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Abstract. The purpose of this paper is to use the filtration that appeared

in Ru and Vojta [Amer. J. Math. 142 (2020), pp. 957-991] to extend the
result of Blum-Jonsson [Adv. Math. 365 (2020), p. 57], as well as to ex-
plore some connections between the notion of the K-stability and Diophantine
approximation, especially the β-constant and the Ru-Vojta’s theorem.

1. Introduction

The notion of the K-stability of Fano varieties is an algebro-geometric stability
condition originally motivated by studies of Kähler metrics. When the base field is
the complex number field, it was recently established that the existence of positive
scalar curvature Kähler-Einstein metric is actually equivalent to the K-stability
condition, by the works of [Tia97], [Don02], [B16], and others, including the recent
celebrated result [CDS15a], [CDS15c]. This equivalence had been known before as
the Yau-Tian-Donaldson conjecture (for the case of Fano varieties).

The original notion of K-stability in [Tia97], [Don02] is defined in terms of the
sign of the generalised Futaki invariant on all test configurations or at least on
some special test configurations (see [LX14]). Recently, there has been tremendous
progress in reinterpreting K-stability in terms of invariants associated to valuations
rather than test configurations. More specifically, in [BHJ17], the data of a test
configuration was translated into the data of a filtration and it was shown that a
nontrivial special test configuration yields a divisorial valuation. In 2016, K. Fujita
[Fuj16] introduced divisorial stability: Let X be a Q-fano variety, i.e., a projective
variety over the complex number field which has at worst klt singularities such that
the anticanonical divisor −KX of X is ample (as Q-divisor). The pair (X,−KX)
is said to be divisorially stable (resp. semi-) if the value

η(D) := Vol(−KX)−
∫ ∞

0

Vol(−KX − tD)dt

satisfies η(D) > 0 (resp. η(D) ≥ 0) for any nonzero divisor D on X. Fujita [Fuj16]
showed that ifX isK-(semi) stable, then it is divisorially (semi) stable. Later, based
on the work of [LX14], K. Fujita [Fuj19] and C. Li [Li17] independently proved that
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the K-(semi) stability and divisorial (semi) stability are indeed equivalent if one
goes to the birational model and modifies the constant to

η̃(E) := AX(E) Vol(−KX)−
∫ ∞

0

Vol(−KX − tE)dt

for any prime divisors E over X, i.e. they are prime divisors on a birational model
π : Y → X, where AX(E) := 1 + ordE(KY/X) is the log discrepancy. Namely, For
Q-Fano X, X is K-stable (resp. semi-) if and only if η̃(E) > 0 (resp. η̃(E) ≥ 0)
for any prime divisors E over X. If we denote, for a line bundle L and a Cartier
divisor D,

(1) β(L,D) :=
1

Vol(L)

∫ ∞

0

Vol(L− tD)dt,

then it states: For Q-Fano X, X is K-stable (resp. semi-) if and only if AX(E)
β(−KX ,E) >

1 (resp. ≥ 1) for any prime divisors E over X. In [BJ20] (see also [FO18]), Blum-

Jonsson introduced the stability threshold δ(L) = infE
AX(E)
β(L,E) = limm→∞ δm(L),

where δm(L) := inf{lct(D) | D ∼Q L of m-basis type}. The result is re-formulated
as follows: For Q-Fano X, X is K-stable (resp. semi-) if and only if δ(−KX) > 1
(resp. δ(−KX) ≥ 1).

The β-constant β(L,D) defined in (1) played an important role in Diophantine
approximation (see [MR15], [RV20]). In particular, Ru-Vojta [RV20] proved the
following result, which is viewed as an extension of Schmidt’s subspace theorem
(for notations, see [RV20]).

