
Manopt.jl: Optimization on Manifolds in Julia
Ronny Bergmann1

1 Norwegian University of Science and Technology, Department of Mathematical Sciences,
Trondheim, NorwayDOI: 10.21105/joss.03866

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @krystophny
• @sweichwald

Submitted: 22 July 2021
Published: 10 February 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Manopt.jl provides a set of optimization algorithms for optimization problems given on a
Riemannian manifold M. Based on a generic optimization framework, together with the
interface ManifoldsBase.jl for Riemannian manifolds, classical and recently developed
methods are provided in an efficient implementation. Algorithms include the derivative-free
Particle Swarm and Nelder–Mead algorithms, as well as classical gradient, conjugate gradient
and stochastic gradient descent. Furthermore, quasi-Newton methods like a Riemannian L-
BFGS (Huang et al., 2015) and nonsmooth optimization algorithms like a Cyclic Proximal
Point Algorithm (Bačák, 2014), a (parallel) Douglas-Rachford algorithm (Bergmann, Persch,
et al., 2016) and a Chambolle-Pock algorithm (Bergmann et al., 2021) are provided, together
with several basic cost functions, gradients and proximal maps as well as debug and record
capabilities.

Statement of Need

In many applications and optimization tasks, non-linear data appears naturally. For example,
when data on the sphere is measured (Gousenbourger et al., 2017), diffusion data can be cap-
tured as a signal or even multivariate data of symmetric positive definite matrices (Valkonen
et al., 2013), and orientations like they appear for electron backscattered diffraction (EBSD)
data (Bachmann et al., 2011). Another example are fixed rank matrices, appearing in matrix
completion (Vandereycken, 2013). Working on these data, for example doing data interpo-
lation and approximation (Bergmann & Gousenbourger, 2018), denoising (Bergmann et al.,
2018; Lellmann et al., 2013), inpainting (Bergmann, Chan, et al., 2016), or performing matrix
completion (Gao & Absil, 2021), can usually be phrased as an optimization problem

Minimize f(x) where x ∈ M,

where the optimization problem is phrased on a Riemannian manifold M.
A main challenge of these algorithms is that, compared to the (classical) Euclidean case, there
is no addition available. For example, on the unit sphere S2 of unit vectors in R3, adding two
vectors of unit length yields a vector that is not of unit norm. The solution is to generalize
the notion of a shortest path from the straight line to what is called a (shortest) geodesic, or
acceleration-free curve. Similarly, other features and properties also have to be rephrased and
generalized when performing optimization on a Riemannian manifold. Algorithms to perform
the optimization can still often be stated in a generic way, i.e. on an arbitrary Riemannian
manifold M. Further examples and a thorough introduction can be found in Absil et al.
(2008); Boumal (2022).
For a user facing an optimization problem on a manifold, there are two obstacles to the actual
numerical optimization: firstly, a suitable implementation of the manifold at hand is required,

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

1

https://doi.org/10.21105/joss.03866
https://github.com/openjournals/joss-reviews/issues/3866
https://github.com/JuliaManifolds/Manopt.jl
https://doi.org/10.5281/zenodo.6019027
http://sistemas.fciencias.unam.mx/~dsanders
https://github.com/krystophny
https://github.com/sweichwald
http://creativecommons.org/licenses/by/4.0/
https://manoptjl.org
https://github.com/JuliaManifolds/ManifoldsBase.jl
https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

for example how to evaluate the above-mentioned geodesics; and secondly, an implementation
of the optimization algorithm that employs said methods from the manifold, such that the
algorithm can be applied to the cost function f a user already has.
Using the interface for manifolds from the ManifoldsBase.jl package, the algorithms are
implemented in the optimization framework. They can then be used with any manifold from
Manifolds.jl (Axen et al., 2021), a library of efficiently-implemented Riemannian manifolds.
Manopt.jl provides a low-bar entry to optimization on manifolds, while also providing efficient
implementations, that can easily be extended to cover manifolds specified by the user.

