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A B S T R A C T   

The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as 
intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road 
scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road 
marking classification is considered as the challenging work. This paper proposes a graph attention network 
named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. 
Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head 
attention mechanism to encode the geometric, topological, and spatial relationships between the node and 
neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and general-
ization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total 
captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and F1 of 11 
categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that 
our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear 
road markings like stop lines, zebra crossings, and dotted lines.   

1. Introduction 

Road markings play an important role in improving traffic safety in 
cities and highways and are considered as the core elements of a variety 
of applications, including intelligent transportation systems, navigation 
and positioning services, and smart cities. As a high-tech mapping 
technology, mobile laser scanning systems (MLSs) have capable of effi-
ciently and accurately acquiring 3D spatial data and reflection intensity 
data of road scenes. Considering the high retro-reflective materials, road 
markings have a higher intensity value than the surrounding ground, 
which provides key information for separating road marking from the 
road surface. But, road marking after segmentation is generally incom-
plete and discontinuities due to the uneven intensity distribution, which 
is caused by scanning range, road surface wear, noise, and occlusion. 
Considering the influence of complexity of road scenes, various cate-
gories, levels of incompleteness, finely classifying road marking, 
particularly similar ones is challenging work. 

Recently, some studies employed image-based deep learning 
frameworks like DBM in Yu et al. (2015), CNN in Wen et al. (2019), and 

U-net in Ma et al. (2021) on road marking classification tasks and have 
made some breakthrough achievements in small-size road marking 
classification. In these studies, large-size road marking like stop lines 
and solid lines were often separated in advance. Small-size road marking 
is then translated into fixed-size images, which results in some crucial 
and detail shape information being lost. Moreover, these deep learning 
models explore only the shape features associated with individual seg-
ments and not incorporate the topology, and semantics information 
among nearby road marking, which benefit for similar road marking 
classification like linear road marking. 

As non-Euclidian data, graphs are widely utilized to build topology 
relationships between objects and provide an available representation 
for road marking. Concretely, graphs allow us to describe various as-
sociations between road markings like types, properties, and connec-
tions. While, it is challenging to deal with graph learning with varying 
sizes and topologies, especially in the domain of point clouds. Recen-
t advances in graph neural networks (GNNs) and graph convolution 
networks (GCNs) extend traditional deep neural networks to graph 
domain and have achieved some excellent performance on non- 
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structured data like natural language processing (Kipf and Welling, 
2016), social networks analysis (Wanda et al., 2021), and point clouds 
segmentation (Wang et al., 2019b). Inspired by these studies, we pro-
posed a graph attention network on MLS point clouds called GAT_SCNet 
to address road marking classification issues, which can simultaneously 
group road marking into 11 categories including large and small size 
road marking on large scale road scenes. The main contributions of our 
method are listed as follows:.  

• A computational subgraph resampling method suitable for road 
marking of various sizes.  

• A new node aggregation algorithm based on multi-head attention 
mechanisms for automatically integrating local spatial distribution 
and semantic information in a unified paradigm.  

• A new graph attention network for road marking classification, 
especially for similar linear road marking. 

• Extensive experiments and discussion on the feasibility and gener-
alization of the GAT_SCNet model for large-scale highways and 
complex urban scenes based on limited computer resources and 
training samples. 

The rest of this paper is structured as follows. Section 2 provides an 
overview of state-of-the-art work about road marking classification on 
MLS point clouds, as well as related work of deep learning and graph 
neural network on point clouds. Section 3 details our GAT_SCNet 
models. The experimental results together with relevant discussions are 
presented in Section 4. Section 5 concludes with a summary of the 
findings. 

Fig. 1. Overall flowchart of our GAT_SCNet to classify road marking.  
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2. Related work 

2.1. Road markings classification 

As the majority of the road markings are linear or rectangular, some 
studies employed handcrafted features like size, area of the minimum 
bounding box of connected components, and orientation as shape sig-
natures to group road marking into large-size and small-size road 
marking (Yang et al., 2012; Revilloud et al., 2013; Yang and Fang, 2014; 
Cheng et al., 2017). To further differentiate solid lines and stop lines 
belonging to large size road marking, most studies used trajectory data 
or curb lines as a guide (Yang et al., 2013; Revilloud et al., 2013; Wen 
et al., 2019). To distinguish small-size road marking, Yang et al. (2016) 
explored a hierarchical classification framework to classify road mark-
ings into arrows, rectangular marking, and other objects. Some research 
exploited semantic information like the repeated pattern or parallel 
relationship to distinguish zebra crossings, stop lines, and dotted lines 
(Guan et al., 2014; Kumar et al., 2014; Soilán et al., 2017; Yang et al., 
2018). These studies had achieved good preformation on simple or 
small-scale road scenes, but they required predefined features. Recently, 
more and more research trends to utilize deep learning architectures to 
automatically retrieve the distinguishable features of road marking. 
After clustering the segment results into individual objects, Yu et al. 
(2015) designed a Deep Boltzmann Machine (DBM) model to extract the 
advanced features of road marking and successfully grouped small-size 
road makings into arrows, rectangular-shaped road marking, pedes-
trian warning markings, and other road marking. Wen et al. (2019) 
implemented a multi-scale clustering algorithm and stacked four-layer 
convolution neural networks (CNNs) to automatically capture the 
high-level features of road marking. Ma et al. (2021) proposed a novel 
hybrid capsule-based network containing a convolutional capsule 
network and a fully connected capsule to group connected segments into 
seven categories including large-size and small-size road marking. These 

methods all explored image-based deep learning architectures, which 
translated different sizes of road marking into the fixed-size images and 
will drop some key shape information. Meanwhile, these methods 
addressed the road marking segments individually rather than inte-
grating local spatial distribution and semantic information in a unified 
paradigm, which helps in distinguishing similar road marking. 

