
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Leon Nicola Cinquemani

NationSim

A story-driven approach to Agent-Based
Modeling of Nations interacting.

Master’s thesis in Applied Computer Science
Supervisor: Christopher Frantz
January 2023

Leon Nicola Cinquemani

NationSim

A story-driven approach to Agent-Based Modeling of
Nations interacting.

Master’s thesis in Applied Computer Science
Supervisor: Christopher Frantz
January 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering

NationSim, a story-driven approach to
Agent-Based Modeling of Nations interacting.

Leon Nicola Cinquemani

CC-BY 2019/07/18

Abstract

Agent-based simulation has been well integrated into the field of social sciences,
with social simulations being in use both in the field of science, as well as at a
government level for some time now.
This thesis details the process of creating a framework that sets out to simulate
a variety of nations and their interactions, to gain insights into what rules guide
these interactions, and what effects they have on both the nations involved, as
well as those that are bystanders in the matter.
It then also validates the data produced by this framework against observable
trends in the economies and development of real nations.

The thesis also discusses the application of two separate frameworks as part
of the creation process of the product, where one light-weight framework is used
for the rapid prototyping of ideas, and one more complex and object-oriented
framework is used to create an orderly, low coupling enforcing implementation of
these ideas into the finished program.
Over the course of the thesis, it discusses both the benefits and the drawbacks of
utilizing this workflow and aims to prove that for a significant subset of projects,
this is a worthwhile investment of time.

iii

Sammendrag

Agent-based simulasjon har lenge vært en viktig del av samfunnsvitenskap, både
innenfor vitenskap og innenfor regjeringsarbeid.
Denne Avhandlingen dekker arbeidet gjort for å lage et rammeverk som kan sim-
ulere en rekke nasjoner og deres handlinger på både dem selv og en annen, for
å få en oversikt over hva det er som driver disse handlingene, og hvilken effekter
de har, både på aktørene og på bistående.
Avhandling så også sjekker data-en produsert av rammeverket mot tydelige trender
innen økonomiene og utvikling av reelle land.

I tillegg diskuterer avhandlingen en arbeidsplan for bruken av to rammeverk
til å lage agent-baserte modeller, der et lettvekts rammeverk blir brukt til proto-
typing av ideer, mens et mer kompleks, objektorientert rammeverk blir brukt til å
lage en oversiktlig implementasjon av disse prototypene, med lave koblinger mel-
lom delene av systemet.
I løpet av avhandlingen blir det vist til både fordeler og ulemper med denne måten
å arbeide på, og en påstand er gjort at den er til fordel for en vid rekke prosjekter.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
Acronyms . xv
1 Introduction . 1

1.1 Background . 1
1.1.1 My belief in stories . 1
1.1.2 My story . 4
1.1.3 Planned Contributions . 5

1.2 Literature Review . 5
1.3 Research Questions . 10

1.3.1 Scenarios . 11
1.4 Requirements and Risks . 11

1.4.1 User Stories . 11
1.4.2 Requirements . 11
1.4.3 Risks . 12

2 Methodology . 17
2.1 Technical Design . 17
2.2 Investigating Tools . 19
2.3 Data sourcing . 20
2.4 Re-evaluations . 21

2.4.1 Framework choices . 21
3 Implementation . 23

3.1 Netlogo . 23
3.1.1 Initialization . 23
3.1.2 Government Module . 26
3.1.3 Economy Module . 28
3.1.4 Data Gathering . 32

3.2 Scripting . 33
3.3 Data collection . 35
3.4 Deployment . 35

vii

viii Leon C.: NationSim, Modeling Nations interacting

4 Research . 37
4.1 Data analysis . 37

4.1.1 R . 37
4.1.2 Correllograms . 38
4.1.3 Netlogo Plots . 40

4.2 Results . 41
4.2.1 Scenario 1 . 41
4.2.2 Scenario 2 . 43

5 Validation and discussion . 49
5.1 Validating Results . 49

5.1.1 Scenario 1 . 49
5.1.2 Scenario 2 . 50
5.1.3 Discussion . 52

5.2 Validating Requirements . 53
6 Conclusion . 55

6.1 Future work . 55
6.1.1 International Relations . 55
6.1.2 Improved Scripting . 56
6.1.3 Improved Data collection . 56
6.1.4 AI decision making . 57

6.2 Insights . 57
6.2.1 Modeling Frameworks . 57
6.2.2 Contributions . 59

6.3 The Simulation . 61
6.3.1 Final thoughts . 63

Bibliography . 65
Paper I . 67
Paper II . 137

Figures

3.1 The left half of the Netlogo interface 24
3.2 The right half of the Netlogo interface 25

4.1 Small cutout of main correlogram . 39
4.2 The plots of the Netlogo interface . 40
4.3 Netlogo center of interface . 41
4.4 Prices affected by removed Producer 42
4.5 Graph of trades with point of removal marked 43
4.6 Wealth, Resources traded, and Trade record for Test 1 44
4.7 Wealth, Resources traded, and Trade record for Test 2 46
4.8 Wealth Graph for test 3 . 46
4.9 Trades for test 3 . 47
4.10 Wealth and Trades of Test 4 . 47
4.11 Wealth and Trade Graphs for test 5 . 48
4.12 Wealth graph for two equivalent less developed nations 48

ix

Tables

1.1 The Original User stories of the project 13
1.2 The Functional Requirements . 14
1.3 The non-functional Requirements . 15
1.4 Risks and Related requirements . 16

3.1 Script Operators . 34

xi

Code Listings

3.1 Finding population growth . 27
3.2 Updating approval . 28
3.3 Nation trading Pseudocode . 31

4.1 The R script . 38

xiii

Acronyms

ABM Agent Based Modeling. 4, 7, 8

ACE Agent-based Computational Economics. 8

xv

Chapter 1

Introduction

1.1 Background

1.1.1 My belief in stories

As humanity’s exponential consumption of media only grows, and the continued
technology able to provide this media in vast quantities and vastly unique ways
only becomes more advanced, the need for novel entertainment increases on a
near-yearly basis.

This necessitates the continued creation of novel entertainment media, ran-
ging across all forms of art and entertainment. New music, new books, new art.
New movies, new games, new theater. Humanity’s hunger for stories, sparked
alongside the first-ever campfire, has only continued to grow since the first tales
were told over the crackling of the firewood.

From tales told around campfires to images used to accentuate verbal tales,
the very concept of religion is funded in the art of telling stories to make sense of
the world. Stories ranging from fabricated tales to the concrete retelling of events
that happened in the past. It is no wonder then that the Latin word for history,
historia can mean both "recorded knowledge of past events", but also "story" and
"narrative".

In a way, to this day everything humanity "knows" about itself and the uni-
verse is a story.
By the inherent uncertainty in the universe and the seeming impossibility of un-
derstanding its concrete rules, if, indeed, any rule concerning the entire vastness
of existence can truly be "concrete" across all cases, our attempts at making sense
of both it and the mechanisms that guide it, are typically framed as "hypotheses"
and "theories".

In a very real sense then, we must come to terms with the fact that a theory is

1

2 Leon C.: NationSim, Modeling Nations interacting

not a certainty.
By acknowledging the fact that the entire universe is thus viewed by modern
scientists through a set of theorems that do not constitute concrete rules, we
have to conclude that science too, in the widest sense, follows in the footsteps
of storytelling.
In a way, even with all the enlightenment of modern sciences, we are still stuck
in Plato’s cave, where the things we perceive as concrete realities are at best well
informed stories.

Likewise, the very concept of any recorded history requires the history to first
be recorded, undoubtedly by a human.
This means by the nature of human communication, even in a scientific back-
ground, that recorded historical events like all writing must be tainted by the
biases of the recorder.

Just as it is impossible to separate the art from the artist, so too is it impossible
to separate the writing from its writer.
So long as history is created not by an entirely impartial bystander with no emo-
tional investment in the matter, nor personal biases, it will always result in a biased
product.

This is obvious in major ancient historical records, from the fall of troy to the
religious history of the Vikings, as recorded by Snorre Sturlason. Both the histor-
ical inaccuracies of the Illiad, as well as the likely Christianization of the original
Norse-pagan beliefs under the Christian Sturlason showcase the nature of history,
namely that it molds to the people that end up telling others about it.

With such a major portion of human life seemingly centered around the con-
sumption and production of stories, it is unsurprising that the market for these
concepts is quite vast, and the amount of, indeed, consumption of stories is thus
understandably massive.
Humanity’s ability to strive towards ever greater skill in delivering a story that
evokes emotion, provokes thought, or just gets across our viewpoint on a matter,
has left us with a vast, and varied array of tales, across various genres.

Thus, there are many stories to be told and almost as many ways to tell a story.
And one recent way of telling stories is simulation.
While some may cry out at describing a highly advanced tool for modeling the
interactions between physical and/or societal phenomena as "storytelling", in a
very real sense, that is exactly what simulations are.
No matter how broad the creator’s understanding of the subject may be, in the
end, there is no way to model all possibilities and variables that are inherent in
every subject, from the life of single-celled organisms to the fall of a single grain
of dust through the atmosphere.

Chapter 1: Introduction 3

Simulation relies on taking the unfathomable vastness of reality and squeezing it
into a box that the human mind can comprehend and find a feeling of certainty in.

No simulation can ever predict the future accurately, for to do so all import-
ant variables to every possible event, let alone their interaction, would have to be
known.
But that is not the point of a story, not even that of history, I would pose.
The meaning behind a story, behind all stories is to communicate something to the
audience, something they had not before, be that understanding, a certain feeling
on a matter, or even just the satisfaction of engaging with something interesting.
Thus I believe is the purpose of all stories, from fireside tales, fairy tales, and best-
selling novels, to historical accounts, research papers, and biographies.
In the end, it is to get across a message, to showcase a tiny part of existence that
the person telling the story thinks is important.

Does the tale of Achilles and Patroclus have any direct impact on the life of
those that read the Illiad today?
Maybe.
Maybe the butterfly effect means that somewhere during the real events that are
the base for the story, something happened that is affecting the life of the person
reading the tale right now.
But that is not the point of the story, is it?
The point is that the lessons learned in the past, the core understanding that
Homer wished to get across to his audience, is something that can inspire people
and change the world even still.
And just the same, the point of a simulation is not to provide a perfect understand-
ing of the world, a flawless telling of what the future, past, hypothetical event, or
minute interaction, is like, but to instead transmit some information that the cre-
ator believes is important.

As we lack certainty in our understanding of the rules that govern the world,
it is the duty of the scientist to come up with, yes, stories.
Stories that can explain the phenomena that are observed in the real world.
From the earliest idea that there had to be a point at which an item could not
longer be divided into smaller pieces, because the smallest possible piece had
been reached, to the discovery of atoms, from Newtonian physics to Relativity,
science relies on somebody making up a story about how the world works and
then testing to see if it holds up.
If there is nothing that contradicts the story, and more and more people believe
in the story, it becomes a cornerstone of science, until the point where something
is found that contradicts it, and a new story is told that explains that new obser-
vation as well.

From this belief, this project has been born.

4 Leon C.: NationSim, Modeling Nations interacting

The firm belief that observing the world and finding stories to tell is a core part
of the human experience in all its forms.
A simulation, in the end, is a simpler world for us to look at, one which might
show us interactions and hint at patterns that have not previously been observed
in the real world due to all the noise of interfering variables.
And from that stories might be told, stories that have value in the chaos of the
real world.

1.1.2 My story

The story this thesis is meant to tell is one that is becoming increasingly relevant
in today’s world.
Where nations and peoples are ravaged by a pandemic that has destroyed both
lives and lively-hoods, where war rages on lands that had hoped they would be
at peace for many more generations, where the climate, energy, and market are
in a crisis.
A world that now more than ever is changing due to the actions and interactions
of nations.
The story this thesis is meant to tell is one of Nations cooperating, trading, fight-
ing, changing, living, and dying, a story that may carry some insights that can
apply to the real world.

And where the caveman used his voice and a bonfire, the renaissance painter
used his art, and the modern writer uses his literary works, this thesis uses Agent
Based Modeling (ABM).
Because a good simulation, or more precisely, a good framework for simulations,
can tell a thousand stories.
Whichever story the user wishes to tell, provided they know how to use the frame-
work.
Over the course of nearly a year and a half, I have worked on the creation of a
framework that can tell the story I wish to tell.
That can simulate many, many nations interacting with one another, and is robust
enough to let my audience explore many potential stories by having a say in how
those nations interact.

This thesis too is a story.
It does not contain absolute truth, because inevitably, it will be altered by my bi-
ases, and the lens through which it describes the long, arduous process of creating
a functional simulation framework, is unique to the author as well.
But hopefully, by the end of this thesis, the most important parts of the process of
the creation of NationSim, and its capabilities will have been well explained.

Chapter 1: Introduction 5

1.1.3 Planned Contributions

Originally the goal of the project was to make a tool to assist writers in creating
interesting historical data for fictional settings.

As a hobbyist writer I, at the time of starting the project, found myself with
the issue of requiring a lot of historical data for the nations of the fictional worlds
I was working on, as I wanted to make them feel like well-established members
of an international community, with a history of conflicts and cooperation to look
back on.
The vast quantity of fictional works that are being produced annually emboldened
me in the pursuit of a way to create this data without needing to spend many hours
combing through real-world historical data every time, as it seemed as though
such a product would certainly find use within that community. It seemed to me
that such a product would enable authors to generate historical data within mo-
ments, and use that as scaffolding upon which they could build the history of their
worlds nations.

As such, the original idea for the project was to create a simulation of nations
interacting and trying to survive throughout a predetermined period of history,
and then gather a list of important historical events such as wars fought, alliances
formed, and trade deals struck for each nation.
Over the course of the project, however, another use for NationSim came into the
spotlight.
The ability to simulate nations and their interactions is highly topical at the cur-
rent time, as the war between Ukraine and Russia is still in full swing, and the
coronavirus still heavily impacts the international economy.

As the simulation of nation interactions has taken precedence over the simu-
lation of historical events, the focus of the project has shifted from presenting the
user with a set of historical events, to instead showing the user why nations end
up in those situations.
The main thing that "NationSim" seeks to provide is the ability for its users to
look at nations and their interactions and draw conclusions about the underlying
mechanisms that decide how they end up interacting, as well as what the contrib-
uting factors to if they end up prosperous or not are.

1.2 Literature Review

The idea of using simulations to gain insights into society is far from a new one,
with scientists attempting to use computers to aid in understanding and even
predicting social phenomena since the early 1960s (N. Gilbert and K. Troitzsch,
Simulation for the social scientist. McGraw-Hill Education (UK), 2005[1]), and the

6 Leon C.: NationSim, Modeling Nations interacting

concept of using simulation to model nations is just as old.
Not long after the first attempts at modeling society via computer simulations,
the 1970s saw the rise of large-scale world models, like WORLD II (Forrester [2]),
which attempted to model complex interactions between large, world-spanning
phenomena like pollution, population, and capital gain.

This attempt however was doomed to be a difficult undertaking, as attempting
to model such a massive set of interactions and create a predictive model means
that untold numbers of variables need to be taken into consideration.
And with a lack of accurate knowledge of each of these parameters, the simulation
makes increasingly unrealistic predictions, which can be showcased by the fact
that if the model was used to predict birthrates going backward into the 1800s,
it predicted that the world population sank from 6 billion to 1.7 billion between
1880 and 1900, which thankfully is not the case.

Originally, social scientists were focused on using discrete event simulations
and simulations based on system dynamics (Gilbert and Troitzsch [1]). The former
was used in order to analyze waiting times in queues or time taken for emergency
services to reach a destination (Kolesar et al. [3]), while the latter was used in
predictive work for example the world economy (Meadows et al. [4]).
At the time, strong predictions were made but ended up being criticized for their
low reliability and lack of evidence backing the assumptions made with the model’s
parameters.

After that came Microsimulations (Orcutt et al. [5]), which observed a large
set of simulated subjects, such as individuals, households, or firms.
Then for every timestep of the simulation, a set of transformative functions is run
on each subject, changing their state with a percentage chance.
After Microsimulations the field remains relatively quiet until the 1990s when the
first developments are made in the field of using multi-agent models to model
social interactions([1]).
These include early attempts at utilizing cellular automata, grids of "cells", each of
which has a state that is influenced by the states of the cells surrounding it(Toffoli
and Margolus [6]), and advancements in the fields of artificial intelligence allow-
ing the "agents" of the model to reason and even learn over the course of the
simulation(Doran [7]).

From mathematical models to agent-based models, simulation has become
more and more of an invaluable tool in the search for understanding social phe-
nomena.
An important factor in understanding society is the concept of emergence, the pro-
cess by which the rules govern the individuals within a group form rules that
govern the entire group.
No variable in an agent may linearly be related to the emergent behavior, but the

Chapter 1: Introduction 7

combination of the agent’s behaviors changes how the agents behave as a whole
(Simon [8]).
These emergent behaviors are an important part of NationSim, as the behaviors
that control whether or not a nation makes a profit from interacting with others
via a market, and how the nations impact one another rely on emergent behaviors
in the nations. One nation not being able to meet its requirements for a certain
resource drives up the price of that resource locally, which results in the price on
the open market changing.
Suddenly producing that resource and selling it on the open market creates bigger
profits, which causes more nations to do so.
Thus, one nation struggling might create opportunities for other nations to turn
a profit.

But a nation is a big thing to model. There is a myriad of constituent parts
that make up a nation, indeed it might be correct to say that a nation itself is a
concept that is emergent from the interactions of many constituent parts.
This is where ABM’s can shine, as they allow the creator to decide to what level
of granularity they want to model such emergent concepts.
A crowd can be modeled as individuals with their desires for where to go, or as
an amorphous blob moving around based on some more abstract rules.
We can aggregate people in populations, populations into nations, and nations
into international societies, and each step of these aggregations can be modeled
as agents, down to the desired granularity.
Seen in that light, ABMs are ideal for this use-case, where the level of aggregation
desired is entirely up to the programmer.

As for NationSim, I had only a limited amount of time, resources, and accur-
ate knowledge of the inner workings of a nation to work with when it came to
modeling the wide-reaching complexities of what systems make up a nation and
the rules that govern how they function.
While the ideal goal would of course be modeling everything from population dy-
namics, internal and external institutions, environmental factors, etc, realistically
I only had so much time when working on the project.
As the original goal of the project was to create a writing tool, I decided to focus
on three areas I felt were the most necessary for creating a compelling story, that
being economy, environmental factors, and warfare. In the end, environmental
factors were omitted relatively early on and replaced with a more complex sim-
ulation of the internal workings of the government and population growth than
originally planned.
This was partially due to time constraints not allowing for a sufficiently complex
model of the many factors that go into how the world around a nation behaves,
and how the nation and the environment impact one another, but also due to the
fact that the environment out of the frameworks presented seemed like the one
that was the least likely to aid in the creation of a realistic, fascinating narrative

8 Leon C.: NationSim, Modeling Nations interacting

about the nations being simulated.
While great natural catastrophes impacting nations are an important part of his-
tory, they are rare enough that it is not out of the question that they might never
come to pass in a simulation, and thus it was decided that if disasters were wanted,
there were better ways to incorporate this into the simulation that going through
the effort of creating an entire module for it.
In the end, the environment module was dropped as I believed it would have not
been worth the time it would have taken to create.

As for the matter of economics, simulation has been used in a variety of con-
texts around the field of simulating markets, economics in general, customer beha-
vior, planning the economy of major nations (Farmer and Foley [9]), etc. The use
of agent-based modeling of economics, the field of Agent-based Computational
Economics (ACE) is still fairly young, the groundwork being laid no sooner than
1996 [10].
Since that point, agent-based models have been used to simulate traders in an
open market; such as by Chen and Yeh [11] in their model of traders learning
forecasting models and taking them into practice, labor market models; such as
the one by Tesfatsion [12] which matches employers and employees using game-
theory and continuously making workers and employers seek out new opportun-
ities, and prediction of new models for power markets; like the one made by in
the 2021 Wiley/IEEE press book[13].
This matches to an extent the use of ABMs in NationSim for the creation of an
international open market, alongside the nation’s trading on it, and is highly rel-
evant to the project as a result.
ABM has also been useful for creating models of macro-economics(LeBaron and
Tesfatsion [14]), which is very much what this thesis concerns itself with as well.

Another important factor in trying to model a nation is attempting to model
the population, particularly the way it changes over time.
As nations require people in them in order to function, and economies require
labor, ensuring that the nation’s population growth function is as close to reality
as I can manage to get it is an important part of ensuring the output of the simu-
lation is realistic.
For this, I turned to papers diving into the less-than-obvious and often unclear
factors that contribute to the birth and death rates of a population.
Some of these are rather hard to model without going into grand detail about
medical factors that would be far out of scope for a simulation about nations,
such as genetics and lifestyles (World [15]). Low income however was a prevail-
ing factor(Mackenbach et al. [16]) that could be simulated in the model to an
extent by looking at the income across the nation and comparing it to the popu-
lation we can figure out the average income for each member of the population.
Also noteworthy where the findings of the impact that education, healthcare,
and urbanization have on the birthrates of nations, as described by (A. Pourreza,

Chapter 1: Introduction 9

A. Sadeghi, M. Amini-Rarani, R. Khodayari-Zarnaq and H. Jafari, ‘Contributing
factors to the total fertility rate declining trend in the middle east and north africa:
A systemic review,’ Journal of Health, Population and Nutrition, vol. 40, no. 1,
pp. 1–7, 2021).
Inversely, the death rate of a nation could also be modeled with information from
the same articles, as particularly (D. World, ‘Longevity: Extending life span ex-
pectancy.,’ 2022, Retrieved January 12, 2023. [Online]. Available: www.disabled-
world.com/fitness/longevity/) points out a few factors, such as low health-
care, poor lifestyle choices, and of course, overall age of the population, all of
which can to an extend be modeled, the lifestyle being possible to somewhat get
an approximation for via education levels and income.

Another factor to consider when modeling the actions of nations are actions
of other nations, and how they affect the nation in question.
We cannot create a simulation about nations interacting if the actions of nations
do not affect other nations, after all.
International relations are a wide field, of course.
Trade, warfare, diplomacy, alliances, and similar concepts are daunting tasks to
model in their entirety, but several attempts have been made at gaining an under-
standing of how and why nations cooperate, go to war, and form empires.

One example of this is Axelrod’s work in creating a simulation of nations exert-
ing tribute from each other and forming empires, before eventually collapsing[N.
Gilbert, Emergence in social simulation in gilbert, n. and conte, r.(eds.) artificial so-
cieties, 1995].
The model in question is an example of a cellular automata model, with agents
making decisions based on the states of their neighboring agents[6].
In the model, all agents are placed in a ring, with one neighbor on each side.
Every time step a number of agents is chosen to interact with its neighbors, de-
ciding whether to attempt to extort tribute from them or not.
If the neighbor decides not to pay tribute both nations go to war and lose some of
their wealth.
For every positive interaction, such as paying tribute, being paid tribute, and join-
ing each other in their wars, nations gain points of commitment against each other,
while going to war on opposing sides results in the opposite.
Thus, over time, clusters of closely cooperating actors start to form, and they may
then start to collapse at a later point if powerful constituent members lose too
much of their wealth in unfavorable wars.
Thus Axelrod’s model can model a series of historical events, such as empires
collapsing due to smaller constituent nations picking wars that end up dragging
the major players into a conflict that drains their wealth, or major conflicts that
collapse the most powerful players as they are forced into opposing camps in dev-
astating "world wars".

www.disabled-world.com/fitness/longevity/
www.disabled-world.com/fitness/longevity/

10 Leon C.: NationSim, Modeling Nations interacting

As warfare, empire building, and the rise and collapse of civilizations is a major
part of history and an important factor in how nations act and interact, a module
for warfare and diplomacy was originally planned for NationSim.
The sheer complexity of the economy and internal nation modules ended up how-
ever forcing the sacrifice of that module due to time constraints, and international
relations and warfare have both been relegated to being something to add to the
model in the future.

1.3 Research Questions

As we see, there is a lot of work done in modeling economics, international inter-
actions, and a lot of data for studying the growth factors of a nation’s population,
as well as models that are meant to help predict the course of nations over in the
future.

One might ask what the point of walking such a well-trodden path is, and my
reasoning for this is two-fold.
Firstly, the fact that a lot of the questions posed in this thesis and a lot of the dif-
ficulties tackled have been discussed before shows that these are problems that
have historically been viewed as relevant and important.
Secondly, the fact that all of these papers either focus only on parts of what my
implementation focuses on, but go into more detail, or they focus on a bigger pic-
ture with a less focused view.
Thus "NationSim" slots into a middle point where it is not just a market simula-
tion, and not just a population growth simulation, but rather a combination of
many variables that affect both.

As such, I would like to pose and subsequently answer the following questions
in my thesis, in order to prove that NationSim accomplished what it set out to do.

• Process:

1. "R1: Which ABM-frameworks can best support the modeling of com-
plex social systems?"

2. "R2: What are the benefits and drawbacks of using separate frame-
works for prototyping and implementing a complex model?"

• Evaluation:

1. "R3: What are the consequences on the international community, eco-
nomically and demographically, when we remove a main producer for
an important resource, like Russia, from the international market?"

2. "R4: When do nations benefit from international trade, and when is it
more efficient to remain in autarky?"

Chapter 1: Introduction 11

1.3.1 Scenarios

Two scenarios where developed with the intent of gaining answers to the research
questions posed.
These were specifically designed in order to simulate situations which would force
certain interactions between the modeled nations, in order to gain insight into
the mechanisms that control the effects these interactions have on the nations in-
volved in them.
In order to gain answers to the Research questions posed, the following two scen-
arios where created:

1. "What happens to the international economy and the economic growth of
other nations if the main producer of a highly desired product disappears
from the market?"

2. "What effects does trade between a wealthy, powerful nation and a poor,
weak nation have for the two nations economies and prosperity?"

Each scenario was chosen to gain insight into one of the two main research ques-
tions, by letting us analyze the variables that make up the nations involved in each
scenario.

1.4 Requirements and Risks

1.4.1 User Stories

The first step in planning the actual architecture of the model, now that I knew
what I wanted it to do and what I wanted this thesis to be about, was to create a
set of requirements that the end product had to fulfil in order for me to consider
it a success.
These where originally chosen via a set of user stories as seen in Table 1.1, which
have later been made obsolete by the fact that the project changed direction from
a storytelling tool to a tool for exploring the actions of nations.

1.4.2 Requirements

Still, despite the fact that most of the user stories by this point are no longer
relevant for the framework, the requirements that I synthesised from them are
still largely relevant, with lots of them being useful for the validation of our final
product later down the line in Chapter 2. See Table 1.2 and Table 1.3 for the full
requirements.

12 Leon C.: NationSim, Modeling Nations interacting

1.4.3 Risks

Likewise, the original risks also remained highly relevant, with several of them
becoming a reality over the course of the project.
The project shifting gears several times over the course of the year-long imple-
mentation process mean that several risks now have incorrect threat assessments,
as the shifting focus for the output of the product and the changing of which
framework to use for implementation throughout the project ended up altering
which risks where the most problematic, and which requirements where realist-
ically feasible.
The original risks can be seen in Table 1.4

Chapter 1: Introduction 13

Table 1.1: The Original User stories of the project

Label User type Description
US:01 Author As an author, this user wants to be able to run the tool to

create a full history of a set of nations to use as scaffolding
for his next novel setting.

US:02 Author As an author, this user wants to be able to fine-tune the sim-
ulation to run an exact number of years equal to the age of
his setting.

US:03 Author As an author, this user wants to be able to select the names
of the nations in the simulation to match those in his setting
to make them easier to differentiate at a glance when looking
over results.

US:04 Author As an author, this user wants to be able to separate nations
that reasonably should not be able to get into contact with
one another during the simulation.

US:05 Author As an author, this user wants to be able to store the results of
the simulation for extended periods to be able to divide the
time he works on them over a large time frame.

US:06 Author As an author, this user wants to be able to influence the simu-
lation to change the behavior and starting parameters of each
nation to represent the different races and cultures of his set-
ting.

US:07 Videogame developer As a game developer, this user wants to be able to run the
simulation in a reasonably short time, to meet his deadlines.

US:08 Videogame developer As a game developer, this user wants to be able to have some
control over how the different nations develop during the
simulation to facilitate the story of the game.

US:09 TTRPG player As a Table-top RPG player, this user wants to be able to alter
the setting later down the line to facilitate a new idea, or to
incorporate some input from his fellow players.

US:10 TTRPG player As a Table-top RPG player, this user wants to be able to break
the results from the simulation down into small chunks to be
developed further as needed.

US:11 Historian As a hobbyist-historian, this user wants to be able to import
historical data for real nations into the framework to create
what-if scenarios.