Functionality

Manopt.jl provides a comprehensive framework for optimization on Riemannian manifolds
and a variety of algorithms using this framework. The framework includes a generic way to
specify a step size and a stopping criterion, as well as enhance the algorithm with debug and
recording capabilities. Each of the algorithms has a high-level interface to make it easy to use
the algorithms directly.
An optimization task in Manopt.jl consists of a Problem p and Options o. The Pro
blem consists of all static information, like the cost function and a potential gradient of
the optimization task. The Options specify the type of algorithm and the settings and
data required to run the algorithm. For example, by default most options specify that the
exponential map, which generalizes the notion of addition to the manifold, should be used and
the algorithm steps are performed following an acceleration-free curve on the manifold. This
might not be known in closed form for some manifolds, e.g. the Spectrahedron does not
have – to the best of the author’s knowledge – a closed-form expression for the exponential
map; hence more general arbitrary retractions can be specified for this instead. Retractions
are first-order approximations for the exponential map. They provide an alternative to the
acceleration-free form, if no closed form solution is known. Otherwise, a retraction might
also be chosen, when their evaluation is computationally cheaper than to use the exponential
map, especially if their approximation error can be stated; see e.g. Bendokat & Zimmermann
(2021).
Similarly, tangent vectors at different points are identified by a vector transport, which by
default is the parallel transport. By always providing a default, a user can start immediately,
without thinking about these details. They can then modify these settings to improve speed
or accuracy by specifying other retractions or vector transport to their needs.
The main methods to implement for a user-defined solver are initialize_solver!(p,o),
which fills the data in the options with an initial state, and step_solver!(p,o,i), which
performs the ith iteration.
Using a decorator pattern, Options can be encapsulated in DebugOptions and RecordOpti
ons, which print and record arbitrary data stored within Options, respectively. This enables
to investigate how the optimization is performed in detail and use the algorithms from within
this package also for numerical analysis.
In the current version 0.3.17 of Manopt.jl the following algorithms are available:

• Alternating Gradient Descent (alternating_gradient_descent)
• Chambolle-Pock (ChambollePock) (Bergmann et al., 2021)
• Conjugate Gradient Descent (conjugate_gradient_descent), which includes eight

direction update rules using the coefficient keyword: SteepestDirectionUpdateR
ule, ConjugateDescentCoefficient. DaiYuanCoefficient, FletcherReevesCoe
fficient, HagerZhangCoefficient, HeestenesStiefelCoefficient, LiuStorey
Coefficient, and PolakRibiereCoefficient

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

2

https://juliamanifolds.github.io/Manifolds.jl/
https://juliamanifolds.github.io/Manifolds.jl/v0.7/
https://manoptjl.org/v0.3/solvers/alternating_gradient_descent.html
https://manoptjl.org/v0.3/solvers/ChambollePock.html
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.SteepestDirectionUpdateRule
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.SteepestDirectionUpdateRule
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.ConjugateDescentCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.DaiYuanCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.FletcherReevesCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.FletcherReevesCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.HagerZhangCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.HeestenesStiefelCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.LiuStoreyCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.LiuStoreyCoefficient
https://manoptjl.org/v0.3/solvers/conjugate_gradient_descent.html#Manopt.PolakRibiereCoefficient
https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

• Cyclic Proximal Point (cyclic_proximal_point) (Bačák, 2014)
• (parallel) Douglas–Rachford (DouglasRachford) (Bergmann, Persch, et al., 2016)
• Gradient Descent (gradient_descent), including direction update rules (IdentityU

pdateRule for the classical gradient descent) to perform MomentumGradient, Averag
eGradient, and Nesterov types

• Nelder-Mead (NelderMead)
• Particle-Swarm Optimization (particle_swarm) (Borckmans et al., 2010)
• Quasi-Newton (quasi_Newton), with BFGS, DFP, Broyden and a symmetric rank 1

