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Problem Description

This thesis aims to develop a proxy application which solves the Shallow Water Equa-
tions using a Finite Volume Method with triangular control volumes, in order to study its
parallel performance and scalability. It further aims to develop and experimentally validate
a quantitative performance model of these properties.





Abstract

The thesis presents a proxy application for computing the shallow water equations through
the finite volume method. A triangulation discretizes the water surface, where the coastline
of Mehamn harbor is used for all tests. The application uses MPI for making parallel ranks
and OpenMP for creating parallel threads for each rank, and is run on the Idun cluster
provided by NTNU.

A performance model for the application predicts the parameters of the triangular
structure, which is based on the number of vertices, and uses the structural estimations
to predict the runtime and scaling characteristics. It separates computation and communi-
cation time, with focus on the scaling characteristics of the computation time. By applying
Mehamn harbor for the triangulation, a more direct prediction is made, as the geometrical
exceptions are eliminated. The roofline and Hockney models are also made through a set
of benchmarking tests in order to discover the hardware properties of maximum FLOP per-
formance and communication time of message passing. A comparison of the performance
model and the benchmarking models with the application execution is used to verify the
performance characteristics of the application.

The results show an accurate prediction of the parameters of the triangular structure,
which confirms the first step of the performance model. Through the roofline model, the
benchmarking tests confirms that the application is memory bound, where the maximum
bandwidth is further used for the performance model. The Hockney model confirmed
that the communication time stays constant for an increasing number of nodes and grows
slowly for an increasing problem size, while the communication time between nodes were
overestimated.

The results also show consistent scalability of computation time between the perfor-
mance model and the application execution, for both strong and weak scaling, and for
scaling of both ranks and threads, given that the problem size does not overflow the cache
memory. This is supported by an even load balance between the processing units. It is
discovered that the cache memory of the hardware affected the scalability, where a prob-
lem size too large to fit into cache gave a poorer performance. In addition, a single rank
per node gave a poorer performance, since a node has multiple CPUs with separate cache
memories, causing the threads to pollute the cache. An optimal performance is reached by
choosing a problem size that uses the entire cache space and by assigning at least one rank
for each CPU. By applying the constant communication time, this gives an overall stable
and predictable weak scaling, suitable for scaling of nodes with multiprocessors.
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Chapter 1
Introduction

The shallow water equations are a set of partial differential equations that describe the
flow of fluids, often used to compute and simulate waves. The finite volume method can
be applied to numerically solve the SWE, by dividing the surface into volumes and using
a flux flow. A triangulation of surface is flexible, compared to a discretization based on
rectangles. By making a proxy application to solve SWE for FVM over a triangulation, its
properties can be explored without developing the fully scaled program.

A performance model gives a prediction of application behaviours and characteristics.
It can be used to identify weaknesses and to identify improvements to increase perfor-
mance and scaling. By confirming a performance model of a proxy application, the results
can be further used to predict the performance of the fully scaled program.

The goal of the thesis is to make a proxy application for solving the shallow water
equations with the finite volume method over a triangulation, and to compare the results
with the performance models, in order to verify the performance and scaling characteris-
tics. All of the application test use Mehamn harbor, located in Gamvik municipality in
Norway. The Norwegian Coastal Administration have arranged two breakwaters along the
harbor, in order calm the wave conditions for the docking cargo and fishing vessels [1]. It
is therefore interesting to make wave simulations based on this coastline.

1.1 Scope
The thesis presents a proxy application for computing the shallow water equations, through
the finite volume method over a triangular discretization of the water surface. The appli-
cation is parallelized by distributing the triangles to different ranks using MPI, where each
rank spawns parallel threads, through OpenMP, to simultaneously execute computation.
In addition, synthetic benchmarking tests are used to discover hardware characteristics. A
set of multicore machines from the Idun cluster, provided by NTNU, are used to run both
the application and the benchmarking tests [2].

The performance models predict the behaviour of the proxy application, by first pre-
dicting the parameters of the triangular structure based on the number of vertices, then
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Chapter 1. Introduction

by using the parameters to predict application runtime and scaling characteristics. The
benchmarking tests are used to model the maximum hardware performance, through the
roofline and Hockney model. By using a predefined geometry for all application tests,
such as Mehamn harbor, the parameters of the triangular structure can be estimated di-
rectly, instead of being limited to an interval. This narrows down further runtime and
scaling predictions. The analysis separates the computation time for executing SWE from
the communication time between each rank, and makes a model of their scaling character-
istics, with focus on the computation time. The performance models are finally compared
with the triangular structure generated by the application, and the application runtime and
scaling.

1.2 Chapters
Chapter 2 presents the relevant background material for parallel programming, perfor-
mance modeling and solving shallow water equations using the finite volume method.
Chapter 3 provides additional related work. Chapter 4 describes the preprocessing and the
implementation of the proxy application, and Chapter 5 presents the performance models,
which predict the parameters of the triangular structure, the computation time, the com-
munication time, and the scaling characteristics. Chapter 6 gives details of the software
and hardware, a setup of the benchmarking tests, and the configurations for application
testing. Chapter 7 compares the performance models and benchmarking results with the
application tests. Chapter 8 concludes the thesis and outlines interesting directions for
future work.
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Chapter 2
Background

This chapter presents the relevant background material, by explaining parallel program-
ming, the use of proxy applications and performance modeling, and a concrete discretiza-
tion of the shallow water equations, by using the finite volume method over a triangulation
of the water surface.