14 Leon C.: NationSim, Modeling Nations interacting

Table 1.2: The Functional Requirements

Label Related User
story

Name description importance

Req:01 US:01 & US:02 Runtime The program must run a full simulation
of a set number of years

High

Req:02 US:01 & US:03
& US:06 &
US:11

Realism The simulation must run realistic interac-
tions between a set of predefined nations

High

Req:03 US:03 & US:04
& US:06 &
US:11

Adaptable
Para-
meters

The Nations starting parameters need to
be able to be influenced by the user

Med-High

Req:04 US:09 & Us:11 File
loading

The Simulations parameters need to be
able to be populated from pre-existing
data

Med

Req:05 US:01 & US:05
& US:10 &
US:11

Output
Read-
ability

The program needs to output it’s results
in a format that are easily human read-
able

High

Req:06 US:09 Output
reuse

The program needs to output it’s results
in a way that allows it to be fed back into
the simulation as starting parameters

Med-Low

Req:07 US:01 & US:03
& US:05 &
US:10 & US:11

Auditing The user has to be able to draw conclu-
sions from the output about the state of
the individual nations during any point
of the Simulation

High

Req:08 US:09 Storeable
state

The user has to be able to store the cur-
rent state of the simulation, in order to be
able to continue from it at a later point
in time

Med

Req:09 US:08 & US:09 Active
control

The user has to be able to pause the sim-
ulation during runtime, and to alter the
parameters of nations while the simula-
tion is running

Med-Low

Req:10 US:04 & US:06
& US:08 &
US:11

Nation
beha-
viour

The user has to be able to set limitations
on how nations may interact to model
various complex nation relationships

Med-High

Req:11 US:01 & US:09
& US:11

Determi-
nistic
RNG

The user needs to be able to rerun the
simulation with the same seed and get
the same results.

High-Med

Chapter 1: Introduction 15

Table 1.3: The non-functional Requirements

Label Related User
story

Name description importance

Req:12 US:01 Time
Units

The simulation needs to run at a pre-
defined timescale of 1 tick = 1 year,
updating once per unit of time for
each agent, and storing new information
about the agents state, so it can later be
presented

High

Req:13 US:07 Runtime The program needs to take into consider-
ation the runtime of the simulation, and
ensure it does not become to long. The
simulation should take no more than 1
minute for 1000 years to be simulated for
10 nations. This would mean that 1 year
for 1 nation should take no more than 6
milliseconds.

Medium

Req:14 US:01 & US:03
& US:05 &
US:10

Output
format

The Program needs to produce output
that is human and machine readable,
and user friendly, producing both raw
data, graphs, and text based output for
the user

High

Req:15 US:01 User
friendli-
ness

The program needs to be intuitive to use,
taking less than 2 hours to learn while
unguided, and less than 1 hour while
guided for a majority of users

Medium

Req:16 US:01 & US:07 Reliability The program needs to be stable during
runtime for typical usecases, not crash-
ing outside of outside circumstances or
extreme strain due to excessively taxing
user input far beyond the expected norm

High

Req:17 US:01 & US:02
& US:03 &
US:04 & US:06
& US:08 &
US:09 & US:11

Initializa-
tion

The Program needs to allow users to eas-
ily input custom parameters, either via
loading a file, or via randomization with
or without a predetermined seed

High-Medium

16 Leon C.: NationSim, Modeling Nations interacting

Table 1.4: Risks and Related requirements

Label Related Re-
quirements

Description Likelihood Severity

Risk:01 All I might not be able to complete the pro-
ject in the timeframe given

Med High

Risk:02
Req:02

The Nations decision making is not real-
istic

High High

Risk:03
Req:05 &
Req:07

The output of the simulation is not user
readable

Medium High

Risk:04
Req:11

The Simulation is not Deterministic Low High

Risk:05 Req:13 The program can not meet it’s runtime
requirements, and takes too long to com-
plete

High Medium

Risk:06 All I face technical difficulties, and loose ac-
cess to my workstation

Low High

Risk:07 Req:15 The Program is not intuitive to use High Medium
Risk:08 Req:16 The program experiences frequent

crashes during runtime
Low High

Risk:09 Req:09 Framework does not support updating of
parameters during runtime

Medium High

Chapter 2

Methodology

As is the structure for the master course at NTNU Gjøvik, much of the third
semester is spent making plans for the upcoming master thesis.
So too was the case for Nationsim, which was originally started via a project plan,
a tool study, and an early prototype in the latter half of 2021.
These all are the product of a full course, so they will be included as appendixes
at the end of the thesis, should the reader be interested in them, and will occa-
sionally be referred to as the reasoning behind various decisions made over the
course of the project, particularly towards the beginning of the project in early
2022.

2.1 Technical Design

Originally, the project was meant to only run over 1 year, including the semester
of courses that were used for a lot of the planning work.
As evidenced by the fact that we are now in early 2023 as I am writing this, that
clearly did not work out.
The original project plan made the assumption that I would be able to effectively
work for about 28 weeks and deliver an acceptable product that would ideally
cover three separated modules, as well as a module combining their outputs into
one output file.
With every module expected to be roughly the same complexity and size, each
module was estimated to take about five and a half weeks of work to be able to
be completed, with an additional five weeks for writing the thesis.
The long time spent on writing would have given me plenty of time to finish up
any remaining work on the modules and debugging after the allotted time was
over.

The work plan in it’s entirety can be seen in Paper I, along with the rest of the
project plan that was made alongside it for the course IMT4205 - Research Project
Planning.

17

18 Leon C.: NationSim, Modeling Nations interacting

This plan however did not end up working out due to a variety of unforeseen
circumstances arising in my personal life, as well as the original scoping for the
project being more optimistic than anticipated.

The original plan saw the final product as a set of modules that would be only
loosely coupled to one another and each simulates a separate part of the nations
that make up the model.
Each of these systems would receive parameters from the other systems, and use
these alongside its own parameters to simulate the different parts of a nation influ-
encing the others, from the economy, to international relations, to internal politics.

Keeping these modules largely decoupled would increase the readability of
the code base, as it meant not having to look at the totality of what would un-
doubtedly be hundreds if not thousands of lines of code, instead allowing each
module to be viewed (and ideally debugged) separately.
Additionally, it also meant that modules could easily be turned on or off, as well
as minimizing the number of touchpoints between systems.
Fewer touch-points would mean having to check fewer places for errors cascading
through the system while bug-fixing, and it would mean that if a module could
not be completed that less of the codebase would have to be altered in order to
ensure the remaining modules still functioned at full capacity.

With each module remaining agnostic to the inner workings of the other mod-
ules, changing out modules at a later point would also be easier, as so long as the
interface remained unchanged, no changes would have to be made in other mod-
ules to keep the program functioning.

As the original plan involved both prototyping and testing for each individual
module, as well as strongly separated modules that were meant to function nearly
independently, the requirements for a robust framework that could handle com-
plex simulations at speed, which allowed me to maintain an overview of what
no-doubt would become a complex architecture of interfacing modules was key
for the implementation phase.
At the same time however, it became increasingly clear that my lack of experience
in the field of simulation and social sciences would necessitate a lot of rapid pro-
totyping to test out ideas and choose the ones that worked while being able to not
too precious about the ones that did not.

Herein lies the problem, however, as ensuring that tools for testing, strong
separation of files, and a focus on good performance would all be available, has
a tendency to increase the complexity of the framework used.
The first major decision for the project thus became the decision to utilize two
separate frameworks instead.
A lightweight, simple-to-use framework that would enable me to quickly test out

Chapter 2: Methodology 19

ideas in small simulations before incorporating them into the bigger project, and
a larger, more complex but also more performant framework with capabilities for
testing, which would be used for the actual implementation of those ideas.

As the field of Agent-based modeling frameworks is vast, however, I decided
to do a preliminary study into the tools readily available to me in order to find the
ones that made the most sense for my project and level of skill in the field.

2.2 Investigating Tools

Over the course of the course IMT4134 - Specialisation in Software Engineering,
I investigated a variety of frameworks that seemed like they could be good fits for
this project.
I knew from the beginning of the project that I wanted to go with an agent-based
approach, as it seemed like the natural fit for the problem presented.
Being able to model each nation as its own, independent agent with its own impact
on the world allowed the project to intuitively focus on the interactions between
these independent nation agents.

Luckily there are many varying frameworks that have been created for intrepid
researchers and hobbyists to use.
With the technical criteria of having to be publicly available free of charge due to
a lack of funding for licenses being available for master projects, as well as being
available on windows-based devices as that would be the devices I would be work-
ing on for the project, the list of frameworks was still only somewhat narrowed
down.

Due to the findings presented in Paper II , I knew that Netlogo was very simple
to work with, quick to get projects going, and surprisingly fast in its execution,
despite how simple it appeared on the surface.
One of the veterans in the field, Netlogo had comprehensive documentation, plenty
of online resources to get help from, as well as a well-developed community, and
overall was the framework I felt was most easy to work with when it came to
programming, despite the slightly arcane syntax that its programming language
possesses.
However, Netlogo also suffers from a significant issue in that all code is normally
written as functions in a single file, making the separation of various modules a
purely conceptual one, rather than having different modules in different loosely
coupled files.

On the other hand, Repast, the other standout framework in the study was a
lot more cumbersome to work with, and occasionally turned out to be actually
slower than Netlogo, but it was still more than fast enough to fit with the specific-

20 Leon C.: NationSim, Modeling Nations interacting

ation, and due to it being a java based framework it not only had access to testing
through tools like JUnit but also provided a more separated, object-oriented lay-
out for the project.

Caught between two frameworks that each would be ideal for specific parts
of the project but less so for others, I took the decision of utilizing both at varying
points during the project.
Since Netlogo allowed for the quick and intuitive creation of small models but
got less and less understandable the more code a simulation had, it was ideal for
the creation of rapid prototypes, which could help inform choices for the main
implementation.

Repast meanwhile was much too cumbersome to set up for rapid prototyping
in my experience but was nicely structured in a way that felt familiar to somebody
that was taught primarily object-oriented programming, such as myself.
This meant that it was ideal for the full implementation of the project once the
initial prototyping was done.
Each module could be created one after the other in prototypes in Netlogo, tested,
and the best ideas sorted out, and then the entire module could be re-implemented
into the full product in Repast.

2.3 Data sourcing

As the initial testing of how realistic the framework’s output is relies on know-
ing some data from the real world, a source of data from real-world nations was
needed, particularly in the fields of birth- and death rates, as these are a core part
of the population growth function of the module handling the nation internal vari-
ables.
Any data that was not gathered via exploration of results, such as abstractions of
more complex parameters like the cost of improving the infrastructure and tech-
nology used in producing a specific resource, or the starting values for the pop-
ulation and wealth of a nation, were instead gathered from the world Databank
(https://www.worldbank.org/en/home).

It should be noted that the aforementioned website was used only to gather
sensible boundaries for variables such as crude birth and death rates, boundaries
which can be changed at will in either the interface of Netlogo or the script file
for the scenario.

Chapter 2: Methodology 21

2.4 Re-evaluations

2.4.1 Framework choices

The upsides of using Netlogo and Repast for the project, one for prototyping and
the other for the actual implementation are plentiful in their own right.
Easy rapid prototyping, closely related syntax, and the best of both worlds between
a quick, lightweight coding framework for testing out ideas and a heavy-duty,
neatly separated codebase that is easy to maintain and write tests for.
Overall, I would say that this is a major benefit to the quality of the code produced,
provided the coder is familiar with both frameworks.
The end result, ideally, is a well-matured prototype that has gone through po-
tentially dozens of iterations in a very short time, and a clean, well-tested, and
maintained final implementation, completely separate from those prototypes.

The only downside of this would be that rather than being able to create the
prototype, get the good ideas, and then simply implement that prototype directly,
everything would have to be rewritten and the architecture redone for a separate
framework that worked with a different layout.
Depending on who is asked, that might actually be a benefit as it ensures that the
code is rewritten cleanly and properly documented, rather than having to clean
up messy prototype code.
However, the process is a significant time-sink, and in the end, proved too time-
consuming to be maintainable throughout the master project.

In the end, I had to make the choice of implementing everything in Netlogo, as
the prototypes were well functioning by this point and only needed to be knitted
together properly to function.
This did result in the codebase being entirely confined to one singular file, and
the separation between modules was lessened somewhat, but it did mean that
the project was able to get better results in the time that was allotted to it.

Theoretically, it would have been possible to write a Netlogo plugin to take
care of some of the internal workings of nations, which could then have been
stored separately from the main file, which would only have concerned itself with
the market simulations and the interactions between the nations, however, Net-
logo plugins are usually more used as means to the extent the capabilities of Net-
logo with some new generic functionality that it is currently missing, like extended
clustering algorithms, or like the CSV extension that is used for NationSim.
Additionally, this would have required even more additional time to learn how
to create a Netlogo plugin, which would have gone against the whole purpose of
switching to only using Netlogo.

Chapter 3

Implementation

3.1 Netlogo

With Repast no longer being a part of the project, all work focused instead on
creating prototypes for various systems before merging them into the final project
file.
Below is an overview of how the individual parts of the system function and in-
teract.

3.1.1 Initialization

The first step for each model being run is the setting up of the initial variables.
This is divided into two distinct paths, depending on if the user provides a script
for the initialization of the simulation, or if the simulation is meant to use ran-
domized values based on parameters set in the interface.
The former of these two options require the creation of a script file, the setup
of which will be discussed further in the section on scripting further on in this
chapter.

The latter meanwhile utilizes the Netlogo interface Figure 3.1(left half) Fig-
ure 3.2(right half) for the project in order to provide the user some control over
the simulation, though to a lesser extent than they would have with the script.

As we can see, the left of the interface is largely occupied by various variables,
as well as the buttons to control the simulation itself.
The notable variables here are the runtime, which determines how many timesteps
each simulation runs, the "times_to_run_the_simulation" input field, which de-
termines the number of times that the simulation is re-run, the "source_file" user
input, which allows the user to specify a file that contains a startup script for the
simulation, the "debug" toggler, which when set to "on" will print out debug in-
formation during the simulations run, and the various variable sliders that allow

23

24 Leon C.: NationSim, Modeling Nations interacting

Figure 3.1: The left half of the Netlogo interface

Chapter 3: Implementation 25

Figure 3.2: The right half of the Netlogo interface

26 Leon C.: NationSim, Modeling Nations interacting

the user to set the initial values for a variety of variables for each nation.

The simulation then first creates nations up to the number specified in either
the file or the "number_of_nations" slider in the interface.

3.1.2 Government Module

Each nation additionally is initialized with a Government, which is an agent in its
own right in order to comply with the low coupling ideals of the project.
The government holds various variables such as the level of taxation for the na-
tion, the public funding that those taxes produce, and the budget division as to
what that public funding is to be spent on.

The first thing at each timestep that the government module is responsible for
is handling population growth alongside its own variables, as several key factors
for population growth are stored and updated by the government module.

The population growth function (Code listing 3.1), in its most basic form, is
an Euler-Lotka equation,

1=
ω
∑

a=1

λ−aℓ(a)b(a)

, which expresses the sum of the number of offspring born to a member of the
population across its entire life.
In essence, it describes the number of people born via the number of women cur-
rently alive ℓ(a), multiplied by the number of births per woman b(a). λ−a is the
discrete growth rate we are looking for.

The number of births per woman is the first thing that is calculated, by finding
the impact that urbanization and education have on the growth of the population.
GDP is also involved, but that is already factored into the death rate, so we ex-
clude it here to make sure it does not doubly impact the population growth.
Finding urbanization presents itself as a challenge initially, as we assume a ho-
mogeneous population for the sake of the simulation, and have no real way to
determine how the population is settled in our nation.
Instead, we need to look at the industries of our nation, and how large they are
in comparison to one another.

Fishing, agriculture, mining endeavors, and other 1-st sector industries are
typically not feasible in the constraints of a city and therefore lend themselves to
more rural environments.
On the opposite side, second, third, and fourth sector industries typically rely on
larger quantities of people being closely available, either as workforce or customer
base, and therefore typically thrive in more urban environments.

Chapter 3: Implementation 27

By incorporating which sector each resource belongs to into our simulations re-
sources, we can determine the level of urbanization of a nation by checking how
much is being produced of first-sector resources and comparing it to the rest of
production.
The larger a percentage the first-sector goods represent for our nation’s total pro-
duction, the more rural we assume the nation to be.

Education meanwhile is rather easy to find, as it is simply a matter of finding
how much money our education budget represents compared to the size of the
population.
With that, we can use an interpolation function to find how much impact our
birthrate education has.

The number of women alive is calculated by first figuring out the number of
deaths in the nation, which is done by calculating the relevant factors, such as the
GDP, and the age of the population, which is calculated based on the assumption
that a lower birthrate means that less young people are alive, and thus the aver-
age age of the population is higher.

With the birthrate already previously determined, we can figure out the im-
pact of our GDP by checking how much money we are making in relation to our
population.
With our factors gathered, we just need to multiply our population by our crude
death rate and subtract that number from our population to get the remaining
population.

Dividing this number by two gives us the number of our women, as we assume
that on average one in two people will be female.
The number of females is then multiplied by our birthrate to get our total number
of births.
Now, we just need to add our births and subtract our deaths from our original
population to find our new population.

Code listing 3.1: Finding population growth

urbanization = sector 1 resource production vs sector 2 resource production
education = how much education we have per population
birthrate = urbanization + education impact

gdp = last income / population
deathrate = deathrate + gdp impact

deaths = population * deathrate

births = (population - deaths / 2) * birthrate

population = population + births - deaths

It also contains an approval score, which is determined by how well the nation

28 Leon C.: NationSim, Modeling Nations interacting

is being run according to the population.
This takes into consideration various factors, such as taxation level, economic
growth, and education and welfare compared to the desires of the nation (Code
listing 3.2).
These are found via interpolations, just as most of the factors in the population
growth function.

Code listing 3.2: Updating approval

welfare impact = welfare budget vs ethics desire for welfare
education impact = education budget vs ethics desire for education

taxes impact = taxes * 2
negative impact = taxes impact + welfare impact + education impact

gdp impact = gdp growth this year

approval = gdp impact - negative impact

These factors are compared against each other to create a value between 0
and 100 which signifies how much the nation’s population approves of the cur-
rent government.
This value is currently not further utilized, as internal conflict, military presence,
and the likes were scheduled to be added with the international relations mod-
ule, which was meant to introduce a national military and all the economical and
societal concerns that brings with it.

3.1.3 Economy Module

The economy module meanwhile is more firmly located with the nation agent,
which contains all variables required for it.
The model for the economy that was chosen for the framework started off as a
simple Ricardian model [19]. In a Ricardian model, two nations produce two re-
sources and attempt to have the highest possible amount of both in accordance
with their desires.
For this purpose, labor l is assumed to be homogenous, and able to freely move
in between different industries.
A nation has a certain level of capability to produce one resource t, or more pre-
cisely, a value for how much of a given resource one labor can produce.
In Autarky, a nation is expected to produce a certain number of both resources
in accordance with it’s desires, as in the nation decides how much of its labor l
should be used on each resource, and that produces a number of that resource as
defined by the level of capability t described.
Then, we add an open market on which both nations trade their resources, where
the worth of the resources may be different from the national wealth of the re-
sources.

Chapter 3: Implementation 29

Now, every resource in addition to having a local value also has an international
value.

By trading their resources, in essence by using their labor to produce resources
for the open market rather than for domestic use, it should be possible for both
nations to specialize in one of the resources which it:

• has a higher value of labor on the international market than domestically
• Is either better at producing than the other nation (t is higher), or least bad

at producing (difference in t is smallest)

By both nations focusing on producing and selling this resource on the open mar-
ket, both of them will be able to attain more of both resources compared to them
working in autarky.

The Ricardian model thus can be seen as very optimistic when it comes to
trading.
The model used for the simulation has a Ricardian model as its baseline, but ex-
pands on it quite a bit.
While the Ricardian model gives the value of each resource in terms of an oppor-
tunity cost for the other resource, the model used in NationSim utilizes concrete,
monetary values for each resource, in order to facilitate more than two resources
being traded more easily.

Every nation has a set of desires d for each resource that is defined at the start
of the simulation.
This determines the initial domestic value of the resource Vn.
The international value of a resource Vi is then determined by taking the domestic
values for all nations, and finding the median value of that list, ensuring that half
the nations have a Vn higher, and half have a Vn that is lower than the Vi for that
resource.

The value of labor is then calculated for each nation as Vn ∗ t domestically and
Vi ∗ t internationally.
If Vn ∗ t < Vi ∗ t then the resource would be a good choice for an export good, as
the nation can make more money selling it than it is worth domestically.
Unlike the Ricardian model, however, this model does not make the assumption
that trading is always beneficial.
Instead, it calculates the least amount of each resource acceptable to the nation,
by multiplying the current population with the desire d for each resource.
It then calculates how much labor lreq would be needed to create that much of all
resources via the formula:

lreq = l −
∑

p ∗ dr/t

, where n is the specific resource.

30 Leon C.: NationSim, Modeling Nations interacting

If the remaining labor R= l− lreq is below 0, so lreq > l we need to recalculate
our minimum desires, because we cannot fulfill them given the current state of
the nation.
This is done by simply figuring out the percentage difference between the avail-
able and remaining labor l/lreq and multiplying every desire with this number
before rerunning the previous calculation again.

If R > 0, that means we have labor left over after making the amount of the
resource we need at the very least.
This labor can then be used to create profits.
But the simulation tries to ensure that the largest possible amount of profits is
made and that it does by deciding whether to trade resources or produce them in
autarky.

Our production in autarky is fairly easy to calculate, as it is always:

A=
∑

(dpn ∗ R ∗ vn)

, where dpn is the percentage of the sum of desires that dn represents for resource
n. So in cleartext, the formula means that the value created in autarky A is the per-
centage of labor used to produce resource n, which is determined by how much
we want resource n, multiplied by the value of that labor.

In trade, things get slightly more complicated.
The first step is to find if there is a resource that is even worth trading away, which
can be determined by if Vn < Vi for that resource.
If no resource fulfills that criterion, the nation cannot make a profit by trading.
Otherwise, we choose the most efficient resource out of the list of possible export
resources, as in the resource with the highest value difference Vi − Vn, and use all
remaining labor to produce that resource.

This gives us our budget b, which is the amount of money we can use to buy
resources from the international market.
The value gained this way T can be expressed via the formula:

T =
∑

(b ∗ dpn)/Vin ∗ Vnn

So the amount we buy of a resource is equal to how much of the budget b is used
for each resource, as determined by how much it is desired compared to all other
resources dpn, divided by how much the resource n costs on the international
market Vin.
Once we know how much we can buy of the resource, we multiply that by the
domestic price of the resource Vnn, which gives us the value produced by that re-
source.
Summing these gives us the total value of trading our resources.

Chapter 3: Implementation 31

Now, in order to decide if we want to trade or just work in Autarky, we can
determine if A > T . However, in order to cut down the computations required,
I have created a formula that can check if the trade would be profitable without
having to do the entirety of this calculation every time, by shortening down the
formulas that produce A and T into one algebraic inequality that can be quickly
solved to check if trading would be useful.

Rather than
∑

(b ∗ dpn)/Vin ∗ Vnn >
∑

(dpn ∗ l ∗ vn), we can compact the for-
mula quite significantly.
First, we extract the most profitable resource to sell, our export good h. This gives
us the formula: b = Vih ∗ R and thus T = Vih ∗ R/Vih ∗ Vnh +

∑

Vih ∗ R/Vin ∗ Vnn.
Likewise for autarky we get A= dph ∗ R ∗ Vnh +

∑

dpn ∗ R ∗ Vnn.

The formulas for both Autarky and Trade can thus be shortened by removing
variables that appear on both sides of the inequality sign. The final, shortened
formula we arrive at is:

∑

Vih/Vin > N

where N is the number of resources included in the simulation.
In essence, if we gather the differences between the international price of the ex-
port good and all other goods and if that number is higher than the total number
of resources, the trade will be profitable.
AKA, if on average, the price of the export good is higher than the price of import-
ing goods, the trade will create a profit.

By running this shortened formula as a test, we only need to find the most
profitable export good and the international values of all goods.
As the most profitable export good is determined by our labor values, we can figure
out whether a trade will be a success or a failure very early on in the calculations,
saving us a lot of computations.
The shortened function has the pseudocode shown in Code listing 3.3.

Code listing 3.3: Nation trading Pseudocode

for each resource [
if(Local value < market value)
[

export resources += resource
]
minimum desired output = desire for resource * population
required labor = required labor + (minimum desired output / output per labor)

]

if(required labor > labor)
[

new desires = desires * (labor / required_labor)
for each resource [

32 Leon C.: NationSim, Modeling Nations interacting

new minimum desired output = new desire for resource * population
new required labor = new required labor +

(new minimum desired output / output per labor for resource)
]

]

if(labor - required labor = 0)
[

No trade
yearly production = minimum desired outputs

]

for each resource [
Autarky production = minimum desired output + labor * (desire / sum of desires)

* local value
]
if(length of export resources = 0)
{

No trade
yearly production = Autarky production

}

if(trade feasability test = true)
[

budget = sell most valuable resource
for each resource [

resource budget = budget * (desire / sum of desires)
Trade production = buy resource for resource budget

]

yearly production = trade production
]
else
[

yearly production = autarky production
]

3.1.4 Data Gathering

In order to ensure that all data that is relevant can be gathered, most data is stored
as a list of values, which is appended by a new value at every time step.
This means in essence that each list has a length equal to the number of time steps
that a run is meant to go.
For the sake of space, the actual output of the program does not print every value
for these lists, but instead only prints the values at time-step 0, 10, 50, and 100.
In theory including every single value in the output is as easy as expanding the
data collection functions a little, however, that would also proportionally increase
the size of the output file.
I have chosen the values specified in order to have access to the starting value, a
value shortly afterward, a halfway point, and the final value.
For now, the timestamps that are kept are hard-coded to be those numbers, but it
would be fairly trivial to extend the framework to allow the user to choose which
timestamps they want to be gathered for each resource.

Chapter 3: Implementation 33

3.2 Scripting

One of the major components of the framework is allowing users to upload their
own data into the model to run simulations and scenarios they are interested in
studying closer.
For this purpose, an alternative way to give the simulation input was added that
allowed the user to write a script that would allow the user much more fine control
over how the simulation and its parameters where initialized, as well as adding
in custom scripts to be executed at certain points throughout the run of the sim-
ulation.

For ease of accessibility, a simple .txt file format was chosen, as that maximizes
the number of ways that users can choose to write their scripts.
The example scripts come with some documentation that explains the general ex-
pected layout of data to be fed to the simulation, and the scripts accept a variety
of different ways to control the inputs to the simulation, provided the datatype
provided to the simulation stays the same, I.E. if a variable is expecting an input
of type integer, it is possible to send a hard-coded integer value to the simulation,
or a script evaluating to an integer, provided the correct syntax is followed.
The script file can by default accept integers, strings surrounded by quotation
marks" and lists surrounded by square brackets [], as well as any combination of
these, such as a list of lists.
As lists in Netlogo do not care about the types that make them up, a list can con-
tain any combination of integers, strings, or lists.
Characters would simply be a string of length 1.

The script reserves a few specific characters for its syntax, that is characters
that usually would not be found as a string of length 1 in a normal variable.
The scripts themselves explain these symbols in their documentation, but Table 3.1
also has an explanation for them.

With these operators, as well as the default input types, it is possible to script
sophisticated behavior for the variables, such as updating certain parameters with
a set interval between two thresholds, before moving on to the next parameter.

Additionally, the script supports the creation of "commands". These are read as
a single number, which equates to what time-step of the simulation the command
is executed.
On the next line, we include a "∼" operator, followed by a string that holds a
command that will be run as though it had been typed into the command line of
Netlogo at that specific time step.
All commands are then stored in a list and executed at the given timestep.
This allows for the scripting of custom events that will trigger at a predetermined

34 Leon C.: NationSim, Modeling Nations interacting

Table 3.1: Script Operators

Operator function
"#" Every value until the next occurrence of this operator is treated as a comment and

ignored.
Text still needs to be put into quotation marks in order to not cause a crash even
if it is a comment.

"∼" Reads the remainder of that line as a string and feeds it to the program.
">" Everything after this operator is read into the program as a string and then eval-

uated as a reporter, with the result being the final value sent to the variable.
"|" Indicates a predicate, and is followed by a string containing a true-false statement,

which is followed by a list containing a value to be passed to the variable in case
the statement is true, followed by a value to pass if the statement is false.

"z" Indicates a predicate, and is followed by a string containing a true-false statement,
which is followed by a list of lists that contains a number of values, our varying
input.
This is followed by another list of lists that function as a default value in case the
statement evaluates to false.
Next after that is a string that evaluates to the name of a variable, our mutator, and
finally, another list containing a range of values for that variable, our thresholds .
This specific operator is used for creating lists that have values that are changed
as a variable hits certain thresh-holds, as noted in the last list.
So for example, if the mutator chosen is "runs", then item 0 in the varying input
list would be multiplied by how much bigger than item 0 of the thresholds our
mutator is. Once the mutator reaches a value that is larger than item 1 in our
thresh-holds, we move on to item 1 of our varying input, which is multiplied by
our mutator minus the item 1 of our thresh-holds.

Chapter 3: Implementation 35

time in the simulation and is the cornerstone for more complicated simulations.