Theorem A ([RV20]). Let X be a projective variety, and D1, . . . , Dq be effective
Cartier divisors, both defined over a number field k. Assume that D1, . . . , Dq in-
tersect properly on X. Let S ⊂ Mk be a finite set of places on k. Let L be a big
line sheaf on X. Then, for every ε > 0, there is a proper Zariski-closed subset Z of
X such that the inequality

(2)

q∑
j=1

β(L,Dj)mS(x,Dj) ≤ (1 + ε)hL(x)

holds for all x ∈ X(k) outside of Z.

The proof of Theorem A uses the m-basis type divisor chosen from a filtration
which is similar to, but more sophisticated than, the filtration used in the paper of
Blum-Jonsson [BJ20]. This filtration used in [RV20] is multi-variable which allows
us to deal with the divisors D1+ · · ·+Dq, where D1, . . . , Dq are in general position,
rather than a single divisor in the case of Blum-Jonsson [BJ20]. The purpose of this
paper is to use this filtration to extend the result of Blum-Jonsson [BJ20], as well
as to explore some connections among these areas. In the last section, we explore
the relation between the constant β(L,D), the Seshadri constant ε(L,D) and the
pseudo-effective constant T (L,D), and use the relation to derive some corollaries
of Theorem A.

2. The Okounkov body and the β-constant

We work on the field C although the results hold for any algebraically closed
field with characteristic zero. Throughout the paper, we use X to denote a normal
projective variety of dimension n.
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The β-constant. Let L be a big line bundle (we also regard L as a line sheaf or
a Cartier divisor) and let D be a nonzero effective Cartier divisor on X. In [RV20]
(see also [MR15]), the following constant was introduced

(3) β(L,D) = lim inf
m→∞

∑
j≥1 dimH0(X,mL− jD)

m dimH0(X,mL)
.

The β-constant appeared in Theorem A above.

The volume function. The volume of L is defined by

Vol(L) = lim sup
m→∞

dimH0(X,mL)

mn/n!
.

Notice that Vol(kL) = kn Vol(L) so the volume function can be extended to Q-
divisors. Also note that the volume function depends only on the numerical class
of L, so it is defined on NS(X) := Div(X)/Num(X) and extends to a continuous
function on NS(X)R. By using the theory of Okounkov bodies described below, one
can prove (see Theorem 2.5) that the lim inf in (3) is indeed a limit when L is big,
and that β(L,D) can be expressed through the notion of volume function as in (1).

Okounkov bodies of a graded linear series of L. An Okounkov body Δ(L) ⊂
Rn (where n = dimX) is a compact convex set designed to study the asymptotic
behavior of H0(X,mL), as m → ∞. They have the crucial property that Vol(Δ) =

limm→∞
dimH0(X,mL)

mn = Vol(L)
n! . More generally, one can also attach to a graded

linear series of L, i.e. V• =
⊕

m Vm ⊂
⊕

mH0(X,mL), a convex body Δ (V•) ⊂ Rn

such that

Vol (Δ (V•)) = lim
m→∞

dimVm

mn
.

Here is the detailed description. Let L be a big line bundle on X. Fix a system
z = (z1, . . . , zn) of parameters centered at a regular closed point ξ of X. It gives a
rank-n valuation

ordz : OX,ξ\{0} → Nn

centered at ξ as follows: expand f ∈ OX,ξ as a power series

f =
∑
α∈Nn

aαz
α

and set
ordz(f) = min

lex
{α ∈ Nn | aα 	= 0},

where the minimum is taken with respect to the lexicographic order on Nn. This
extends to holomorphic section s ∈ H0(X,L) with the basic property that each
graded piece has

(4) dim ({s ∈ W, ordz(s) ≥lex α}/{s ∈ W, ordz(s) >lex α}) ≤ 1

for each subspace W ⊂ H0(X,L). Indeed, given s1, s2 with ordz(s1) = ordz(s2) =
α, we have sj = cjz

α+ (high order terms), and it immediately follows that s1, s2
are linearly independent modulo {ordz > α} (see also Lemma 1.3 in [LM09]). Note
that (4) implies in particular that #(ordz(W \ {0})) = dimW.