2.2. Deep learning models on 3D point clouds 

As a pioneer, PointNet proposed by Qi et al. (2017a) was directly 
implemented on point clouds and opened the era of end-to-end deep 
learning on 3D point clouds. Recently, some research applied 
convolution-like operation on point clouds to encode the geometric re-
lations between point and its neighborhood points. To preserve the 
direct relationship between points, the GeoConv layer introduced in 
Geo-CNN by Lan et al. (2019) was applied to decompose the edge fea-
tures into different directions and then aggregate the features along each 
direction. Thomas et al. (2019) designed a flexible and deformable 
kernel point convolution named KPConv on point clouds to aggregate 
the features of point clouds. 

Inspired by the idea of attention mechanism, some studies attempted 
to assign different attentional weights to different neighboring points by 
considering neighbors’ geometry and attributes (Yang et al., 2015; 
Simonovsky and Komodakis., 2017; Qi et al., 2017; Veličković et al., 
2018; Wang et al., 2019a; Mi et al., 2021; Zhou et al., 2021). As a pio-
neering work, Simonovsky and Komodakis (2017) proposed an edge- 
conditioned convolution (ECC) on graph-structured data, which condi-
tioned weights according to the specific edge labels of nodes. Different 
from the ECC layer, graph attention network (GAT) by Wang et al. 
(2019a) automatically assigned different weights to neighbors through 
an attention mechanism layer, which better aggregated local neigh-
borhood feature information. Wang et al. (2019b) proposed a dynamic 
graph CNN and implement it on point clouds and designed the EdgeConv 

Fig. 2. Illustration of partitioning the overlapped road markings into individual objects based on Ncut algorithm.  
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layer as a geometric convolution module to extract edge features, which 
indicated the distance between the point and its neighborhood points. 
Wen et al. (2021) proposed a graph attention convolution (GAC) on 
point clouds and enhanced the most relevant part of the neighborhood. 
Similarly, Chen et al. (2021) exploited a GAP Layer to learn the fine- 
grained feature of point clouds, which embedded a graph attention 
mechanism within multi-layer perceptron (MLP) layers to highlight the 
importance of neighbors. Additionally, a multi-head GAP Layer was 
utilized to specify different importance of neighbors and obtain suffi-
cient contextual attention features, which gained state-of-the-art per-
formance shape classification and part segmentation tasks on 
ModelNet40 (Vishwanath et al., 2009) and ShapeNet (Chang et al., 
2015) datasets. 

Overall, deep learning architectures have been achieved break-
through performance for 3D point cloud segmentation and classifica-
tion, but graph attention networks for point clouds are still in their 
infancy. Most graph attention models on point cloud were implemented 
on public datasets for theoretical analysis and few were implemented on 
large-scale MLS datasets and real-world environments, which is very 
important to evaluate the capability and effectiveness of deep learning 
methods. 

3. Method 

The target of our GAT_SCNet is to group individual segments into 
corresponding categories, which considers individual segments as nodes 
and aggregates topology and semantic relationships among road mark-
ings through the graph neural network. To fulfill this task, we stack four 
main modules in GAT_SCNet (illustrated in Fig. 1): (1) subgraphs sam-
pling, (2) road markings embedding, (3) node aggregating based on 
multi-head attention layers, (4) classifier with an improved loss func-
tion. Before this, we use an unsupervised segmentation approach to 
separate and cluster road marking points into individual objects. 

3.1. Data preprocessing 

Considering the efficiency and unavailable large amount of point- 
based public labeled datasets for road marking segmentation, we 
choose the unsupervised method instead of the deep learning method for 
road markings segmentation. To quickly separate the road marking from 
MLS point clouds, we partition the whole data into a series of sub-
sections and extract road surface based on the CSF filter operator (Zhang 
et al., 2016). Inspired by the works in Guan et al. (2014), we implement 
a multi-threshold k-means operator to segment road marking points and 

then group them into individual components by connected component 
labeling (CCL). As using CCL may yield one segment containing several 
road markings, like the stop lines and solid lines shown in Fig. 2(c), we 
then voxelized the overlapped segments by voxel size sc and explore the 
voxel-based Normalized cut (Ncut) algorithm (Fang et al., 2021) to 
separate the overlapped road marking. In Ncut, overlapped segments 
were partitioned into two parts by minimizing the dissimilarity within 
the same group as well as maximizing the discrepancy between two 
different groups. Hence we calculate the similarity denoted weights wij 

between two voxels qi and qj according to geometric distribution (see 
Equation 1). 

wij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp

(

−
||qi − qj

⃒
⃒|

2
2

σ2
D

)

⋅exp

⎛

⎝ −
arccos2

(
vqi .vqj

)

σ2
A

⎞

⎠, if ||qi − qj||2 ≤ dN0

(1) 

where ||qi − qj||
2
2 denoted the horizontal distance between voxel qi 

and qj. arccos2(vqi .vqj ) is the intersection angle of two principal directions 
vqi and vqj of voxel qi and qj. σD and σA are the standard deviation of 
horizontal distances and intersection angles, respectively. dN is the in-
fluence radius of voxel similarity. Then, we implement the optimized 
solution of Mincut by Shi and Malik (2000) to recursively divide over-
lapped road markings into individual road marking. 