2.1 Parallel Programming
Serial computation models have been the standard for programming, as early program
code was run on serial and single core computers. From the 1980s, computer designs
started to incorporate instruction-level parallelism, allowing techniques to execute instruc-
tions simultaneously, such as pipelining and vectorization [3]. These features were largely
transparent to the programmer, making program execution fit for a serial model. From
2005, multicore computers were made available for purchase, allowing programs to be
run in parallel [4]. McCool explains in [5] how the serial models fail to keep up with
the multi-core computers and suggests a parallel model should be used as the new stan-
dard. He also emphasizes the scalability of the new models, discussing how performance
is keeping up as the number of parallel components increases.

A programming language translates computations between two models, from program-
ming models into process models. A programming model is an abstract model used by the
programmer in order to understand how the computation is executed. The programmer
should be provided the necessary information so they can manipulate the program to run
efficiently. A process model describes how the physical machine performs computation,
which is hardware specific and can be used for instruction set architecture.

2.1.1 Programming Model
The programming model should accurately reflect the process model, while being expres-
sive, simple and safe. With accurate models, the cost understood by the programmer re-
flects the cost of the hardware. An expressive model allows the programmer to concisely
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Chapter 2. Background

express understandable and efficient solutions for a target domain. The computational
complexity should not be significantly different for solutions generated from different pro-
gramming models. A simple programming model hides the unnecessary details from the
programmer while exposing important cost operations, in order to make development ef-
ficient. A safe model protects the programmer from making common and costly mistakes.

A parallel programming model should give a similar work complexity as the serial
model, to allow the programmer to write efficient code, and should include synchroniza-
tion protection so that issues such as race conditions and deadlocks are avoided.

2.1.2 Process Model
A process model gives an overview of the underlying hardware of a parallel system, and
has different variations that affects how it is viewed to the programmer.

Flynn’s Taxonomy

Table 2.1 lists the classifications of computer architectures for parallel processes, referred
to Flynn’s taxonomy [6]. The most simple architecture is the single instruction stream,
single data stream (SISD), which exploits no parallelism. The single instruction stream,
multiple data stream (SIMD) allows an instruction to execute multiple data. SIMD is
classified into the three categories of array processor, pipelined processor and associative
processor. An array processor has separate memories and register files for each parallel
unit. For a pipelined processor, each parallel unit reads and writes data from the same
central source. An associative processor lets each parallel unit make its own decision of
execution based on its local data. The multiple instruction stream, single data (MISD)
is the most uncommon architecture and can be used for fault tolerance, by checking that
multiple instructions operate on the same data stream give the same results. The multiple
instruction stream, multiple data stream (MIMD) executes different instructions for dif-
ferent data, which is used by multicore processors and distributed systems, by utilizing a
shared or distributed memory space. The single program, multiple data stream (SPMD) is
a model based on an implementation of a parallel computer architecture, which uses the
same instruction stream, but allows independent execution choices. This can be applied to
both SIMD and MIMD architectures.

Multiple Instruction, Single Data Multiple Instruction, Multiple Data
(MISD) (MIMD)

Single Instruction, Single Data Single Instruction, Multiple Data
(SISD) (SIMD)

Table 2.1: The four computer architecture classifications of Flynn’s Taxonomy.

Memory for Parallel Models

A parallel system can utilize a distributed or shared memory space. For a distributed
memory, each component has its own local memory and shares data with the other com-
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2.1 Parallel Programming

ponents through message passing. This is often used by a distributed parallel system. The
messages can be synchronous, where the component waits for a message to be received,
asynchronous, where a component does not wait after sending a message, or a hybrid of
the two. Ramachandran divides a parallel program into a communication and computa-
tion part, where communication consists of message passing and computation consists of
the isolated instructions run on the components [7]. A synchronizer can be setup by the
programmer to control the conditions before the communications.

A multicore processor can use a shared memory space, which is accessible by all
processing units. From a programmer’s perspective, all units can access the memory si-
multaneously without further configurations. McCool states that a shared memory has a
low level message passing setup, which is hidden from the programmer [5]. A processor
can have a cache memory in addition to the shared memory. When a change is made in the
local cache memory, cache coherency protocols are needed, to keep the other processors
updated, by sending low level messages between each unit.

Task Parallel Processing Models

Task parallel processing models decompose the program into tasks to be run in parallel on
the different processors. Each processor has a local memory, which gives a task access
to an independent data stream, making task parallel model represent a MIMD processing
model. A task communicates with other tasks through message passing or shared memory,
which adds delay to the overall program, due to message processing or cache coherency
protocols. A shared memory can be hard to scale, as the complexity grows with product
of memory size and processing units [8]. For a scaling of processors, the number of tasks
will run out, and some processors will be left idle and be wasted. An uneven size of tasks
will also cause load imbalance, as the processors finish the tasks at different times. Data
dependency and strict policies for accessing shared memory can also force the tasks to
execute in serial, weakening the utility of having parallel hardware.

Data Parallel Processing Models

Data parallel processing models decompose the program into segments of data, which are
computed simultaneously on different processors, using the same instruction. This rep-
resents both SIMD processing model and SPMD implementation, depending on whether
each processor can make an independent decision based on the data segment. Data parallel
processing models are made flexible and simpler for scaling, by segmenting the data for
an arbitrary number of processors, and using the same function to compute each segment,
while allowing other parallelism such as pipelining to be hidden from the programmer.
The data can also be aligned to improve locality, in order to reduce memory access time.

