin,

Heidelberg.

Dujmovi�c,V. et al. (2008) Fixed parameter algorithms for one-sided crossing

minimization revisited. J. Discrete Algorithms, 6, 313–323.

Dwyer,T. and Schreiber,F. (2004) Optimal leaf ordering for two and a half di-

mensional phylogenetic tree visualisation. In: Australasian Symposium on

Information Visualisation. Christchurch, New Zealand. pp. 109–115.

Fernau,H. et al. (2010) Comparing trees via crossing minimization. J.

Comput. Syst. Sci., 76, 593–608.

Fisher,R.A. (1936) The use of multiple measurements in taxonomic problems.

Ann. Eugen., 7, 179–188.

Galili,T. (2015) dendextend: an R package for visualizing, adjusting and com-

paring trees of hierarchical clustering. Bioinformatics, 31, 3718–3720.

Nöllenburg,M. et al. (2009) Proceedings of the Workshop on Algorithm

Engineering and Experiments, ALENEX. Christchurch, New Zealand. pp.

106–119. https://doi.org/10.1137/1.9781611972894.11.

Scornavacca,C. et al. (2011) Tanglegrams for rooted phylogenetic trees and

networks. Bioinformatics, 27, i248–i256.

Venkatachalam,B. et al. (2009) Untangling tanglegrams: comparing trees by

their drawings. Bioinform. Res. Appl., 5542, 88–99.

Wolberg,W.H. and Mangasarian,O.L. (1990) Multisurface method of pattern

separation for medical diagnosis applied to breast cytology. Proc. Natl.

Acad. Sci. USA, 87, 9193–9196.

Fig. 9. Average m-value versus tree size for the two shuffling algorithms

Fig. 10. Computational time of shufS2S with different values of m, together with

the times associated to stepBothSides

Shuffle & untangle 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac014/6539778 by N
orw

egian U
niv of Sci & Tech user on 23 January 2023

http://www.ntnu.edu/bru21
http://www.ntnu.edu/bru21
https://doi.org/10.1137/1.9781611972894.11