3.2. Subgraphs resampling 

Considering computation resources and applicability, it is more 
challenging for GNNs to predict and train graphs with arbitrary or un-
seen shapes (Hamilton et al., 2017). Hence, we convert a large graph 
into a series of subgraphs, which resample the fixed number neighbors of 
road marking through k-Nearest Neighbors (k-NN) search. Center dis-
tances metrics are usually used to search the nearest neighbors. While, 
this sampling way may accomplish small-size road marking, but cannot 
cover large-size road marking. As the case in Fig. 3(a), the blue solid line 
is crucial for red stop line recognition, but it is not within the neigh-
boring domain of the stop line according to their pairwise center dis-
tance. To overcome this problem, we adopt a constrained sampling 
strategy based on minim-distance between the center road marking and 
its neighbors in the radius r illustrated in Fig. 3(b). In our constrained 
sampling strategy, if a road segment has points within the radius of the 
center road marking, we consider it as a candidate neighbor. Then, we 

Fig. 3. Illustration of resampling subgraphs of road marking.  
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compute the minim-distance Distij between the center node vi and 
candidate neighbor uij, j = 1, 2, ⋯, nc, nc is the number of candidate 
neighbors. Minim-distance Distij is the minimum point-wise distance 
(Distij = min{||p − q||}), where p and q denote the points that belong to 
the center node vi and candidate neighbor uij, respectively. Moreover, 
we sort the minim-distances and select K number of nearest neighbors as 
the desirable neighbors. In this way, we can accomplish more sig-
nificant neighbors and convert the large graph into a series of subgraphs. 
Let V = {v1, v2, ..., vm} be a set of road marking to be classified, the i-th 
subgraph G i = (Vi,Ei) is constructed from the i-th given road marking 

named center node vi and its neighbors N r
v(i), where Vi = {vi, ui1, ui2, ...

, uiK}, ∀uiK ∈ N r
v(i) and Ei = {εi1, εi2, ..., εiK} denote the nodes and edges 

in the k-nn subgraph, respectively. This localization processing is easily 
parallelizable and independent of input data size, which makes it suit-
able for large-scale road scenes. 

3.3. Road marking embedding module 

In general, different kinds of road marking vary in shape and size. 
Therefore, learning the discriminative features associated with road 

Fig. 4. Initial road marking embedding using DGCNN framework.  

Fig. 5. Node aggregation module of multi-head attention mechanism.  
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marking plays an important role in road marking classification. In the 
paper, we explore the DGCNN framework (Wang et al., 2019b) to extract 
high-level features as initial road markings embedding (see in Fig. 4). An 
F-dimensional point cloud with n points in a road marking could be 
denoted by X = {x1,x2,⋯,xn} ⊆ RF. Because the DGCNN network can be 
irectly operated on point clouds, we take each point in 3D coordinate (F 
= 3) as input. 

In DGCNN, the spatial transform block is used to align the input X 
into a canonical space for maintaining permutation invariance of road 
marking. Then, EdgeConv layers are implemented to capture the local 
geometric features named edge features eij as follows: 

eij = γ
( (

xi, xij − xi
)
,Θ
)

(2) 

Where xi, xij denote the local geometric features of point i and it’s j-th 
neighboring points j. γ(∙) is a nonlinear edge function, and Θ is the 
corresponding coefficient, which is learned by the shared MLP layers 
with the ReLU activation function. We then use a max-pooling layer as a 
channel-wise symmetric aggregation operation to yield the output x(l+1)

i 
of the l-th layer of EdgeConv. 

x(l+1)
i = maxReLU

j∊k
(e(l)ij ) (3) 

Since different EdgeConv layers capture different local geometric 
features, we concatenate the outputs of two EdgeConv blocks and use a 
max-pooling layer to generate the global descriptor F g of road marking. 
To maintain spatial differences, we concatenate the gravity positions of 
road marking F pos with global descriptor F g as the embedding features 
F

(0) of each road marking. 

F g = max
i∈n

([xEdgeConv1
i ‖xEdgeConv2

i ]) (4)  

F
(0)
i =

[
F g(i)‖F pos(i)

]
, i ∈ [1,m] (5)  

3.4. Node aggregation based on multi-head attention layers 

Because road marking embedding mainly represents the shape 
characteristic of road marking, they can not describe the local structure 
and semantic information between road marking. Hence, we propose a 
shared multi-head graph attention module to encode the local structure 
and semantic information into the hidden representations hv of road 
marking. As illustrated in Fig. 5, the graph attention module consists of 
three heads: node-ware attention head, graph-ware attention head, and 
geometry-ware attention head, which dramatically assign different 
weights to neighbors and explore the crucial information for road 
marking recognition. In each subgraph, we briefly define node and its 
neighbors as v, and u (u ∈ N r

v), respectively.  

(1) Node-ware attention head 

Generally, the type of road marking is easier predicted by its 
neighbors with similar shape. The impact of this head is to pay more 
attention to the neighbor, which is similar to the central node. In more 

detail, the node-ware attention layer learns the node-coefficients δuv 
represent the importance of the neighbor u to the node v according to the 
similarity of their global features F g of road marking, which mainly 
encodes the shape characteristic of road marking. To gain fine-grained 
feature, we firstly encode nodes’ global feature F g into a hyperbolic 
space with higher representational feature F ’

g, and then interpolate 
center node and neighbors’ higher features to learn the node- 
coefficientsδuv. 

F
’
g = h

(
F g, θ

)
(6)  

δuv = α
(

F
’
gu
,F ’

gv

)
= LeakyReLU

(
a→T
[
F

’
gu
‖F

’
gv

] )
(7) 

Where h(∙) is a nonlinear function and θ is the corresponding pa-
rameters set. LeakyReLU(∙) denotes nonlinear activator leakyReLU in 
the MLP layer. aT is the weight vector parameterizing the node-attention 
mechanism α. As different subgraphs vary in size and scale, the node- 
attentional coefficient δuv are normalized by a softmax function for 
easily comparable across different neighbors. 