SIMD and SPMD have different scaling properties. SIMD uses the same program for
each data segment, which makes implementation simple, but does not handle exceptions
well. If a processor needs extra instructions due to a special case for its data segment, these
instructions must be applied to the other processors as well, even if the result is unused
and tossed away. This gives an even load balancing, though, each processor has the same
worst execution time. SPMD allows conditional operations for each program, so special
cases can be added only to the processors that need it. This may cause problems for load
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balancing, as the processors can have different program sizes. It can leave room for an idle
processor to run another program, where it could be useful to have more data segments
than number of cores.

Vector Processing Models

Vector processing models are based on SIMD models, but allows data to be streamed in
and out of variable length storage locations. This gives a low arithmetic intensity, which
is the ratio between the amount of computations and the consumed memory bandwidth.
As processor speeds has been increasing, memory bandwidth is left as the limiting factor.
Stream processing models are based on vector processing models, with computationally
intensive kernel. The kernel contains a number of instructions for input and output streams,
allowing a large number of operations to be executed for every memory access, which
increases the arithmetic intensity.

Data streaming allows collective operations such as reduction and scan. A reduction
is used to perform an arithmetic operation over a vector of multiple data, resulting with
one output. Scan is similar to reduction, by allowing operations over a vector, but outputs
a new corresponding vector as a result. Gather and scatter can be used as alternative ways
of streaming data. Gathers allow kernels to read from random memory, but is less efficient
than using a streaming output. Scatters allow kernels to write to random memory, but need
deterministic rules in order to avoid memory collisions.

2.1.3 Parallel Hardware

Programming models and process models should generalize applications to be configured
for different hardware architectures. Multicore processors have multiple cores running on
the same chip, and can be used for MIMD models, with each core running a separate set
of instructions. Multithreaded processors (SMT) use multiple threads of control, without
replicating cores. This requires fewer resources, but has a lower scalability than having
multicore. Multithreading and multicore hardware can also be combined, but can leave
threads competing for resources. SPMD implementations treat the various threads as a
single program and include coordination of thread scheduling, so a hardware scheduler
can be applied to reduce scheduling overhead and allow finer grained threads.

Stream processors are similar to multicore processors, with on-chip managed memory
and data transfer. Operations and functions can be applied to a stream of data, which
reduces overhead of data transfer. Data access and communication often causes the main
bottleneck of the system, and can cause varied latency based on the physical layout of
the network. Using the same network for memory access and processor communication,
scales poorly with the number of cores, as it increases the memory bottleneck [5]. A
mesh, hypercube or hierarchical interconnect is commonly used. Locking mechanisms
can be used to run atomic memory operations, but forces data to be transferred in large
blocks, which weakens scaling.
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2.1.4 Implementations

There are commonly used programming systems that use parallel models, which are suited
for distributed systems, multicore processors, and for Graphics processing units.

MPI

Message passing interface (MPI) is a standardized message passing design for parallel
architectures [9]. It is a SPMD implementation, by having independent processes of in-
structions, and includes collective operations such as reduction, gather, and scatter, used
for communications between processes.

OpenMP

OpenMP is based on a shared memory and uses among other things a loop level paral-
lelism, by spawning individual threads for each iteration [10]. When applied to a multicore
hardware, it is a MIMD processing model, by creating multiple threads of control.

OpenMP can be run on multiple CPUs, where each CPU has a multicore hardware.
The thread affinity is the protocol to decide how to distribute the threads on such systems.
The two main configurations are compact and scatter, where compact allocates all the
cores of one CPU at a time, and scatter distributes the threads evenly across all CPUs.

GPU

GPUs were originally designed for fixed programs, fitting for SIMD processing models.
CUDA can use a SPMD implementation when running on a GPU, by allowing program
specifications on a thread block level. On the individual thread block, all threads execute
the same instructions, resembling the SIMD processing model.

2.2 Performance Modeling

A performance analysis of a program can describe how the program acts and performs.
Traditionally, a simulation would be used to run the program on an existing system and
mimic how it would act on a fully scaled system [11]. For long-running programs, this
approach is costly, as the simulation would need to run on a system of a comparable size
or for an unacceptable amount of time. A performance model offer analytical formulas
of how a program behaves, and can be used to predict its performance before it is fully
developed. Depending on what parameters and characteristics are chosen, it can show the
effects of using different specifications such as hardware specifications, code designs and
problem sizes. This can be combined with benchmarking tests, which are used to analyse
the hardware capabilities, in order to predict the performance of the program running on
the specific hardware.
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2.2.1 Proxy Application
Scientific investigations are in increasing need of supercomputing performance, and are
transitioning to Exascale systems [12]. Preparing simulations and running them on such
systems can be costly, due to the size and complexity of the programs. A proxy application
can be used to test certain aspects of a larger program and to analyze its performance before
the program is fully scaled.

A proxy application is a miniapp, that resembles some functional aspects of a larger
program. It is a tool used to experiment and analyse certain parts of the program, without
needing to spend resources and time developing the full program. Since the miniapp is
significantly smaller than the original program, it is flexible for changes and faster to run
for testing. Due to the simplification of the proxy application, its results may be different or
inaccurate from what is expected from the original program. For a performance analysis,
this does not necessarily have to be a problem, as the behaviour of the proxy application
is of more interest than its produced data results.

A performance model made for a proxy application can be tested and confirmed, and
give further indication of how the program would behave and perform for an Exascale
system.