Let V• =
⊕

m Vm ⊂
⊕

m H0(X,mL) be a nonzero graded linear series. For
m ∈ N, by (4), the subset Γm = Γm(V•) := ordz(Vm \ {0}) has cardinality dimVm.
One associates to V• a semigroup

Γ (V•) :=
{
(m,α) ∈ Nn+1| α ∈ Γm

}
.
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Let Σ = Σ (V•) ⊂ Rn+1 be the closed convex cone generated by Γ(V•). The
Okounkov body of V with respect to z is given by

Δ = Δz (V•) = {α ∈ Rn|(1, α) ∈ Σ} .
This is a compact convex subset of Rn.

Remark. The Okounkov body of V depends on the choice of the system of param-
eters z. But the properties we are concerned about are independent of z.

For m ≥ 1, let ρm be the atomic positive measure (called the Duistermaat-
Heckman measure) on Δ given by

ρm = m−n
∑

α∈Γm

δm−1α

The following result is a special case of Theorem 1.12 in [Bo14].

Theorem 2.1 ([Bo14], Theorem 1.12). Assume that V• contains an ample series,
i.e. L = A+E (as Q-divisor) with A being Q-ample and E being effective such that
H0(X,mA) ⊂ Vm ⊂ H0(X,mL). Then its Okounkov body Δ ⊂ Rn has nonempty
interior, and we have limm→∞ ρm = ρ in the weak topology of measures, where ρ
denotes the Lebesgue measure on Δ ⊂ Rn. In particular, the limit

(5) Vol (V•) := lim
m→∞

n!

mn
dimVm ∈ (0,Vol(L)]

exists, and equals n! Vol(Δ).

Filtrations. We apply the above results to a special graded linear series V• which
is associated to a filtration F . By a filtration F on R(X,L) :=

⊕
m Rm we mean a

family FλRm ⊂ Rm of C-vector subspaces of Rm for m ∈ N and λ ∈ R+, satisfying

(F1) FλRm ⊂ Fλ′
Rm when λ ≥ λ′;

(F2) FλRm =
⋂

λ′<λ Fλ′
Rm for λ > 0;

(F3) F0Rm = Rm and FλRm = 0 for λ 
 0;

(F4) FλRm · Fλ′
Rm′ ⊂ Fλ+λ′

Rm+m′ .

A simple example of a filtration is given by

(6) FλRm := H0(mL− λD),

where D is an effective Cartier divisor on X. Here we use the following convention:
for λ ∈ R+ and j ∈ N with j ≤ λ < j + 1, we set H0(mL− λD) = H0(mL− jD).

A filtration F on R(X,L) defines a family

(7) V t
• = V F ,t

• =
⊕
m

V t
m

of graded linear series of L, indexed by t, given by V t
m := FmtRm for m ∈ N.

Set

(8) Tm := Tm(F) := sup
{
t ≥ 0 | V t

m 	= 0
}

with the convention Tm = 0 if Rm = 0. By (F4) above,

Tm+m′ ≥ m

m+m′Tm +
m′

m+m′Tm′ .

so Fekete’s Lemma implies that the limit

(9) T (F) := lim
m→∞

Tm(F) ∈ [0,+∞]
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exists, and equals supm Tm(F). Hence

(10) T (F) = sup
{
t ≥ 0|Vol

(
V t
•
)
> 0

}
,

because V t
• contains an ample linear series for any t < T (F) (see [BC11, Lemma

1.6]), and hence, by using Theorem 2.1, Vol (V t
• ) = limm→∞

n!
mn dimV t

m. We say
that the filtration F is linearly bounded if T (F) < ∞.