αuv = softmax(δuv) =
exp(δuv)

∑
u∈N r

v
exp(δuv)

(8) 

Then, we combinate the normalized self-attention weights αuv and 
corresponding neighborhood’s features F ’

gu 
to calculate the node-ware 

features F Nod of center node v. 

F Nod = f

(
∑

u∈N r
v

αuvF
’
gu

)

(9) 

Where f(∙) denote the nonlinear aggregation function.  

(2) Graph-ware attention head 

The node-attention mechanism tends to assign more weight to 
neighbors with similar shape features but drops spatial correlation or 
topology between the road markings in a subgraph. To exploit the to-
pological relationship between the node and neighbors, we embed a 
GAP layer introduced in Chen et al., (2021) to capture contextual in-
formation of subgraph, dubbed graph features F Gap. In order to high-
light different attention weights on neighborhood, we consider the self- 
geometric information of node denoted by node features F gv and local 
correlations to corresponding neighbors denoted by edge features E uv. 
In more detail, we combine the center node features F gv and edges 
features E uv in a subgraph to introduce the normalized graph-ware 
attention coefficients βuv. 

E
’
uv = h(E uv, θ) = h

(
(F gu − F gv ), θ

)
(10)  

βuv =
exp
(

LeakyReLU
(

h
(

F
’
gv
, θ
)
+ h
(
E

’
uv, θ

) ) )

∑
u∈N r

v
exp
(

LeakyReLU
(

h
(

F
’
gv
, θ
)
+ h
(
E

’
uv, θ

) )) (11) 

Fig. 6. Combination position vector ∊uv and edge feature E ’
uv to calculate geometric structure feature.ξuv  
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Then we take attention coefficients βuv as the graphical masked 
attention and aggregated the edges features E

’
uv to output the graph 

contextual attention feature F Gap of center node v: 

F Gap = f

(
∑

u∈N r
v

βuvE
’
uv

)

(12)    

(3) Geometry-ware attention head 

Different from node-ware and graph-ware attention blocks, 
Geometry-ware attention block mainly highlights orientation relation-

Table 1 
Brief information of training datasets.  

Information Training 
Dataset 
I 

Training 
Dataset 
II 

Training 
Dataset 
III 

Training 
Dataset 
IV 

Road scene Downtown Suburb Downtown Urban 
MLS system Hidarget 

Hiscan 
Trimble Optech 

Teledyne 
RIEGL VMX- 
450 

Location Fuzhou China Beijing 
China 

Toronto 
Canada 

Fuzhou 
China 

Road Length 
(km) 

0.72 0.74 1.00 1.20  

Fig. 7. Four training datasets and some training samples. For each training dataset, top-to-bottom figures show the training datasets’ location in Google Earth, raw 
MLS point clouds colored by intensity information. To illustrate clearly, some training samples are listed at the bottom. 
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ships like directionality or arrangement in the subgraph, which is very 
important to distinguish similar road markings like dotted lines and 
zebra crossings. Inspired by the Geoconv operator proposed in Monti 
et al. (2017), we apply the geometry-ware attention block to combinate 
the position information F pos and edge features E ’

uv on the local coor-
dinate systems shown in Fig. 6. We take the gravity position, the main 
direction, and the normal direction of center road marking (center node 
v) as the origin, X, and Y direction, respectively. Then, we decompose 
the edge vector ∊uv on two orthogonal basis bx and by, and compute 
corresponding angles θ∊uv ,bi . Guiding by direction angle θ∊uv ,bi , we further 
decompose the edge features E

’
uv along with the two bases and then 

aggregate them as the directional feature ξuv. 

∊uv = F posu − F posv (13)  

θ∊uv ,bi = 〈∊uv, bi〉bi ∈ (bx, by) (14)  

ξuv =
∑

bi∈B
cos2(θ∊uv ,bi )Wbi E uv’ (15) 

Where ∊uv is defined by the gravity position of node v and neighbors 
u. Wbi denotes the direction-associated weight matrices and is a learned 
parameter in the geometry-ware attention layers. 

Generally, the closer the neighbor node to the center node, the more 
important. To highlight the proximity from different orientations of road 
markings, we further aggregate the directional feature ξuv according to 
Euclidean distance duv between the center node v and its neighbor u, and 
extract geometry-ware attention feature F Geo as follows: 

F Geo =

∑
u∈N r

v
duvξuv

∑
u∈N r

v
duv

(16)  

duv = (r − ‖F posu − F posv‖
2
) (17) 

After learning three attention features F Nod, F Gap, and F Geo, we 
concatenate the three independent attention features and the original 
global feature F gv and produce the nonlinearity aggregation as the final 
descriptor hv of node v. 

hv = ReLU
( [

F gv ||F Nod ||F Gap||F Geo
] )

(18) 

Where ReLU(∙) denotes the ReLU activator in the final MLP layer, 
and || denotes the vector concatenation operation. 

3.5. Loss function 

Once the final descriptor hv of road marking has been obtained, we 
stack an MLP layer and a softmax layer as the classifier to predict its 
type. In road scenes, the number of dotted lines and zebra crossings 
accounts for a large proportion, while the number of arrows and text 
signs is less. It means that the GAT_SCNet model will pay more attention 
to the classes with more number (e.g., dotted lines) but ignore the classes 
with fewer numbers (e.g., text), which result in lower accuracy for these 

Fig. 8. An illustration of 12 categories of road markings.  

Table 2 
The optimal parameter configurations.  