2.2.2 Roofline Model
Williams describes how the Roofline model can be used to predict the highest attainable
floating-point performance, by relating processor performance to off-chip memory traf-
fic [13]. Operational intensity is measured in operations per byte, which can be used to
predict the DRAM bandwidth needed to access main memory. For a particular computer,
peak floating-point performance can be found either through hardware specifications or
microbenchmarks. Fig. 2.1 shows the Roofline model for a 2.2GHz AMD Opteron X2
model, with attainable floating-point performance over operational intensity. For lower
values of operational intensity, the floating-point performance is memory bound, but the
upper bound increases until it reaches a certain value of operational intensity. At that point
the attainable floating-point performance is compute-bound and does not get any higher.

Figure 2.1: Roofline model for AMD Opteron from [13]
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2.2.3 Scaling
Scaling is used to indicate the ability of a program to utilize computational power as the
resources increases, such as the hardware, parallelization and problem size. Speedup can
be defined as the ratio between the runtime t1 of a serial program and the runtime tN of
the program on a set of N parallel processors, given as

speedupN =
t1
tN

(2.1)

An ideal speedup would have a linear scaling, with a value of N , but overhead occurs
due to the program not being entirely parallelizable, which accumulates as the number of
processing units increases.

Efficiency can be defined as the ratio between the actual speedup and the ideal speedup
when using N processors, given as

efficiencyN =
speedupN

N
(2.2)

An ideal efficiency would give a value of 1, given an ideal linear speedup of the value N .

Amdahl’s Law

Amdahl’s law describes scaling for a number of parallel processing units, while keeping
the same problem size [14]. This is known as strong scaling. The program is divided into
a serial part s, which is the proportion of the program that must run in serial, and the other
proportion p, which can be parallelized. This gives a speedup of

speedupN =
1

s+ p/N
(2.3)

and an efficiency of

efficiencyN =
1

Ns+ p
(2.4)

With an increased number of processors, it takes less time to run the parallel code. The
speedup is limited by the serial part of the code, and as N increases, it can only reach a
maximum of

lim
N→∞

speedupN =
1

s
(2.5)

while the efficiency decreases towards 0.

Gustafsons’s Law

Gustafson reevaluates Amdahl’s law by scaling the problem size as the number of process-
ing units increases [15]. This is known as weak scaling. Given the serial proportion s and
parallelizable proportion p, speedup can be formulated as

speedupN = s+ pN (2.6)
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giving an efficiency of

efficiencyN =
speedupN

N
+ p (2.7)

The speedup is no longer limited by an upper bound, and becomes more linear as the
number of processors increases. The efficiency tends towards

lim
N→∞

efficiencyN = p (2.8)

as N increases towards infinity.

2.2.4 Bulk Synchronous Model

The Bulk Synchronous Model (BSP) is a designed to work as a bridge between the hard-
ware and parallel programs [16]. The model has three main attributes. The first attribute is
a number of components of processing or memory functions. The second is a router that
can deliver messages between the components. The last attribute is a setup of facilities for
synchronizing the components at regular intervals.

The model represents an execution of a barrier synchronized parallel program, where
the program consists of a sum of Supersteps. For each Superstep, the components process
their local data. A barrier makes all components wait for the others to finish processing,
before the router can send messages between the components. After receiving the mes-
sages, the next Superstep is executed. The total runtime of the program, is the summation
of the runtime for each Superstep ts

S∑
s=1

ts =

S∑
s=0

(ws + ghs + l) (2.9)

where S is the total number of Supersteps and l is the synchronization latency. The pro-
cessing time of the data is ws, which is determined by the slowest component, as they are
processed in parallel. The communication time ghs is determined by the inverse band-
width g and the longest message size hs.

2.2.5 Fundamental Equation of Modeling

Barker et al. introduce a methodology of how to create a performance model of a paral-
lel program, which has the function to guide the programmer to make the most efficient
choices [11]. The fundamental equation of modeling

ts = tcomp + tcomm − toverlap (2.10)

describes the runtime of a parallel system, where tcomp is the total computation time for
all components, tcomp is the communication time between each component and toverlap
is the overlap of the former two. For a repeated iterative program, similar to the parallel
program described for the BSP model, the same ts can be used for each iteration s.
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2.2.6 Hockney Model
Hockney describes the communication between each component of a distributed system,
based on benchmarking tests of Intel iPSC/860, Paragon XP/S and Meiko CS-2 [17]. The
communication time is modeled as

tcomm(n) = α+ β−1n (2.11)

for a message size of n bytes, where α is the latency and β is the bandwidth. Fig. 2.2
show the transfer rate over an increasing message size for each machine. The transfer
rate is linear, following the inverse of the communication formula Eq. (2.11), up until a
message size above 1000 bytes, when the overhead of increasing the message size becomes
significant.

Figure 2.2: Hockney model for transfer rate with increasing message length from [17].

2.2.7 LogP Model
LogP is a parallel machine model, presented by Culler, that can be used to set a basis for
developing fast, parallel algorithms and offer guidelines to machine designers [18]. The
model is based on four parameters, which set the terms of algorithm performance.

The first parameter is communication delay (L), which sets an upper bound for com-
municating a message, containing one or a few words, from a source to a target module.
The second is communication overhead (o), defined as the time a processor is engaged
in the transmission or reception of a message, making this processor unavailable for any
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other task for the whole duration. The next parameter is communication bandwidth or gap
(g), the minimum time interval between consecutive message transmissions or consecutive
message reception for a processor, which also corresponds to the available communication
bandwidth for a processor. The final parameter is the number of processors or memory
modules (P ), where unit time is assumed for local operations and called a cycle. A finite
capacity of L/g is assumed, so no more messages can be sent at a time. A similar model,
LogGP, extends this model by adding the parameter G, which is the gap g for longer
messages per byte [19].