Let Δ = Δ(L) ⊂ Rn be the Okounkov body of R(X,L). The filtration F of
(R,L) induces a concave transform

(11) G = GF : Δ → R+

which is given by G(α) = sup {t ∈ R+|α ∈ Δt}, where Δt = Δ(V t
• ) ⊂ Rn is the

Okounkov body associated to the graded linear series V t
• ⊂ R(X,L). Note that,

for t′ > t ≥ 0, we have Δt ⊃ Δt′ , and Δ0 = Δ and Δt = ∅ for t > T (F). It is
easy to see that {G ≥ t} = Δt for 0 < t < T (F). Thus G is a concave, upper
semicontinuous function on Δ with values in [0, T (F)]. As noted in the proof of
[[BKMS15], Lemma 2.22], the Brunn-Minkowski inequality implies:

Proposition 2.2. The function t 
→ Vol(V t
• ) is non-increasing and concave on

[0, T (F)]. As a consequence, it is continuous on R+, except possibly at t = T (F).

We define the limit measure μ = μF of the filtration F as the pushforward

μ = G∗ρ.

Thus μ is a positive measure on R+ of mass Vol(Δ) = 1
n! Vol(L) with support in

[0, T (F)]. Theorem 2.1 thus gives Corollary 2.3.

Corollary 2.3 (Corollary 2.4 in [BJ20]). The limit measure μ satisfies

(12) μ = − 1

n!

d

dt
Vol

(
V t
•
)
= − d

dt
Vol

(
Δt

)
and is absolutely continuous with respect to Lebesgue measure, except possibly at
t = T (F), where μ{T (F)} = limt→T (F)− Vol (V t

• ) .

Let Nm := dimH0(X,mL), and let M(L) be the set of m ∈ N for which Nm > 0.
Given a filtration F , consider the jumping numbers

0 ≤ am,1 ≤ · · · ≤ am,Nm
= mTm(F),

defined by, for m ∈ M(L),

am,j = aFm,j = inf{λ ∈ R+ | codimFλRm ≥ j}
for 1 ≤ j ≤ Nm. Note that the non-increasing step functions t 
→ dimF tRm satisfy
the condition that codimF tRm = j if and only if t ∈ (am,j−1, am,j ]. In particular,
we have that

d

dt
dimF tRm = −

Nm∑
j=1

δam,j
.

Define a positive measure μm = μF
m on R+ by

μm =
1

mn

Nm∑
j=1

δm−1am,j
= − 1

mn

d

dt
dimFmtRm.

The following result is [[BC11], Theorem 1.11].
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Theorem 2.4 ([BC11], Theorem 1.11). If F is linearly bounded, i.e. T (F) < +∞,
then we have

lim
m→+∞

μm = μ

in the weak sense of measures on R+.

LetD be an effective Cartier divisor onX, and consider FλRm := H0(mL−λD).
Then,

βm(L,D) : =
1

mNm

∑
j≥1

dimH0(X,mL− jD) =
1

mNm

∑
j≥1

dimFjRm

=
1

mNm

∑
j≥0

j
(
dimFjRm − dimFj+1Rm

)

=
1

mNm

∑
j

aj,m =
mn

Nm

∫ ∞

0

tdμm(t).

Then Theorem 2.4 implies that the limit in the definition of (3) exists, i.e. the limit
limm→∞ βm(L,D) exists when L is big. Moreover,

β(L,D) = lim
m→∞

βm(L,D) =
n!

Vol(L)

∫ ∞

0

tdμ(t)

=
1

Vol(L)

∫ ∞

0

Vol
(
V t
•
)
dt

=
1

Vol(L)

∫ ∞

0

Vol(L− tD)dt =
1

Vol(Δ)

∫
Δ

Gdρ.

We thus derive the main result of this section as follows:

Theorem 2.5. Let X be a normal projective variety of dimension n and L be a
big line bundle on X. Let D be an effective Cartier divisor on X. Then

β(L,D) = lim
m→∞

1

mNm

∑
j≥1

dimH0(X,mL− jD) =
1

Vol(L)

∫ ∞

0

Vol(L− tD)dt

=
1

Vol(Δ)

∫
Δ

Gdρ.