Notation Description Setting 

Sc The size of the voxel in Ncut 0.4 m 
dN The horizontal influence radius of the similarity in Ncut 1 m 
Mincut The maximum tolerance allowed in Ncut 0.03 
r The radius of neighborhood area r in subgraph sampling 12 m 
K the number of the neighbors in a subgraph 8 
k The number of nearest points k in EdgeConv layer 20  

Table 3 
Brief information of test datasets.  

Information Test Dataset I Test Dataset II Test Dataset III Test Dataset IV Test Dataset V 

Road scene Downtown Downtown Urban Highway Highway 
MLS system Optech 

Lynx 
RIEGL 
VMX-450 

RIEGL VMX-450 StreeMapper 360 Chchav Alpha3D 

Location Hengyang 
China 

Xiamen 
China 

Fuzhou 
China 

Schwyz Switzerland Hangzhou 
China 

Road Length(km) 1.25 0.44 16.48 23.71 48.32 
Dotted line 400 26 1383 3377 5312 
Diamond 28 6 28 – – 
Zebra crossing 403 144 931 47 – 
Straight arrow 5 4 39 81 67 
1-way turn arrow 12 – 29 – 46 
2-way turn arrow 2 3 88 5 9 
Stop line 10 11 145 – 192 
Symbol – 21 174 1 307 
Solid line(m) 3,070.53 1,967.70 16,485.08 100,573.08 211,056.92 
Parking space – – 72 – – 
Diversion line – – 4 30 62  
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classes. To overcome the influence of the uneven distribution of cate-
gories on the performance of road marking recognition, we use the 
median frequency balance strategy (Eigen and Fergus, 2015) to weight 
the loss of each class in GAT_SCNet. In the median frequency balance 
strategy, we pay more attention to the categories with smaller numbers 
and define the loss function L as follows:. 

L = −
1
N
∑N

n=1

∑C

c=1
l(n)c log

(
p(n)

c

)
wc (19)  

wc =

Median
({

Nc
N |c ∈ C

})

Nc
N

(20) 

Where N is the number of individual road marking in each Mini- 
batch. C is the set of all categories. p(n)

c is the prediction of GAT_SCNet, 
denoting the probability distribution of the n-th objects in subclass c, 
and l(n)c is the ground truth, a one-hot probability distribution over the C 
classes. wc is the weight of subclass c. Nc denotes the number of subclass 
c in the total samples N. 

4. Results and discussion 

4.1. Training datasets and samples 

For lack of available public MLS samples for road marking classifi-
cation, we chose four datasets captured by different mainstream MLS 
systems to build the training corpus. The detailed information about the 
training datasets is listed in Table 1. All training datasets are common 
urban scenes and provide a large number of road markings in various 
shapes, sizes, and incompleteness (see Fig. 7). As seen from the bottom 
of Fig. 7, we partitioned training datasets into a set of subsections about 
150 m in length along road direction and disturbed these subsections 
through some typical transformation operations including rotation, 
shaking, marking incompleteness to enlarge the training samples. 
Moreover, we empirically selected 5500 road sections as the training 
samples, of which 4000 were randomly selected for training and the rest 
for verification. In addition, road markings were manually labeled into 
12 categories: dotted line, diamond, zebra crossing, arrow straight, 1- 
way turn arrow, 2-way turn arrow, stop line, symbol (text, triangle, 
bicycle), solid line, parking space, diversion line and others (shown in 
Fig. 8). 

Fig. 9. Road marking classification results of test dataset I denoting downtown. In each part, we presented the test dataset’s location in Google Earth, ground points 
displayed by intensity, the road marking segmentation indicated by different colors, and corresponding classification results colored by category, respectively. 
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4.2. Parameters configuration and turning 

In Section 3.1, the voxel size Sc and the horizontal influence radius of 
the similarity dN affected the performance of subdividing the overlapped 
road marking into individual parts. Considering the size and shape of 
road marking, we assigned the values of Sc and dN as 0.4m and 1m, 
respectively. In Section 3.2, selecting appropriate values of the radius of 
neighborhood area r, and the number of the neighbors K means a reli-
able and distinguishable representation of the local relationship of road 
marking. Considering the shape and semantic rule of road marking, we 
conducted extensive experiments on training datasets to configure pa-
rameters r and K as 12 and 8, respectively. As we used the pre-trained 
DGCNN model to initial the EdgeConv layers in Section 3.3, the num-
ber of nearest points k was set as the default configuration with 20 for all 
EdgeConv layers (shown in Table 2). 

After selecting the optimal hypermeters, we implemented all training 
datasets to train the GAT_SCNet model until convergence. The 
GAT_SCNet model was conducted based on the TensorFlow framework. 
All experiments were run on the environment as NVIDIA GeForce GTX 
1060 3 GB, Python 3.5, TensorFlow GPU 1.8.0, CUDA 9.0, and Cudnn 

7.0 on window 10.0. During the training stage, we used the random 
gradient descent method (SGD) and driving quantity (Adam) optimizer 
with the initial learning rate of 0.001 to train the GAT_SCNet model. Due 
to the limitation of GPU ability, the mini-batch size, the decay rate, 
epoch, and the momentum were set to 32, 0.98, 500, and 0.5 
respectively. 

4.3. Method validation 

To validate the performance of the proposed method, we selected 
five MLS point clouds including three complex urban scenes and two 
highways in different cities. These datasets were acquired by main-
stream MLS systems including Optech Lynx, Riegl VMX-450, Street-
Mapper 360, Chchav Alpha3D. In addition, test datasets III, IV, and V are 
large-scale MLS point clouds. The brief information and the ground truth 
of categories of the test datasets were listed in Table 3. 