A parallel algorithm can be evaluated by analysing each communicating component
and summing the delay, based on the four parameters, where L, o and g are measured as
multiples of processor cycle, by using the maximum time and space by any processor.

2.3 Solving PDEs
A partial differential equation (PDE) is an equation containing partial derivatives of vari-
ables. PDEs can be classified into hyperbolic, parabolic and elliptic equations [20].

Scientific fields such as physics and engineering use PDEs to understand and analyse
environments such as sounds, heat, water motion, quantum mechanics, etc. PDEs are not
given to be generally solvable through analytical methods. They can be solved numeri-
cally, by using discretization of the domain and making an approximation for each piece.
Some common methods are the finite difference method (FDM), the finite volume method
(FVM) and the finite element method (FEM).

2.3.1 Hyperbolic PDEs
Hyperbolic partial differential equations have initial value problems, so that a point in a
surface can be uniquely solved based on the neighborhood of the given point. A distur-
bance at a point in the surface does not immediately cause a change for the whole surface,
but creates a finite propagation speed relative to the given point. This can be used to repre-
sent wave movements over time. A general wave equation for one dimension is formulated
as

∂2u

∂t2
− c2

∂2u

∂x2
= 0 (2.12)

which is a basis for other wave equations such as the shallow water equations. The deriva-
tive of u over time t is dependent on its speed over the surface x given a constant c, and
for a given initial state for t = 0, a solution can be found for all t.

Conservation Laws

A conservation law states that a measurable property stays constant within the domain. It
is defined as the the variation of conserved flow quantity within a given volume due to
the net effect of some internal sources and the amount of quantity crossing the boundary
surface. Its formula is

∂

∂t

∫
Ω

UdΩ+

∮
S

F · dS =

∫
Ω

QdΩ (2.13)
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where Ω is the volume, S the surface, U the quantity, F the flux vector, and Q is the
source. The quantity U can only change due to the flux passing through the surface.

Boundary Conditions

Boundary conditions determine the quantity u along the border of the domain. A constant
value, such as setting u = 0 along the border, is called the homogeneous Dirichlet, while
setting u to a function is called the inhomogeneous Dirichlet. Neumann boundary condi-
tion is denoted as un = ∂u/∂n, specifying the directional derivative of u along a normal
vector. For a wave equation, the Neumann boundary condition reflects the wave along the
border.

2.3.2 Finite Difference Method
A finite difference method is a numerical method that is based on a grid partition of the
domain, where every cross point is dependent on its adjacent vertices. Fig. 2.3 shows the
vertex (i, j) and its neighbors for a grid partition in a two dimensional xy plane. There
are four neighbor vertices, two on the x-axis and two on the y-axis. Every horizontal
neighboring pair has the same distance ∆x and every vertical neighboring pair has the
same distance ∆y.

Figure 2.3: A FDM grid showing a vertex of coordinate (i, j) with its four neighbors (i − 1, j),
(i + 1, j), (i, j − 1) and (i, j + 1). The distance between any pair of two vertices on the x-axis is
∆x and ∆y on the y-axis. Every vertex (i, j) is dependent on all its four neighbors.

A hyperbolic time dependent PDE can be solved for every time step t = n + 1 using
the values from last time step t = n. From [21], Taylor’s formula can be used to solve for
every quantity ui from its adjacent nodes for every time step t = n+1, giving the formula

un+1
i,j = un

i,j +∆t

(
ui−1,j + ui+1,j

2∆y
+

ui,j−1 + ui,j+1

2∆x

)
(2.14)

Since FDM bases the quantity on point values, the space between the vertices are dis-
carded, which weakens the accuracy. With fixed distances between the vertices of ∆x and
∆y, FDM is not flexible to adjust the accuracy for certain areas by allowing the vertices to
be denser.

13



Chapter 2. Background

2.3.3 Finite Volume Method

The finite volume method (FVM) is a discretization of the PDE, by using volumes that can
be made of any geometrical shape. Each element is represented as an average value. The
basis of the FVM is taking use of the conservation law from Eq. (2.13), meaning the flux
entering a volume element is equal to the flux leaving the adjacent volume element.

The conservation law can be used to find the quantity U numerically, by approximating
the flux flow of each volume element. For a hyperbolic time dependent PDE with a set
initial state for t = 0, each value un+1

i for element i and time step t = n + 1 can be
estimated directly, as it is only dependent on the state for the previous time step t = n.
The flux Fi,j , from element j to i, can be found by summing the quantity flow to and from
each neighboring element. This gives the general equation for each element

un+1
i = un

i +∆t ·
∑

j∈Adj(i)

Fi,j (2.15)

where ∆t is the time difference between each time step n.

Triangulation

Eq. (2.15) can be applied to a triangulation, a subdivision of a two-dimensional plane
into triangles. Each triangle represents a volume Ω that holds a quantity U . From the
neighbouring triangles, the flux flow F can get through the border surface S. Fig. 2.4
shows the flux flow of a triangle coming from its three neighbors. ∆d is the distance
between the centers of two neighboring triangles, and affects the amount of flux passing
through the border.

Figure 2.4: The flux flow of a triangle from its neighbors. ∆d is the distance between the centers of
a specific pair of neighboring triangles.