3. The stability threshold introduced by Blum-Jonsson

The log canonical threshold of L. Tian [Tia87] in 1987 introduced α(L), the
log canonical threshold of L, as follows: Let h = e−φ be a singular metric of L with

ΘL,h ≥ 0, where ΘL,h =
√
−1
π ∂∂̄ log φ. Let p ∈ X and define cp(h) = sup{c | e−2cφ

is locally integrable at p }. Define

α(L) = inf
h:ΘL,h≥0

inf
p∈X

cp(h).

Tian [Tia87] proved that, for Q-Fano X, if α(−KX) > n
n+1 , then X is K-stable.

Let D be an effective Cartier divisor on X and [D] be its associated line bundle
over X. Then the canonical section sD of [D] gives a singular metric on [D] with
φ := log |sD|. With the singular metric h := e−φD , we denote lctp(D) := cp(h) and
lct(D) := infp∈X cp(h). lct(D) is called the log canonical threshold of D. According
to Demailly (see [CS08], Appendix A),

α(L) = inf{lct(D) | D is effective, D ∼Q L},
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where D ∼Q L means that D is an effective Q-divisor Q-linearly equivalent to L.
We also have an alternative (algebraic geometry) definition for lct(D)

(see [BJ20]): Recall that a prime divisor E over X is a prime divisor on Y , where
π : Y → X is a proper birational morphism and Y is normal. Then E defines a
valuation C(X)∗ → Z given by order of vanishing at the generic point of E, where
C(X)∗ is the set of nontrivial rational functions on X. The definition extends to
ordE(D), where D is an effective Q-divisor: Pick m ≥ 1 such that mD is Cartier
and set ordE(D) := m−1 ordE(f), where f is a local equation of mD. Equivalently,
ordE(D) = m−1 ordE(s), where s is the canonical section of [mD]. We define (see
[BJ20]):

(13) lct(D) = min
E over X

AX(E)

ordE(D)
,

where AX(E) := 1+ordE(KY/X) is the log discrepancy. We say X has at worst klt
singularities if AX(E) > 0 for all prime divisors E over X.

Blum-Jonsson’s stability threshold. In [BJ20] (see also [FO18]), Blum-Jonsson
introduced the stability threshold δ(L) to replace α(L) by replacing D with only
the m-basis type divisors. Recall that an effective Q-divisor D ∼Q L on X is of
m-basis type (with respect to the line bundle L) if there is a basis s1, . . . , sNm

of
H0(X,mL) such that

D =
1

mNm
({s1 = 0}+ · · ·+ {sNm

= 0}).

Define

(14) δm(L) := inf{lct(D) | D ∼Q L of m-basis type},

and

(15) δ(L) = inf
E

AX(E)

β(L,E)
.

The result of Blum-Jonsson [BJ20] is as follows:

Theorem 3.1 (Blum-Jonsson [BJ20]). Let X be a normal complex projective va-
riety of dimension n with at worst klt singularities, and let L be a big line bundle
on X. Then

(a) limm→∞ δm(L) exists and is equal to δ(L);
(b) α(L) ≤ δ(L) ≤ (n+ 1)α(L);
(c) For Q-Fano X, X is K-semistable (K-stable) iff δ(−KX) ≥ 1 (δ(−KX) >

1).

The proof of (b) depends on the relationship of the three constants described
in the next section, and (c) directly follows from the recent result of Fujita [Fuj19]
and C. Li [Li17]. So here we only outline the proof of (a).

Let E be a prime divisor over X. Denote by

(16) βm(L,E) :=
1

mNm

∑
j

am,j ,

where am,j are the jumping numbers of the filtration FλRm := H0(mπ∗L− λE).
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Lemma 3.2.

βm(L,E) = max
B

1

mNm

Nm∑
j=1

ordE(sj),

where the maximum is over all bases B = {s1, . . . , sNm
} of H0(X,mL).