3.3 Data collection

As previously mentioned, all data is stored as a .CSV file at the end of the simula-
tion.
For this purpose, a file is created where the first row is the names of all applicable
variables, which varies in length depending on the number of resources and the
number of nations chosen.
Every row below this first one corresponds to a single run of the simulation, with
every column being associated with a specific variable that is collected during
runtime.
These include values such as the wealth of a nation at certain time steps, the
amount of a certain resource that has been bought or sold at that time step, or the
random seed chosen for this set of runs.

The number of rows thus is determined by the number of runs that the simu-
lation runs for, while the number of columns is equal to the number of variables.
All data is separated with a ",", and can be loaded into a program such as Excel to
be looked over directly, or to a data processing program such as R. The file itself is
automatically generated at the end of the simulation and saved with a name that
contains both the current date as well as the current time.

3.4 Deployment

Due to the nature of the project being a Netlogo file, the code can be run from the
Netlogo framework by simply loading the project file, and operates directly from
there. No further installation is required beyond that point.
As such, the only steps required in order for a user to get to run the framework
is to first download the Netlogo framework, and then pull the current version of
the Netlogo file for the project from https://github.com/Anarchydus/NationSim.

Then, all that remains is to open the .nlogo file for the project and either
supply a .txt script to the program via the interface or just set the boundaries for
the random initialization parameters and start the simulation.

Chapter 4

Research

This chapter focuses on the gathering of concrete data from the simulation in the
Section "Data analysis", followed by explaining the data that has been gathered
from our chosen scenarios to answer our Research questions.

4.1 Data analysis

To gain insights from the simulation, it was run through several data analysis tools,
with the purpose of taking the somewhat archaic data lists, and turning them into
something more humanly readable, in compliance with Req:05.
For this purpose, I used both the external Tool R in order to create several Correl-
lograms, as well as the build-in visualization options of Netlogo in order to create
several plots tracking the rise and fall of the variables I deemed most relevant.

4.1.1 R

The tool chosen for analyzing the data produced by the simulation was R, simply
due to the fact that it was recommended by the supervisor for the thesis, and closer
examination revealed it to be a fairly straightforward process to comb through
data in the format that the program already created.
A few small adjustments had to be made to the framework in order to facilitate
multiple runs being all put onto the same file, but the number of required changes
overall was fairly low.

R allows the user of the program to quickly load the data sets produced by
the simulation with a simple "read.csv" command. With the entirety of the data
loaded in, all that remains is to decide which analysis is desired for the simulation
and its data.
Due to R’s ability to quickly write scripts that can be executed sequentially to cre-
ate the desired output this is kept fairly simplistic.

37

38 Leon C.: NationSim, Modeling Nations interacting

For the purposes of Nationsim, one of the major things I was interested in was the
creation of a Correllogram, showing the correlations between the variables that
were being stored for each run.
This necessitates the simulation to be run a lot of times, mutating certain input
variables between runs to see how they affect the whole.

The scripting data input for Nationsim facilitates this nicely, so several files
were created that load a model containing one or more nations, either with the
same values for their variables or with certain scenarios in mind.
From there, it is just about loading the file with the recorded data and using a
script I created ahead of time to turn the data into a correlogram.

Code listing 4.1: The R script

filename <- readline(prompt="Enter␣filename:␣")

filepath <- paste(filepath,filename,sep = "\\")

df <- read.csv(filepath)
c <- cor(df, method = "spearman")
c[is.na(c)] <- 0
library(corrplot)
cp <- corrplot(c,type = "upper", tl.cex = 0.8, tl.col = "black",
addCoef.col = "black", number.cex = 0.5)

As we can see, the actual script as seen in Code listing 4.1 is fairly simplistic
and meant to be run directly from RStudio in this case, though a better R pro-
grammer can probably also run it directly from the command-line.
The script asks for a file path that leads to the data output from nationsim, and
then loads that file into the d f variable.
From there, the data is turned into a correlogram, with the spearman algorithm
since our data is continuous rather than discrete, and stored in the c variable.
All values that end up being NA values are values for variables that do not change
throughout the runs, and therefore it cannot be determined if the variables influ-
ence each other.
In this case, we set that correlation to 0 in order to be able to correctly plot our
correlogram.
using the corrplot library, we then create a plot, which can be exported as a png
file.
Examples of such plots can be found below.

4.1.2 Correllograms

A correlogram is a diagram that shows the correlation of several variables, as in,
it tracks if a change happens to one variable, which other variables are affected,
and how.

Chapter 4: Research 39

Figure 4.1: Small cutout of main correlogram

Ranks of correlation are stored as values between -1 and 1, with negative 1 mean-
ing that as one variable grows in value, the other value decreases, and 1 meaning
that if one variable grows, the other also grows.
By changing the variables of our simulation one after the other and storing the
values for that run before moving on to the next, we can get a good idea of which
variables influence other variables.
As a lot of the simulation is highly interconnected, we would expect to see a lot
of correlations between variables.

However, as the average run with just 2 nations has about 350 variables being
stored, these plots tend to be thousands of pixels in size in order to be able to see
the names of the individual variables, as well as the ranks of correlation between
them.
A full-size Correllogram is available in the repository for the project at
https://github.com/Anarchydus/NationSim.

Instead, in this section I will present a small section of a correlogram for just
a single nation in Figure 4.1, to give an overview of the scale involved in the
diagrams.

40 Leon C.: NationSim, Modeling Nations interacting

Figure 4.2: The plots of the Netlogo interface

4.1.3 Netlogo Plots

Another handy tool for the graphical analysis of data is the plots already built into
NetLogo, which allow us to see the growth of various values in relation to each
other.

For sake of readability, I have placed the plots on the right side of the interface,
while most of the inputs are placed on the left.
The plots are easily creatable with only a minimal understanding of NetLogo and
the codebase for Netlogo, so I should think it would be little to no problem to add
new ones or alter the existing ones, even for a novice programmer.

The plots visible in figure Figure 4.2 represent, from top left to bottom right:

• How much of each resource has been bought or sold on the open market
• How the populations of each nation developed over the course of the run
• The national wealth of each nation
• How much the peoples of each nation approved of their governments
• How much of each resource was created by each resource at each timestep
• the international prices for each resource
• The number of trades performed by each resource
• the national prices of each resource

Additionally, we also have two monitors, one for the current time-step (Years)
and one for the current run of the simulation, both of which are located in the
upper right of the window which is usually used for visualization, near the center

Chapter 4: Research 41

Figure 4.3: Netlogo center of interface

of the interface as seen in Figure 4.3.

These plots give a far less analytical but far quicker overview of how the na-
tions develop over the course of each run.
On faster setups the simulation does however run the risk of finishing a run so
quickly that the plots do not get a chance to render before being wiped again,
however, so slowing down the ticks manually is highly recommended if looking
at the plots’ develop is desired.

4.2 Results

Our results are the concrete information that we have been able to attain from
our simulation, that being the phenomena we can observe via our analyzed data.

4.2.1 Scenario 1

The purpose of Scenario 1 is that we simulate a nation that has a large impact on
a particular resource on the open market, as well as two other nations that have
a high desire for that resource but less ability to produce it, and then after the
market stabilizes we remove the producer nation from the market and see what
the resulting changes to the market and the economies of our consumer nations
are.

Scenario 1 is made possible with the ability to script commands to be run at a
certain time during the execution of a simulation.
Through that, we can signal the simulation to kill the nation in question at the
halfway point of its runtime, and the plots created by Netlogo and R can give us

42 Leon C.: NationSim, Modeling Nations interacting

Figure 4.4: Prices affected by removed Producer

insights into what happens to the remaining nations and to the market.
1

The first interesting result of the nations disappearance can be observed in
the plot which monitors the market prices of resources, Figure 4.4 , where we can
see that at the halfway mark, the price of resource 1, here named "Wood" jumps
significantly, with the price increasing from 0.3 to 0.5, a jump of over 66%
This is supported by the observation that in the plot for the average national

price for the resource, the same significant jump can be noted, with the average
national price being the determinant for the international price of a resource.
Several other resource values do however also increase by a non-trivial amount
as a result of the disappearance of nation 3. These resources, resource 3 Iron and
resource 4 copper grow with 33% and 11% respectively.

The graph for Trades performed by the two nations Figure 4.5 is also impacted,
as we can see that the lines for successful vs unsuccessfully trades were on a trend
to meet right around the line signifying the removal of the producer, only to be
forced apart again as a result, recovering back onto their original trajectory by the
end of the simulation.
These results paint a very clear picture of how the removal of a key player from

the international market affects the other participants in that market.
The price of certain resources, particularly but not exclusively the one produced
most prominently by the disappearing nation spikes, resulting in significant changes
to the frequency with which a certain resource is bought compared to sold, and
can even re-shuffle the economical power players in the market as nations that
previously could not get their foot in the door suddenly can quickly gain more

1Unfortunately, the data gathering breaks a little if the number of nations specified in the script
file does not equal the number of nations still present by the end of the simulation, resulting in
columns being created for more variables than there are, and the variables of the market being
written under columns labeled with the names of variables of the now non-existent third nation.
That is however not too much of an issue, as a lot of it can be fixed with simple image editing to
return the correct names to the correct variables.
In an ideal world, this issue would be fixed, but with the time available the manual solution will
have to suffice.

Chapter 4: Research 43

Figure 4.5: Graph of trades with point of removal marked

wealth.

Thus it can be concluded that major producers in the market being heavily
impacted has cascading results to all other members of that market, with other
producers of the same resource being able to break into the market, which might
affect the production of other resources which need not be relied on any further
by nations that might previously have exclusively produced that resource.

Not all nations win in this exchange, as the price of certain goods soars and
others drops, the economy of other nations that relied on the state of the market
begin to suffer.
However, over a longer time frame, we begin to see the market actually starting
to stabilize, as the nations bounce back from the initial changes.
This two makes sense, as nations will eventually adapt to the new market land-
scape, and although the prices of the resources in question remain high, other
nations have returned to making trades at the same frequency and have their
wealth increased at steady levels again.

4.2.2 Scenario 2

The purpose of scenario 2 meanwhile is to give an insight as to how nations shape
each-others economy even if one nation is significantly wealthier and more cap-
able of producing resources than the other.
This is a fairly simple scenario to script since it just relies on making sure that the
less advantaged nation always has lower values than the wealthier nation.
First, however, we require a baseline, so we first run the simulation with a few
other starting scripts to get an overview as to how two nations interacting affect
each other.

For this, we have a set of five scripts, one which holds two entirely identical
nations, one which holds two nations that are equivalent but have different de-
sires and abilities to produce, and one which holds two nations where one has
significantly more starting capital.
The next set of scripts has two very similar tests, one which holds two equivalent

44 Leon C.: NationSim, Modeling Nations interacting

Figure 4.6: Wealth, Resources traded, and Trade record for Test 1

nations, one which holds two nations where one has a greater ability to produce
resources than the other, and one that is much the same, except that instead of
increasing the production ability of one nation, we reduce that of the other.

When I say equivalent I mean that the values in their lists of desires and tech-
nology levels are the same, but they are ordered differently.
So if nation 1 has a desire for wood equal to 0.5 and for stone equal to 0.1, nation
2 might have a desire for wood equal to 0.1 and for stone equal to 0.5. Same
values, different order.

The tests produce five distinct yet notable results.

Test 1: Identical nations

Test 1, where we set up two nations that are perfectly equal with all starting para-
meters and desires set to be the same, results in two nations that unsurprisingly
grow in the exact same way.
All graphs become perfectly equivalent lines between the two nations, with no
difference between the two input nations, as seen in Figure 4.6.

There also is very little trade to take note of with both nations having essen-
tially no reason to interact due to a lack of export goods that would be worth
selling, seeing as how the international price is the average of the local prices.
With local prices identical, the international price is equal to the national prices,

Chapter 4: Research 45

and thus no trade is worth it.
The only significant change occurs as both nations begin to enter a state during
which they have so little population left remaining that they can start producing
resources in autarky, rather than being forced to just take the minimum output,
as seen in the trade record in Figure 4.6.

During this test, the start-point for both nations’ wealth is known, and the en-
dpoint can be easily extracted from the wealth graph. For this specific run, with
the starting parameters chosen in the script file, the nations grew steadily from a
starting wealth of 1000 to a final wealth of 1 550 000.
This obviously is entirely ludicrous for a nation to be able to accomplish in 100
years, but that can be chalked up to resulting from the initial choice of paramet-
ers. The numbers still serve well enough to set a baseline.

Test 2: Equivalent Nations

The second test makes the nation’s equivalent but not identical.
This test has quite a significantly different result to the one before as now trades
are happening at a decent rate between the two nations, as they both have some-
thing to gain from selling and buying on the open market.
The results are initially very similar to the first test as both nations are as of yet
unable to produce enough resources in order to fulfill their demands.
However, unlike in test 1, once the nations reach a state where they can begin
to shoulder the burden of their own population’s resource demands, the nations
quickly begin trading their resources with each other.
Since they are not identical, one nation manages to perform slightly better than
the other, giving us two separate graphs Figure 4.7 rather than the united wealth
graph of Figure 4.6.

In this test, Nation 1 increased its starting wealth of 1000 to a total 1 840 000,
showing a significant improvement over the number achieved in test 1.
Nation 2 however managed an even greater increase, reaching 2 350 000 in the
same amount of time, likely due to being better at selling a resource that has a
higher value compared to nation 1.

Test 3: Capital difference

Next, in the third test, we run the two nations from test 2 one more time, except
now nation 1 has 10 000 starting wealth instead of 1000, while nation 2 has only
500.
Remembering back to test 2, we saw that nation 2 at the end accumulated 600
000 more wealth than nation 1 when both nations started off equal.
In test 4 however, we can see from Figure 4.8 that both nations actually end up

46 Leon C.: NationSim, Modeling Nations interacting

Figure 4.7: Wealth, Resources traded, and Trade record for Test 2

Figure 4.8: Wealth Graph for test 3

with near equivalent wealth.
Thus nation 1 has managed to mostly negate the massive disadvantage it had
during test 2 with the additional starting capital, but nation 2 can still overcome
its handy cap and reach nation 1’s wealth via being better at producing certain
goods.
This comes despite the fact that Figure 4.9 shows that nation 1 made more suc-
cessful trades than nation 2 for quite a significant amount of time.

Test 4: One more developed nation

Again, we begin with one nation equivalent to its counterpart in test 2, this time
with nation 2 remaining the same while nation 1 has all its production abilities
doubled compared to the norm.
Unsurprisingly, this results in nation 1 having a massive advantage during the run.
Once both nations start trading, nation 1 quickly grows, as seen in the wealth and
trade graphs of Figure 4.10, until it finally reaches a value of 25 000 000.

Chapter 4: Research 47

Figure 4.9: Trades for test 3

Figure 4.10: Wealth and Trades of Test 4

Nation 2 remains a lot tamer by comparison, but still manages to reach an im-
pressive 3 600 000
Despite being completely identical to its equivalent in test 2, Nation 2 managed
to turn almost double the profit over the same time span while trading with the
vastly superior nation 1.

Test 5: One less developed nation

Finally, the fifth test showcases a scenario much like the fourth test.
This time it is nation 1 that remains at the baseline set in test 2, while nation 2
has its ability to produce resources cut in half, in order to simulate a more under-
developed nation.
The results are also fairly interesting, as just like test 2 we see one nation ending
up dominant, however, the difference is far more pronounced.
The nations still struggle towards the beginning to hold their weight against their
own population’s desires, before quickly beginning to avidly trade, however, as we
see in the trade graph of Figure 4.11, Nation 1’s ability to trade instantly outpaces
and outperforms that of Nation 2, a trend that continues right until the end, when
nation 2 begins closing the gap.

48 Leon C.: NationSim, Modeling Nations interacting

Figure 4.11: Wealth and Trade Graphs for test 5

Figure 4.12: Wealth graph for two equivalent less developed nations

Likewise, the wealth graph in Figure 4.11 shows that Nation 1 clearly makes
a lot more money than Nation 2 over the time tested, which should be expected.
By the end of the simulation, Nation 1 has increased its 1000 starting cash to a
total of 2 830 000, while Nation 2 has increased its own wealth only up to 400
000 from the same starting point.
While this may seem bad, comparing that number to a test where both nations
are underdeveloped, Nation 2 still does impressively well compared to that test,
where it only managed to earn 280 000, as can be seen in Figure 4.12.

Chapter 5

Validation and discussion

5.1 Validating Results

As there is no easy way of directly validating the data we have received against
concrete, real-world data, nor can I do a full user test to determine whether the
data produced is convincing and realistic, due to the limitations of privacy con-
cerns, as well as the time and resources required to set up a proper user testing
environment.
Therefore, we will rely on looking over the narrative that the data provides for
us, the story that the correlogram and the plots tell, and then we compare that
narrative to the real world to see if the narratives match real-world observations.

In essence, rather than testing the individual variables for their real-world
validity, we aggregate them into a "big picture" where the behaviors emerging from
the variables is what is validated against real-world data.
For this purpose, we simply look at the story that the data tells and then check if
there is a real-world scenario that matches the simulated narrative.

5.1.1 Scenario 1

Scenario 1 shows the prices of several commodities soaring as the major producer
is suddenly no longer able to participate in the market to the same capacity as
they were before.
As a major producer is no longer able to participate in the market, prices greatly
increase, and the economy of surrounding nations is impacted to varying degrees,
with some experiencing a significant economic downturn.
The narrative here, thereby, seems to be "If a major producer for a resource is
removed from the global market, several resources, in particular the one that was
produced by the removed nation, experience severe increases in prices. This res-
ults in non-trivial changes in the economy of the nations that remain in the market,
as trade patterns shift."

49

50 Leon C.: NationSim, Modeling Nations interacting

In order to verify this we need a real-world example of one or more nations
being removed from the global market having a significant impact on the prices
of several kinds of goods, particularly the ones that were most heavily produced
by those nations, as well as significant economical disruption around the other
members in that market.
In order to find such a scenario we have to look no further than the Russia-Ukraine
war, which has heavily impacted the availability of resources normally produced in
great quantities by the two nations, that being oil, gas, coal, and grain in particular.
This has had a significant impact on the global economy, resulting in predicted
economic growth being reduced by 1% globally(Orhan [20])

As the real-world narrative lines up very well with the narrative produced by
the simulation, it would seem that the results produced are very much realistic to
the real world.
If anything, the real-world data shows far more drastic increases in price than
the simulation, which is most likely caused by the input data used to create the
nations in the simulation does not line up with the real-world data for Russia,
Ukraine, and the nations impacted by the changes in the international market.

As the output of the simulation closely represents the real-world scenario, I
will conclude that for this scenario, the simulation can produce life-like results
that are believably close to the real world.

5.1.2 Scenario 2

The testing of two nations and their performance, given certain starting paramet-
ers also yields some fascinating results.
The first test, pitting two identical nations against one another proves that the
model correctly responds to two nations that have no reason to be trading with
one another, outside of political reasons which are not yet modeled.
Barring any outside intervention, a nation has no reason to trade if the price of its
goods on the international market is equal to the price of its goods on its internal
market.

The second test showcases a clear increase in wealth when two equivalent na-
tions are trading, compared to when those nations are not doing so.
This result is repeated across the board, suggesting that two nations trading end
up making more money than two nations that do not do so.
In that regard, we find a return to the Ricardian model in a way, where trading is
always the more beneficial option for a nation.
This is not too surprising, as that is the theory upon which the NationSim-frameworks
economy simulation is based.
There is evidence to back up that participating in international trade stimulates
economic growth, as can be seen in for example Poland.

Chapter 5: Validation and discussion 51

With the fall of the Soviet Union in 1991, Poland was suddenly open to entering
a free market economy and trading with the rest of Europe and the wider world.
We can subsequently see a massive rise in GDP growth since that point, with in-
creases ranging from 0.9 % to 7.1% between the years of 1992 and 2020 [21]

This could suggest that the model has good reason to claim that trading with
other nations is beneficial for even the nation that makes less money in the equa-
tion.

Likewise, the results of tests 3, 4, and 5 all support that analysis, with nations
making significantly more money than their equivalent nations in the test without
trading, with the exception of test 5’s nation 2, which of course has its production
capabilities severely reduced when compared to nation 2 in test 1.
Tests 4 and 5 do still show however that in all cases when compared to the baseline
of two equivalent nations trading, two nations with high inequality in their ability
to produce goods stand to benefit more from trading with each other than their
counterparts in test 2.

The control test for test 5 in which both nations have a reduced capacity for
production still shows the same relationship between its own results and the res-
ult of test 5 that test 2 shows for test 4.
Even despite the fact that the nations are the same as those in the test where both
nations were equivalent, nations trading with nations that are significantly more
or less capable to produce resources stands to win more by trading with each other
than by trading with nations of equivalent production capabilities.

However, the tests showcase a concerning trend where the more production-
capable nation disproportionately benefits from the relationship compared to its
less developed trade partner.
This matches with the data of [22], which showcases that since the early 1820s,
while the GDP per capita in Europe has increased significantly, rising from around
2000 to 39 000 international $ between 1820 and 2018, a 1850% increase, Sub-
saharan Africa only grew from 800 to 3 500 international $ over the same time-
frame, an increase of just 337%.1

Finally, it is noteworthy that test 3 shows that a nation that is rich but is worse

1This somewhat clashes with the fact that GDP in western Europe has over the same timeframe
risen from around 305 billion to 17 trillion, an increase of 5388% while Sub-saharan Africa’s GDP
has increased from 48 billion to 3.7 trillion, 7608%[23].
That relationship is not shown in the tests, but neither is the comparatively large difference in
population growth over the same period of time, as population growth factors were not necessarily
changed for the script.
Likewise, the model does not take into consideration foreign aid initiatives that might increase the
ability of a poorer nation to develop and sustain higher populations than otherwise possible.

52 Leon C.: NationSim, Modeling Nations interacting

at producing profits through trade might be overtaken with time by a nation that
is initially poorer but has better abilities for producing desirable resources.
Likewise, reducing the amount of money a nation has to invest into its infrastruc-
ture initially greatly impacts the amount of money that that nation makes over
the course of the simulation.
This can potentially be linked to certain nations with a high ability to produce
valuable resources gradually overtaking traditionally wealthy nations, like the
rise of east-Asian countries such as China, which had a significantly lower GDP
than Europe as recently as the 1970s, but has now surpassed the entirety of the
European Union in terms of GDP [24].

5.1.3 Discussion

Despite being created as a framework that remains entirely agnostic to the pur-
pose of the scenarios it is supplied with, NationSim manages to create complex
interactions between Nations and their economic relationships that closely mimic
those exhibited in real-life data.
By creating scripts that introduce specific circumstances to the nations interact-
ing over the course of the simulation, a wide variety of different scenarios can be
modeled, all without having to change the baseline framework.
Without any outside interference beyond the initially given parameters, the model
can recreate complex relationships between nations and their economic co-dependencies,
which create narratives that closely match the stories told to us by real-world data.

Since NationSim can recreate complex interactions between nations such as
market crashes as a result of producers leaving the market as demonstrated in
scenario 1, and the importance of trade for economic growth demonstrated in the
development of nations such as Poland, as well as the importance of the ability
to produce desirable resources vs capital, and the inequality in wealth growth ex-
perienced between highly developed and lesser developed trading partners, we
can safely say that NationSim can model a wide variety of realistic interactions
between nations.

Future tests

Since Nationsim was made to provide a generic model of nations interacting, there
certainly are a lot more potential scenarios that could be tested by creating the
appropriate scripts.
Besides the here provided scripts, NationSim has the capability of modeling nearly
any scenario which impacts a nation’s economy or population, as well as a variety
of other factors.
Other ideas for potentially informative scenarios would be a Covid-19 scenario,
where the population of nations is reduced via "Covid-wave" events at certain in-
tervals, and seeing how this impacts the economies of these nations, as well as

Chapter 5: Validation and discussion 53

other nations in the same market.
Also of potential use is the ability to alter the desires and production capabilities
of nations, to simulate a nation transitioning towards a higher demand for a dif-
ferent good, or an ecological disaster that destroys the infrastructure of a nation.

5.2 Validating Requirements

NationSim sets out to accomplish a variety of tasks beyond the ones previously
discussed, as "the simulation must run realistic interactions between a set of pre-
defined nations" is only one of the 17 functional and non-functional requirements
that were originally created to validate NationSim as a project, rather than just
it’s ability to model believable international economies and interactions between
nations.

The previously explained capabilities of Nationsim already serve to confirm
NationSim’s ability to function as intended.
Requirement 1 is thereby fulfilled, and the above tests serve to confirm that Re-
quirement 2 is also completed.

Requirements 3, 4, and 17 are fulfilled by the options to start the simulation
either via the interface or the script, allowing users fine control over how the sim-
ulation functions.
’ Likewise, the plots of Netlogo, as well as the CSV-files that are created and sub-
sequently analyzed via the R script allow NationSim to also claim to have fulfilled
Requirements 5, 7, 14, and an argument could be made that we fulfill Require-
ment 6, at least partially, as a user could technically read over the original input
data as stored in the .csv file, and then feed that back into the simulation to re-
create the same simulation again.

Requirement 8 is only partially fulfilled again, as while Netlogo allows the user
to halt the simulation at any time by simply clicking the run button again and the
user could then theoretically read the current data of the simulation and use that
as input for a new simulation, that hardly seems as though that fulfills the spirit
of the requirement.

Likewise, Requirement 9 is also only partially fulfilled, as the user can edit the
parameters of the simulation during runtime, but only if that change is scripted
as a command into the script file before the simulation is started.

Requirement 10 never ended up being implemented, as it was mostly present
to simulate the physical distance between nations, which NationSim in its current
state does not take into account any further.

54 Leon C.: NationSim, Modeling Nations interacting

Requirement 11 however is again present in the simulation, as all random
variables are fed with a seed that is defined and recorded at the start of the first
run of the simulation.
It is theoretically also possible to change the seed for every run via the script, al-
lowing for simulations with randomized parameters to have different results for
every run.

Netlogo makes the completion of Requirement 12 also fairly simplistic, as the
present "tick"s can simply be defined to be one year in length, and time-dependent
variables can then be defined in such a way where every time they are updated
they do as if a year had passed.

After a cursory check with an online stopwatch and a quick random simula-
tion, I have concluded that it takes the simulation roughly 2 seconds +- 1 second
to run 1000 years for 10 nations, provided the user turns off the "view updates"
option next to the speed slider.
The "timer" function, which measures the time since reset-timer was called right
at the start of the simulation and after every run, is used to output how much time
has passed once the run of the simulation finishes, outputs a time between 0.893
seconds and 0.96 seconds for one complete run of 10 nations for 1000 years.
As the original goal was 1 minute, I believe we can safely say that Requirement
13 is also taken into account.

Due to the lack of user testing, verifying Requirement 15 is very difficult.
I have however taken steps to ensure that both the scripting and the NetLogo
interface explain a lot, and have given a lot of examples of functioning scripts
in the GitHub https://github.com/Anarchydus/NationSim, to make it as easy as
possible for users to understand what is going on.

The tests done for Requirement 13 also neatly verify that Requirement 16 is
fulfilled, as in order to get 10 timestamps for how long it took the program to
finish, I had to run the simulation 10 times for 1000 ticks with 10 nations, which
means that all functions executed by each nation had to fire 10 times per tick,
1000 times per run, for 10 runs, giving a total of 100 000 computations in that
test alone without any issues or crashes.
Theoretically, as there is no limit for how many years the simulation will run, it is
possible that the growth function for either population or wealth eventually hits
the limit for the largest number Netlogo can handle and crashes the program, but
at that point, I believe we are well in the territory of "excessively taxing user input
beyond the expected norm".

Chapter 6

Conclusion

6.1 Future work

6.1.1 International Relations

Due to time constraints, several originally planned modules for the project had
to be cut, chief among which is the module handling international relations, dip-
lomacy, and warfare.
The groundwork for this module was already laid in a few early prototypes that
spoofed how such a module could function by keeping track of a relationship score
for every pair of nations, similar to Axelrod’s approach to cooperation between na-
tions, but with a more complex set of criteria for how and when these relationships
would change.

With international trade already modeled in the simulation, separating the
nations into clusters of neighbors that trade with each other rather than one cent-
ral market would have been nearly trivial, and trading could have been used as
one avenue for improving relations, just as tariffs and tolls could have been im-
plemented to model sanctions and similar real-world concepts, which might have
harmed relations in the long run.

Via the already in place "ethics" variables which govern how much a nation val-
ues certain actions or political stances, modeling isolationist, globalist, and war-
mongering nations could have been implemented, with the original plan being to
utilize data from The world Value survey (https://www.worldvaluessurvey.org/wvs.jsp)
to create initial nation archetypes, as well as using the scripting files to allow users
to utilize their own archetypes.

Finally, the groundwork for enabling warfare is already laid, all that is required
is to separate the population into how much of a working force is present and how
much of it is military, the cost of this on the economy, both in resources required
to fuel the war machine and in profits lost due to a reduced workforce, and finally

55

56 Leon C.: NationSim, Modeling Nations interacting

the approval system could be used to model internal unrest that requires dealing
with in some way, be that the government operating more closely in line with the
will of the people, or additional military resources being spent on keeping the
peace at home.