(SR1) update, their inverse updates as well as a limited memory variant of (inverse)
BFGS (using the memory keyword) (Huang et al., 2015)

• Stochastic Gradient Descent (stochastic_gradient_descent)
• Subgradient Method (subgradient_method)
• Trust Regions (trust_regions), with inner Steihaug-Toint (truncated_conjugate_

gradient_descent) solver (Absil et al., 2006)

Example

Manopt.jl is registered in the general Julia registry and can hence be installed typing]add
Manopt in the Julia REPL. Given the Sphere from Manifolds.jl and a set of unit vectors
p1, ..., pN ∈ R3, where N is the number of data points, we can compute the generalization of
the mean, called the Riemannian Center of Mass (Karcher, 1977), defined as the minimizer
of the squared distances to the given data – a property that the mean in vector spaces fulfills:

argmin
x∈M

N∑
k=1

dM(x, pk)
2,

where dM denotes the length of a shortest geodesic connecting the points specified by its two
arguments; this is called the Riemannian distance. For the sphere this distance is given by
the length of the shorter great arc connecting the two points.

using Manopt, Manifolds, LinearAlgebra, Random
Random.seed!(42)
M = Sphere(2)
n = 40
p = 1/sqrt(3) .* ones(3)
B = DefaultOrthonormalBasis()
pts = [exp(M, p, get_vector(M, p, 0.425*randn(2), B)) for _ in 1:n]

F(M, y) = sum(1/(2*n) * distance.(Ref(M), pts, Ref(y)).^2)
gradF(M, y) = sum(1/n * grad_distance.(Ref(M), pts, Ref(y)))

x_mean = gradient_descent(M, F, gradF, pts[1])

The resulting x_mean minimizes the (Riemannian) distances squared, but is especially a point
of unit norm. This should be compared to mean(pts), which computes the mean in the
embedding of the sphere, R3, and yields a point “inside” the sphere, since its norm is approx-
imately 0.858. But even projecting this back onto the sphere yields a point that does not
fulfill the property of minimizing the squared distances.
In the following figure the data pts (teal) and the resulting mean (orange) as well as the
projected Euclidean mean (small, cyan) are shown.

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

3

https://manoptjl.org/v0.3/solvers/cyclic_proximal_point.html
https://manoptjl.org/v0.3/solvers/DouglasRachford.html
https://manoptjl.org/v0.3/solvers/gradient_descent.html
https://manoptjl.org/v0.3/solvers/gradient_descent.html#Manopt.IdentityUpdateRule
https://manoptjl.org/v0.3/solvers/gradient_descent.html#Manopt.IdentityUpdateRule
https://manoptjl.org/v0.3/solvers/gradient_descent.html#Manopt.MomentumGradient
https://manoptjl.org/v0.3/solvers/gradient_descent.html#Manopt.AverageGradient
https://manoptjl.org/v0.3/solvers/gradient_descent.html#Manopt.AverageGradient
https://manoptjl.org/v0.3/solvers/gradient_descent.html#Manopt.Nesterov
https://manoptjl.org/v0.3/solvers/NelderMead.html
https://manoptjl.org/v0.3/solvers/particle_swarm.html
https://manoptjl.org/v0.3/solvers/quasi_Newton.html
https://manoptjl.org/v0.3/solvers/quasi_Newton.html#Manopt.BFGS
https://manoptjl.org/v0.3/solvers/quasi_Newton.html#Manopt.DFP
https://manoptjl.org/v0.3/solvers/quasi_Newton.html#Manopt.Broyden
https://manoptjl.org/v0.3/solvers/quasi_Newton.html#Manopt.SR1
https://manoptjl.org/v0.3/solvers/stochastic_gradient_descent.html
https://manoptjl.org/v0.3/solvers/subgradient.html
https://manoptjl.org/v0.3/solvers/trust_regions.html
https://manoptjl.org/v0.3/solvers/truncated_conjugate_gradient_descent.html
https://manoptjl.org/v0.3/solvers/truncated_conjugate_gradient_descent.html
https://juliamanifolds.github.io/Manifolds.jl/v0.7/manifolds/sphere.html
https://juliamanifolds.github.io/Manifolds.jl/v0.7/manifolds/sphere.html#ManifoldsBase.distance-Tuple%7BAbstractSphere,%20Any,%20Any%7D
https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

Figure 1: 40 random points pts and the result from the gradient descent to compute the x_mean
(orange) compared to a projection of their (Eucliean) mean onto the sphere (cyan).