Proof. First consider any basis s1, . . . , sNm
of H0(X,mL). We may assume

ordE(s1) ≤ ordE(s2) ≤ · · · ≤ ordE(sNm
). Then ordE(sj) ≤ am,j , where am,j

is the j-th jumping number of the filtration FλRm := H0(mπ∗L − λE). This
implies that

1

mNm

Nm∑
j=1

ordE(sj) ≤
1

mNm

Nm∑
j=1

am,j = βm(L,E).

On the other hand, we can pick the basis such that ordE(sj) = am,j , and then

1

mNm

Nm∑
j=1

ordE(sj) = βm(L,E).

This proves the lemma. �

Proposition 3.3. For m ∈ M(L), we have

δm(L) = inf
E

A(E)

βm(L,E)
,

where the inf runs through prime divisors E over X.

Proof. Note that

δm(L) = inf
D of m-basis type

(
inf
E

A(E)

ordE(D)

)
,

where the inner infimum runs through the prime divisors over X. Switching the
order of the two infimums and applying Lemma 3.2 above yield the desired equality.

�

Proof of (a) in Theorem 3.1. From (16) and Theorem 2.5, we have

lim
m→∞

βm(L,E) = β(L,E).

This, together with Proposition 3.3, gives

(17) δ(L) = lim sup
m→∞

δm(L) ≤ inf
E

A(E)

β(L,E)
.

On the other hand, given ε > 0, there exists m0 such that βm(L,E) ≤ (1+ε)β(L,E)
for all the prime divisors E over X. Thus

δ(L) = lim sup
m→∞

δm(L) = lim sup
m→∞

inf
E

A(E)

βm(L,E)
≥ (1 + ε)−1 inf

E

A(E)

β(L,E)
.

Letting ε → 0 and combining this inequality with (17) completes the proof.
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An upper bound of δ(L). We now derive an upper bound for δ(L) in terms
of lct(D), where D is an effective Cartier divisor on X, not necessarily in |L|.
Take a basis B of the filtration FλRm := H0(mL − λD). Notice that, for any
s ∈ Wt := H0(X,mL− tD), ordE(s) ≥ t ordE(D), so, from Lemma 3.2,

βm(L,E) ≥ 1

mNm

∑
s∈B

ordE(s) ≥
1

mNm

( ∞∑
t=0

t(dimWt − dimWt+1)

)
ordE(D)

=
1

mNm

( ∞∑
t=1

dimWt

)
ordE(D).

Thus we have, from (3), (13), and Proposition 3.3, we get

δ(L) ≤ 1

β(L,D)
lct(D).

Thus we proved the following result.

Theorem 3.4. Let X be a normal complex projective variety of dimension n with
at worst klt singularities, and let L a big line bundle on X. Then for any effective
Cartier divisor D on X, we have

δ(L) ≤ 1

β(L,D)
lct(D).

The role of the m-basis in Ru-Vojta’s result [RV20]. Note that the concept
of m-basis is also used in the proof of the main Diophantine result in [RV20]. In
particular, the following result, which is a re-formulation of Schmidt’s subspace
theorem, involves the m-basis. To keep the notation to a minimum, we don’t recall
the notation here. Instead, we refer to [RV20].

Theorem 3.5 (Theorem 2.10 in [RV20]). Let k be a number field, let S be a finite
set of places of k containing all archimedean places, let X be a complete variety
over k, and let L be a line bundle on X. Let B be a finite set of the divisors D
which are of m-basis type with respect to L. Then, for any ε > 0, there is a proper
Zariski-closed subset Z of X such that

(18)
∑
υ∈S

max
D∈B

λD,υ(x) ≤ (1 + ε)hL(x)

holds for all x ∈ (X \ Z)(k), where λD,υ is a local height function and h is a
logarithmic height function.