In reality, a lot of the frameworks already present systems are essentially pre-
pared for the addition of the International Relations module, and the only thing
required to incorporate it into the project is another month or so of work time.

6.1.2 Improved Scripting

The scripting file currently is highly limited in its capabilities by both what the
program is willing to take as input for the various variables, as well as what the
actual scripting "syntax" allows for.
This is due to the fact that a lot of the scripting syntax was created on a "what
do I need right now" basis, resulting in the creation of specialized, often complex
commands, such as the "z" command discussed in Table 3.1.

For a more flexible scripting experience, it would probably be best to either
update the syntax of Nationsim’s scripting with some more capabilities for less
static inputs from the user or to directly switch to a proper scripting language,
like Lua or Python.
Enabling the user to write slightly more complex commands than simple if/else
statements, reading commands from string, and the list-mutator operations of
"z", should make the number of possible scenarios that can be modeled with the
framework less restrictive.

The "commands" system, which handles scheduled commands that interact
with the simulation during runtime, does work fairly well already, as it essentially
functions as a command line for NetLogo and can take any NetLogo code, at least
in theory.
In practice, the limitations of the "run" commands are quite plentiful and a more
sophisticated scripting language would probably be for the best.
A dedicated Lua extension for Netlogo is not currently available, but Python can
be directly integrated via the python extension.

6.1.3 Improved Data collection

Currently, the data collection is quite static in what it picks up, not allowing users
to specify which variables are of importance, and it only really takes into con-
sideration simulations that run up to 100 time-steps, given its "0,10,50,100" data
collection time-steps.
Allowing users to choose which data is important to gather is not as trivial, as

Chapter 6: Conclusion 57

there are potentially hundreds of variables for every simulation.
Really, it would be better for users to create their own R script for surveying the
data they specifically are interested in, rather than trying to create a checklist of
which variables the user wants to look over in Netlogo.

Appending functionality to allow the user to choose what time steps are re-
corded when it comes to lists of how data changes over time should not be too
difficult, as it is just about sending in more lists of time steps into the system via
the scripts and slightly updating the initialization functions for the simulation.
This would also neatly solve the issue of the system only really looking at data up
to time-step 100.

6.1.4 AI decision making

Another part of the project that had to be dropped due to time constraints, the
original plan was to introduce a form of Q-learning to aid in national decision-
making.
Since the Q-matrix could have been populated with the same data as the inter-
national relations module via national stereotypes data, this would have been a
good fit for the project as a total, as the initial decision-making of a nation could
have been decided via this nation-archetype data, and then as the Q-matrix up-
dates its own weights, the nation’s ideals and culture could have changed over
time to reflect the changing of the times.

This could have given insights into which kinds of nations prosper compared
to others, and what the mechanisms that cause a nation to change from one ar-
chetype to another are.
Additionally, it also would be a good way of ensuring that the simulation’s decision-
making is less static than the current one, which does not allow nations to make
"mistakes", always taking the path that fulfills their goals.
Other forms of AI could also be a good fit, but the linking between the Q matrix
and the National stereotype ideals seemed very intuitive to model.

6.2 Insights

6.2.1 Modeling Frameworks

Despite the fact that in the end, Nationsim ended up being finished as a Netlogo-
only file, the process of developing via both Netlogo and Repast had such clear
advantages that I would almost universally recommend it now that the project is
over.
The ability to quickly prototype in Netlogo is such a massive advantage compared

58 Leon C.: NationSim, Modeling Nations interacting

to a more complex object-oriented framework that I cannot remember ever hav-
ing had an easier time getting ideas for how systems should work within just a
few days.
And the thing that holds NetLogo back, in my experience at least, is the lack of
a strong, object-oriented structure for the agents being created and the systems
that govern their behaviors.

Here is where Repast shines, simply due to the fact that it has good document-
ation, and that it uses almost the same syntax as NetLogo.
The Netlogo and Relogo programming languages are almost identical in syntax
and functionality, with the exception that Relogo is an object-oriented language.
The separation of the project into compact files, the ability to associate variables
with certain objects, rather than variable names being reserved across the entire
project, and the fact that Netlogo and Repast have the same primitives in their
agents, patches, and links makes it not just easy to convert code from Netlogo to
Repast without having to massively rejig the architecture, but it also means that
code remains readable even as the complexity of the project increases.

Not to mention the fact that JUnit and similar testing frameworks are easily
integrated into Repast’s java architecture, ensuring that testing the module and
the integration of modules at each step of the project is a lot easier than in Net-
Logo as well.

With the one caveat that development time increases significantly with this
method, according to the experience gained in this project, so long as a project
puts more emphasis on rapid prototyping, clean architecture, and robust frame-
works than on a strict schedule, the dual-framework approach functions extremely
well.

A few flaws with both frameworks did however become noticeable as progress
was made on the project.
The lack of several quality-of-life functions in Netlogo was somewhat annoying.
The lack of a proper clamping function necessitated a convoluted and hardly read-
able use of Min and Max functions every time a variable needed to remain between
two values.

Additionally, while there is an equivalent to a switch statement, its document-
ation is hidden in the documentation for if-else, which is the last place a program-
mer that knows how to write an if-statement would visit in a documentation I
imagine.
It also was only added in version 6.1 in 2019, which is recent enough that find-
ing information for a switch statement did not result in any discoveries upon first
attempting to look for it.
The first result on google as to how to do this is as recent as October 2021, which

Chapter 6: Conclusion 59

was after I initially started looking into Netlogo.
Multi-case If-else statements are not something I am used to from any other lan-
guage, but I suppose if it was a little clearer that this was a possibility it would be
fine.

Also, the fact that NetLogo differentiates between "-1" and "- 1" is somewhat
annoying, as is the lack of a dedicated for-loop, necessitating writing either forever
loops with a break condition, or while loops with an internally updating variable.

Repast meanwhile seemed to have a few strange inconsistencies between its
documentation and implementation, most jarringly that the non-directed links,
which are supposed to create a directionless relationship between two agents,
were not functional in the version of Repast that I received after downloading,
with the implementation code that was clearly present in the documentation miss-
ing from the files in this version.
This necessitated me spending time creating directionless links myself, using the
documentation as a specification to figure out how they are meant to work, and
how links are implemented under the hood of the framework.

But yes, other than these strange inconsistencies, I really cannot recommend
either framework enough, and a lot of these issues can be fixed with a bit of cod-
ing work on the programmer’s side.
Still, these quality-of-life upgrades would be highly appreciated.

6.2.2 Contributions

Over the course of this thesis, I have highlighted my contributions to the field of
both Agent-based modeling in general via the work process described in Chapter
2 , as well as to the field of social-simulation via the final product of NationSim.

The Process

The process of utilizing separate frameworks to on one hand tackle rapid proto-
typing with the help of an accessible ABM framework that offers tools to aid in
quick implementation such as Netlogo, which has been used extensively through-
out the project, and on the other hand to utilize a more heavy-weight framework
with more utilities built-in, as well as native support for a more object-oriented
workflow to aid in the separation of logical blocks throughout the created pro-
gram, aiding readability and enforcing low coupling between modules.
A framework such as Repast symphony.

The prototyping section of an ABM project is aided by the fact that Netlogo and
similarly light-weight ABM frameworks often do not require compiling between

60 Leon C.: NationSim, Modeling Nations interacting

test runs, making testing, tweaking, and outright scrapping and re-implementing
parts of the project a very quick process.
Netlogo’s uncomplicated syntax and lack of scoping capabilities also aid in this, as
it ensures that less time is used focusing on semantics such as the correct order-
ing of objects and inheritance, and instead more focus is put on the conceptual
problems that the program faces, which is what prototyping is for, after all.

Likewise, a sturdier framework such as Repast symphony is less capable of
quickly testing out ideas, but the added functionality of easily integrate-able JU-
nit tests to ensure the validity of the output of different modules, as well as the
object-oriented structure of Java allowing for strong separation of variables and
functions between different objects, means that while the prototyping framework
is ideal for quickly testing potential solutions to smaller parts of the project, the
larger heavy lifter of the frameworks can aid in ensuring that all modules continue
to function as expected once implemented, and makes keeping an overview of the
code-base far easier.

Netlogo and Repast in particular are well suited for this sort of dual workflow,
as they both use very similar syntax for defining and controlling their agents,
which makes it easy to translate ideas from one into the other.
Repast being a java-based framework that can be worked with and extended upon
in Eclipse and other Java editors is also a nice bonus, as it brings with it access
to all the extensions, libraries, and tools that have been created for regular java
programs.

The only downside that was found about the dual framework approach to ABM
creation was the increase in time required, both to learn and transition between
frameworks, to translate code from the prototype framework into an architecture
that makes sense for the implementation framework, and to find workarounds for
the few fields in which the two frameworks are not functionally similar.

I also have discussed several downsides of both Frameworks in general, such
as the fact that Netlogo requires all code to be in a single file, and does not allow
for scoping of variables, as well as the fact that parts of Repast Symphonies code
appeared to not be completely implemented for concepts such as un-directed links
between agents.
Likewise, I offered some frustrations at certain QOL features being missing from
the frameworks, such as for-loops in NetLogo.

Overall, I would say that while using two frameworks introduces a heavy time
cost to a project, as well as doubling up on the inevitable hassle of working around
both frameworks’ quirks, the benefits far outweigh the downsides.
For any project that either has an extensive timeline, values rapid prototyping,
and concise implementations, or simply wishes to introduce some variety into the

Chapter 6: Conclusion 61

process of coding an AB Model, I can highly recommend the Dual-framework ap-
proach.

6.3 The Simulation

Over the course of this thesis, I have both described the concrete function, as well
as the applications of NationSim, a tool that aims to aid in the recreation and
subsequent understanding of interactions between nations as agents.
While nowhere near feature complete, nor capable of robust predictions about
future developments of nations or economies, the goal of the project this thesis is
based around was the creation of a tool that could recreate the narratives we can
see in real-world nations.

Whether that story be the crashing of a market as a result of a main produ-
cer being unable to participate in the market further, such as tested in scenario
1, the mutual growth of two nations with disparate industrial capabilities, via
international trade between themselves, or any similar story that the real world
shows us examples off in the market crisis in response to the Russia-Ukraine war,
or the growth of Poland’s economy after entering the global market during the
post-USSR era.

These are all stories that the program NationSim is capable of adequately re-
creating via a script of initial data that is used to create the world the user wishes
to look at the nations interacting in, from the initial wealth of nations creating
economical giants and industrious underdogs to the intial populations, or even
the values of nations.
All of these can then be altered, and entire nations can be wiped from the map
via scripted commands that can be injected into the program at run-time and can
completely change the course of the simulation, creating an all-new story.

NationSim is not necessarily capable of quickly and easily providing answers
to why those phenomena occur, but it is very much capable of reproducing them
via a complex simulation of nations interacting with each other and an interna-
tional market, allowing users to create a set of "what if" scenario’s and testing them
via a framework that produces narratives of nations interacting that are realistic
enough that they match real-world occurrences.

The truly dedicated can always look through the variables that determine the
behaviors produced by NationSim and work to find the correlations between them
and the final narrative produced by Nationsims many plots and vast collections of
data points, which are made available via a .csv file that can be easily analyzed
by f.ex. the provided R-script.
This data sheds light on the connections between abstractions made to real-world

62 Leon C.: NationSim, Modeling Nations interacting

trade relations, and the final output of the simulation.
But really, the project this thesis documents was about creating a tool that could
create a realistic story from user-defined initial circumstances.
The fact that the stories NationSim produces closely resemble the narratives cre-
ated by real-world data means that the project has succeeded in its goals.

The requirements that were set for NationSim at the beginning of the project
have all been tackled to varying degrees of success, and the research questions
posed at the beginning of the thesis have also been answered.

The thesis concludes that the consequences of a main producer being removed
from the market are a sharp increase in the market price for the main good pro-
duced by the removed nation, as well as a smaller but still significant increase
in price for several other goods, as well as a non-insignificant impact upon the
number of successful trades performed by other nations that slot into becoming
the main producer for the resource in question.
This closely matches the observed changes in the global market as a result of the
Russia-Ukraine war, which reduces both nations capability to participate in the
international market.

The thesis furthermore shows that NationSim produces results indicating a
positive change to wealth between nations that do trade on the open market and
nations that do not, which matches data of Poland’s GDP growth after entering
into the global market economy after the fall of the USSR.
Additionally, NationSim showcases an inequality between the economic growth
in trade-partners showcasing severe differences in infrastructure, which matches
the development of wealth in European nations compared to their trade partners
in Africa.
Finally, NationSim proposes that Nations with lower initial capital but greater
ability to produce highly valued resources will eventually close the gap created
by their lack of ability to expand their infrastructure, which matches the growth
of the Chinese industry when compared to traditional economic powerhouses like
European nations.

With our research questions answered with these stories produced by Na-
tionSim, the final contribution of this Thesis to the field of Social sciences is the
link to the repository from which NationSim, its pre-made scripts, and an applic-
able example of an R script can be downloaded so that the readers of this thesis
too can use NationSim to answer their questions or generate their own narratives
that might match with real-world stories.
The Repository is publicly available here at https://github.com/Anarchydus/NationSim.

Chapter 6: Conclusion 63

6.3.1 Final thoughts

Nationsim as a project has consumed the better part of the last year of my life,
and another good chunk of a half year before that.
The project has been a fascinating, eye-opening experience about the complexit-
ies of Social-sciences that I previously had no investment or interest in, as well
as a clear reminder of how important it is to know what exactly you are getting
yourself into with a project.

A half a year of extra work to finish the master project compared to what was
originally planned should be a good reminder of that last part.
But it has left me with a renewed appreciation of the field of agent-based model-
ing, the intricacies that actually go into making a functioning economy, and just
how vast the field of social simulation actually stretches across topics.
What started off as a tool to help writers in creating the stories they wanted to tell
has matured into a program that now tells stories of its own.

As somebody that sees themself as a storyteller as much as a programmer, I
could not be happier with that outcome.
Creating a program that is capable of telling stories of its own is more than I had
hoped for when I first started this project.

Unfortunately, every good story must come to an end, and this is the end of
my story that is this thesis.
With this work, I hope to inspire others to take up the mantle of a storyteller and
take on the challenge of trying to create something that can help tell and under-
stand the stories that can puzzle people in their day-to-day life.
Maybe that is by creating new scripts for NationSim to test new scenarios, and
maybe that is to create a similar program all on their own.
In the end, we all can only tell the story we want to tell, it is up to the audience
what they take from it.

As my final, final thought, I would like to thank you, the reader, for taking the
time to read through this story of mine, and I hope you find many more stories to
hear, and maybe even some to tell.

Bibliography

[1] N. Gilbert and K. Troitzsch, Simulation for the social scientist. McGraw-Hill
Education (UK), 2005.

[2] J. W. Forrester, ‘World dynamics,’ Cambridge Mass., 1971.

[3] P. Kolesar, W. Walker and J. Hausner, ‘Determining the relation between
fire engine travel times and travel distances in new york city,’ Operations
Research, vol. 23, no. 4, pp. 614–627, 1975.

[4] D. L. Meadows, W. W. Behrens, D. H. Meadows, R. F. Naill, J. Randers and E.
Zahn, Dynamics of growth in a finite world. Wright-Allen Press Cambridge,
MA, 1974.

[5] G. H. Orcutt, J. Merz and H. Quinke, Microanalytic simulation models to
support social and financial policy. North Holland, 1986, vol. 7.

[6] T. Toffoli and N. Margolus, Cellular automata machines: a new environment
for modeling. MIT press, 1987.

[7] J. Doran, ‘Foreknowledge in artificial societies,’ in Simulating Social Phe-
nomena, Springer, 1997, pp. 457–469.

[8] H. A. Simon, ‘The sciences of the artificial mit press,’ Cambridge, MA, 1969.

[9] J. D. Farmer and D. Foley, ‘The economy needs agent-based modelling,’
Nature, vol. 460, no. 7256, pp. 685–686, 2009.

[10] L. Tesfatsion, ‘Agent-based computational economics: Overview and brief
history,’ 2022.

[11] S.-H. Chen and C.-H. Yeh, ‘Evolving traders and the business school with
genetic programming: A new architecture of the agent-based artificial stock
market,’ Journal of Economic Dynamics and Control, vol. 25, no. 3-4, pp. 363–
393, 2001.

[12] L. Tesfatsion, ‘Structure, behavior, and market power in an evolutionary
labor market with adaptive search,’ Journal of economic dynamics and con-
trol, vol. 25, no. 3-4, pp. 419–457, 2001.

[13] L. Tesfatsion, A New Swing-Contract Design for Wholesale Power Markets.
John Wiley & Sons, 2020.

65

66 Leon C.: NationSim, Modeling Nations interacting

[14] B. LeBaron and L. Tesfatsion, ‘Modeling macroeconomies as open-ended
dynamic systems of interacting agents,’ American Economic Review, vol. 98,
no. 2, pp. 246–50, 2008.

[15] D. World, ‘Longevity: Extending life span expectancy.,’ 2022, Retrieved Janu-
ary 12, 2023. [Online]. Available: www.disabled-world.com/fitness/
longevity/.

[16] J. P. Mackenbach, J. R. Valverde, M. Bopp, H. Brønnum-Hansen, P. De-
boosere, R. Kalediene, K. Kovács, M. Leinsalu, P. Martikainen, G. Menvi-
elle et al., ‘Determinants of inequalities in life expectancy: An international
comparative study of eight risk factors,’ The Lancet Public Health, vol. 4,
no. 10, e529–e537, 2019.

[17] A. Pourreza, A. Sadeghi, M. Amini-Rarani, R. Khodayari-Zarnaq and H. Ja-
fari, ‘Contributing factors to the total fertility rate declining trend in the
middle east and north africa: A systemic review,’ Journal of Health, Popula-
tion and Nutrition, vol. 40, no. 1, pp. 1–7, 2021.

[18] N. Gilbert, Emergence in social simulation in gilbert, n. and conte, r.(eds.)
artificial societies, 1995.

[19] A. V. Deardorff et al., ‘The ricardian model,’ Research Seminar in Internat.
Economics, the University of Michigan, School . . ., 2007.

[20] E. Orhan, ‘The effects of the russia - ukraine war on global trade,’ Journal
of International Trade, Logistics and Law, vol. 8, no. 1, pp. 141–146, 2022,
ISSN: 2149-9748. [Online]. Available: http://jital.org/index.php/
jital/article/view/277.

[21] D. W. Bank, ‘Gdp growth (annual %) - poland,’ Accessed: 15.01.2023. [On-
line]. Available: https://data.worldbank.org/indicator/NY.GDP.MKTP.
KD.ZG?locations=PL.

[22] O. W. I. Data, ‘Gdp per capita, 1820 to 2018,’ Accessed: 15.01.2023. [On-
line]. Available: https://ourworldindata.org/grapher/gdp-per-capita-
maddison-2020.

[23] O. W. I. Data, ‘Gdp, 1820 to 2018,’ Accessed: 15.01.2023. [Online]. Avail-
able: https://ourworldindata.org/grapher/gdp- world- regions-
stacked-area?country=Sub-Sahara+Africa~Latin+America~Middle+
East~South+and+South-East+Asia~East+Asia~Western+Offshoots~Eastern+
Europe~Western+Europe.

[24] D. W. Bank, ‘Gdp (current us$) - european union, china,’ Accessed: 15.01.2023.
[Online]. Available: https://data.worldbank.org/indicator/NY.GDP.
MKTP.CD?end=2021&locations=EU-CN&start=1960.

www.disabled-world.com/fitness/longevity/
www.disabled-world.com/fitness/longevity/
http://jital.org/index.php/jital/article/view/277
http://jital.org/index.php/jital/article/view/277
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=PL
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=PL
https://ourworldindata.org/grapher/gdp-per-capita-maddison-2020
https://ourworldindata.org/grapher/gdp-per-capita-maddison-2020
https://ourworldindata.org/grapher/gdp-world-regions-stacked-area?country=Sub-Sahara+Africa~Latin+America~Middle+East~South+and+South-East+Asia~East+Asia~Western+Offshoots~Eastern+Europe~Western+Europe
https://ourworldindata.org/grapher/gdp-world-regions-stacked-area?country=Sub-Sahara+Africa~Latin+America~Middle+East~South+and+South-East+Asia~East+Asia~Western+Offshoots~Eastern+Europe~Western+Europe
https://ourworldindata.org/grapher/gdp-world-regions-stacked-area?country=Sub-Sahara+Africa~Latin+America~Middle+East~South+and+South-East+Asia~East+Asia~Western+Offshoots~Eastern+Europe~Western+Europe
https://ourworldindata.org/grapher/gdp-world-regions-stacked-area?country=Sub-Sahara+Africa~Latin+America~Middle+East~South+and+South-East+Asia~East+Asia~Western+Offshoots~Eastern+Europe~Western+Europe
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?end=2021&locations=EU-CN&start=1960
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?end=2021&locations=EU-CN&start=1960

Paper I

The Original project plan for the creation of NationSim, as completed in the
IMT4205 - Research Project Planning course, here included to help illustrate the
original assumptions made for creating the project and to help explain the de-
cision making in parts of the thesis.

67

IMT4205 Research Project Planning Report

Leon Cinquemani

Use this class with options
“medieteknikk,” “mediatechnology,” “informasjonssikkerhet” or

“informationsecurity”.

Use this package with options
“medieteknikk,” “mediatechnology,” “informasjonssikkerhet” or
“informationsecurity”.

Abstract

As an aspiring writer, or as anybody who creates fictional settings, aka fictional worlds, as
a pass-time or for their job, the creation of a world’s story is a daunting task. With poten-
tially thousands of years of history needing to be filled out to gain a clear understanding
of the political landscape, the history of nations and their people, and the state of the
world as it stands, the creative workload can quickly become impossible to manage.
In this paper, I propose a tool to aid writers in creating historical data for their fictional
worlds, by providing an agent based simulation which will run on a model comprised
of the nations of said fictional world, and simulate their interactions over the course of
history to produce historically significant events.
This simulation aims to produce a list, or set of lists, of these events that can serve as
inspiration for the author, and work as a scaffolding upon which the more in-depth parts
of the setting can be erected.
Thus I hope to reduce the creative load required to flesh out a Setting with a full history,
as well as provide inspiration to the creators of such settings.

IMT4205 Research Project Planning Report

Contents

Contents . iii
1 Introduction . 1

1.1 Background . 1
1.2 Definitions . 2
1.3 Research Questions . 2
1.4 Related works . 3

2 Requirements and Risks . 5
2.1 Users . 5

2.1.1 User Stories . 6
2.2 Requirements . 6

2.2.1 Functional Requirements . 7
2.2.2 Non-Functional Requirements . 7

2.3 Risks & Mitigations . 8
2.3.1 Risks . 8
2.3.2 Mitigation . 10

3 Methodology . 11
3.1 Feasibility study . 11
3.2 Project Plan . 12

3.2.1 Phase 1: Prototyping . 12
3.2.2 Phase 2: Research and Core implementation 12
3.2.3 Phase 3: Cyclic development . 12
3.2.4 Phase 4: Master Thesis . 14

3.3 Planned Contributions . 14
Bibliography . 17
A APPENDIX A; Report for IMT4134: Specialization in Software Engineering . 19
B APPENDIX B; Gantt Diagram of Project plan 57

iii

IMT4205 Research Project Planning Report

1 Introduction

1.1 Background

The designing and development of a fictional setting is an important step in a variety of
different disciplines. A setting can be defined as the overall scope of the world a story
takes place in, which could range from a single city to an entire universe. The word set-
ting in this paper is taken to mean a fictional world in which a story takes place.
From writing fictional texts to creating video-games, or running tabletop role-playing
games as a hobby, the creation of an immersive fictional world is an important part of
each of these and other professions.

With Adult-fiction books alone generating revenues of over 4 Billion USD in 2017[13]
in the US, video games, in general, generating a further estimated 108 Billion [9] USD
worldwide, and the most popular Virtual Tabletop RPG playing platform, Roll20 has re-
portedly 8 million users worldwide[4], which does not even include people that enjoy
Tabletop RPGs offline.
As such it ought to be clear that the market for fictional works is generating billions of
USD every year, and that they are enjoyed by millions of people worldwide. As such the
number of fictional worlds that are present across entertainment is steadily increasing,
from multi-million dollar classics with massive legacies, such as "middle-earth" from "The
Lord of the rings", to more recent works such as "Westeros" from "A Song of Ice and Fire",
"The Forgotten Realms" from "Dungeons and Dragons", and the "Galaxy far far away"
from "StarWars".

With the legendarily in-depth story of "Middle-earth", the lifework of J.R.R. Tolkien,
spanning nearly 38000 years of history[5], which contain hundreds, if not thousands of
noted events across the entire lifespan of the setting, it becomes clear that such an un-
dertaking requires herculean effort on the author’s part, as thousands of years need to be
filled with societal changes, historical events, wars, the rise and fall of nations, and the
general marching on of time.
Of course, few authors can boast to have as in-depths a setting as J.R.R. Tolkiens life
work. I would even reason that most settings do only really go back a few hundred years,
at worst a couple of thousands of years when it comes to how much of the history of the
world is explored and taken into account for the story being told.

Therefore, I will in this paper propose the creation of a novel tool to assist writers in
completing this task, by implementing a simulation in an Agent-based modeling frame-
work, which will allow intrepid writers to model their settings nations, and will then
simulate decades, centuries, or even eons of historical interactions between these na-
tions.
Agent-based modeling and simulation (ABMS) is a discipline of simulation, which fo-
cuses on modeling a system from the bottom up[7]. That is to say, in an ABMS approach,

1

IMT4205 Research Project Planning Report

a researcher creates several "Agents"; data structures that correspond to individual units
that make up the model, which could represent people, cars, or other, more abstract con-
cepts.
Each agent has a variety of sensors and actuators, which allow it to perceive the state of
the environment it is in, and autonomously choose to act using its actuators to influence
the said environment, based on a variety of predefined criteria.

1.2 Definitions

Agent-based Modeling has been a staple for use across a variety of disciplines for dec-
ades by this point, and it makes sense to use in this scenario, as the nations of a world
neatly can be modeled as agents, and as interactions between nations, environment, and
other factors can not always be easily expressed via a mathematical model, it provides
an intuitive way to study the history of the setting.
Then the tool will produce outputs based on the results of the said simulation, which
will allow the author to gain a quick overview over significant historical events, that is to
say, noteworthy changes to the nations, such as famines, wars, and shortages, as well as
factors that may have contributed to these events.
This information can then serve as a starting point for writing more detailed reports of
said events, including historical figures and the precise circumstances leading up to the
event, and unfolding during it.

An Agent-based Model can be built entirely from the ground up, but it is far more
common to use one of several available frameworks which offer users a suite of tools to
make the initial creation of the model easier.
These come in a variety of forms, as discussed by Abar et Al[6], each being implemented
for different platforms, via the use of different programming languages, and to varying
levels of specialization for solving one specific kind of task.
The Frameworks of choice for this project will be discussed later in the feasibility study
section 3.1, a choice which is substantiated by a previous study done by the author of this
paper as part of another course, which will be included in Appendix A, purely to provide
more context to the choices made.

1.3 Research Questions

It is rather difficult to condense the problem at hand into one or more concise research
questions, as the project itself is focused largely on the implementation of a novel tool to
aid in a process. Unfortunately, I can not use a question such as
How much can the time/effort required to create a fictional setting be reduced with the help
of Agent-based Simulation?
, as that would be incredibly difficult to measure, especially since I would need to sur-
vey authors, game developers, and TTRPG players to find good metrics for this, which is
outside of the scope of the project due to time constraints and privacy concerns.

Likewise, questions such as:
Can a World Model simulation be used to create compelling narratives from which a story

2

IMT4205 Research Project Planning Report

can be extrapolated?
Are too hard to find good metrics for, since how compelling a narrative is, is entirely
subjective, and whether or not such narratives can be used to extrapolate a story is also
not quantifiable, and thus cannot be measured easily.

The best traditional Research question that I have found for the project to answer is
thus as follows:
To what extend can a World Model Simulation be used to create a believable set
of interactions between nations, which are used to create a timeline of historical
events, from which events of interest can be extracted?
This question has the benefits of allowing us to measure a variety of things, these being
for example:

• How believable are the interactions between the nations of the model?

• How well can the timelines produced be used to find events of historical importance?

Both of these questions can be measured using concrete metrics, such as the similarity
between interactions measured in the model and interactions observed in the real world,
and the time taken to determine the historical importance of events.

1.4 Related works

While numerous papers are using agent-based modeling as a tool for Political[10], economical[14],
and social sciences[7], the combination of these fields into a full Global Model[8] from a
variety of contexts is much rarer, though not unheard of. Several of the features intended
to be included in the finished model are already well researched, such as the simulation
of international conflicts, which has already been tackled in papers such as the study
by David P. Masad[11], demonstrating the power of agent-based modeling as a tool for
understanding the circumstances that drive nations into conflict, as well as the behavi-
ors noted around these times. Likewise, the paper by Thomas B. Pepinsky[12], defines
several key theories on international relations and discusses implementations of models
that focus on simulating these theories in action.