In order to print the current iteration number, change and cost every iteration as well as the
stopping reason, you can provide a debug keyword with the corresponding symbols interleaved
with strings. The Symbol :Stop indicates that the reason for stopping reason should be
printed at the end. The last integer in this array specifies that debugging information should
be printed only every ith iteration. While :x could be used to also print the current iterate,
this usually takes up too much space.
It might be more reasonable to record these data instead. The record keyword can be
used for this, for example to record the current iterate :x, the :Change from one iterate
to the next and the current function value or :Cost. To access the recorded values, set
return_options to true, to obtain not only the resulting value as in the example before,
but the whole Options structure. Then the values can be accessed using the get_record
function. Just calling get_record returns an array of tuples, where each tuple stores the
values of one iteration. To obtain an array of values for one recorded value, use the access
per symbol, i.e. from the Iterations we want to access the recorded iterates :x as follows:

o = gradient_descent(M, F, gradF, pts[1],
debug=[:Iteration, " | ", :Change, " | ", :Cost, "\n", :Stop],
record=[:x, :Change, :Cost],
return_options=true

)
x_mean_2 = get_solver_result(o) # the solver result
all_values = get_record(o) # a tuple of recorded data per iteration
iterates = get_record(o, :Iteration, :x) # iterates recorded per iteration

The debugging output of this example looks as follows:

Initial | | F(x): 0.20638171781316278
1 | Last Change: 0.22025631624261213 | F(x): 0.18071614247165613
2 | Last Change: 0.014654955252636971 | F(x): 0.1805990319857418
3 | Last Change: 0.0013696682667046617 | F(x): 0.18059800144857607

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

4

https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

4 | Last Change: 0.00013562945413135856 | F(x): 0.1805979913344784
5 | Last Change: 1.3519139571830234e-5 | F(x): 0.1805979912339798
6 | Last Change: 1.348534506171897e-6 | F(x): 0.18059799123297982
7 | Last Change: 1.3493575361575816e-7 | F(x): 0.1805979912329699
8 | Last Change: 2.580956827951785e-8 | F(x): 0.18059799123296988
9 | Last Change: 2.9802322387695312e-8 | F(x): 0.18059799123296993
The algorithm reached approximately critical point after 9 iterations;

the gradient norm (1.3387605239861564e-9) is less than 1.0e-8.

For more details on more algorithms to compute the mean and other statistical functions
on manifolds like the median see https://juliamanifolds.github.io/Manifolds.jl/v0.7/features/
statistics.html.

Related research and software

The two projects that are most similar to Manopt.jl are Manopt (Boumal et al., 2014) in
Matlab and pymanopt (Townsend et al., 2016) in Python. Similarly ROPTLIB (Huang et al.,
2018) is a package for optimization on Manifolds in C++. While all three packages cover
some algorithms, most are less flexible, for example in stating the stopping criterion, which
is fixed to mainly the maximal number of iterations or a small gradient. Most prominently,
Manopt.jl is the first package that also covers methods for high-performance and high-
dimensional nonsmooth optimization on manifolds.
The Riemannian Chambolle-Pock algorithm presented in Bergmann et al. (2021) was devel-
oped using Manopt.jl. Based on this theory and algorithm, a higher-order algorithm was
introduced in Diepeveen & Lellmann (2021). Optimized examples from Bergmann & Gousen-
bourger (2018) performing data interpolation and approximation with manifold-valued Bézier
curves are also included in Manopt.jl.