The main result of this section. With the more sophisticated multi-dimensional
filtration in [RV20] (see also [Aut11]), we extend Theorem 3.4 by proving the fol-
lowing more general result (which can be viewed as a counter-part of the arithmetic
general theorem of Ru-Vojta [RV20]).

Let D1, . . . , Dq be effective Cartier divisors on X. We say that D1, . . . , Dq lie
in general position if for any I ⊂ {1, . . . , q}, we have dim(

⋂
i∈I SuppDi) = n−#I

if #I ≤ n, and
⋂

i∈I SuppDi = ∅ if #I > n. We say that D1, . . . , Dq intersect
properly if for any subset I ⊂ {1, . . . , q} and any x ∈

⋂
i∈I SuppDi, the sequence

(φi)i∈I is a regular sequence in the local ring OX,x, where φi are the local defining
functions of Di, 1 ≤ i ≤ q. It is known (see [RV20]) if D1, . . . , Dq intersect properly,
then they lie in general position. The converse holds if X is Cohen-Macaulay (this
is true if X is nonsingular).
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Theorem 3.6. Let X be a normal complex projective variety of dimension n with
at worst klt singularities, and let L a big line bundle on X. Then

δ(L) ≤ 1

max1≤i≤q β(L,Di)
lct(D),

for any divisor D = D1 + · · ·+Dq with D1, . . . , Dq intersecting properly on X.

Proof. Let Σ =

{
σ ⊆ {1, . . . , q}

∣∣ ⋂
j∈σ SuppDj 	= ∅

}
. Since D1, . . . , Dq intersect

properly on X, #σ ≤ n for ∀σ ∈ Σ. Fix an integer b > 0. For σ ∈ Σ, let

�σ =

{
a = (ai) ∈ N#σ |

∑
i∈σ

ai = b

}
.

For a ∈ �σ and x ∈ R+, one defines the ideal Ia(x) of OX by

Ia(x) =
∑
b

OX

(
−
∑
i∈σ

biDi

)
,

where the sum is taken for b ∈ N#σ with
∑

i∈σ aibi ≥ bx. Write L as the line sheaf

L and consider the filtration F(σ; a)x = H0(X,L m ⊗ Ia(x)), which are regarded
as subspaces of H0(X,L m), and let

F (σ; a) =
1

h0(L m)

∫ +∞

0

(dimF(σ; a)x) dx.

The key result from Ru-Vojta (see Proposition 6.7 in [RV20]) is that

F (σ; a) ≥ min
1≤i≤q

⎛
⎝ 1

h0(L m)

∑
m≥1

h0(L m(−kDi))

⎞
⎠ .

It then gives (see Remark 6.6 in [RV20]), for any basis Bσ;a of H0(X,L m) adapted
to the above filtration,

(19)
∑

s∈Bσ;a

μa(s) ≥ min
1≤i≤q

∑
m≥1

h0(L m(−kDi)),

where for any s ∈ H0(X,L m), μa(s) = sup{x ∈ R+ : s ∈ F(σ; a)x}.
Note that there are only finitely many ordered pairs (σ, a) for σ ∈ Σ, a ∈ �σ.

We also note that, for any prime divisor E over X and s ∈ H0(X,L m⊗Ia(μa(s))),

ordE(s) ≥ min
b∈K

∑
i∈σ

bi ordE(Di),

where K = Kσ,a,s is the set of minimal elements of {b ∈ N#σ :
∑

i∈σ aibi ≥ bμa(s)}
relative to the coordinatewise partial order on N#σ. The set K is a finite set. Let

ti :=
ordE(Di)
ordE(D) , then

∑
i∈σ ti = 1. Therefore, using #σ ≤ n, b ≤

∑
i∈σ�(b+ n)ti� ≤

b+n, and we may choose a = (ai) ∈ �σ such that ti ≥ ai

b+n for all i ∈ σ. Thus, for
any s ∈ Bσ;a,

ordE(s) ≥ min
b∈K

∑
i∈σ

biordE(Di) =

(
min
b∈K

∑
i∈σ

biti

)
ordE(D)