The advantages this type of planar division, is the given flexibility. The vertices can be
distributed arbitrarily so different values of accuracy can be given across the plane, since
areas with a high density of vertices will have smaller triangles. A triangular mesh is also
more flexible in filling irregular shaped areas, compared to using a grid.
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A Delaunay triangulation is a triangulation of P vertices, so that no vertex is inside
the circumcircle of any triangle [22]. The minimum of the angles of the triangles is maxi-
mized, so sliver triangles are avoided. Fig. 2.5 shows such a triangulation on five vertices.

Figure 2.5: Delaunay triangulation of five vertices, with a maximization of the minimal angles of
the triangles.

The Lax-Friedrichs Method

Lax-Friedrichs method is an averaging method, that uses the average of the quantity u for
the neighboring elements when applying the flux flow. Eq. (2.15) can be rewritten as

un+1
i =

∑
j∈Adj(i) u

n
j

|Adj(i)|
+∆t ·

∑
j∈Adj(i)

Fi,j (2.16)

This works as a numerical diffusion that damps the instabilities that can arise from the
original equation. Over time, this causes the overall flux flow to shrink, so the quantity u
reaches equilibrium.

For a variant of this method, u can be included when averaging out its neighbors. A
weighted variable w ∈ [0, 1] can be used to make

un+1
i = un

i · w +

∑
j∈Adj(i) u

n
j

|Adj(i)|
· (1− w) + ∆t ·

∑
j∈Adj(i)

Fi,j (2.17)

2.3.4 Shallow Water Equations
The shallow water equations (SWE) are a set of hyperbolic PDEs describing the flow of
a liquid on a surface. The overall mass and the linear momentum are the basis of the
conservation laws [20]. For a two dimensional surface in the xy plane, this gives the
conservative formula for SWE as

∂(ρη)

∂t
+

∂(ρηu)

∂x
+

∂(ρηv)

∂y
= 0 (2.18)

∂(ρηu)

∂t
+

∂

∂x

(
ρηu2 +

1

2
ρgη2

)
+

∂(ρηuv)

∂y
= 0 (2.19)
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∂(ρηv)

∂t
+

∂(ρηuv)

∂x
+

∂

∂y

(
ρηv2 +

1

2
ρgη2

)
= 0 (2.20)

where ρ is the fluid density, η the total fluid height, g the gravitation acceleration, and
vector (v, u) the fluid’s velocity. Eq. (2.18) is derived from the conservation of mass ρη,
and the equations Eq. (2.19) and Eq. (2.20) are derived from the conservation of linear
momentum ρηu and ρηv.

Discretization

The SWE formulas Eq. (2.18), Eq. (2.19) and Eq. (2.20) can be discretized by replacing
the partial derivatives with difference estimations, giving formulas

∆(ρη)

∆t
+

∆(ρηu)

∆x
+

∆(ρηv)

∆y
= 0 (2.21)

∆(ρηu)

∆t
+

∆

∆x

(
ρηu2 +

1

2
ρgη2

)
+

∆(ρηuv)

∆y
= 0 (2.22)

∆(ρηv)

∆t
+

∆(ρηuv)

∆x
+

∆

∆y

(
ρηv2 +

1

2
ρgη2

)
= 0 (2.23)

to describe the mass and momentum differences over discrete time steps and positions on
the xy plane.

The conservation law Eq. (2.13) can be applied to find the mass and momentum for
each time step, using the flux flow of mass and momentum, giving the formulas

ρηn+1
i = ρηni −∆t ·

∑
j∈Adj(i)

Fi,j(ρη) (2.24)

ρηun+1
i = ρηun

i −∆t ·
∑

j∈Adj(i)

Fi,j(ρηu) (2.25)

ρηvn+1
i = ρηvni −∆t ·

∑
j∈Adj(i)

Fi,j(ρηv) (2.26)

for each position or element i, depending on what numerical method is applied. Methods
such as the FVM decide the estimations of the flux flow F (ρη), F (ρηu) and F (ρηv).

The Lax-Friedrichs Method

Lax-Friedrichs method of Eq. (2.17) can be applied to Eq. (2.24), Eq. (2.25) and Eq. (2.26)
by using the weighted average value from position i and its neighbors j, giving

ρηn+1
i = ρηni · w +

∑
j∈Adj(i) ρη

n
j

|Adj(i)|
· (1− w)−∆t ·

∑
j∈Adj(i)

Fi,j(ρη) (2.27)

ρηun+1
i = ρηun

i · w +

∑
j∈Adj(i) ρηu

n
j

|Adj(i)|
· (1− w)−∆t ·

∑
j∈Adj(i)

Fi,j(ρηu) (2.28)
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ρηvn+1
i = ρηvni · w +

∑
j∈Adj(i) ρηv

n
j

|Adj(i)|
· (1− w)−∆t ·

∑
j∈Adj(i)

Fi,j(ρηv) (2.29)

with the weighted variable w ∈ [0, 1].