After removing the off-ground points, we used the unsupervised 
segmentation operators in Section 3.1 to separate and cluster the road 
marking from ground point clouds. Then, road markings segments of test 
datasets are directly fed into the trained GAT_SCNet model to predict the 

Fig. 10. Road marking classification results of test dataset II denoting downtown. In each part, we presented the test dataset’s location in Google Earth, ground 
points displayed by intensity, the road marking segmentation indicated by different colors, and corresponding classification results colored by category, respectively. 
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category. Because some test datasets cover large-scale road scenes, we 
selected some road sections with road marking segments results and the 
corresponding road marking classification results of the GAT_SCNet 
model in Figs. 9-13. 

The visualization results in Figs. 9-13 illustrated that GAT_SCNet has 
successfully grouped the majority of road markings in all test datasets. 
On the urban scenes, many solid lines and zebra crossings were 
incomplete for over-segmentation or under-segmentation, especially in 
test dataset III, the dotted lines can easily cause category confusion. 
However, our method succeeded to distinguish the dotted lines from the 
zebra crossings (test datasets I, II, and III) and achieved outstanding 
results on incomplete ones. In addition, some incomplete road markings 
caused by wear and occlusion (e.g., the diamond in test dataset I-①, 
over-segmented solid lines in test dataset III-①) were also correctly 
recognized, which indicated that the GAT_SCNet model had the capa-
bility of capturing the high-level features and overcoming the influence 
of over-segmentation or missing neighborhood nodes. On urban and 
highway scenes, solid lines are common and vary in shape, especially on 
the roundabout of test datasets IV and V. Benefiting from the subgraph 
structures, the GAT_SCNet model assigned the correct label for most 

solid lines like the straight lines on test datasets I and III, curve lines on 
test datasets IV and V. Meanwhile, it overcame the influence of large- 
scale road marking (e.g., long solid lines) on small-scale road marking 
(e.g., dotted lines) and simultaneously categorized them. Especially, 
GAT_SCNet gained exciting results on the unseen road markings and 
road scenes, such as stop lines with the special layout in test dataset V- 
Part A, Chinese texts in test datasets V-Part C and V-Part D, and 
roundabouts with circle lines in test datasets IV and V-Part B, which 
shows that our proposed GAT_SCNet model has strong generalization 
ability to different MLS datasets and various road scenes. 

In addition, we quantitatively evaluated the road marking classifi-

cation results on test datasets with three accuracy scores Precision 
(

P =

TPs
TPs+FPs

)

, Recall 
(

R = TPs
TPs+FNs

)

, and F1

(

F1 = 2×P×R
P+R

)

and corresponding 

average scores of each category. As the scope of our proposed method is 
to finely group the road marking, we only calculate the types of road 
marking. Hence, we define TPs, FPs and FNs as the numbers of correctly 
classified road marking, unclassified road marking, and incorrectly 
classified road marking, respectively, and calculate accuracy scores for 

Fig. 11. Road marking classification results of test dataset III denoting urban. The top figure is the location of test dataset III in Google Earth. Part A-D is the selected 
road scenes. For each selected road scene, we present the ground points displayed by intensity, the road marking segments indicated by different colors, and the 
corresponding classification results colored by category, respectively. 
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each test dataset (see Table 4). We manually labeled the ground truth 
listed in Table 3 based on the results of road markings segmentation. 
Overall, the GAT_SCNet model gained F1 over 91% for all categories and 
100% for 1-way turn arrow, 2-way turn arrow, and diversion line on all 
test datasets. In terms of linear road marking, the GAT_SCNet model also 
gains high F1, 93.42% for dotted line, 95.64% for zebra crossing, 91.09% 
for stop line, and 98.23% for solid line. Although test dataset III are 
complex and large, our GAT_SCNet model achieves good results with F1 
over 94%. 

Although most road markings were correctly grouped, little road 
marking are still misclassified due to incompleteness or unfavorable 
significant neighbors, such as the misclassified stop line shown in Fig. 14 
(a) and misclassified solid lines shown in Fig. 14(b). Compared with 
other road marking, the accuracy scores of stop lines were relatively 
lower and gained an average F1 of 91.09%. The main reason is the 
number of stop lines in test datasets I and II were small. Hence, little 

misclassified stop lines will significantly drop accuracy scores. The 
lower Precision of dotted lines in test dataset II suffers for the same 
reason. In test dataset V, some overlapped stop lines were misclassified 
as solid lines in the deceleration zones illustrated in Fig. 14(c), resulting 
in a lower Recall. On highway scenes, our method gained low Precision 
for the dotted lines of 91.36% and 89.14%, respectively. This is because 
some solid lines in Fig. 14(d) were partitioned into small sections due to 
occlusion and grouped into dotted lines for similar shape and spatial 
arrangement. Overall, the proposed method has been achieved very 
promising performance for road marking classification from MLS point 
clouds, despite a few road markings being misclassified. 

4.4. Comparative study 

Because of unavailable open datasets and execution codes for road 
marking classification contests, the comparison between our GAT_SCNet 

Fig. 12. Road marking classification results of test dataset IV denoting highway. The top figure is the location of test dataset IV in Google Earth. Part A-C are selected 
roundabouts. For each selected road scene, we present the ground points displayed by intensity, the road marking segments indicated by different colors, and the 
corresponding classification results colored by category, respectively. 
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model with other state-of-the-art methods is challenging. Hence, we 
compared our models with three popular deep learning models on point 
clouds including PointNet by Qi et al. (2017a), and two graph deep 
learning models on point clouds: DGCNN by Wang et al. (2019b) and 
GAPNet by Chen et al. (2021). Additionally, we analyzed the impact of 
three attention mechanisms and constructed serial ablation experiments 
with 7 ablation models through ablating different head attention layers. 
According to the optimal parameters configuration, we reconstruct and 
re-implement these comparison and ablation models on the same 
training samples and test datasets. Qualitative and quantitative com-
parison results on five test datasets with average F1 were listed in 
Table 5. Some visual compared performances on typical scenes from the 
test datasets were illustrated in Fig. 15. 