≥
(
min
b∈K

∑
i∈σ

aibi
b+ n

)
ordE(D) ≥

(
b

b+ n

)
μa(s)ordE(D).
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Hence, by Lemma 3.2 as well as using (19),

βm(L,E) ≥
∑

s∈Bσ;a

1

mNm
ordE(s) ≥

b

b+ n
ordE(D)

(
min
1≤i≤q

∑
k≥1 h

0(L m(−kDi))

mh0(L m)

)
.

Thus, by Proposition 3.3 and Theorem 2.5,

δm(L) ≤ AX(E)

βm(L,E)
≤

(
b

b+ n

)
1

max1≤i≤q β(L,Di)

AX(ordE)

ordE(D)
.

By letting b → ∞ and m → ∞, we get

δ(L) ≤ 1

max1≤i≤q β(L,Di)
lct(D).

�

4. Three important constants

Definition 4.1. Let L be an ample line bundle over X, we define the Seshadri
constant ε(L,D) by ε(L,D) = sup{γ ∈ Q : L − γD is nef }. We also define the
pseudo-effective constant as T (L,D) = sup{γ ∈ Q : L− γD is pseudo-effective}.

Theorem 4.2. We have 1
n+1T (L,D) ≤ β(L,D) ≤ T (L,D).

Proof. Given a filtration F , we show that

(20)
1

n+ 1
T (F) ≤ β(F) ≤ T (F),

where T (F) is given in (9) and β(F) is given by

β(F) :=
1

Vol(L)

∫ ∞

0

Vol
(
V t
•
)
dt.

The second inequality is clear since Vol (V t
• ) ≤ Vol(L) and Vol (V t

• ) = 0 for t >
T (F). The first follows from the Proposition of 2.2 which states that concavity

of t 
→ vol (V t
• )

1/n
thus yields Vol (V t

• ) ≥ Vol(L)
(
1− t

T (F)

)n

. Therefore (20) is

proved. The theorem follows from (20) by taking the filtration FλRm := H0(mL−
λD) and by noticing (10). �

Combining Theorem 4.2 with Theorem A gives the following result.

Theorem 4.3. Let X be a projective variety, and D1, . . . , Dq be effective Cartier
divisors, both defined over a number field k. Assume that D1, . . . , Dq intersect
properly on X. Let S ⊂ Mk be a finite set of places on k. Let L be an ample line
sheaf on X. Then, for every ε > 0, there is a proper Zariski-closed subset Z of X
such that the inequality

(21)

q∑
j=1

T (L,Dj)mS(x,Dj) ≤ (n+ 1 + ε)hL(x)

holds for all x ∈ X(k) outside of Z.

Theorem 4.3 is reminiscent of Theorem 3.3 in [MR16], since both use the pseudo-
effective constant to get bounds on the quality of Diophantine approximations.

Theorem 4.3 implies, noticing it is trivial from the definition that ε(L,D) ≤
T (L,D), the following recent result of Levin-Heier [HL20].
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Theorem 4.4. Let X be a projective variety, and D1, . . . , Dq be effective Cartier
divisors, both defined over a number field k. Assume that D1, . . . , Dq intersect
properly on X. Let S ⊂ Mk be a finite set of places on k. Let L be an ample line
sheaf on X. Then, for every ε > 0, there is a proper Zariski-closed subset Z of X
such that the inequality

(22)

q∑
j=1

ε(L,Dj)mS(x,Dj) ≤ (n+ 1 + ε)hL(x)

holds for all x ∈ X(k) outside of Z.
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[BC11] Sébastien Boucksom and Huayi Chen, Okounkov bodies of filtered linear series,
Compos. Math. 147 (2011), no. 4, 1205–1229, DOI 10.1112/S0010437X11005355.
MR2822867
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