References

Absil, P.-A., Baker, C. G., & Gallivan, K. A. (2006). Trust-region methods on Riemannian
manifolds. Foundations of Computational Mathematics, 7(3), 303–330. https://doi.org/
10.1007/s10208-005-0179-9

Absil, P.-A., Mahony, R., & Sepulchre, R. (2008). Optimization algorithms on matrix mani-
folds. Princeton University Press. https://doi.org/10.1515/9781400830244

Axen, S. D., Baran, M., Bergmann, R., & Rzecki, K. (2021). Manifolds.jl: An extensible Julia
framework for data analysis on manifolds. http://arxiv.org/abs/2106.08777

Bachmann, F., Hielscher, R., & Schaeben, H. (2011). Grain detection from 2d and 3d
EBSD data – specification of the MTEX algorithm. Ultramicroscopy, 111(12), 1720–
1733. https://doi.org/10.1016/j.ultramic.2011.08.002

Bačák, M. (2014). Computing medians and means in Hadamard spaces. SIAM Journal on
Optimization, 24(3), 1542–1566. https://doi.org/10.1137/140953393

Bendokat, T., & Zimmermann, R. (2021). Efficient quasi-geodesics on the Stiefel manifold
(B. F. Nielsen F., Ed.; pp. 763–771). Springer International Publishing. https://doi.org/
10.1007/978-3-030-80209-7_82

Bergmann, R., Chan, R. H., Hielscher, R., Persch, J., & Steidl, G. (2016). Restoration of
manifold-valued images by half-quadratic minimization. Inverse Problems and Imaging,
10(2), 281–304. https://doi.org/10.3934/ipi.2016001

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

5

https://juliamanifolds.github.io/Manifolds.jl/v0.7/features/statistics.html
https://juliamanifolds.github.io/Manifolds.jl/v0.7/features/statistics.html
https://manopt.org
https://pymanopt.org
https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html
https://doi.org/10.1007/s10208-005-0179-9
https://doi.org/10.1007/s10208-005-0179-9
https://doi.org/10.1515/9781400830244
http://arxiv.org/abs/2106.08777
https://doi.org/10.1016/j.ultramic.2011.08.002
https://doi.org/10.1137/140953393
https://doi.org/10.1007/978-3-030-80209-7_82
https://doi.org/10.1007/978-3-030-80209-7_82
https://doi.org/10.3934/ipi.2016001
https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

Bergmann, R., Fitschen, J. H., Persch, J., & Steidl, G. (2018). Priors with coupled first and
second order differences for manifold-valued image processing. Journal of Mathematical
Imaging and Vision, 60, 1459–1481. https://doi.org/10.1007/s10851-018-0840-y

Bergmann, R., & Gousenbourger, P.-Y. (2018). A variational model for data fitting on man-
ifolds by minimizing the acceleration of a bézier curve. Frontiers in Applied Mathematics
and Statistics, 4. https://doi.org/10.3389/fams.2018.00059

Bergmann, R., Herzog, R., Silva Louzeiro, M., Tenbrinck, D., & Vidal-Núñez, J. (2021).
Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds. Foundations
of Computational Mathematics. https://doi.org/10.1007/s10208-020-09486-5

Bergmann, R., Persch, J., & Steidl, G. (2016). A parallel Douglas–Rachford algorithm for
minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds.
SIAM Journal on Imaging Sciences, 9(4), 901–937. https://doi.org/10.1137/15M1052858

Borckmans, P. B., Ishteva, M., & Absil, P.-A. (2010). A modified particle swarm optimization
algorithm for the best low multilinear rank approximation of higher-order tensors. In
Lecture notes in computer science (pp. 13–23). Springer Berlin Heidelberg. https://doi.
org/10.1007/978-3-642-15461-4_2

Boumal, N. (2022). An introduction to optimization on smooth manifolds. http://www.
nicolasboumal.net/book