This goes a long way to prove that the individual components of the proposed system
all already exist, having been researched and implemented throughout a variety of pro-
jects over many years. This is promising, as it means that I will not have to walk entirely
un-trodden ground in the creation of the proposed system, and can draw inspiration from
previous works that have implemented similar systems.
However, to the best of my knowledge, while there certainly are global models that go
over nations in as much, or deeper depth than what I am intending for the tool sugges-
ted, the idea of using Global modeling and history simulation as part of a writing tool is
a novel concept yet to be explored.

3

IMT4205 Research Project Planning Report

2 Requirements and Risks

2.1 Users

For this project, I will be considering a variety of users from the three primary target
groups presented in chapter 1, as well as some secondary user groups. These groups are:

• Primary:

1. Authors
Authors create large, intricate Settings for the stories they want to tell, as they
usually go a lot more in-depth into the history of the world they are writing about
than the other categories. As such, Authors require large amounts of historical
data to draw from when creating their settings, but generally, they have more
time than the other two main groups when it comes to their deadlines.

2. Video Game developers
Video games often have tighter deadlines for their writing that authors might have
in their works, and as such have to often compromise on the scope of the histor-
ical data created for their settings to only what is specifically relevant to the game
being created. This of course is not a general rule, and Game developers might
still find themselves in the need of an extensive history for their settings, but for
this project, the Video-game developer represents the middle-ground between the
Author and the TTRPG player when it comes to the amount of data required vs
the speed at which it must be made available.

3. TTRPG players
Compared to their counterparts TTRPG players creating their settings often have
a far more agile workflow when it comes to the development of their setting, as
the deadlines for having to present the history of their worlds are a lot tighter,
sometimes down to single weeks or even days between deliveries, but the amount
of history that needs to be presented is also far smaller for these situations.
This means that a TTRPG player might require historical data for his setting very
quickly, but only in small amounts, as to not overwhelm their fellow players.

• Secondary:

1. Hobby-Historians
A hobbyist-historian might be interested in using the tool proposed less for its
primary purpose of creating a set of historical events, and more for its potential
for taking in data from real-world history and manipulating the parameters of
these to create "What if?" scenarios.

5

IMT4205 Research Project Planning Report

2.1.1 User Stories
Label User type Description
US:01 Author As an author, this user wants to be able to run the tool to create

a full history of a set of nations to use as scaffolding for his next
novel setting.

US:02 Author As an author, this user wants to be able to fine-tune the simulation
to run an exact number of years equal to the age of his setting.

US:03 Author As an author, this user wants to be able to select the names of the
nations in the simulation to match those in his setting to make
them easier to differentiate at a glance when looking over results.

US:04 Author As an author, this user wants to be able to separate nations that
reasonably should not be able to get into contact with one another
during the simulation.

US:05 Author As an author, this user wants to be able to store the results of the
simulation for extended periods to be able to divide the time he
works on them over a large timeframe.

US:06 Author As an author, this user wants to be able to influence the simulation
to change the behavior and starting parameters of each nation to
represent the different races and cultures of his setting.

US:07 Videogame developer As a game developer, this user wants to be able to run the simula-
tion in a reasonably short time, to meet his deadlines.

US:08 Videogame developer As a game developer, this user wants to be able to have some con-
trol over how the different nations develop during the simulation
to facilitate the story of the game.

US:09 TTRPG player As a Table-top RPG player, this user wants to be able to alter the
setting later down the line to facilitate a new idea, or to incorpor-
ate some input from his fellow players.

US:10 TTRPG player As a Table-top RPG player, this user wants to be able to break
the results from the simulation down into small chunks to be de-
veloped further as needed.

US:11 Historian As a hobbyist-historian, this user wants to be able to import his-
torical data for real nations into the framework to create what-if
scenarios.

It should be noted here that a lot of these user stories could work for several of the user
groups. I decided however to only include them in the first category they came to mind
in, as it would not be productive to repeat similar, or equal user stories.

2.2 Requirements

Requirements will be rated by how crucial they are for the system to be valuable to the
above-discussed user groups overall, and will be prioritized during the system’s creation
accordingly.
The list of requirements is by no means exhaustive, but as initial prototyping is currently
still ongoing, and as the project is expected to run in a somewhat agile format, I expect
more to be discovered over the course of the project.
All requirements are linked to the User story that they hope to fulfill via that User stories
label.

6

IMT4205 Research Project Planning Report

2.2.1 Functional Requirements
Label Related User

story
Name description importance

Req:01 US:01 & US:02 Runtime The program must run a full simulation of a
set number of years

High

Req:02 US:01 & US:03 &
US:06 & US:11

Realism The simulation must run realistic interac-
tions between a set of predefined nations

High

Req:03 US:03 & US:04 &
US:06 & US:11

Adaptable
Para-
meters

The Nations starting parameters need to be
able to be influenced by the user

Med-High

Req:04 US:09 & Us:11 File
loading

The Simulations parameters need to be able
to be populated from pre-existing data

Med

Req:05 US:01 & US:05 &
US:10 & US:11

Output
Readab-
ility

The program needs to output it’s results in a
format that are easily human readable

High

Req:06 US:09 Output
reuse

The program needs to output it’s results in
a way that allows it to be fed back into the
simulation as starting parameters

Med-Low

Req:07 US:01 & US:03 &
US:05 & US:10 &
US:11

Auditing The user has to be able to draw conclusions
from the output about the state of the indi-
vidual nations during any point of the Sim-
ulation

High

Req:08 US:09 Storeable
state

The user has to be able to store the current
state of the simulation, in order to be able to
continue from it at a later point in time

Med

Req:09 US:08 & US:09 Active
control

The user has to be able to pause the simula-
tion during runtime, and to alter the para-
meters of nations while the simulation is
running

Med-Low

Req:10 US:04 & US:06 &
US:08 & US:11

Nation
beha-
viour

The user has to be able to set limitations on
how nations may interact to model various
complex nation relationships

Med-High

Req:11 US:01 & US:09 &
US:11

Determi-
nistic
RNG

The user needs to be able to rerun the simu-
lation with the same seed and get the same
results.

High-Med

2.2.2 Non-Functional Requirements

All concrete values presented in this section are merely initial suggestions before imple-
mentation of any prototypes, and before any testing on the actual implementation has
begun, and are thus subject to change.

7

IMT4205 Research Project Planning Report

Label Related User
story

Name description importance

Req:12 US:01 Time
Units

The simulation needs to run at a predefined
(but as of yet undetermined) timescale,
updating once per unit of time for each
agent, and storing new information about
the agents state, so it can later be presented

High

Req:13 US:07 Runtime The program needs to take into considera-
tion the runtime of the simulation, and en-
sure it does not become to long. The simu-
lation should take no more than 1 hour for
1000 years to be simulated for 10 nations.
This would mean that 1 year for 1 nation
should take no more than 0.36 of a second.

Medium

Req:14 US:01 & US:03 &
US:05 & US:10

Output
format

The Program needs to produce output that
is human and machine readable, and user
friendly, producing both raw data, graphs,
and text based output for the user

High

Req:15 US:01 User
friendli-
ness

The program needs to be intuitive to use,
taking less than 3 hours to learn while un-
guided, and less than 1.5 hours while guided
for a majority of users

Medium

Req:16 US:01 & US:07 Reliability The program needs to be stable during
runtime for typical usecases, not crashing
outside of outside circumstances or extreme
strain due to excessively taxing user input
far beyond the expected norm

High

Req:17 US:01 & US:02 &
US:03 & US:04 &
US:06 & US:08 &
US:09 & US:11

Initializa-
tion

The Program needs to allow users to easily
input custom parameters, either via loading
a file, via randomization with or without a
predetermined seed, or by hand

High-Medium

Req:18 US:01 Ease of
startup

The program needs to be easily run-able
from the users desktop as a regular program,
without having to download a simulation
framework beforehand

Low

2.3 Risks & Mitigations

2.3.1 Risks

These are the risks currently identified to be relevant to the project, which will be con-
sidered for potential mitigation if determined to be sufficiently threatening to the overall
success of the project.

8

IMT4205 Research Project Planning Report

Label Related Require-
ments

Description Likelihood Severity

Risk:01 All I might not be able to complete the project
in the timeframe given

Med High

Risk:02
Req:02

The Nations decision making is not realistic High High

Risk:03
Req:05 & Req:07

The output of the simulation is not user
readable

Medium High

Risk:04
Req:11

The Simulation is not Deterministic Low High

Risk:05
Req:18

The chosen framework does not allow me
to provide the model to users that have not
downloaded the framework

Medium Low

Risk:06 Req:13 The program can not meet it’s runtime re-
quirements, and takes too long to complete

High Medium

Risk:07 All I face technical difficulties, and loose access
to my workstation

Low High

Risk:08 Req:15 The Program is not intuitive to use High Medium
Risk:09 Req:16 The program experiences frequent crashes

during runtime
Low High

Risk:10 Req:09 Framework does not support updating of
parameters during runtime

Medium High

Figure 1: Risk Assesment

Plotting the severity of the damage the risk would cause to the project should it come
to pass and the likeliness of the risk coming to pass into a grid, we get the results presen-
ted in Figure 1.
This shows that the most critical risks to be concerned about are:

• Critical:

• Risk:02

• Severe:

• Risk:01

• Risk:03

• Risk:06

• Risk:08

• Risk:10

9

IMT4205 Research Project Planning Report

2.3.2 Mitigation

The following are the proposed mitigations for the risks to the project’s success determ-
ined to be at least "Severe".

Label Related Risks description
Mit:01 Risk:02 The entire success of the project hinges on the ability of the nations

to make decisions. As such, extra time will be set aside during de-
velopment to research how best to make nations’ decision-making
as close to realistic as possible.

Mit:02 Risk:01 To ensure that the project will be completed on time a full work
plan has already been created and will be presented in section 3.1
and section B. Extra time has been allocated for most steps, to
ensure that the project finishes on time or early.

Mit:03 Risk:03 & Risk:08 These risks can only really be ruled out with intensive user testing,
which is currently outside of the scope of the project. I will how-
ever consider adding it if I find the time and resources over the
course of the project

Mit:04 Risk:06 To ensure that the runtimes of the simulation are low, a powerful
framework has been chosen that should guarantee the best pos-
sible results for runtimes. Additional time in the development pro-
cess might also be used to further optimize runtimes, should they
feel too sluggish.

Mit:05 Risk:10 This should be fixable via a workaround by instead storing the
parameters of the simulation at the current time and then re-
initiating the simulation with those parameters.

The other Risks were not considered for the case of this project as they were deemed too
unlikely or too benign to spend much time on.

10

IMT4205 Research Project Planning Report

3 Methodology

3.1 Feasibility study

Based on papers discussed in section 1.4, it is clear that attempts to create global models
have been fairly successful in the past, meaning that it is possible to create a model like
the one I have in mind. The problem is how difficult it is to implement all of this func-
tionality within a single semester, and with little to no background in simulation.
Thus, to see whether or not such an implementation would even be possible within the
time frame I had available, I spent a significant portion of the semester researching a
variety of Agent-based Modeling frameworks, that is, suites of tools that are intended to
make it easier to implement your models.

This work is part of another course, and as such will not be discussed in depth in
this paper, though the paper in question is available in the section A beneath in case the
reader wishes to take a look at the work substantiating the decisions I am about to make.
In the said paper, I conclude that out of the 5 popular frameworks that I studied, Netlogo[1]
stood out as being of the utmost quality when it came to teaching new users how to use
it, and for ease and speed of implementation of models once the user knew what they
were doing.

Unfortunately, Netlogo is the lower end for computational power, and thus is ill-suited
for taxing simulations, as well as making some assumptions about the agents in question
which may be unnecessary for my project, and cause further slowdown.
However, Netlogo’s quick and easy workflow has resulted in me choosing it as my frame-
work of choice for rapid-prototyping of ideas throughout the project, as the program is
easy to troubleshoot due to the sheer amount of online help available, and lends itself to
quickly cobbling together a working solution so that it can be further refined in the main
framework.

Which in this case is Repast[2], specifically Repast symphony, the java implement-
ation of Repast. Repast, unlike Netlogo, is highly adapted to running computationally
intensive simulations, and while in my experience its documentation is not as good as
Netlogo’s, it benefits of the fact that its modeling language Relogo is closely related to
Netlogo’s, so a lot of the documentation does carry over to an extend.

This only furthers to increase the translation from prototype to fully-fledged system,
and hopefully, between these two systems, I will be able to implement the entirety of the
system before the deadline.

11

IMT4205 Research Project Planning Report

3.2 Project Plan

I have created an initial outline for how I plan my workflow to be over the course of the
spring semester, and how I plan to tackle the project. The below information can also be
found in the Gantt chart provided in section B

3.2.1 Phase 1: Prototyping

Work on the project itself is slated to begin as soon as this paper has been delivered, and
will run until the end of May when the Master thesis is due to be delivered.
Development of the project will begin with the creation of two prototypes, one developed
over the course of a weekend via a high-implementation speed AMBS framework, and
one developed over the course of another 2 days with a more powerful framework, the
intent being that most costly mistakes are made in the framework that is quick to work
with, and the results can then be achieved better in the new framework at comparable
implementation times.

Once the low-fidelity Prototypes are finished, they will be used for the creation of a
Report for the "Advanced project work report, finishing up the autumn semester. Work
on the next phase of the project begins as soon as the semester ends, and before the start
of the spring semester.

3.2.2 Phase 2: Research and Core implementation

During winter break I am scheduled to further familiarize myself with the chosen frame-
works (as discussed in section 3.2), as well as use the initial prototype as a jumping-off
point to start the core of the project, and test its functionality.

3.2.3 Phase 3: Cyclic development

From this point, project work is broken down into three identical cycles, each running
for 6 weeks. During each of these cycles, I will be focusing on one of the key systems
of the simulation, those being the Economy, International Politics and Warfare, and the
Environment.
Each cycle will be broken down into a variety of tasks that are the same across all three
of these systems.

• Research:
As I am no expert on the fields of Economics, Politics, or Environmental factors, I will
be spending the first workweek of each cycle researching the field that I am trying
to implement, specifically the literature on what work has been done in simulating
the field via agent-based simulation, and algorithms that govern how these factors
impact the decision-making of nations.
I have set off a little more than a workweek for each of these research blocks, as I
figured I would need some extra time to figure out the fineries of such vastly different
fields.

12

IMT4205 Research Project Planning Report

• Prototyping:
Once again utilizing the same framework as previously, I will be doing a quick proto-
type of the system to mark down the rough functionality needed to make the system
function. As the framework chosen for this job is rather fast to work with, I have
placed down just under a workweek for this part of the cycle, but I can always use
some of the extra time set aside for research for this part of the project as well.

• Implementation:
Moving back to the main framework, I complete the implementation of the required
systems and finish that part of the system as its own, self-contained unit with no
outside influences. This does not include integration into the rest of the project, but
merely represents the time spent creating the system as a standalone component.
Since I will have already implemented the system as a prototype, I slate this part of
the work to also take roughly 1 work-week, with a little extra time set aside on top of
that in case I run into issues.

• Unit Testing:
To assure that the system is working is attended, I will set aside a workweek for unit
testing the systems, running partially concurrently with implementation once that is
nearing completion, in case I do end up not needing the extra time set aside beyond
the workweek, or just to be worked on in tandem with the main implementation.
Should implementation take longer than expected, this workweek is another block of
time I can eat into to increase the amount of time I have for implementation.

• Integration:
Once internal validity of the system is ensured, I will begin work on integrating each
system into the wider scope of the project, that is, to ensure that the input and output
of the system take all other systems into account, so that the agents’ decision-making
is based on all three subsystems and their interplay. Nearly two work-weeks of time
are set aside for this part of the cycle, but realistically will not entirely be used for that.

As the earliest finished system will have a lot less work that needs to go into it for in-
tegration into just the core system, I assume that this amount of time will be overkill.
In that sense, it acts as another buffer, should I fall behind pace in earlier parts of the
project.

• Integration testing:
Finally, the last part of the work cycle is integration testing, which is simply assuring
the validity of all systems remains after they have been integrated with the newly
finished system. A little over a workweek is set off for this, partially running concur-
rently with the Integration work itself, for the same reason as the unit tests.
Again, this time will likely not be entirely used for the earlier projects, and as such
acts as another buffer.

13

IMT4205 Research Project Planning Report

Once all three cycles have been completed, the implementation phase of the project is
largely over. All in all, 20 weeks are set off for these three cycles, spanning the time
between The start of January and the End of April. If everything goes as planned and no
major roadblocks are encountered, I hope to finish the work earlier than that.

As I am almost guaranteed to not be so lucky as to smoothly sail through the entire
project, I am using the extra time as buffers to help mitigate the risk of overshooting the
deadline for the project.

3.2.4 Phase 4: Master Thesis

Finally, the month of May is entirely set aside for the creation of the master thesis, in-
cluding an initial draft to be discussed with my supervisor, which should be done by the
end of the second week of March. From that point forward, the rest of the time will be
spent making the final version of the thesis, finishing up at the end of March, and being
able to deliver my thesis on time before the 1st of June.
From that point on, all focus is on preparing to present the thesis.

3.3 Planned Contributions

Over the course of this Master thesis, I will produce a variety of different artifacts, each
of which will also be a milestone towards finishing the project.
First of these is the Tool itself, initially simply named "Fictional History simulator", which,
if I manage to realize the Project plan to its fullest, will simulate the economy, interna-
tional politics, and environment of a set of Nations as defined at the start of the simula-
tion, all according to the above specifications.

The overall system will be implemented as 4 distinct subsystems, all interacting to
simulate the interplay between these different parts of a nation, and produce as realistic
events as possible. Each of these systems will be developed independently, and as such
will be largely decoupled, each system itself acting as a milestone towards the comple-
tion of the final project.
To the best of my knowledge, a tool that simulates vast timespans of historical data for
nations of fictional nature and produces output that allows for the extraction of historical
events of significance to work as a scaffolding for the creation of fictional settings does
not currently exist.

It is currently still up in the air whether or not the final tool will be made publicly
available, or whether it would remain a research artifact, purely for private usage. This
largely depends on the results of the project, and to what extend the tool is complete by
the time the project comes to an end.

Additionally, the Project will result in the creation of a Master thesis, which will be
written at the project’s end, detailing the work done, the results of the implementation,
as well as potential future extensions, and any other relevant information about what
work went into the creation of the system and the thesis itself.

14

IMT4205 Research Project Planning Report

15

IMT4205 Research Project Planning Report

Bibliography

[1] https://ccl.northwestern.edu/netlogo/. Accessed 08.12.2021.

[2] https://repast.github.io/. Accessed 08.12.2021.

[3] https://docs.google.com/spreadsheets/d/1JcX4sHAuBRGsbXIgktxj5n72sMyFQutQyqJ7R_
xQCCU/edit#gid=0. Accessed 10.12.2021.

[4] The orr group industry report q1 2021. https://web.
archive.org/web/20210812131438/https://blog.roll20.net/posts/
the-orr-group-industry-report-q1-2021/, APRIL 2021.

[5] Timeline of arda. https://web.archive.org/web/20211004183453/https://
lotr.fandom.com/wiki/Timeline_of_Arda, NOVEMBER 2021.

[6] Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P.
O’Hare. Agent based modelling and simulation tools: A review of the state-of-art
software. Computer Science Review, 24:13–33, 2017.

[7] Eric Bonabeau. Agent-based modeling: Methods and techniques for simulating
human systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–
7287, APRIL 2002.

[8] Richard W. Chadwick. Global modeling: Origins, assessment, and alternative fu-
tures. Simulation & Gaming, 31(1):50–73, 2000.

[9] Xu Zhang et Al. Improving cloud gaming experience through mobile edge comput-
ing. IEEE Wireless Communications, 26(4), AUGUST 2019.

[10] PAUL E. JOHNSON. Simulation modeling in political science. American Behavioral
Scientist, 42(10):1509–1530, 1999.

[11] David P. Masad. Agents in conflict: Comparative agent-based modeling of inter-
national crises and conflicts. page 207, 2016. Copyright - Database copyright
ProQuest LLC; ProQuest does not claim copyright in the individual underlying
works; Last updated - 2021-05-25.

[12] Thomas B. Pepinsky. From agents to outcomes: Simulation in international rela-
tions. European Journal of International Relations, 11(3):367–394, 2005.

[13] Adam Rowe. Traditional publishers are selling way more
non-fiction than fiction. https://web.archive.org/web/
20210226201130/https://www.forbes.com/sites/adamrowe1/2018/08/30/
traditional-publishers-are-selling-way-more-non-fiction-than-fiction/
?sh=1b27dbda56d0, AUGUST 2018.

[14] Leigh Tesfatsion. Agent-based computational economics: modeling economies as
complex adaptive systems. Information Sciences, 149(4):262–268, 2003.

17

IMT4205 Research Project Planning Report

A APPENDIX A; Report for IMT4134: Specialization in
Software Engineering

Please note that this is not part of the project
it merely serves as a ressource, incase the reader wants to learn how I came to the
conclusion to use Netlogo and Repast as my frameworks of choice for the project. AGAIN.
This is not part of the Report itself, is not work I did for this course, and most
certainly is not me double dipping to receive a better grade in this course. PLEASE
ignore everything in this appendix for the purposes of grading my paper. It is merely
here to substantiate my choice of frameworks, incase anybody cares to look.

19

Specialization in Software Engineering

Leon Cinquemani

December 2021

I

Abstract

Agent-based modeling is a sub-discipline of Simulation which focuses on mod-
eling systems from the bottom up, as a series of interactions between agents,
each of which has a series of potential actions it can take, and a series of cir-
cumstances in which it takes those actions.
Agent-based modeling is commonly used across a variety of disciplines, from
flow management to social sciences, traffic-control, and organizational protocol
development. However, scientists specializing in these fields might not necessar-
ily have the programming know-how to create a model from scratch.

This is where Frameworks come into play, simplifying the process of creating
models by providing a suite of tools to define agents, the actions they can take,
and the metrics which need to be collected from the simulation.
Finding the right framework for the task can be challenging, as a large variety
of different frameworks of varying prevalence are available, both freely available
to the general public and as proprietary software.

This paper focuses on a small subset of Frameworks for Agent-Based Mod-
eling and Simulations, evaluated by a variety of qualitative, subjective metrics,
based on the author’s experiences with each of the tested frameworks, and hopes
to give insights into the perceived shortcomings of the different frameworks.

II

Contents

1 Introduction 1
1.1 Background . 1
1.2 Definitions . 1
1.3 Research Questions . 2

2 Methodology 3
2.1 Finding Frameworks . 3
2.2 Testing . 4

2.2.1 Implementation . 4
2.2.2 Documentation . 5
2.2.3 Assistance . 5

3 Results 5
3.1 Installation . 5

3.1.1 Netlogo . 6
3.1.2 Gama-platform . 6
3.1.3 Repast Simphony . 6
3.1.4 MASON . 7
3.1.5 Cultsim . 7

3.2 Boids . 8
3.2.1 Cultsim . 9
3.2.2 Netlogo . 11
3.2.3 GAMA . 11
3.2.4 Repast Simphony . 12

3.3 Documentation . 12
3.3.1 Netlogo . 12
3.3.2 GAMA . 13
3.3.3 Repast Simphony . 13
3.3.4 Cultsim . 13

3.4 Assistance . 15

4 Discussion 16
4.1 Issues . 16

4.1.1 Subjectivity of tests . 16
4.1.2 Inaccuracy of results . 16

4.2 Future work . 18
4.2.1 More Frameworks . 18
4.2.2 More Tests . 18
4.2.3 More Testers . 18

5 Conclusion 19

III

6 Appendix 20
6.1 Netlogo code . 20

6.1.1 Implementation 1 . 20
6.1.2 Implementation 2 . 22

6.2 Gama code . 23
6.2.1 Implementation 1 . 23
6.2.2 Implementation 2 . 25

6.3 Repast Code . 28
6.3.1 Implementation 1 . 28
6.3.2 Implementation 2 . 28

6.4 Cultsim Code . 28
6.4.1 Implementation 1 . 28

IV

1 Introduction

1.1 Background

The field of Agent-based modeling is fairly wide, the concept of building a sys-
tem from the ground up having found use in a variety of different fields, from
social sciences to flow management.[1] As such, interest in the field has only
been increasing since its inception, as more and more fields become aware of the
benefits of modeling systems from the bottom up.

Agent-based modeling focuses on creating a system comprised of agents,
each of which carries data and methods, and interacts with the environment it
has been placed in, as well as other agents present. This allows Agent-Based
Modelling and Simulation (ABMS) to represent complex interactions between
a multitude of actors in a natural way, and to provide insights into phenomena
that rely on the interactions of individuals, which might be difficult to accu-
rately model mathematically.

With the applicability of agent-based modeling being very broad[1], and in-
terest in the field expanding, it is important to provide researchers the tools
they need to create their own models, adapted to the specific issues they are
researching. For this reason, a large variety of ABMS Frameworks exist, which
focus on making the creation of agent-based models as easy as possible, while
at the same time trying to (generally) remain universally applicable for all po-
tential use-cases of ABMS.

Since Agent-based modeling and simulation is a mature tradition of sim-
ulation by this point, there are a lot of varying frameworks that attempt to
provide this assistance to intrepid researchers, of varying levels of complexity
and specialization[2].
This does mean that researchers might be initially overwhelmed by the number
of options available, as the right tool for the job might not immediately be clear.
Studies, such as the one conducted by Abar et Al[2], seek to classify and simplify
the field by sorting the available frameworks via a variety of criteria. Others,
such as this paper and the study by Railsback et Al[3], focus on a small subset
of these frameworks, and how they compare against one another in a variety of
metrics.

1.2 Definitions

An ABMS framework, put simply, provides a set of standards and software
tools[3] for developers to create their own implementations of simulation mod-
els, which can then be run and analyzed to gather insight into the underlying
rules of agent interactions.
For the sake of this paper, I will be considering both frameworks such as NetL-

1

ogo, which come with an integrated IDE, and frameworks such as GAMA and
Cultsim which come without their own IDE but can also be used with an IDE
to write their models.

The test model I will be implementing in each framework is the classical,
simple boid model, that is, a flocking behavior simulation in which each agent
attempts to:

1. Keep a certain minimum distance from every other agent

2. Orient it’s heading to be equal to the average heading of its neighboring
agents

3. Maneuver in such a way as to be as close as possible to the center-point
of its neighbors’ positions

Each agent moves in 2D space at a constant maximum speed and can turn a
specific number of degrees each turn to correct its heading based on the afore-
mentioned criteria.

1.3 Research Questions

The reason for me choosing to undertake this project is already substantiated
above, as the applicability of Agent-based models and the need to find a func-
tional, robust framework to work with necessitate the researching of the differ-
ences between these ABM platforms to allow researchers and hobbyists to make
informed decisions when choosing which framework to use when developing their
models.

For my project specifically, I also had the incentive that the overarching
project of my master thesis would be the implementation of a model, which
meant that I found myself in a situation where I needed to choose a framework
from the list of available options. As such the project also has a pragmatic
reason for me. Overall the Research questions I seek to answer over the course
of this project are:

1. Which Frameworks are the most user-friendly in terms of availability of
online help and quality of documentation?

2. How long does it take to implement a pre-determined model for somebody
that has little or no experience with the framework.

To get a broad overview of these issues, I chose a variety of Frameworks,
originally examining a total of 5, with 4 of these ending up being tested, and
3 producing a full implementation of the Boids model. This was due to issues
with some of the frameworks tested either providing insufficient information to
successfully operate them, or being too poorly maintained to be effectively used.

2

2 Methodology

2.1 Finding Frameworks

For the process of finding frameworks for this project, I drew initial inspira-
tion from a Wikipedia article on ABMS frameworks[4], where I first picked up
MASON, Netlogo, Repast, and GAMA. These choices were further refined and
confirmed after looking over the classifications provided in the paper by Abar
et Al[2], where the previously mentioned Frameworks were considered to be
capable of running models of medium to high intensity, and varied widely in
how much effort went into creating a model, with Netlogo being considered the
easiest to work with, and MASON and Repast both being considered difficult
to model in.

These 4 frameworks were chosen based on several criteria:

• The Framework must be available to the public free of charge

• The Framework must be fully available on a Windows-based device

• Development and maintenance on the framework must still be active

I deemed these as reasonable requirements for a Framework to be used by a
novice modeler, as they ensure a low barrier of entry, with the average beginner
likely unwilling to spend money on something they have no experience in, and
with Microsoft being used by 80+% of all personal computers.
The final criteria were added to ensure that the framework would be decently
modern, following current best practices and utilizing modern technologies, to
thus provide a contemporary look at the state of AMBS frameworks.
These constraints also helped choose a specific version of the Repast framework,
as Repast Symphony was the only version available that satisfied all three cri-
teria.

Additionally to these 4 frameworks, I decided to also include an in-house
ABMS framework, developed by myself and a pair of fellow students, named
Cultsim[5]. Cultsim was developed to allow for high-quality visualization of
simulations and made to be platform-independent.
It was included both as a potential candidate for future work for myself, and
as it fits most of the criteria mentioned above, except for a lack of maintenance
since its initial completion.