Based on quantitative illustrated in Table 5 and Fig. 15, we can see 
that our method outperformed all the compared methods and gained 
significant results. According to our findings, incorporating local graph 

structures and multi-head attention layers into deep learning frame-
works contributes to improved performance of road marking 
classification.  

(1) the impact of the graph structure 

We found that local graph structures embedded in a deep learning 
framework can significantly improve the classification accuracy of 
linear road marking. In comparison, 7 ablation models (Model1noGAT ~ 
Model7Geo+Gap) and our GAT_SCNet successfully categorized the majority 
of linear road marking using neighborhood information encoded in the 
subgraphs. Since PointNet, DGCNN, and GAPNet were developed for 3D 
shape recognition, they gained general performance on all categories 
and could not distinguish similar linear road marking like in Scenes A, C, 
E, and F in Fig. 15. Even unstacked the graph attention mechanism 

Fig. 13. Road marking classification results of test dataset V denoting highway. The top figure is the location of test dataset IV in Google Earth. Part A-C is selected 
high scenes. For each part, we presented ground points displayed by intensity, the road marking segments indicated by different colors, and the corresponding 
classification results colored by category, respectively. 
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Table 4 
Accuracy of road marking classification results.  

Dataset Type 
Accuracy 

Dotted 
line 

Diamond Zebra 
crossing 

Straight 
arrow 

1-way 
turn 
arrow 

2-way 
turn 
arrow 

Stop 
line 

Symbol Solid line 
(m) 

Parking 
space 

Diversion 
line 

Test 
Dataset I 

TPs 390 28 394 5 12 2 7 – 2,967.17 – – 
FPs 3 0 5 0 0 0 0 – 103.58 – – 
FNs 10 0 9 0 0 0 3 – 103.36 – – 
P(%) 99.24 100.00 98.75 100.00 100.00 100.00 100.00 – 96.63 – – 
R(%) 97.50 100.00 97.77 100.00 100.00 100.00 70.00 – 96.63 – – 
F1(%) 98.36 100.00 98.25 100.00 100.00 100.00 82.35 – 96.63 – – 

Test 
Dataset 
II 

TPs 24 6 138 4 – 3 11 21 1,936.61 – – 
FPs 6 0 13 0 – 0 1 0 0 – – 
FNs 2 0 6 0 – 0 0 0 31.09 – – 
P(%) 80.00 100.00 91.39 100.00 – 100.00 91.67 100.00 100.00 – – 
R(%) 92.31 100.00 95.83 100.00 – 100.00 100.00 100.00 98.42 – – 
F1(%) 85.71 100.00 93.56 100.00 – 100.00 95.65 100.00 96.77 – – 

Test 
Dataset 
III 

TPs 1296 28 828 39 29 88 145 174 16449.91 72 4 
FPs 5 2 3 2 0 0 18 10 162.5 8 0 
FNs 90 0 3 0 0 0 0 0 35.16 0 0 
P(%) 99.62 93.33 99.64 95.12 100.00 100.00 88.98 94.57 99.02 90.00 100.00 
R(%) 93.51 100.00 99.64 100.00 100.00 100.00 100.00 100.00 99.19 100.00 100.00 
F1(%) 96.55 96.46 99.64 97.50 100.00 100.00 94.16 97.21 99.40 94.74 100.00 

Test 
Dataset 
Ⅳ 

TPs 3,184 – 41 81 – 5 – 1 96,859.41 – 30 
FPs 301 – 2 0 – 0 – 0 848.26 – 0 
FNs 193 – 6 0 – 0 – 0 3,713.67 – 0 
P(%) 91.36 – 95.35 100.00 – 100.00 – 100.00 99.13 – 100.00 
R(%) 94.28 – 87.23 100.00 – 100.00 – 100.00 96.31 – 100.00 
F1(%) 92.80 – 91.11 100.00 – 100.00 – 100.00 97.70 – 100.00 

Test 
Dataset 
Ⅴ 

TPs 5,359 – – 67 46 9 171 277 201,729.46 – 62 
FPs 653 – – 0 0 0 0 2 4,321.71 – 0 
FNs 58 – – 0 0 0 29 13 9,327.46 – 0 
P(%) 89.14 – – 100.00 100.00 100.00 100.00 99.28 97.90 – 100.00 
R(%) 98.93 – – 100.00 100.00 100.00 85.50 95.52 95.58 – 100.00 
F1(%) 93.78 – – 100.00 100.00 100.00 92.18 97.36 96.73 – 100.00 

All 
Datasets 

Ave P(%) 91.87 97.78 96.28 99.02 100.00 100.00 95.16 98.46 98.65 90.00 100.00 
Ave R(%) 95.31 100.00 95.12 100.00 100.00 100.00 88.88 98.88 97.52 100.00 100.00 
Ave F1(%) 93.42 98.85 95.64 99.50 100.00 100.00 91.09 98.64 98.23 94.74 100.00  

Fig. 14. Some classical error classification. (a) misclassified stop line, (b) misclassified solid line, (c) misclassified stop line, (d) misclassified solid lines.  

Table 5 
Quantitative comparisons (in %) between our method and comparison models on five test datasets.  