Flux Estimation for FVM with Triangulation

For a grid, every neighbor of a vertex is aligned directly on the right and left on the x-axis,
and directly over and under on the y-axis. This forces the flux flow to be aligned in the
same manner, so the velocity u only moves to its left and right neighbor over ∆x, and
the velocity v only moves to its neighbors up and down over ∆y. For a triangulation, the
volume elements can be aligned arbitrarily, shown in Fig. 2.4, so the flux can be directed
diagonally along both the horizontal and vertical axis. Each element gets both velocity u
and v from all neighbors over the distance ∆d =

√
∆x2 +∆y2. For a triangulation, each

element is a triangle that has exactly three neighbors. The mass flux flow from Eq. (2.24)
for element i can be formulated as∑

j∈Adj(i)

Fi,j(ρη) =

(
∆(ρηu)

∆d
+

∆(ρηv)

∆d

)
(2.30)

and the momentum flux flow from Eq. (2.25) and Eq. (2.26) as

∑
j∈Adj(i)

Fi,j(ρηu) =
∆(ρηuv)

∆d
+

∆

∆d

(
ρηu2 +

1

2
ρgη2

)
(2.31)

and ∑
j∈Adj(i)

Fi,j(ρηu) =
∆

∆d

(
ρηv2 +

1

2
ρgη2

)
+

∆(ρηuv)

∆d
(2.32)

The mass flux flow for element i can be estimated by taking the average difference of
ρηui and ρηuj for each neighbor j over ∆d giving

∆(ρηu)

∆d
=

1

3
·
∑

j∈Adj(i)

ρηuj − ρηui

∆d
(2.33)

and the average difference of ρηvi and ρηvj over ∆d giving

∆(ρηv)

∆d
=

1

3
·
∑

j∈Adj(i)

ρηvj − ρηvi
∆d

(2.34)

Similarly, the momentum flux can be estimated by using the average differences of
∆(ρηuvi)

∆d , ∆
∆d

(
ρηu2

i +
1
2ρgη

2
i

)
and ∆

∆d

(
ρηv2i +

1
2ρgη

2
i

)
over ∆d, for each neighbor j of

element i, giving
∆(ρηuv)

∆d
=

1

3
·
∑

j∈Adj(i)

ρηuvj − ρηuvi
∆d

(2.35)
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∆

∆d

(
ρηu2 +

1

2
ρgη2

)
=

1

3
·
∑

j∈Adj(i)

((
ρηu2

j +
1

2
ρgη2j

)
−
(
ρηu2

i +
1

2
ρgη2i

))
(2.36)

and

∆

∆d

(
ρηv2 +

1

2
ρgη2

)
=

1

3
·
∑

j∈Adj(i)

((
ρηv2j +

1

2
ρgη2j

)
−
(
ρηv2j +

1

2
ρgη2i

))
(2.37)

Boundary Conditions for Triangulation

The boundary conditions decide the quantity at the border of the domain. For a triangu-
lation, ghost triangles can be added along the borders, shown in Fig. 2.6. Every ghost
triangle is mirrored over the border, so the flux vector into the domain is perpendicular.
The mass and momentum can be set on these triangles, depending on which boundary
condition is chosen, to decide the flux flow into the main domain. If for example the mass
and momentum are always set to zero, the mass and momentum will leak from the domain.

Figure 2.6: A triangulation with ghost triangles mirrored along the border. The mass and momen-
tum decide the flux flowing into the domain.

For the Neumann boundary condition, the fluid is reflected back along the border. In
order to stop the mass from leaking, the mass ρηneumann of the ghost triangles can be set
to the same value as its neighbor, given as

ρηneumann = ρηAdj(neumann) (2.38)

To make the fluid reflect back into the domain, the momentum can be flipped by setting it
to the negative value of its neighbor, giving

ρηuneumann = −ρηuAdj(neumann) (2.39)
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and
ρηvneumann = −ρηvAdj(neumann) (2.40)
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Chapter 3
Related Work

This chapter looks at related works and experiments, concerning the Finite Volume Method
and performance testing using the libraries OpenMP, BLAS and MPI, and at their rele-
vance to this thesis.

3.1 Experiments for Finite Volume Method
In [23], an implementation of 2D shallow water equations using FVM is presented. With
Message Passing Interface, a distributed memory architecture can split the domain into
sub-domains and run the calculations in parallel. FVM is implemented by applying the
conservation law to the shallow water equations. The water surface is split into grids of
rectangular cells, with the equation formulated for each cell, where the average value is
stored at its center. To find an estimate of the flux, a strategy based on the approximate
Riemann solver of Roe is used. The entire domain is split into sub-domains, which is
handed out among the processors so each gets an evenly amount of cells. The split is done
vertically, so each sub-domain has two neighbors with a shared border. For each iteration,
the processor communicates with its two neighbors, in order to update the overlapping
cells along the border. Each processor simultaneously calculates their own cells, before
starting over with the border exchange. The master node handles the partitioning and
decides when to stop the iterations. Implementation and measurements showed a close
to linear speedup as the number of processors increased, with some deviations based on
technical specifications. Most of the time is spent on computation, while the overhead from
communication stayed relatively small, even as the communication time increased with the
number of processors. The workload is also evenly distributed, since the processes have
the same amount of cells using the same function, giving little delay due to processors
waiting for one another. Still, some delays occurred due to cache memory issues related to
the master node using additional memory space, and during initial state when the master
node has to distribute cells to all processors. Despite the increased performance, using a
master node would not scale well, so a parallel I/O would be worth testing out.

A performance study comparing FDM and FVM is issued in [24], by using MAC
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algorithm and vorticity-stream function over lid-driven flow and natural flow, commonly
used for computational fluid mechanics and numerical heat transfer. For MAC algorithm
momentum and energy conservation are solved explicitly, while through vorticity-stream
function, convection term is solved implicitly by deferred correction. Since vorticity-
stream function is dependent on the boundary conditions, three types of conditions, Thom,
Woods and Jenson, are issued. Uniform mesh is issued for both FDM and FVM, in addition
to using second-order central differences and second-order upwind scheme, in order to
make them comparable. Experiments show that both FDM and FVM have a high accuracy
for high mesh density, but accuracy sinks faster for FDM as the mesh density decreases.
FVM has a higher accuracy for all boundary conditions for vorticity-stream, and for both
second-order central differences and upwind scheme, with upwind scheme indicating to
give a better accuracy. With the same rounding error for FDM and FVM, FVM is shown to
be more stable, as the mesh density sinks, and especially for Thom and Woods boundary
conditions, where FDM diverges from physical meaning. FVM also shows to have a higher
robustness, as it uses fewer iterations than FDM as the relaxation factor increases. This
also indicates that FVM is more effective as it uses fewer iterations, which is confirmed
through measurements, where FVM has a slightly faster calculation time given that FVM
and FDM have the same mesh density.