The final 5 chosen frameworks were thus:

• Cultsim[5]

• MASON[6]

• Netlogo[7]

3

• Repast Symphony[8]

• GAMA[9]

2.2 Testing

To measure the frameworks, I looked at several metrics that I deemed to be
significant based on the above research questions, some of which were easily
quantifiable and some were not. Due to the nature of these tests, they ulti-
mately are partially subjective, as a number of metrics are based on my personal
experiences with the frameworks in question.

For this paper, I focused on the following criteria:

• Implementation

– Time taken to implement boids when never having used the frame-
work before

– Time taken to re-implement boids after having done so before

• Documentation

– How easily available online documentation for the framework is

– The quality of the documentation based on:

∗ Examples of use

∗ Ease of navigation

• Assistance

– Number of related questions on Stack-overflow

– Number of Google search-results

– Number of video-results on Youtube

– Number of Papers citing the framework

2.2.1 Implementation

For the purposes of Implementation, I will be creating a model for Boids, as
discussed above, from scratch for each of the frameworks. This implementation
will be completed twice, and the time taken for both attempts will be recorded.
Ideally, the first implementation will show how long it takes to implement a
simple model with no background in the framework, and the second will give
insights into how long it takes to implement the same model when the researcher
knows how to do it. This should help provide an overview of how easy it is to
work with the framework once one is familiar with how it functions.

There are some issues with this, however, as skills learned while working
with one framework might translate over to the next, thus meaning that the

4

tests are not done entirely in a vacuum, as they ideally would be. As I am
but one researcher with limited time to complete these tests, I have found no
way of preventing this from occurring. Therefore, I will present the test results
in order, and highlight any potential influences on implementation time from
sources other than simply learning the framework.

2.2.2 Documentation

Documentation includes all official documentation that comes with the soft-
ware, both installation instructions, step-by-step implementation guides, and
reference manuals.
These will be rated based on how easy they are to find, how clear they are (how
well the functionality of different parts of the framework is explained), and how
easy it is to find documentation for individual primitives and functions that
may be relevant to the model.

I would also report on the completeness of the documentation, as to say how
much of the framework’s functionality is documented, but that would require a
deeper understanding of the frameworks than I possess, seeing as this study is
my first interaction with most of these systems. As such, I cannot say if any
parts of the system have been left out of the documentation unless it is blatantly
obvious.

2.2.3 Assistance

In this category I will discuss how easy it is to find help for the framework in
question from non-primary sources, that is sources outside of FAQs and docu-
mentation provided by the developers. For this study, I quantify this metric as
the number of solved problems on Openstack that can be found by searching for
relevant keywords, the number of google searches that come up when looking
for the framework, and the number of papers published about the framework in
question (if available on the developers’ site).

I hope that this gives a fairly detailed overview of non-primary sources of
information that can be found about the framework, and that would be intuitive
for novices in the field to look at.

3 Results

3.1 Installation

To utilize these frameworks, step 1 is obviously to install the framework. This
task is more involved for some of them than others, and one of the frameworks

5

managed to get itself removed from further testing at this step. In cases where
it was required, I looked online for assistance with installing the frameworks,
both from official and unofficial sources.

3.1.1 Netlogo

Netlogo was easy to install, as the installer contained everything required to
run the program from the get-go. As such, installing the framework required no
further assistance of any kind. The web page is a little confusing, as it contains
fields to enter one’s name, organization email, and any comments one may have,
but these fields are entirely optional for downloading, it would seem.

The website also allows users to choose a specific version of Netlogo, but
as I have no requirements for versioning, I left it on the default selected value.
After downloading the installer, I only needed to choose an installation folder,
and the program was installed and working.

Out of all programs surveyed, Netlogo was the easiest to get running, and
the other frameworks definitely could benefit from making attempts at a similar
user experience.

3.1.2 Gama-platform

Gama was roughly on the same level as Netlogo when it came to its installation,
only requiring the user to choose an appropriate version. As a Java illiterate
I chose the version with a built-in Java Development Kit so I did not have to
worry about it, and then download the latest version of the framework.

From there, I received a .zip file that could simply be unpacked in a loca-
tion of my choice and could be run from there, problem-free. Not as clean as a
dedicated installer, but still very easy.

3.1.3 Repast Simphony

Repast also was simple to install via an installer, which was very appreciated.
An installer is available for download from their website, which upon opening
easily walks users through the steps of setting up the program, including instal-
lation destination, and whether to include a dedicated installation of the JDK,
which I checked ”yes” on.

The program otherwise requires little to no setup. Overall, another very
smooth installation experience, slightly lessened by the fact that the installa-
tion only seems to run when booted from the start menu, for hitherto unknown

6

reasons. Additionally, the installation present on my machines seems to ran-
domly decide that my work-space is corrupted, and purging the files present in
it. I blame this for the lack of implementation-code available for Repast in the
Appendix, and sincerely apologize.

3.1.4 MASON

Where the other publicly available frameworks were easy to install either via a
simple .zip file download or via an installer, I could not get a functioning version
of MASON to install itself on any machine I attempted it on. The download
site presents a variety of files to download, from a .jar file which supposedly
functions as a binary distribution, to a full source distribution.

According to the site, the latter of these two is the common installation, so I
chose that one (though I attempted using both). This presents me with several
files, including a Readme, which I next consult for what to do. It speaks of a
”jar” folder, in which the file with which to run the program should be located,
but the distribution does not seem to contain such a folder unless it is buried
deep within the folder structure, which seems as though it would be a rather
strange design choice.

The file also speaks at length of adding libraries to your Classpath, but as
somebody that has little to no know-how of how Java works, it becomes clear
to me that while I can follow tutorials online there is little to no way for me to
see if what I did actually worked.

Likewise, the Manual for MASON, provided on their website is rather un-
helpful and serves seemingly to remind me that I am not the intended audience,
as it repeatedly refers me to different frameworks, namely Netlogo and Repast.
I spent a good few hours trying to troubleshoot the problem to no avail, and
am forced to remove MASON from the list of frameworks I am testing from this
point forward, as my know-how with Java applications is seemingly not good
enough to even install the program.

3.1.5 Cultsim

Cultsim is a similarly sad tale to MASON when it comes to user convenience
when downloading and installing the file. The entire project is available via a
GitHub link[5] and can either be cloned as a source-code project or be down-
loaded as a set of binaries. I tried both and found the latter to be far easier
to get working, as the source distribution struggles from poor maintenance and
several dependencies have since been updated to include errors that break the
project.

7

Via the binaries, I receive a simple .zip file, and after unpacking am greeted
with a ”.exe” file, as well as a few others, including a data.zip file. Unzipping
that as well makes the program functional, and it runs just as the source distri-
bution does, albeit with less of a headache to get it up and running.

Overall, the binary installation was entirely pain-free up until this point.
The installation instructions on Github were also concise and informed me of
what to do to get the program running step by step. I would still say it is the
most convoluted to get set up before running out of the four frameworks that I
managed to install, but by comparison to MASON, its installation is relatively
painless.

Installation alone has already removed one of the 5 frameworks from further
testing, which means that from this point forwards, MASON will no longer be
considered for the rest of the study. Still, I found it valuable to include an
example of a poorly realized, convoluted, and confusing installation process, as
I could not get the program to correctly install, even by searching for online
assistance for installation. This, coupled with the less than helpful user manual
and Read me make me feel justified in dropping the framework at this point, as
I doubt that somebody new to ABMS frameworks would continue troubleshoot-
ing, and rather swap to another option.

3.2 Boids

From this point, I continued with the 4 remaining frameworks and proceeded
to attempt to implement the Boids framework in each of them. While the
exact implementation varied (Complete code for each implementation of Boids
available in the appendix below), the pseudocode could be described as follows:

//step 1: Setup

Reset world

Create x agents with x = random & y = random

//step 2: Per tick

For every agent:

update_direction()

move()

//update_direction

neighbours = other agents within radius

if(distance to closest agent < minimum distance)

separate()

else

alignment()

cohesion()

8

//separate

direction = direction towards closest neighbour + 180

return direction

//alignment

heading = heading of each neighbour

heading = heading / neighbours.size

direction = towards heading

return direction

//cohesion

x = average x coordinate of neighbours

y = average y coordinate of neighbours

direction = towards [x,y]

return direction

//move

set heading = direction

move_forwards(speed)

The implementation varies from Framework to framework, but overall stays true
to this formula.
As mentioned previously this test was implemented twice in each framework, in
the hopes of capturing both time required to learn the framework, as well as how
long it would take to implement once one is familiar with the said framework.
To expose any potential biases towards having an easier time learning later
frameworks due to experience gained from earlier frameworks, these results will
be presented in order of implementation, and the results will be discussed below.

3.2.1 Cultsim

As can be noted in figure 1, Cultsim does not have any data associated with
it. This is because I found myself unable to implement Boids as per the above
specifications into Cultsim as is, as I would have to modify the source code
of the framework to allow for finding the distance and direction to the closest
neighbor, and thus am unable to implement separation.

The example implementation of Boids within Cultsim also does not include
separation, and thus I am unable to fully implement Boids to the specifications
set. Additionally, even when I attempted to implement the less complete version
of Boids without separation, my code refused to run, even when I created a near
1-1 copy of the Boids code supplied with the framework. Neither the version
created for the binaries nor the version in the source distribution managed to
run without crashing.

9

Figure 1: Time to implement Boids in Hours

I found no easy fix for the issue in the (unavailable) documentation and therefore
was forced to abandon Cultsim for this test at this point. The binary version did
not seem to allow for users to create their own scenarios or required additional
steps not mentioned in the documentation and unknown to even me, one of its
creators.
The source code version did allow me to implement my own scenarios after I
resolved most of the dependency errors, but continued to crash, even though
the source code was near identical to the code of the example implementation.

I, therefore, deemed it unlikely that somebody with no further knowledge
on AMBS frameworks or Cultsim would attempt to troubleshoot much further,
especially given the seemingly broken documentation of Cultsim, which does
not build when following instructions from the source distribution, and is not
included in the binary distribution, which seems like another oversight.

10

3.2.2 Netlogo

Netlogo was touted in every source I came across as the most beginner-friendly
of the frameworks, and thus I decided it would be a good starting point for the
project. The first attempt at implementing Boids cost me roughly 4 hours and
did not end up functioning as intended. This was due to several logical errors
made in the code of the model itself, which ended up taking a lot of time to fix.

Luckily, it was at this point that I noticed the example projects that come
included with Netlogo, the likeness of which are also included in each of the
other frameworks that I tested. This made the implementation of the code a
lot easier overall as I now had an example to look at for how to do the more
complex parts of the Boids implementation and the syntax for the framework.
This drastically sped up working times, and I managed to finish the implemen-
tation of the model within an additional 2.5 hours.

This time was drastically reduced for the second attempt, which ended up
merely taking 2 hours from start to finish, the shortest time for re-implementation
noted during the tests, producing an equivalent implementation in less than 1/3
of the time it took to originally create the Model.

3.2.3 GAMA

The Gama implementation of the Project proved to be relatively painful to
complete, mostly due to the framework’s documentation lacking several key
concepts that I would have expected from a framework of this sort, such as the
concept of a vector, vector normalization, and similar concepts. The example
implementation of Boids also proved to be rather crude, as it did, in fact, not
normalize its vectors, instead using several multipliers to allow users to set how
heavily separation, alignment, and cohesion are weighted.

While one might say that this allows users to steer the importance of the
individual components of the flocking behavior, I would argue that the same
level of interactivity could have been achieved better by first normalizing the
vectors, and then multiplying them with a multiplier between 0 and 1.
That at least is my opinion on the matter, others may disagree. As user in-
teractivity was not a part of the pseudo-code requirements, I did not bother to
implement it.

The second time around still took an inordinate amount of time, as the way
Gama handles its model implementations is rather cryptic and the documen-
tation is, again, rather poor. Overall, the time taken only went down from 4
hours for the initial implementation to 3 hours for the second attempt. This
makes GAMA the slowest framework when it comes to re-implementation.

11

3.2.4 Repast Simphony

Repast is a very complex program to set up, and documentation for getting the
program up and running is rather sparse, with the tutorials being a little more
cryptic than what would be appreciated. Online video tutorials for Repast were
largely nonexistent, and the written setup tutorial had screenshots that did not
apply to my installation of the program, making finding the correct buttons for
setting up the project somewhat difficult, especially as a ReLogo Project and a
Repast Project look very similar if one is not looking carefully.

With the initial hurdles overcome, however, Repast proves itself to be a
rather straightforwards framework, aided by the fact that ReLogo, the pro-
gramming language used by Repast, is closely related to the language employed
by Netlogo, and thus a lot of syntax and functionality carried over. This made
it easy to implement the test once I understood that coding for Repast, in the
simplest sense, was a lot like coding for Netlogo in java.

This drastically sped up the process of implementation, and the second test
only took a little longer than implementing in Netlogo, despite the additional
overhead from having to implement visualization, which Netlogo does automat-
ically.

3.3 Documentation

3.3.1 Netlogo

Netlogo’s documentation is easily the best of the four, containing a complete
dictionary of all concepts used by the frameworks programming language, in-
cluding several tutorials, and easily being available in a variety of formats from
the front page under the user-manuals section.

Netlogo’s documentation provides step-by-step tutorials for implementing
some simple models, guides for all key parts of the creation of a model in Netlogo,
and a dictionary of all concepts, primitives, and functions available to creators in
Netlogo, complete with examples of usage for the non-self-explanatory concepts.

Netlogo’s documentation is as good as I have seen documentation get for
any software I have worked with and stands head and shoulders over the doc-
umentation provided by its peers. For the entirely programming illiterate, I
can only assume that this alone would set Netlogo far and above the rest, as it
seems to me that one could create models for Netlogo simply by looking over
the documentation and using the dictionary provided.

12

3.3.2 GAMA

While extensive, I find myself unable to praise GAMA in the same way that I
praised Netlogo. There is nothing particularly wrong with the documentation,
as it provides much of the same information that Netlogo provides, yet I feel
that it is presented in a more cluttered, less transparent way, perhaps because
each section must be opened into a drop-down menu before it’s contents are
shown. The way operators are handled is also less than appealing in GAMA,
with them being sorted alphabetically, rather than being linked to the individ-
ual data structures they operate on.

The way that the complete dictionary is presented in GAMA also is nowhere
near as intuitive as Netlogo, and I frequently found myself having to ctrl+f my
way through it when attempting to find information on a specific function and
variable.
The documentation feels cluttered and is harder to navigate than that of Netl-
ogo, but it is very much serviceable overall, even if it gives me the feeling that
I am missing key parts of it because I do not know how to find them.

Most concepts are explained well enough, with a majority having a small
example of usage next to them, barring a few exceptions. Overall, the docu-
mentation is not as good as that of Netlogo, but still decent enough.

3.3.3 Repast Simphony

Repast’s documentation is neatly divided into a lot of different files, some more
easily noticeable than others. The complete reference guide seems rather off-
puttingly designed again and does not include a reference for functions and
similar primitives provided by Repast, but it does come with detailed explana-
tions and screenshots for most of, if not all the key concepts of Repast.

The actual list of primitives and associated functions can be found in the
Relogo primitives file, which has most of what I would want from a list of avail-
able functions and primitives, but suffers due to the fact it scrolls both vertically
and horizontally, making the page hard to navigate.

Other than these gripes, the tutorials are well implemented and decently
well-annotated, giving users a sense of direction as to where to start when
learning the program, and how to progress forward through learning the frame-
work. Overall it is serviceable and less cluttered than the Gama documentation.

3.3.4 Cultsim

Despite the assurances on the main page that Cultsim allows users to build the
documentation after downloading the source code version, I have been unable

13

to get this functionality to work properly, creating no useful documents what-
soever.

What is worse, the binary implementation does not come with any form of
documentation, and no help is available online.
Ironically, even if I managed to get the documentation to build, that would not
help me in implementing any models, as the documentation for the Lua script-
ing, the part of Cultsim that is used for model definition is unfinished, and thus
unavailable.
Meaning, that even if I had managed to build the documentation, that would
only help me with changing the source code, not actually writing a model.

Thus, I once more have to give Cultsim a failing grade in this study, as the
program does not provide any valuable documentation to the user beyond the
example implementations present in the files, making it archaic and non-user-
friendly, even if it were to function as intended.

Figure 2: Search results across various sites

14

3.4 Assistance

In this section I will be elaborating on the amount of online help that could
be found for the individual frameworks via the metrics previously defined as
presented by the above figure 2, these being:

• Number of Google results
These are separated into three different categories by the search terms used
to find the results. These are ”Name of Framework”, ”Name of Frame-
work” AND ”Tutorial”, and ”Name of Framework” AND ”Simulation”,
as these seem like the most likely search queries one would use to find
information and help for these frameworks specifically. The requirement
of including the exact phrases requested should lower the number of false
positives, that is irrelevant results being counted.
This can however not be eliminated, as shown by the fact that Cultsim
has several thousand search results, despite only having one relevant re-
sult, that being the actual GitHub page from which one can download the
framework.

Still, as I am including the irrelevant results for the other frameworks, it
would feel unfair not to do the same for Cultsim. In this capacity, it also
serves as a rough estimate on how many false results might be present in
the searches for the other frameworks.

• Number of academic papers
This is the number of academic papers associated with the frameworks, as
denoted by the papers listed on the websites of the frameworks. This is by
no means an exclusive list but should give some idea of which frameworks
are most cited in academic works.
It should also be noted that technically Cultsim does have 1 paper written
about it, that being the bachelor thesis that it was created for, but that
paper is not available on the Github-page that serves as Cultsim’s home-
page, and thus is not included, leaving its number of academical papers
as 0.

• Number of questions on Stack overflow This includes both open and re-
solved questions, as found via the tag [Framework name]. The number
is reported by StackOverflow’s search results. Surprisingly StackOverflow
has no active tag for the Gama platform, and no relevant results come up
when searching for it in any way I have found. Thus, it shares last place
with Cultsim, having no questions of Stack-overflow.

15

4 Discussion

4.1 Issues

4.1.1 Subjectivity of tests

Due to the less than objective nature of some of the tests, the reproducibility
of my results, particularly in the fields of time required to learn the tests and
the ratings of the documentation, is likely to not be very high.
Ideally, these tests would have included results from more test subjects, to get
a more generalized overview of the metrics mentioned. However, I did not find
myself in a position to include more testers due to concerns regarding both pri-
vacy, as well as public health and safety due to the Covid-19 pandemic currently
ongoing, and the resulting lack of easy access to test subjects.

Still, I believe that the overall trends noted, and general commentary on
the individual framework in every category tested has merit, and might aid in
building an understanding of how the 5 frameworks discussed stack up to one
another, both in terms of how usable they are, and how easy they are to pick
up initially.

While by no means a definitive answer, I believe that the data provided still
presents the experiences that I had when attempting to learn these 5 frame-
works faithfully, and hopefully can be of assistance in choosing among these
frameworks.

4.1.2 Inaccuracy of results

Due to a variety of factors, most of which I already touched on, several of the
test results are likely somewhat skewed. The outside variables noted will be
presented here once more in more clarity to allow for a more critical overview
of what the numbers presented mean.

• Increased familiarity with the field and frameworks
As mentioned previously, it is likely, that my methodology for researching
the frameworks and implementing my test model improved over the course
of the study, thus skewing the results in time taken to implement the tests
in favor of the frameworks that came last.

I think this is most clear in the time taken to originally implement Boids
for Netlogo, which was before I found the example models included with
each of the frameworks, which were heavily used in the following imple-
mentation work. This, in addition to me growing more familiar with how
to implement Boids over time likely inflated the time taken to originally

16

implement the test for Netlogo significantly.

If the first, failed attempt at implementing Boids for Netlogo had not hap-
pened, I would think that the times for implementing Boids in Netlogo the
first and second time would have been near-identical, as the implementing
of simple models is very easy in Netlogo, as the time to re-implement the
model the second time prooves.

I also think it should be noted that Repast’s model was made significantly
easier to implement once I realized that a lot of Netlogo’s excellent docu-
mentation near-perfectly translated for ReLogo, and thus it is likely that
I was able to finish the initial implementation faster because of this, and
might have taken longer if I had gone through the Frameworks in the op-
posite order.

• False Positives for Cultsim Searches
Unfortunately, there exists a videogame by the name of ”Cultist simu-
lator”[10], often shortened to Cultsim by its fanbase when discussing it
on the internet. This means that all three search results for ”Cultsim”,
”Cultsim” AND ”Tutorial”, and ”Cultsim” AND ”Simulation” on google
are heavily inflated with results about this game, tutorials for playing the
game, and the fact it is a simulator.

There is not much that can be done to eliminate these results from the
list and keep within the boundaries of the predefined search keywords.
The best I have found is the adding of the ”-game” keyword to the google
search, slashing the results down to a third of their original number. How-
ever, including the same keyword for ”Netlogo”, that is ”Netlogo” -games
somehow returns more results than just ”Netlogo”.

As such, I have decided to leave the values of Cultsim as is, and clearly
stated in the paragraphs pertaining to Cultsim’s search results that they
are heavily inflated, in hopes of not only providing an overview of how
inaccurate google results for the other frameworks might be but also to
hopefully not sabotage the results of those searches with the strange quirks
of the google search bar.

I will state it again here, to make certain it is noted. The accurate number
of websites that contain information on the framework Cultsim is less than
100, and likely less than 10. The heavily inflated results are included in
the list merely as a measuring stick for potential inaccuracy in the other
search results and as a warning against trusting google search results to
be an accurate metric.

17

4.2 Future work

As for future work in the field, I have a few suggestions on how to continue
on the work presented in this paper, as well as a few ideas that were originally
meant to be part of the work done for the here presented study, but that ended
up having to be cut due to time constraints.

4.2.1 More Frameworks

The first and most obvious continuation of the work here presented would be
the application of the same or similar tests to a wider range of Frameworks.
Ideally, at least to the point where one could get Mason to work.
Having more frameworks tested and presented would result in a better overview
of the field, and thus serve as a more valuable resource to future researchers.
Additionally, it would help to further highlight trends in the world of ABMS
frameworks and their components, such as the ease of installation, quality of
documentation, and the impact it has on how easily adopted the individual
frameworks are. Seeing as Netlogo had good scores across the board, ignoring
the inflated time it took to get the first implementation done, I wonder if that is
specific to Netlogo, or if other characteristics can explain the outstanding per-
formance of Netlogo, such as its integrated IDE, or it’s automatic visualization,
for example.

4.2.2 More Tests

Making more models to test implementation times for the frameworks would
result in a richer, more conclusive set of results, and help to eliminate some
of the biases from becoming accustomed to the possible issues that need to be
faced when implementing the model across different frameworks.
Perhaps changing up the order in which implementations are performed for each
new model would help in further alleviating these biases.

Originally I had planned to supplement the ”Boids” model with models for
”Food scavenging” and ”Predator avoidance”. However, both of these needed to
be cut due to time constraints. As fairly simple problems, they seem as though
they have example models in each of the frameworks tested (though those in
Cultsim might not be entirely functional), and as such should make for good
candidates for future tests.

4.2.3 More Testers

To reduce the subjectivity of the tests that deal with the time taken to im-
plement the test models, as well as the metrics for how good a framework’s
documentation actually is, I find it likely that increasing the number of people

18

running these tests would be beneficial.
This does however require both the recruiting of more testers that are will-
ing and capable of implementing these models, as well as the consideration of
privacy and health concerns, all of which were far beyond the scope of this study.

5 Conclusion

Over the course of this paper, I have presented the results of roughly 3 months
of studies on a variety of agent-based modeling and simulation frameworks, and
implementation of a simple Boids model for each of them to study how long
it takes to learn the framework, as well as how long it takes to implement the
model a second time once one is familiar with the framework.

I have gone into detail on my findings on the documentation, tutorials, and
outside assistance provided for each of the frameworks presented, excluding
MASON, which had to be removed from further testing early due to me being
unable to successfully install it on my machine by following installation instruc-
tions to the best of my ability.

I have presented my results for each of these tests, as well as discussed what
could have been done better during the project, and what could be done in the
future to expand on the work that I have presented.

Overall, the results point towards Netlogo and Repast being the two frame-
works that are the most user-friendly, being easy to install, having good or
serviceable documentation, and not taking long to model with once one has
learned how they work. Additionally, I will highlight Netlogo’s quick workflow,
which allows for the framework to be used for rapid prototyping, which is an-
other point in its favor. It is up to the task at hand whether the expanded toolset
of Repast is worth the additional effort in implementation compared to Netlogo.

MASON and Cultsim are the least user-friendly of the frameworks, the for-
mer being difficult to install, to the point that it had to be excluded from the
remainder of the study, and the latter being poorly maintained, to the point
that several dependencies required for the program to run are broken.
This necessitates a lot of work from users to even get the framework up and
running for both of them, and thus is not advisable for beginners or non-
programmers.

I will however highlight here that out of all the Frameworks, Cultsims visual
representations were of the highest quality, which was the highlighted feature of
the framework. This does however not counterbalance the glaring flaws high-
lighted throughout the study, but I still found it worth noting.

19

References

[1] Eric Bonabeau. “Agent-based modeling: Methods and techniques for sim-
ulating human systems”. In: Proceedings of the National Academy of Sci-
ences 99.suppl 3 (2002), pp. 7280–7287. issn: 0027-8424. doi: 10.1073/
pnas.082080899. eprint: https://www.pnas.org/content/99/suppl_
3/7280.full.pdf. url: https://www.pnas.org/content/99/suppl_3/
7280.

[2] Sameera Abar et al. “Agent Based Modelling and Simulation tools: A
review of the state-of-art software”. In: Computer Science Review 24
(2017), pp. 13–33. issn: 1574-0137. doi: https://doi.org/10.1016/
j.cosrev.2017.03.001. url: https://www.sciencedirect.com/
science/article/pii/S1574013716301198.

[3] Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson. “Agent-
based Simulation Platforms: Review and Development Recommendations”.
In: SIMULATION 82.9 (2006), pp. 609–623. doi: 10.1177/0037549706073695.
eprint: https://doi.org/10.1177/0037549706073695. url: https:
//doi.org/10.1177/0037549706073695.

[4] https://en.wikipedia.org/wiki/Comparison_of_agent- based_

modeling_software. Accessed 08.12.2021.

[5] https://github.com/Togtja/CultSim. Accessed 08.12.2021.

[6] https://cs.gmu.edu/~eclab/projects/mason/. Accessed 08.12.2021.

[7] https://ccl.northwestern.edu/netlogo/. Accessed 08.12.2021.

[8] https://repast.github.io/. Accessed 08.12.2021.

[9] https://gama-platform.org/. Accessed 08.12.2021.

[10] https://weatherfactory.biz/cultist-simulator/. Accessed 09.12.2021.

6 Appendix

6.1 Netlogo code

6.1.1 Implementation 1

to setup

ca

reset-ticks

create-turtles num-turtles[

setxy random-xcor random-ycor

]

end

to delete

ca

20

reset-ticks

end

;;Get The heading of the turtle towards the average heading of n neighbours

to align [neighbours]

let xdir sum [dx] of neighbours

let ydir sum [dy] of neighbours

if xdir != 0 and ydir != 0

[turn subtract-headings (atan xdir ydir) heading]

end

;; Get the direction towards the average position of n neighbours

to cohesion[neighbours]

let xdir mean [sin (towards myself + 180)] of neighbours

let ydir mean [cos (towards myself + 180)] of neighbours

if xdir != 0 and ydir != 0

[turn subtract-headings (atan xdir ydir) heading]

end

to avoidance

let neighbour min-one-of other turtles [distance myself]

turn subtract-headings heading ([heading] of neighbour)

end

to boids[neighbours]

ifelse (distance (min-one-of other turtles [distance myself])) < min-dist

[avoidance]

[align neighbours

cohesion neighbours]

end

to turn [dir]

ifelse dir > max-turn

[ifelse dir > 0

[rt max-turn]

[lt max-turn]

]

[rt dir]

end

to go

tick

ask turtles[

let closest-turtles min-n-of num-neighbours (other turtles) [distance myself]

21

boids closest-turtles

forward 1

]

end

6.1.2 Implementation 2

turtles-own [neighbours nearest-neighbour]

to setup

ca

reset-ticks

create-turtles num-turtles[

set xcor random-xcor

set ycor random-ycor

]

end

to go

tick

ask turtles[

boids-heading

forward 1

]

end

to clear

ca

reset-ticks

end

to boids-heading

set neighbours other turtles in-radius radius

if(count neighbours > 0)

[

set nearest-neighbour min-one-of neighbours [distance myself]

ifelse(distance nearest-neighbour < min-dist)

[avoidance]

[cohesion

flocking

]

]

end

to avoidance

22

turn subtract-headings heading ([heading] of nearest-neighbour)

end

;;Keep own heading pointed towards the average heading of other boids

to cohesion

let xdir sum [dx] of neighbours

let ydir sum [dy] of neighbours

ifelse (xdir = 0 and ydir = 0)

[turn 0]

[turn subtract-headings (atan xdir ydir) heading]

end

;; move towards average position of flockmates

to flocking

let xdir mean [sin (towards myself + 180)] of neighbours

let ydir mean [cos (towards myself + 180)] of neighbours

ifelse (xdir = 0 and ydir = 0)

[turn 0]

[turn subtract-headings atan xdir ydir heading]

end

to turn[dir]

ifelse (abs dir > max-turn)

[ifelse (dir < 0)

[lt max-turn]

[rt max-turn]

]

[rt dir]

end

6.2 Gama code

6.2.1 Implementation 1

/**

* Name: boids

* Based on the internal empty template.