Boumal, N., Mishra, B., Absil, P.-A., & Sepulchre, R. (2014). Manopt, a Matlab toolbox for
optimization on manifolds. Journal of Machine Learning Research, 15(42), 1455–1459.
https://www.manopt.org

Diepeveen, W., & Lellmann, J. (2021). Duality-based higher-order non-smooth optimization
on manifolds. http://arxiv.org/abs/2102.10309

Gao, B., & Absil, P.-A. (2021). A Riemannian rank-adaptive method for low-rank matrix
completion. Computational Optimization and Applications, 81(1), 67–90. https://doi.
org/10.1007/s10589-021-00328-w

Gousenbourger, P.-Y., Massart, E., Musolas, A., Absil, P.-A., Jacques, L., Hendrickx, J. M.,
& Marzouk, Y. (2017). Piecewise-Bézier C1 smoothing on manifolds with application to
wind field estimation. Esann2017, 305–310.

Huang, W., Absil, P.-A., Gallivan, K. A., & Hand, P. (2018). ROPTLIB: An object-oriented
C++ library for optimization on Riemannian manifolds. Association for Computing Ma-
chinery. Transactions on Mathematical Software, 44(4), Art. 43, 21. https://doi.org/10.
1145/3218822

Huang, W., Gallivan, K. A., & Absil, P.-A. (2015). A Broyden class of quasi-newton methods
for Riemannian optimization. SIAM Journal on Optimization, 25(3), 1660–1685. https:
//doi.org/10.1137/140955483

Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communica-
tions on Pure and Applied Mathematics, 30(5), 509–541. https://doi.org/10.1002/cpa.
3160300502

Lellmann, J., Strekalovskiy, E., Koetter, S., & Cremers, D. (2013). Total variation regular-
ization for functions with values in a manifold. 2013 IEEE International Conference on
Computer Vision, 2944–2951. https://doi.org/10.1109/ICCV.2013.366

Townsend, T., Koep, N., & Weichwald, S. (2016). Pymanopt: A python toolbox for optimiza-
tion on manifolds using automatic differentiation. Journal of Machine Learning Research,
17(137), 1–5. http://jmlr.org/papers/v17/16-177.html

Valkonen, T., Bredies, K., & Knoll, F. (2013). Total generalized variation in diffusion tensor
imaging. SIAM Journal on Imaging Sciences, 6(1), 487–525. https://doi.org/10.1137/
120867172

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

6

https://doi.org/10.1007/s10851-018-0840-y
https://doi.org/10.3389/fams.2018.00059
https://doi.org/10.1007/s10208-020-09486-5
https://doi.org/10.1137/15M1052858
https://doi.org/10.1007/978-3-642-15461-4_2
https://doi.org/10.1007/978-3-642-15461-4_2
http://www.nicolasboumal.net/book
http://www.nicolasboumal.net/book
https://www.manopt.org
http://arxiv.org/abs/2102.10309
https://doi.org/10.1007/s10589-021-00328-w
https://doi.org/10.1007/s10589-021-00328-w
https://doi.org/10.1145/3218822
https://doi.org/10.1145/3218822
https://doi.org/10.1137/140955483
https://doi.org/10.1137/140955483
https://doi.org/10.1002/cpa.3160300502
https://doi.org/10.1002/cpa.3160300502
https://doi.org/10.1109/ICCV.2013.366
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.1137/120867172
https://doi.org/10.1137/120867172
https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

Vandereycken, B. (2013). Low-rank matrix completion by Riemannian optimization. SIAM
Journal on Optimization, 23(2), 1214–1236. https://doi.org/10.1137/110845768

Bergmann, R., (2022). Manopt.jl: Optimization on Manifolds in Julia. Journal of Open Source Software, 7(70), 3866. https://doi.org/10.
21105/joss.03866

7

https://doi.org/10.1137/110845768
https://doi.org/10.21105/joss.03866
https://doi.org/10.21105/joss.03866

	Summary
	Statement of Need
	Functionality
	Example
	Related research and software
	References