Category  

Method 

F1 

Dotted 
line 

Diamond Zebra crossing Straight 
arrow 

1-way 
turn arrow 

2-way 
turn arrow 

Stop 
line 

Symbol Solid 
line 

Parking 
space 

Diversion line 

PointNet  60.61  86.79  66.81  51.28  62.80  84.75  37.44  79.42  92.55  49.62  9.09 
DGCNN  56.20  86.06  53.20  60.20  78.10  92.16  50.61  85.97  93.69  60.00  25.00 
GAPNet  70.03  86.41  58.75  42.24  72.46  90.13  61.29  85.51  92.03  51.79  33.33 
Model1noGAT  85.12  67.54  75.02  88.51  84.75  74.34  88.24  83.22  92.15  70.59  36.36 
Model2Nod  88.74  73.97  92.17  82.08  86.37  83.77  80.78  88.08  93.83  73.85  60.05 
Model3Gap  89.46  75.65  93.96  84.19  86.68  85.68  82.83  88.81  93.94  75.39  100.00 

Model4Geo  90.91  91.99  94.63  96.13  98.36  96.00  89.50  98.74  97.01  99.31  100.00 
Model5Nod+Gap  88.08  73.64  92.78  85.12  87.18  79.21  82.02  86.62  95.78  70.94  95.43 

Model6Nod+Geo  92.33  92.07  95.82  97.11  99.61  96.16  88.01  99.07  95.06  99.31  94.88 

Model7Gap+Geo  93.06  96.04  95.72  98.43  100.00  98.98  89.42  88.97  97.07  99.31  100.00 
GAT_SCNet 

(Ours)  
93.42  98.85  95.64  99.50  100.00  100.00  91.09  98.64  98.23  94.74  100.00  
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modules and relying on the sole node embedding features, Model1noGAT 
outperformed the above three compared methods and significantly 
raised the average F1 of dotted line, zebra crossing, straight-arrow, stop 
line and parking space from 70%, 67%, 61%, 62%, 61% to 85.12%, 
75.02%, 88.51%, 88,24%, 70.59% respectively. Compared with Point-
Net, DGCNN had better results on road marking in most categories, 
GAPNet tends to classify similar shape road marking into the same 
category such as dotted lines seen in Scene B. These studies also confirm 
the reliability of integrating EdgeConv layers and GAP layers into our 
GAT_SCNet model.  

(2) the impact of the multi-head attention mechanisms 

Compared with Model1noGAT without attention mechanism modules, 
other ablation models stacking attention mechanism layers gained more 
promising road marking classification. In contrast, Model4Gap with 
geometry-ware attention layers outperformed Model2Nod and Model3Geo 

stacking node-ware and graph-ware attention layer, respectively. The 
reason may be that the geometry-ware attention module integrates more 
prominent information including global features and direction features 
of nodes and pays more attention to the spatial arrangement of road 
marking in subgraphs, which is more beneficial for improving the road 
marking recognition results. In addition, we observed that Model4Gap 

were more conducive to recognizing solid lines especially curve lines 
(shown in Fig. 15(D)). Generally, more attention heads, higher road 
marking classification accuracy. Compared with only stacking graph- 
ware attention module in Model3Gap, Model7Gap+Geo integrating geometry- 
ware attention mechanism improved F1 over 21% for diamond, 13% 
for three arrows. Combining three head attention mechanisms, our 
methods gained the best competitive performance on road marking 
classification, especially on linear road marking like dotted line, straight 
arrow, zebra crossing, stop line, and solid line. For some road scenes (see 
Scenes A, D, and E in Fig. 15), our method outperformed all compared 
methods and correctly group the incompleteness arrows, stop lines, and 

Fig. 15. Visual compared performances on some typical scenes from the test datasets.  
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texts into the corresponding categories. Contrary to expectations, our 
methods and Model5Nod+Gap gained lower F1 of parking spaces than 
Model4Geo. The main reasons is some dotted lines were misclassified as 
parking spaces for the season of similar shape and spatial distribution. 

5. Conclusion 

In this paper, we propose a novel graph deep learning named 
GAT_SCNet for road marking classification on MLS point clouds, which 
aims to category large-size and small-size road marking in a unique 
framework. Unlike previous studies, we construct a computable sub-
graph structure for each road marking and address the road marking 
classification as node classification. To solve the problem of learning 
graphs with different shapes, sizes, and node relationships, a multi-head 
attention mechanism has been explored in the GAT_SCNet model, which 
dramatically aggregates geometric features represented by node 
embedding and spatial distribution represented by graph features into 
distinguishable features of road marking. To assess the effectiveness and 
generalization of the GAT_SCNet model, we chose four training datasets 
and five test datasets from different MLS systems and cities. Quantitative 
and visual results show that our method has achieved very encouraging 
performance on fine road marking classification, with the average Pre-
cision, Recall, and F1 of 11 categories exceeding 91%. Especially, the 
GAT_SCNet model properly identifies two types of arrows and diversion 
lines with F1 of 100%. For linear road marking, the GAT_SCNet model 
also gains very high F1 score, 93.42% for dotted line, 95.64% for zebra 
crossing, 91.09% for a stop line, and 98.23 % for solid line in the test 
datasets. Comparative studies indicated that the proposed GAT_SCNet 
model outperforms the state-of-the-art methods by utilizing the graph 
structure and multi-head attention mechanism. Results of comparative 
experiments also illustrate that the distinctiveness of the subgraph suf-
fers from the quantity and quality of neighboring road marking. 
Therefore, in future research, we will focus on a “point-to-point” deep 
learning model for road markings segmentation to overcome the influ-
ence of the uneven intensity data. 
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