* Author: Leon

* Tags:

*/

model boids

/* Insert your model definition here */

23

global {

int number_of_birds <- 100;

int min_distance_from_others <- 100;

init {

create birds number: number_of_birds;

}

}

species birds skills: [moving] {

point velocity <- {0,0};

float speed max: 1.0;

container<birds> neighbours;

aspect base {

draw triangle(1) color: rgb(rnd(255), rnd(255), rnd(255)) rotate: heading;

}

init setup{

write "hello" + self;

neighbours <- birds - self;

}

reflex go{

do avoidance;

do alignment;

do flock;

if(((velocity.x)as int)=0) and (((velocity.y)as int)=0)

{

velocity <- {rnd(1)-1, rnd(1)-1};

}

point prev_pos <- location;

do goto target: location + (velocity*speed);

velocity <- location - prev_pos;

}

action avoidance{

//Make birds not crash into eachother

point dir <- {0.0,0.0};

ask (neighbours overlapping(circle(min_distance_from_others))){

dir <- dir-((location)- myself.location);

}

dir <- normalize(dir);

velocity <- velocity + dir;

24

}

action alignment {

//Make birds rotate into the same direction as eachother

point dir <- mean(neighbours collect(each.velocity))-velocity;

dir <- normalize(dir);

velocity <- velocity +dir;

}

action flock{

//Make birds move towards the center of the flock

point center <- (length(neighbours)>0)? mean (neighbours collect (each.location)) : location;

point dir <- center-location;

dir <- normalize(dir);

velocity <- velocity + dir;

}

action normalize (point vector)

{

float len <- sqrt(vector.x^2+vector.y^2);

if(len = 0)

{

return vector;

}

point unit_vector <- {vector.x/len, vector.y/len};

return unit_vector;

}

}

experiment flocking {

output{

display boids_display{

species birds aspect:base;

}

}

}

6.2.2 Implementation 2

/**

* Name: boids

* Based on the internal empty template.

* Author: nerzu

25

* Tags:

*/

model boids

/* Insert your model definition here */

global torus:false {

//Bounds

int map_size <- 1000;

int min_dist <- int(map_size / 20);

int max_dist <- map_size-min_dist;

geometry shape <- square(map_size);

int number_of_boids <- 10 min: 1 max: 100;

init{

create boids number: number_of_boids {

location <- {rnd(map_size-2)+1, rnd(map_size-2)+1};

}

}

}

species boids skills: [moving] {

float speed max: 10.0;

//Why does GAMA not have a concept of a vector? Heaven knows.

point velocity <- {0,0};

container<boids> neighbours;

//I want my boids to see all other boids, so we can use this to only do it once

init gather_neighbours{

neighbours <- boids - self;

}

reflex movement{

container<boids> nearby <- neighbours overlapping (circle(20));

//write (string(length(neighbours)) + " " + string(length(nearby)));

if (length(nearby) > 0)

{

do separate(nearby);

}

else {

do alignment;

do cohesion;

}

26

do bounding;

if (abs(velocity.x) <= 0.5 and abs(velocity.y) <= 0.5)

{

velocity <- normalize({rnd(2)-1, rnd(2)-1});

}

point current_loc <- copy(location);

do goto target: location + (normalize(velocity)*speed);

velocity <- location - current_loc;

}

action separate(container<boids> others) {

point dir <- {0,0};

ask(others)

{

dir <- dir - (location - myself.location);

}

velocity <- velocity + normalize(dir);

}

action alignment {

point dir <- mean(neighbours collect(each.velocity))-velocity;

velocity <- velocity +normalize(dir);

}

action cohesion {

point center_of_flock <- (length(neighbours)> 0) ? mean(neighbours collect

(each.location)) : location;

point dir <- center_of_flock - location;

velocity <- normalize(dir);

}

action bounding {

if (location.x) < min_dist {

velocity <- velocity + {min_dist,0};

} else if (location.x) > max_dist {

velocity <- velocity - {min_dist,0};

}

if (location.y) < min_dist {

velocity <- velocity + {0,min_dist};

} else if (location.y) > max_dist {

velocity <- velocity - {0,min_dist};

}

}

//Couldn't find a function to do this for me, so I have to do it myself

27

point normalize(point vec) {

float len <- sqrt(vec.x^2 + vec.y^2);

if(len <= 1)

{

return vec;

}

point out <- {vec.x/len,vec.y/len};

return out;

}

aspect basic {

draw triangle(20)color: #aquamarine rotate: heading;

}

}

experiment flocking {

float minimum_cycle_duration <- 0.01;

output{

display Boids_flocking type: opengl {

species boids aspect: basic;

}

}

}

6.3 Repast Code

6.3.1 Implementation 1

Not Available due to Workspace corruption and subsequent purge

6.3.2 Implementation 2

Not Available due to Workspace corruption and subsequent purge

6.4 Cultsim Code

6.4.1 Implementation 1

-- boids.lua

scenario = Scenario:new()

scenario.name = "boids 2"

scenario.description = "Boids again for testing time to implement"

scenario.bounds = Vec2:new(100.0,100.0)

scenario.systems = {

"SensorSystem"

28

systems.boid_system,

systems.move_system,

"DeletionSystem",

}

scenario.data_collectors = {

data_collectors.velocity_collector

}

scenario.sampling_rate = 1.0

scenario.init = function()

for i = 1, 20 do

local boid = cultsim.spawn("boid")

local boid_comp = cultsim.get_component(boid,component.lua1)

boid_comp.velocity.x = random:uniform(-1.0,1.0)

boid_comp.velocity.y = random:uniform(-1.0,1.0)

end

end

scenario.update = function(dt) end

scenario.draw = function() end

scenario.shutdown = function() end

--01_data_collection.lua

data_collectors = {

velocity_collector = DataCollector.new("Position X", {

accum = 0.0,

execute = function(self)

local view = cultsim.view({component.position})

local sum_x = 0.0

view:each(function(e)

local boid = cultsim.get_component(e, component.position)

sum_x = sum_x + boid.position.x

end)

return sum_x / view:size()

end

})

}

--00_systems.lua

systems = {

boid_system = {

29

update = function(dt)

local components = {component.position, component.lua1}

local view = cultsim.view(components)

local avg_pos = Vec3:new{0,0,0}

local avg_vel = Vec2:new{0,0}

view:each(function(e)

local pos_comp = cultsim.get_component(e,

component.position)

local boid_comp = cultsim.get_component(e,

component.lua1)

avg_pos.x = avg_pos.x + pos_comp.position.x

avg_pos.y = avg_pos.y + pos_comp.position.y

avg_vel.x = avg_vel.x + boid_comp.velocity.x

avg_vel.y = avg_vel.y + boid_comp.velocity.y

end)

avg_pos.x = avg_pos.x / view:size()

avg_pos.y = avg_pos.y /view:size()

avg_vel.x = avg_vel.x/view:size()

avg_vel.y = avg_vel.y/view:size()

view:each(function(e)

local pos_comp = cultsim.get_component(e,

component.position)

local boid_comp = cultsim.get_component(e,

component.lua1)

boid_comp.velocity.x =boid_comp.velocity.x +

(dt*(avg_vel.x + (avg_pos.x-pos_comp.position.x))/2)

boid_comp.velocity.y =boid_comp.velocity.y +

(dt*(avg_vel.y + (avg_pos.y-pos_comp.position.y))/2)

end)

end

},

move_system = {

update = function(dt)

local components = {component.position, component.lua1}

local view = cultsim.view(components)

view:each(function(e)

30

local pos_comp = cultsim.get_component(e,

component.position)

local boid_comp = cultsim.get_component(e,

component.lua1)

pos_comp.position.x = pos_comp.position.x +

(boid.speed * boid.velocity.x * dt)

pos_comp.position.y = pos_comp.position.y +

(boid.speed * boid.velocity.y * dt)

end)

end

}

}

-- Set system metatable for all systems

for k,v in pairs(systems) do

setmetatable(v, {

__index = cultlib.LuaSystem,

__tostring = function(table) return k end

})

end

--entities/boids.lua

entity = {

PositionComponent = {

position = Vec2:new(random:uniform(-scenario.bounds.x, scenario.bounds.x),

random:uniform(-scenario.bounds.y, scenario.bounds.y))

},

SpriteComponent = {

color = Vec3:new(random:uniform(0,255),random:uniform(0,255),

random:uniform(0,255)),

texture = "sprites/arrow_c.png",

normal = "sprites/arrow_n.png",

scale = 10

},

VisionComponent = {

radius = 50.0,

fov = 0

},

TagComponent = {

tags = ETag.Avoidable | ETag.Creature

},

LuaComponent = {

lua_id = 1,

speed = 80.0,

velocity = Vec2:new(0,0)

31

}

}

32

IMT4205 Research Project Planning Report

B APPENDIX B; Gantt Diagram of Project plan

The following Gant diagram was created with the free template provided at google docs,
found here[3]. I did not create this template, and claim no ownership over it. I simply
used it to speed up the process of making a Gantt-diagram. All credit goes to the pro-
viders of the template, and smartsheet.

I am sorry about the formatting, but it was the best I could do while trying to keep
the text readable.

57

Chart created with template supplied by smartsheet

PROJECT TITLE Fictional History Simulator PROJECT CREATOR Leon Nicola Cinquemani
DATE 10.12.2021

DECEMBER JANUARY

TASK REFF TASK TITLE WEEK 1 WEEK 2 WEEK 3 WEEK 4

1 Advanced Project Work

1.1 Creation of Rapid prototype

1.2 Creation of more complete, low fidelity
prototype

1.3 Report writing

2 Initial implementation

2.1 Further familiarization with Frameworks

1.5 Expanding/rewriting of initial prototype

1.6 Testing for validity of results of project core

3 Creation of Module 1

3.1 Researching of Relevant fields

3.2 Initial Rapid Prototype

3.3 Implementation

3.4 Unit tests

3.5 Integration

3.6 Integration tests

4 Creation of Module 2

4.1 Researching of Relevant fields

4.2 Initial Rapid Prototype

4.3 Implementation

4.4 Unit tests

4.5 Integration

4.6 Integration tests

5 Creation of Module 3

5.1 Researching of Relevant fields

5.2 Initial Rapid Prototype

5.3 Implementation

5.4 Unit tests

5.5 Integration

5.6 Integration tests

9 Writing of Master thesis

8.1 Inital draft

8.2 Finished report

Leon Nicola Cinquemani

JANUARY FEBUARY MARCH

WEEK 5 WEEK 6 WEEK 7 WEEK 8 WEEK 9 WEEK 10 WEEK 11 WEEK 12 WEEK 13 WEEK 14 WEEK 15

MARCH APRIL MAY

WEEK 15 WEEK 16 WEEK 17 WEEK 18 WEEK 19 WEEK 20 WEEK 21 WEEK 22 WEEK 23 WEEK 24 WEEK 25 WEEK 26

MAY

WEEK 27 WEEK 28

Paper II

The tool study conducted as part of the IMT4134 - Specialisation in Software En-
gineering course in order to find the most suitable Agent based modeling frame-
works for the project.

137

Specialization in Software Engineering

Leon Cinquemani

December 2021

I

Abstract

Agent-based modeling is a sub-discipline of Simulation which focuses on mod-
eling systems from the bottom up, as a series of interactions between agents,
each of which has a series of potential actions it can take, and a series of cir-
cumstances in which it takes those actions.
Agent-based modeling is commonly used across a variety of disciplines, from
flow management to social sciences, traffic-control, and organizational protocol
development. However, scientists specializing in these fields might not necessar-
ily have the programming know-how to create a model from scratch.

This is where Frameworks come into play, simplifying the process of creating
models by providing a suite of tools to define agents, the actions they can take,
and the metrics which need to be collected from the simulation.
Finding the right framework for the task can be challenging, as a large variety
of different frameworks of varying prevalence are available, both freely available
to the general public and as proprietary software.

This paper focuses on a small subset of Frameworks for Agent-Based Mod-
eling and Simulations, evaluated by a variety of qualitative, subjective metrics,
based on the author’s experiences with each of the tested frameworks, and hopes
to give insights into the perceived shortcomings of the different frameworks.

II

Contents

1 Introduction 1
1.1 Background . 1
1.2 Definitions . 1
1.3 Research Questions . 2

2 Methodology 3
2.1 Finding Frameworks . 3
2.2 Testing . 4

2.2.1 Implementation . 4
2.2.2 Documentation . 5
2.2.3 Assistance . 5

3 Results 5
3.1 Installation . 5

3.1.1 Netlogo . 6
3.1.2 Gama-platform . 6
3.1.3 Repast Simphony . 6
3.1.4 MASON . 7
3.1.5 Cultsim . 7

3.2 Boids . 8
3.2.1 Cultsim . 9
3.2.2 Netlogo . 11
3.2.3 GAMA . 11
3.2.4 Repast Simphony . 12

3.3 Documentation . 12
3.3.1 Netlogo . 12
3.3.2 GAMA . 13
3.3.3 Repast Simphony . 13
3.3.4 Cultsim . 13

3.4 Assistance . 15

4 Discussion 16
4.1 Issues . 16

4.1.1 Subjectivity of tests . 16
4.1.2 Inaccuracy of results . 16

4.2 Future work . 18
4.2.1 More Frameworks . 18
4.2.2 More Tests . 18
4.2.3 More Testers . 18

5 Conclusion 19

III

6 Appendix 20
6.1 Netlogo code . 20

6.1.1 Implementation 1 . 20
6.1.2 Implementation 2 . 22

6.2 Gama code . 23
6.2.1 Implementation 1 . 23
6.2.2 Implementation 2 . 25

6.3 Repast Code . 28
6.3.1 Implementation 1 . 28
6.3.2 Implementation 2 . 28

6.4 Cultsim Code . 28
6.4.1 Implementation 1 . 28

IV

1 Introduction

1.1 Background

The field of Agent-based modeling is fairly wide, the concept of building a sys-
tem from the ground up having found use in a variety of different fields, from
social sciences to flow management.[1] As such, interest in the field has only
been increasing since its inception, as more and more fields become aware of the
benefits of modeling systems from the bottom up.

Agent-based modeling focuses on creating a system comprised of agents,
each of which carries data and methods, and interacts with the environment it
has been placed in, as well as other agents present. This allows Agent-Based
Modelling and Simulation (ABMS) to represent complex interactions between
a multitude of actors in a natural way, and to provide insights into phenomena
that rely on the interactions of individuals, which might be difficult to accu-
rately model mathematically.

With the applicability of agent-based modeling being very broad[1], and in-
terest in the field expanding, it is important to provide researchers the tools
they need to create their own models, adapted to the specific issues they are
researching. For this reason, a large variety of ABMS Frameworks exist, which
focus on making the creation of agent-based models as easy as possible, while
at the same time trying to (generally) remain universally applicable for all po-
tential use-cases of ABMS.

Since Agent-based modeling and simulation is a mature tradition of sim-
ulation by this point, there are a lot of varying frameworks that attempt to
provide this assistance to intrepid researchers, of varying levels of complexity
and specialization[2].
This does mean that researchers might be initially overwhelmed by the number
of options available, as the right tool for the job might not immediately be clear.
Studies, such as the one conducted by Abar et Al[2], seek to classify and simplify
the field by sorting the available frameworks via a variety of criteria. Others,
such as this paper and the study by Railsback et Al[3], focus on a small subset
of these frameworks, and how they compare against one another in a variety of
metrics.

1.2 Definitions

An ABMS framework, put simply, provides a set of standards and software
tools[3] for developers to create their own implementations of simulation mod-
els, which can then be run and analyzed to gather insight into the underlying
rules of agent interactions.
For the sake of this paper, I will be considering both frameworks such as NetL-

1

ogo, which come with an integrated IDE, and frameworks such as GAMA and
Cultsim which come without their own IDE but can also be used with an IDE
to write their models.

The test model I will be implementing in each framework is the classical,
simple boid model, that is, a flocking behavior simulation in which each agent
attempts to:

1. Keep a certain minimum distance from every other agent

2. Orient it’s heading to be equal to the average heading of its neighboring
agents

3. Maneuver in such a way as to be as close as possible to the center-point
of its neighbors’ positions

Each agent moves in 2D space at a constant maximum speed and can turn a
specific number of degrees each turn to correct its heading based on the afore-
mentioned criteria.

1.3 Research Questions

The reason for me choosing to undertake this project is already substantiated
above, as the applicability of Agent-based models and the need to find a func-
tional, robust framework to work with necessitate the researching of the differ-
ences between these ABM platforms to allow researchers and hobbyists to make
informed decisions when choosing which framework to use when developing their
models.

For my project specifically, I also had the incentive that the overarching
project of my master thesis would be the implementation of a model, which
meant that I found myself in a situation where I needed to choose a framework
from the list of available options. As such the project also has a pragmatic
reason for me. Overall the Research questions I seek to answer over the course
of this project are:

1. Which Frameworks are the most user-friendly in terms of availability of
online help and quality of documentation?

2. How long does it take to implement a pre-determined model for somebody
that has little or no experience with the framework.

To get a broad overview of these issues, I chose a variety of Frameworks,
originally examining a total of 5, with 4 of these ending up being tested, and
3 producing a full implementation of the Boids model. This was due to issues
with some of the frameworks tested either providing insufficient information to
successfully operate them, or being too poorly maintained to be effectively used.

2

2 Methodology

2.1 Finding Frameworks

For the process of finding frameworks for this project, I drew initial inspira-
tion from a Wikipedia article on ABMS frameworks[4], where I first picked up
MASON, Netlogo, Repast, and GAMA. These choices were further refined and
confirmed after looking over the classifications provided in the paper by Abar
et Al[2], where the previously mentioned Frameworks were considered to be
capable of running models of medium to high intensity, and varied widely in
how much effort went into creating a model, with Netlogo being considered the
easiest to work with, and MASON and Repast both being considered difficult
to model in.

These 4 frameworks were chosen based on several criteria:

• The Framework must be available to the public free of charge

• The Framework must be fully available on a Windows-based device

• Development and maintenance on the framework must still be active

I deemed these as reasonable requirements for a Framework to be used by a
novice modeler, as they ensure a low barrier of entry, with the average beginner
likely unwilling to spend money on something they have no experience in, and
with Microsoft being used by 80+% of all personal computers.
The final criteria were added to ensure that the framework would be decently
modern, following current best practices and utilizing modern technologies, to
thus provide a contemporary look at the state of AMBS frameworks.
These constraints also helped choose a specific version of the Repast framework,
as Repast Symphony was the only version available that satisfied all three cri-
teria.

Additionally to these 4 frameworks, I decided to also include an in-house
ABMS framework, developed by myself and a pair of fellow students, named
Cultsim[5]. Cultsim was developed to allow for high-quality visualization of
simulations and made to be platform-independent.
It was included both as a potential candidate for future work for myself, and
as it fits most of the criteria mentioned above, except for a lack of maintenance
since its initial completion.

The final 5 chosen frameworks were thus:

• Cultsim[5]

• MASON[6]

• Netlogo[7]

3

• Repast Symphony[8]

• GAMA[9]

2.2 Testing

To measure the frameworks, I looked at several metrics that I deemed to be
significant based on the above research questions, some of which were easily
quantifiable and some were not. Due to the nature of these tests, they ulti-
mately are partially subjective, as a number of metrics are based on my personal
experiences with the frameworks in question.

For this paper, I focused on the following criteria:

• Implementation

– Time taken to implement boids when never having used the frame-
work before

– Time taken to re-implement boids after having done so before

• Documentation

– How easily available online documentation for the framework is

– The quality of the documentation based on:

∗ Examples of use

∗ Ease of navigation

• Assistance

– Number of related questions on Stack-overflow

– Number of Google search-results

– Number of video-results on Youtube

– Number of Papers citing the framework

2.2.1 Implementation

For the purposes of Implementation, I will be creating a model for Boids, as
discussed above, from scratch for each of the frameworks. This implementation
will be completed twice, and the time taken for both attempts will be recorded.
Ideally, the first implementation will show how long it takes to implement a
simple model with no background in the framework, and the second will give
insights into how long it takes to implement the same model when the researcher
knows how to do it. This should help provide an overview of how easy it is to
work with the framework once one is familiar with how it functions.

There are some issues with this, however, as skills learned while working
with one framework might translate over to the next, thus meaning that the

4

tests are not done entirely in a vacuum, as they ideally would be. As I am
but one researcher with limited time to complete these tests, I have found no
way of preventing this from occurring. Therefore, I will present the test results
in order, and highlight any potential influences on implementation time from
sources other than simply learning the framework.

2.2.2 Documentation

Documentation includes all official documentation that comes with the soft-
ware, both installation instructions, step-by-step implementation guides, and
reference manuals.
These will be rated based on how easy they are to find, how clear they are (how
well the functionality of different parts of the framework is explained), and how
easy it is to find documentation for individual primitives and functions that
may be relevant to the model.

I would also report on the completeness of the documentation, as to say how
much of the framework’s functionality is documented, but that would require a
deeper understanding of the frameworks than I possess, seeing as this study is
my first interaction with most of these systems. As such, I cannot say if any
parts of the system have been left out of the documentation unless it is blatantly
obvious.

2.2.3 Assistance

In this category I will discuss how easy it is to find help for the framework in
question from non-primary sources, that is sources outside of FAQs and docu-
mentation provided by the developers. For this study, I quantify this metric as
the number of solved problems on Openstack that can be found by searching for
relevant keywords, the number of google searches that come up when looking
for the framework, and the number of papers published about the framework in
question (if available on the developers’ site).

I hope that this gives a fairly detailed overview of non-primary sources of
information that can be found about the framework, and that would be intuitive
for novices in the field to look at.

3 Results

3.1 Installation

To utilize these frameworks, step 1 is obviously to install the framework. This
task is more involved for some of them than others, and one of the frameworks

5

managed to get itself removed from further testing at this step. In cases where
it was required, I looked online for assistance with installing the frameworks,
both from official and unofficial sources.

3.1.1 Netlogo

Netlogo was easy to install, as the installer contained everything required to
run the program from the get-go. As such, installing the framework required no
further assistance of any kind. The web page is a little confusing, as it contains
fields to enter one’s name, organization email, and any comments one may have,
but these fields are entirely optional for downloading, it would seem.

The website also allows users to choose a specific version of Netlogo, but
as I have no requirements for versioning, I left it on the default selected value.
After downloading the installer, I only needed to choose an installation folder,
and the program was installed and working.

Out of all programs surveyed, Netlogo was the easiest to get running, and
the other frameworks definitely could benefit from making attempts at a similar
user experience.

3.1.2 Gama-platform

Gama was roughly on the same level as Netlogo when it came to its installation,
only requiring the user to choose an appropriate version. As a Java illiterate
I chose the version with a built-in Java Development Kit so I did not have to
worry about it, and then download the latest version of the framework.

From there, I received a .zip file that could simply be unpacked in a loca-
tion of my choice and could be run from there, problem-free. Not as clean as a
dedicated installer, but still very easy.

3.1.3 Repast Simphony

Repast also was simple to install via an installer, which was very appreciated.
An installer is available for download from their website, which upon opening
easily walks users through the steps of setting up the program, including instal-
lation destination, and whether to include a dedicated installation of the JDK,
which I checked ”yes” on.

The program otherwise requires little to no setup. Overall, another very
smooth installation experience, slightly lessened by the fact that the installa-
tion only seems to run when booted from the start menu, for hitherto unknown

6

reasons. Additionally, the installation present on my machines seems to ran-
domly decide that my work-space is corrupted, and purging the files present in
it. I blame this for the lack of implementation-code available for Repast in the
Appendix, and sincerely apologize.

3.1.4 MASON

Where the other publicly available frameworks were easy to install either via a
simple .zip file download or via an installer, I could not get a functioning version
of MASON to install itself on any machine I attempted it on. The download
site presents a variety of files to download, from a .jar file which supposedly
functions as a binary distribution, to a full source distribution.

According to the site, the latter of these two is the common installation, so I
chose that one (though I attempted using both). This presents me with several
files, including a Readme, which I next consult for what to do. It speaks of a
”jar” folder, in which the file with which to run the program should be located,
but the distribution does not seem to contain such a folder unless it is buried
deep within the folder structure, which seems as though it would be a rather
strange design choice.

The file also speaks at length of adding libraries to your Classpath, but as
somebody that has little to no know-how of how Java works, it becomes clear
to me that while I can follow tutorials online there is little to no way for me to
see if what I did actually worked.

Likewise, the Manual for MASON, provided on their website is rather un-
helpful and serves seemingly to remind me that I am not the intended audience,
as it repeatedly refers me to different frameworks, namely Netlogo and Repast.
I spent a good few hours trying to troubleshoot the problem to no avail, and
am forced to remove MASON from the list of frameworks I am testing from this
point forward, as my know-how with Java applications is seemingly not good
enough to even install the program.

3.1.5 Cultsim

Cultsim is a similarly sad tale to MASON when it comes to user convenience
when downloading and installing the file. The entire project is available via a
GitHub link[5] and can either be cloned as a source-code project or be down-
loaded as a set of binaries. I tried both and found the latter to be far easier
to get working, as the source distribution struggles from poor maintenance and
several dependencies have since been updated to include errors that break the
project.

7

Via the binaries, I receive a simple .zip file, and after unpacking am greeted
with a ”.exe” file, as well as a few others, including a data.zip file. Unzipping
that as well makes the program functional, and it runs just as the source distri-
bution does, albeit with less of a headache to get it up and running.

Overall, the binary installation was entirely pain-free up until this point.
The installation instructions on Github were also concise and informed me of
what to do to get the program running step by step. I would still say it is the
most convoluted to get set up before running out of the four frameworks that I
managed to install, but by comparison to MASON, its installation is relatively
painless.

Installation alone has already removed one of the 5 frameworks from further
testing, which means that from this point forwards, MASON will no longer be
considered for the rest of the study. Still, I found it valuable to include an
example of a poorly realized, convoluted, and confusing installation process, as
I could not get the program to correctly install, even by searching for online
assistance for installation. This, coupled with the less than helpful user manual
and Read me make me feel justified in dropping the framework at this point, as
I doubt that somebody new to ABMS frameworks would continue troubleshoot-
ing, and rather swap to another option.

3.2 Boids

From this point, I continued with the 4 remaining frameworks and proceeded
to attempt to implement the Boids framework in each of them. While the
exact implementation varied (Complete code for each implementation of Boids
available in the appendix below), the pseudocode could be described as follows:

//step 1: Setup

Reset world

Create x agents with x = random & y = random

//step 2: Per tick

For every agent:

update_direction()

move()

//update_direction

neighbours = other agents within radius

if(distance to closest agent < minimum distance)

separate()

else

alignment()

cohesion()

8

//separate

direction = direction towards closest neighbour + 180

return direction

//alignment

heading = heading of each neighbour

heading = heading / neighbours.size

direction = towards heading

return direction

//cohesion

x = average x coordinate of neighbours

y = average y coordinate of neighbours

direction = towards [x,y]

return direction

//move

set heading = direction

move_forwards(speed)

The implementation varies from Framework to framework, but overall stays true
to this formula.
As mentioned previously this test was implemented twice in each framework, in
the hopes of capturing both time required to learn the framework, as well as how
long it would take to implement once one is familiar with the said framework.
To expose any potential biases towards having an easier time learning later
frameworks due to experience gained from earlier frameworks, these results will
be presented in order of implementation, and the results will be discussed below.

3.2.1 Cultsim

As can be noted in figure 1, Cultsim does not have any data associated with
it. This is because I found myself unable to implement Boids as per the above
specifications into Cultsim as is, as I would have to modify the source code
of the framework to allow for finding the distance and direction to the closest
neighbor, and thus am unable to implement separation.

The example implementation of Boids within Cultsim also does not include
separation, and thus I am unable to fully implement Boids to the specifications
set. Additionally, even when I attempted to implement the less complete version
of Boids without separation, my code refused to run, even when I created a near
1-1 copy of the Boids code supplied with the framework. Neither the version
created for the binaries nor the version in the source distribution managed to
run without crashing.

9

Figure 1: Time to implement Boids in Hours

I found no easy fix for the issue in the (unavailable) documentation and therefore
was forced to abandon Cultsim for this test at this point. The binary version did
not seem to allow for users to create their own scenarios or required additional
steps not mentioned in the documentation and unknown to even me, one of its
creators.
The source code version did allow me to implement my own scenarios after I
resolved most of the dependency errors, but continued to crash, even though
the source code was near identical to the code of the example implementation.

I, therefore, deemed it unlikely that somebody with no further knowledge
on AMBS frameworks or Cultsim would attempt to troubleshoot much further,
especially given the seemingly broken documentation of Cultsim, which does
not build when following instructions from the source distribution, and is not
included in the binary distribution, which seems like another oversight.

10

3.2.2 Netlogo

Netlogo was touted in every source I came across as the most beginner-friendly
of the frameworks, and thus I decided it would be a good starting point for the
project. The first attempt at implementing Boids cost me roughly 4 hours and
did not end up functioning as intended. This was due to several logical errors
made in the code of the model itself, which ended up taking a lot of time to fix.

Luckily, it was at this point that I noticed the example projects that come
included with Netlogo, the likeness of which are also included in each of the
other frameworks that I tested. This made the implementation of the code a
lot easier overall as I now had an example to look at for how to do the more
complex parts of the Boids implementation and the syntax for the framework.
This drastically sped up working times, and I managed to finish the implemen-
tation of the model within an additional 2.5 hours.

This time was drastically reduced for the second attempt, which ended up
merely taking 2 hours from start to finish, the shortest time for re-implementation
noted during the tests, producing an equivalent implementation in less than 1/3
of the time it took to originally create the Model.

3.2.3 GAMA

The Gama implementation of the Project proved to be relatively painful to
complete, mostly due to the framework’s documentation lacking several key
concepts that I would have expected from a framework of this sort, such as the
concept of a vector, vector normalization, and similar concepts. The example
implementation of Boids also proved to be rather crude, as it did, in fact, not
normalize its vectors, instead using several multipliers to allow users to set how
heavily separation, alignment, and cohesion are weighted.

While one might say that this allows users to steer the importance of the
individual components of the flocking behavior, I would argue that the same
level of interactivity could have been achieved better by first normalizing the
vectors, and then multiplying them with a multiplier between 0 and 1.
That at least is my opinion on the matter, others may disagree. As user in-
teractivity was not a part of the pseudo-code requirements, I did not bother to
implement it.

The second time around still took an inordinate amount of time, as the way
Gama handles its model implementations is rather cryptic and the documen-
tation is, again, rather poor. Overall, the time taken only went down from 4
hours for the initial implementation to 3 hours for the second attempt. This
makes GAMA the slowest framework when it comes to re-implementation.

11

3.2.4 Repast Simphony

Repast is a very complex program to set up, and documentation for getting the
program up and running is rather sparse, with the tutorials being a little more
cryptic than what would be appreciated. Online video tutorials for Repast were
largely nonexistent, and the written setup tutorial had screenshots that did not
apply to my installation of the program, making finding the correct buttons for
setting up the project somewhat difficult, especially as a ReLogo Project and a
Repast Project look very similar if one is not looking carefully.

With the initial hurdles overcome, however, Repast proves itself to be a
rather straightforwards framework, aided by the fact that ReLogo, the pro-
gramming language used by Repast, is closely related to the language employed
by Netlogo, and thus a lot of syntax and functionality carried over. This made
it easy to implement the test once I understood that coding for Repast, in the
simplest sense, was a lot like coding for Netlogo in java.

This drastically sped up the process of implementation, and the second test
only took a little longer than implementing in Netlogo, despite the additional
overhead from having to implement visualization, which Netlogo does automat-
ically.

3.3 Documentation

3.3.1 Netlogo

Netlogo’s documentation is easily the best of the four, containing a complete
dictionary of all concepts used by the frameworks programming language, in-
cluding several tutorials, and easily being available in a variety of formats from
the front page under the user-manuals section.

Netlogo’s documentation provides step-by-step tutorials for implementing
some simple models, guides for all key parts of the creation of a model in Netlogo,
and a dictionary of all concepts, primitives, and functions available to creators in
Netlogo, complete with examples of usage for the non-self-explanatory concepts.

Netlogo’s documentation is as good as I have seen documentation get for
any software I have worked with and stands head and shoulders over the doc-
umentation provided by its peers. For the entirely programming illiterate, I
can only assume that this alone would set Netlogo far and above the rest, as it
seems to me that one could create models for Netlogo simply by looking over
the documentation and using the dictionary provided.

12

3.3.2 GAMA

While extensive, I find myself unable to praise GAMA in the same way that I
praised Netlogo. There is nothing particularly wrong with the documentation,
as it provides much of the same information that Netlogo provides, yet I feel
that it is presented in a more cluttered, less transparent way, perhaps because
each section must be opened into a drop-down menu before it’s contents are
shown. The way operators are handled is also less than appealing in GAMA,
with them being sorted alphabetically, rather than being linked to the individ-
ual data structures they operate on.

The way that the complete dictionary is presented in GAMA also is nowhere
near as intuitive as Netlogo, and I frequently found myself having to ctrl+f my
way through it when attempting to find information on a specific function and
variable.
The documentation feels cluttered and is harder to navigate than that of Netl-
ogo, but it is very much serviceable overall, even if it gives me the feeling that
I am missing key parts of it because I do not know how to find them.

Most concepts are explained well enough, with a majority having a small
example of usage next to them, barring a few exceptions. Overall, the docu-
mentation is not as good as that of Netlogo, but still decent enough.

3.3.3 Repast Simphony

Repast’s documentation is neatly divided into a lot of different files, some more
easily noticeable than others. The complete reference guide seems rather off-
puttingly designed again and does not include a reference for functions and
similar primitives provided by Repast, but it does come with detailed explana-
tions and screenshots for most of, if not all the key concepts of Repast.

The actual list of primitives and associated functions can be found in the
Relogo primitives file, which has most of what I would want from a list of avail-
able functions and primitives, but suffers due to the fact it scrolls both vertically
and horizontally, making the page hard to navigate.

Other than these gripes, the tutorials are well implemented and decently
well-annotated, giving users a sense of direction as to where to start when
learning the program, and how to progress forward through learning the frame-
work. Overall it is serviceable and less cluttered than the Gama documentation.

3.3.4 Cultsim

Despite the assurances on the main page that Cultsim allows users to build the
documentation after downloading the source code version, I have been unable

13

to get this functionality to work properly, creating no useful documents what-
soever.

What is worse, the binary implementation does not come with any form of
documentation, and no help is available online.
Ironically, even if I managed to get the documentation to build, that would not
help me in implementing any models, as the documentation for the Lua script-
ing, the part of Cultsim that is used for model definition is unfinished, and thus
unavailable.
Meaning, that even if I had managed to build the documentation, that would
only help me with changing the source code, not actually writing a model.

Thus, I once more have to give Cultsim a failing grade in this study, as the
program does not provide any valuable documentation to the user beyond the
example implementations present in the files, making it archaic and non-user-
friendly, even if it were to function as intended.

Figure 2: Search results across various sites

14

3.4 Assistance

In this section I will be elaborating on the amount of online help that could
be found for the individual frameworks via the metrics previously defined as
presented by the above figure 2, these being:

• Number of Google results
These are separated into three different categories by the search terms used
to find the results. These are ”Name of Framework”, ”Name of Frame-
work” AND ”Tutorial”, and ”Name of Framework” AND ”Simulation”,
as these seem like the most likely search queries one would use to find
information and help for these frameworks specifically. The requirement
of including the exact phrases requested should lower the number of false
positives, that is irrelevant results being counted.
This can however not be eliminated, as shown by the fact that Cultsim
has several thousand search results, despite only having one relevant re-
sult, that being the actual GitHub page from which one can download the
framework.

Still, as I am including the irrelevant results for the other frameworks, it
would feel unfair not to do the same for Cultsim. In this capacity, it also
serves as a rough estimate on how many false results might be present in
the searches for the other frameworks.

• Number of academic papers
This is the number of academic papers associated with the frameworks, as
denoted by the papers listed on the websites of the frameworks. This is by
no means an exclusive list but should give some idea of which frameworks
are most cited in academic works.
It should also be noted that technically Cultsim does have 1 paper written
about it, that being the bachelor thesis that it was created for, but that
paper is not available on the Github-page that serves as Cultsim’s home-
page, and thus is not included, leaving its number of academical papers
as 0.

• Number of questions on Stack overflow This includes both open and re-
solved questions, as found via the tag [Framework name]. The number
is reported by StackOverflow’s search results. Surprisingly StackOverflow
has no active tag for the Gama platform, and no relevant results come up
when searching for it in any way I have found. Thus, it shares last place
with Cultsim, having no questions of Stack-overflow.

15

4 Discussion

4.1 Issues

4.1.1 Subjectivity of tests

Due to the less than objective nature of some of the tests, the reproducibility
of my results, particularly in the fields of time required to learn the tests and
the ratings of the documentation, is likely to not be very high.
Ideally, these tests would have included results from more test subjects, to get
a more generalized overview of the metrics mentioned. However, I did not find
myself in a position to include more testers due to concerns regarding both pri-
vacy, as well as public health and safety due to the Covid-19 pandemic currently
ongoing, and the resulting lack of easy access to test subjects.

Still, I believe that the overall trends noted, and general commentary on
the individual framework in every category tested has merit, and might aid in
building an understanding of how the 5 frameworks discussed stack up to one
another, both in terms of how usable they are, and how easy they are to pick
up initially.

While by no means a definitive answer, I believe that the data provided still
presents the experiences that I had when attempting to learn these 5 frame-
works faithfully, and hopefully can be of assistance in choosing among these
frameworks.

4.1.2 Inaccuracy of results

Due to a variety of factors, most of which I already touched on, several of the
test results are likely somewhat skewed. The outside variables noted will be
presented here once more in more clarity to allow for a more critical overview
of what the numbers presented mean.

• Increased familiarity with the field and frameworks
As mentioned previously, it is likely, that my methodology for researching
the frameworks and implementing my test model improved over the course
of the study, thus skewing the results in time taken to implement the tests
in favor of the frameworks that came last.

I think this is most clear in the time taken to originally implement Boids
for Netlogo, which was before I found the example models included with
each of the frameworks, which were heavily used in the following imple-
mentation work. This, in addition to me growing more familiar with how
to implement Boids over time likely inflated the time taken to originally

16

implement the test for Netlogo significantly.

If the first, failed attempt at implementing Boids for Netlogo had not hap-
pened, I would think that the times for implementing Boids in Netlogo the
first and second time would have been near-identical, as the implementing
of simple models is very easy in Netlogo, as the time to re-implement the
model the second time prooves.

I also think it should be noted that Repast’s model was made significantly
easier to implement once I realized that a lot of Netlogo’s excellent docu-
mentation near-perfectly translated for ReLogo, and thus it is likely that
I was able to finish the initial implementation faster because of this, and
might have taken longer if I had gone through the Frameworks in the op-
posite order.

• False Positives for Cultsim Searches
Unfortunately, there exists a videogame by the name of ”Cultist simu-
lator”[10], often shortened to Cultsim by its fanbase when discussing it
on the internet. This means that all three search results for ”Cultsim”,
”Cultsim” AND ”Tutorial”, and ”Cultsim” AND ”Simulation” on google
are heavily inflated with results about this game, tutorials for playing the
game, and the fact it is a simulator.

There is not much that can be done to eliminate these results from the
list and keep within the boundaries of the predefined search keywords.
The best I have found is the adding of the ”-game” keyword to the google
search, slashing the results down to a third of their original number. How-
ever, including the same keyword for ”Netlogo”, that is ”Netlogo” -games
somehow returns more results than just ”Netlogo”.

As such, I have decided to leave the values of Cultsim as is, and clearly
stated in the paragraphs pertaining to Cultsim’s search results that they
are heavily inflated, in hopes of not only providing an overview of how
inaccurate google results for the other frameworks might be but also to
hopefully not sabotage the results of those searches with the strange quirks
of the google search bar.

I will state it again here, to make certain it is noted. The accurate number
of websites that contain information on the framework Cultsim is less than
100, and likely less than 10. The heavily inflated results are included in
the list merely as a measuring stick for potential inaccuracy in the other
search results and as a warning against trusting google search results to
be an accurate metric.

17

4.2 Future work

As for future work in the field, I have a few suggestions on how to continue
on the work presented in this paper, as well as a few ideas that were originally
meant to be part of the work done for the here presented study, but that ended
up having to be cut due to time constraints.

4.2.1 More Frameworks

The first and most obvious continuation of the work here presented would be
the application of the same or similar tests to a wider range of Frameworks.
Ideally, at least to the point where one could get Mason to work.
Having more frameworks tested and presented would result in a better overview
of the field, and thus serve as a more valuable resource to future researchers.
Additionally, it would help to further highlight trends in the world of ABMS
frameworks and their components, such as the ease of installation, quality of
documentation, and the impact it has on how easily adopted the individual
frameworks are. Seeing as Netlogo had good scores across the board, ignoring
the inflated time it took to get the first implementation done, I wonder if that is
specific to Netlogo, or if other characteristics can explain the outstanding per-
formance of Netlogo, such as its integrated IDE, or it’s automatic visualization,
for example.

4.2.2 More Tests

Making more models to test implementation times for the frameworks would
result in a richer, more conclusive set of results, and help to eliminate some
of the biases from becoming accustomed to the possible issues that need to be
faced when implementing the model across different frameworks.
Perhaps changing up the order in which implementations are performed for each
new model would help in further alleviating these biases.

Originally I had planned to supplement the ”Boids” model with models for
”Food scavenging” and ”Predator avoidance”. However, both of these needed to
be cut due to time constraints. As fairly simple problems, they seem as though
they have example models in each of the frameworks tested (though those in
Cultsim might not be entirely functional), and as such should make for good
candidates for future tests.

4.2.3 More Testers

To reduce the subjectivity of the tests that deal with the time taken to im-
plement the test models, as well as the metrics for how good a framework’s
documentation actually is, I find it likely that increasing the number of people

18

running these tests would be beneficial.
This does however require both the recruiting of more testers that are will-
ing and capable of implementing these models, as well as the consideration of
privacy and health concerns, all of which were far beyond the scope of this study.

5 Conclusion

Over the course of this paper, I have presented the results of roughly 3 months
of studies on a variety of agent-based modeling and simulation frameworks, and
implementation of a simple Boids model for each of them to study how long
it takes to learn the framework, as well as how long it takes to implement the
model a second time once one is familiar with the framework.

I have gone into detail on my findings on the documentation, tutorials, and
outside assistance provided for each of the frameworks presented, excluding
MASON, which had to be removed from further testing early due to me being
unable to successfully install it on my machine by following installation instruc-
tions to the best of my ability.

I have presented my results for each of these tests, as well as discussed what
could have been done better during the project, and what could be done in the
future to expand on the work that I have presented.

Overall, the results point towards Netlogo and Repast being the two frame-
works that are the most user-friendly, being easy to install, having good or
serviceable documentation, and not taking long to model with once one has
learned how they work. Additionally, I will highlight Netlogo’s quick workflow,
which allows for the framework to be used for rapid prototyping, which is an-
other point in its favor. It is up to the task at hand whether the expanded toolset
of Repast is worth the additional effort in implementation compared to Netlogo.

MASON and Cultsim are the least user-friendly of the frameworks, the for-
mer being difficult to install, to the point that it had to be excluded from the
remainder of the study, and the latter being poorly maintained, to the point
that several dependencies required for the program to run are broken.
This necessitates a lot of work from users to even get the framework up and
running for both of them, and thus is not advisable for beginners or non-
programmers.

I will however highlight here that out of all the Frameworks, Cultsims visual
representations were of the highest quality, which was the highlighted feature of
the framework. This does however not counterbalance the glaring flaws high-
lighted throughout the study, but I still found it worth noting.

19

References

[1] Eric Bonabeau. “Agent-based modeling: Methods and techniques for sim-
ulating human systems”. In: Proceedings of the National Academy of Sci-
ences 99.suppl 3 (2002), pp. 7280–7287. issn: 0027-8424. doi: 10.1073/
pnas.082080899. eprint: https://www.pnas.org/content/99/suppl_
3/7280.full.pdf. url: https://www.pnas.org/content/99/suppl_3/
7280.

[2] Sameera Abar et al. “Agent Based Modelling and Simulation tools: A
review of the state-of-art software”. In: Computer Science Review 24
(2017), pp. 13–33. issn: 1574-0137. doi: https://doi.org/10.1016/
j.cosrev.2017.03.001. url: https://www.sciencedirect.com/
science/article/pii/S1574013716301198.

[3] Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson. “Agent-
based Simulation Platforms: Review and Development Recommendations”.
In: SIMULATION 82.9 (2006), pp. 609–623. doi: 10.1177/0037549706073695.
eprint: https://doi.org/10.1177/0037549706073695. url: https:
//doi.org/10.1177/0037549706073695.

[4] https://en.wikipedia.org/wiki/Comparison_of_agent- based_

modeling_software. Accessed 08.12.2021.

[5] https://github.com/Togtja/CultSim. Accessed 08.12.2021.

[6] https://cs.gmu.edu/~eclab/projects/mason/. Accessed 08.12.2021.

[7] https://ccl.northwestern.edu/netlogo/. Accessed 08.12.2021.

[8] https://repast.github.io/. Accessed 08.12.2021.

[9] https://gama-platform.org/. Accessed 08.12.2021.

[10] https://weatherfactory.biz/cultist-simulator/. Accessed 09.12.2021.

6 Appendix

6.1 Netlogo code

6.1.1 Implementation 1

to setup

ca

reset-ticks

create-turtles num-turtles[

setxy random-xcor random-ycor

]

end

to delete

ca

20

reset-ticks

end

;;Get The heading of the turtle towards the average heading of n neighbours

to align [neighbours]

let xdir sum [dx] of neighbours

let ydir sum [dy] of neighbours

if xdir != 0 and ydir != 0

[turn subtract-headings (atan xdir ydir) heading]

end

;; Get the direction towards the average position of n neighbours

to cohesion[neighbours]

let xdir mean [sin (towards myself + 180)] of neighbours

let ydir mean [cos (towards myself + 180)] of neighbours

if xdir != 0 and ydir != 0

[turn subtract-headings (atan xdir ydir) heading]

end

to avoidance

let neighbour min-one-of other turtles [distance myself]

turn subtract-headings heading ([heading] of neighbour)

end

to boids[neighbours]

ifelse (distance (min-one-of other turtles [distance myself])) < min-dist

[avoidance]

[align neighbours

cohesion neighbours]

end

to turn [dir]

ifelse dir > max-turn

[ifelse dir > 0

[rt max-turn]

[lt max-turn]

]

[rt dir]

end

to go

tick

ask turtles[

let closest-turtles min-n-of num-neighbours (other turtles) [distance myself]

21

boids closest-turtles

forward 1

]

end

6.1.2 Implementation 2

turtles-own [neighbours nearest-neighbour]

to setup

ca

reset-ticks

create-turtles num-turtles[

set xcor random-xcor

set ycor random-ycor

]

end

to go

tick

ask turtles[

boids-heading

forward 1

]

end

to clear

ca

reset-ticks

end

to boids-heading

set neighbours other turtles in-radius radius

if(count neighbours > 0)

[

set nearest-neighbour min-one-of neighbours [distance myself]

ifelse(distance nearest-neighbour < min-dist)

[avoidance]

[cohesion

flocking

]

]

end

to avoidance

22

turn subtract-headings heading ([heading] of nearest-neighbour)

end

;;Keep own heading pointed towards the average heading of other boids

to cohesion

let xdir sum [dx] of neighbours

let ydir sum [dy] of neighbours

ifelse (xdir = 0 and ydir = 0)

[turn 0]

[turn subtract-headings (atan xdir ydir) heading]

end

;; move towards average position of flockmates

to flocking

let xdir mean [sin (towards myself + 180)] of neighbours

let ydir mean [cos (towards myself + 180)] of neighbours

ifelse (xdir = 0 and ydir = 0)

[turn 0]

[turn subtract-headings atan xdir ydir heading]

end

to turn[dir]

ifelse (abs dir > max-turn)

[ifelse (dir < 0)

[lt max-turn]

[rt max-turn]

]

[rt dir]

end

6.2 Gama code

6.2.1 Implementation 1

/**

* Name: boids

* Based on the internal empty template.

* Author: Leon

* Tags:

*/

model boids

/* Insert your model definition here */

23

global {

int number_of_birds <- 100;

int min_distance_from_others <- 100;

init {

create birds number: number_of_birds;

}

}

species birds skills: [moving] {

point velocity <- {0,0};

float speed max: 1.0;

container<birds> neighbours;

aspect base {

draw triangle(1) color: rgb(rnd(255), rnd(255), rnd(255)) rotate: heading;

}

init setup{

write "hello" + self;

neighbours <- birds - self;

}

reflex go{

do avoidance;

do alignment;

do flock;

if(((velocity.x)as int)=0) and (((velocity.y)as int)=0)

{

velocity <- {rnd(1)-1, rnd(1)-1};

}

point prev_pos <- location;

do goto target: location + (velocity*speed);

velocity <- location - prev_pos;

}

action avoidance{

//Make birds not crash into eachother

point dir <- {0.0,0.0};

ask (neighbours overlapping(circle(min_distance_from_others))){

dir <- dir-((location)- myself.location);

}

dir <- normalize(dir);

velocity <- velocity + dir;

24

}

action alignment {

//Make birds rotate into the same direction as eachother

point dir <- mean(neighbours collect(each.velocity))-velocity;

dir <- normalize(dir);

velocity <- velocity +dir;

}

action flock{

//Make birds move towards the center of the flock

point center <- (length(neighbours)>0)? mean (neighbours collect (each.location)) : location;

point dir <- center-location;

dir <- normalize(dir);

velocity <- velocity + dir;

}

action normalize (point vector)

{

float len <- sqrt(vector.x^2+vector.y^2);

if(len = 0)

{

return vector;

}

point unit_vector <- {vector.x/len, vector.y/len};

return unit_vector;

}

}

experiment flocking {

output{

display boids_display{

species birds aspect:base;

}

}

}

6.2.2 Implementation 2

/**

* Name: boids

* Based on the internal empty template.

* Author: nerzu

25

* Tags:

*/

model boids

/* Insert your model definition here */

global torus:false {

//Bounds

int map_size <- 1000;

int min_dist <- int(map_size / 20);

int max_dist <- map_size-min_dist;

geometry shape <- square(map_size);

int number_of_boids <- 10 min: 1 max: 100;

init{

create boids number: number_of_boids {

location <- {rnd(map_size-2)+1, rnd(map_size-2)+1};

}

}

}

species boids skills: [moving] {

float speed max: 10.0;

//Why does GAMA not have a concept of a vector? Heaven knows.

point velocity <- {0,0};

container<boids> neighbours;

//I want my boids to see all other boids, so we can use this to only do it once

init gather_neighbours{

neighbours <- boids - self;

}

reflex movement{

container<boids> nearby <- neighbours overlapping (circle(20));

//write (string(length(neighbours)) + " " + string(length(nearby)));

if (length(nearby) > 0)

{

do separate(nearby);

}

else {

do alignment;

do cohesion;

}

26

do bounding;

if (abs(velocity.x) <= 0.5 and abs(velocity.y) <= 0.5)

{

velocity <- normalize({rnd(2)-1, rnd(2)-1});

}

point current_loc <- copy(location);

do goto target: location + (normalize(velocity)*speed);

velocity <- location - current_loc;

}

action separate(container<boids> others) {

point dir <- {0,0};

ask(others)

{

dir <- dir - (location - myself.location);

}

velocity <- velocity + normalize(dir);

}

action alignment {

point dir <- mean(neighbours collect(each.velocity))-velocity;

velocity <- velocity +normalize(dir);

}

action cohesion {

point center_of_flock <- (length(neighbours)> 0) ? mean(neighbours collect

(each.location)) : location;

point dir <- center_of_flock - location;

velocity <- normalize(dir);

}

action bounding {

if (location.x) < min_dist {

velocity <- velocity + {min_dist,0};

} else if (location.x) > max_dist {

velocity <- velocity - {min_dist,0};

}

if (location.y) < min_dist {

velocity <- velocity + {0,min_dist};

} else if (location.y) > max_dist {

velocity <- velocity - {0,min_dist};

}

}

//Couldn't find a function to do this for me, so I have to do it myself

27

point normalize(point vec) {

float len <- sqrt(vec.x^2 + vec.y^2);

if(len <= 1)

{

return vec;

}

point out <- {vec.x/len,vec.y/len};

return out;

}

aspect basic {

draw triangle(20)color: #aquamarine rotate: heading;

}

}

experiment flocking {

float minimum_cycle_duration <- 0.01;

output{

display Boids_flocking type: opengl {

species boids aspect: basic;

}

}

}

6.3 Repast Code

6.3.1 Implementation 1

Not Available due to Workspace corruption and subsequent purge

6.3.2 Implementation 2

Not Available due to Workspace corruption and subsequent purge

6.4 Cultsim Code

6.4.1 Implementation 1

-- boids.lua

scenario = Scenario:new()

scenario.name = "boids 2"

scenario.description = "Boids again for testing time to implement"

scenario.bounds = Vec2:new(100.0,100.0)

scenario.systems = {

"SensorSystem"

28

systems.boid_system,

systems.move_system,

"DeletionSystem",

}

scenario.data_collectors = {

data_collectors.velocity_collector

}

scenario.sampling_rate = 1.0

scenario.init = function()

for i = 1, 20 do

local boid = cultsim.spawn("boid")

local boid_comp = cultsim.get_component(boid,component.lua1)

boid_comp.velocity.x = random:uniform(-1.0,1.0)

boid_comp.velocity.y = random:uniform(-1.0,1.0)

end

end

scenario.update = function(dt) end

scenario.draw = function() end

scenario.shutdown = function() end

--01_data_collection.lua

data_collectors = {

velocity_collector = DataCollector.new("Position X", {

accum = 0.0,

execute = function(self)

local view = cultsim.view({component.position})

local sum_x = 0.0

view:each(function(e)

local boid = cultsim.get_component(e, component.position)

sum_x = sum_x + boid.position.x

end)

return sum_x / view:size()

end

})

}

--00_systems.lua

systems = {

boid_system = {

29

update = function(dt)

local components = {component.position, component.lua1}

local view = cultsim.view(components)

local avg_pos = Vec3:new{0,0,0}

local avg_vel = Vec2:new{0,0}

view:each(function(e)

local pos_comp = cultsim.get_component(e,

component.position)

local boid_comp = cultsim.get_component(e,

component.lua1)

avg_pos.x = avg_pos.x + pos_comp.position.x

avg_pos.y = avg_pos.y + pos_comp.position.y

avg_vel.x = avg_vel.x + boid_comp.velocity.x

avg_vel.y = avg_vel.y + boid_comp.velocity.y

end)

avg_pos.x = avg_pos.x / view:size()

avg_pos.y = avg_pos.y /view:size()

avg_vel.x = avg_vel.x/view:size()

avg_vel.y = avg_vel.y/view:size()

view:each(function(e)

local pos_comp = cultsim.get_component(e,

component.position)

local boid_comp = cultsim.get_component(e,

component.lua1)

boid_comp.velocity.x =boid_comp.velocity.x +

(dt*(avg_vel.x + (avg_pos.x-pos_comp.position.x))/2)

boid_comp.velocity.y =boid_comp.velocity.y +

(dt*(avg_vel.y + (avg_pos.y-pos_comp.position.y))/2)

end)

end

},

move_system = {

update = function(dt)

local components = {component.position, component.lua1}

local view = cultsim.view(components)

view:each(function(e)

30

local pos_comp = cultsim.get_component(e,

component.position)

local boid_comp = cultsim.get_component(e,

component.lua1)

pos_comp.position.x = pos_comp.position.x +

(boid.speed * boid.velocity.x * dt)

pos_comp.position.y = pos_comp.position.y +

(boid.speed * boid.velocity.y * dt)

end)

end

}

}

-- Set system metatable for all systems

for k,v in pairs(systems) do

setmetatable(v, {

__index = cultlib.LuaSystem,

__tostring = function(table) return k end

})

end

--entities/boids.lua

entity = {

PositionComponent = {

position = Vec2:new(random:uniform(-scenario.bounds.x, scenario.bounds.x),

random:uniform(-scenario.bounds.y, scenario.bounds.y))

},

SpriteComponent = {

color = Vec3:new(random:uniform(0,255),random:uniform(0,255),

random:uniform(0,255)),

texture = "sprites/arrow_c.png",

normal = "sprites/arrow_n.png",

scale = 10

},

VisionComponent = {

radius = 50.0,

fov = 0

},

TagComponent = {

tags = ETag.Avoidable | ETag.Creature

},

LuaComponent = {

lua_id = 1,

speed = 80.0,

velocity = Vec2:new(0,0)

31

}

}

32

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Background
	My belief in stories
	My story
	Planned Contributions

	Literature Review
	Research Questions
	Scenarios

	Requirements and Risks
	User Stories
	Requirements
	Risks

	Methodology
	Technical Design
	Investigating Tools
	Data sourcing
	Re-evaluations
	Framework choices

	Implementation
	Netlogo
	Initialization
	Government Module
	Economy Module
	Data Gathering

	Scripting
	Data collection
	Deployment

	Research
	Data analysis
	R
	Correllograms
	Netlogo Plots

	Results
	Scenario 1
	Scenario 2

	Validation and discussion
	Validating Results
	Scenario 1
	Scenario 2
	Discussion

	Validating Requirements

	Conclusion
	Future work
	International Relations
	Improved Scripting
	Improved Data collection
	AI decision making

	Insights
	Modeling Frameworks
	Contributions

	The Simulation
	Final thoughts

	Bibliography
	Paper I
	Paper II