FVM has a low flop-to-byte ratio and irregular memory access, making FVM memory
bound and difficult to utilize on high-density computers [25]. Especially during the phase
when the flux flow is calculated, a large amount of global memory access causes latency
load problems, in addition to the registers being filled up. An algorithmic modification for
GPU platforms is presented to handle the issue, by utilizing memory accessing. By ob-
serving the algorithm itself, global memory access can be reduced by finding overlapping
memory access, and store them on a data depot. With SMEM memory, different threads
can efficiently save compute and memory time by saving and reusing one other’s data,
saving around 50 percent of global reads. A further method is to pair up operations, so the
accessed memory overlap. The first operation of an element can for example be paired up
with the second operation of the neighbor element, reducing the global reads to 75 per-
cent. For each group of threads with a shared memory, the halo around the effective area
must be saved as well, which could result with an imbalance of workload of the threads,
as some have to handle the halo processing. Separating boundary processing through halo
threads, can release other threads from extra delay and restore balance. By testing out the
algorithmic modifications on different types of GPUs and compared with hardware based
optimizations, such as minimizing access latency of global memory, tuning register usage
for each thread and splitting the kernel and streaming concurrency, it is found that differ-
ent approaches work for different hardware. Still, implementing halo threads is beneficial
for all. When comparing the hardware based optimized program with the fully optimized
program, including all the modifications described above, the gained speedup is higher for
more complex programs. In addition, having larger space of on-chip memory is of great
importance. Though, an Euler solver gave 62 to 102 percent performance benefit, while
the Shallow Water equation solver only gave 9 to 36 percent further performance speedup,
these methods nevertheless give an overall performance boost to all tested hardware of
Kepler, Pascal, and Volta GPU platforms.
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3.2 Performance Testing for Libraries and Models
Rosales presents a performance analysis on the Xeon Phi coprocessor, a multicore chip
with 61 cores [26]. A multiphased Lattice Boltzmann computation was applied for test-
ing, which was found to be memory bound, meaning most of the performance went to
bandwidth traffic. The Xeon Phi coprocessor also needed several threads per core in or-
der to fully utilize its bandwidth. One of the aspects studied, was the scaling abilities for
different distributions of threads to the cores, using OpenMP library. Fig. 3.1 shows the
thread distribution to a single multiprocessor with four cores, of the three thread affinities
Compact, Scatter and Balanced. Compact fills up one core at a time, Scatter distributes the
threads in a round-robin matter, and Balanced distributes the threads evenly while keeping
consecutive threads together. Scatter and Balanced gave the same performance when there
was only a single thread for each core, where Scatter stopped improving when multiple
threads were applied for each core. Compact had a poor utilization of the bandwidth when
entire cores were left idle, and reached the same maximum performance as Balanced once
all the cores were filled up. Balanced gave overall the best performance.

Figure 3.1: The thread affinities Compact, Scatter and Balanced for eight threads and a multicore
processor with four cores.

The Intel Math Kernel Library (MKL) is a library for optimized math computations,
which uses Basic Linear Algebra Subprograms (BLAS) specification for low level execu-
tion of linear algebra. Zuckerman presents a method to improve matrix multiplication for a
parallel multicore processor, which is based on the sequential implementation of a unicore
DGEMM kernel, before having it compared with MKL Parallel, a parallelization provided
by Intel [27]. The different factors of matrix sizes, cache size and matrix blocking, and
hardware specifications were explored, where the highest performance was accomplished
with cache utilization. This was achieved by having block sizes fit into cache and avoiding
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cache pollution, which could be found through autotuning and benchmarking. The best
results from the given method gave twice the performance than the MKL Parallel.

The LogP and LogGP performance model can be useful to predict efficiency of a paral-
lel program running on a distributed system. Kielmann issues the challenge of measuring
the parameters of LogP and LogGP, especially for long messages and measuring the gap
parameter, and presents a way of handling this by using message passing platforms [28].
The parameters of parameterized LogP are presented, which uses o og g as functions o(m)
and g(m) of the message size m. Additionally, o(m) is split into os(m) and or(m) for
overhead for the sender and receiver. All the original parameters from LogP and LogGP
can be derived from these. The gap parameter has been measured before by saturating
the communication link, to make it possible to observe the link capacity. This can disturb
ongoing communication and consumes time for long messages, especially if the network
has high latency or low bandwidth. The presented solution is to only saturate the com-
munication link when measuring the gap g(0), for messages of zero bytes. Two normal
signals can be set up for two nodes, in order to find the other parameters. By measuring the
round-trip time between the nodes, the latency L and g(m) can be calculated, in addition
to having os(m) and or(m) to be directly measured. A sufficient number of measurements
should be executed for different values of m, until the error rate is eligible. Some issues
are also addressed if the nodes are asymmetrical or if the network flow is irregular. By
using MPI with the functions MPI Send and MPI Recv, both the old and new method
of measuring the gap has been implemented. The new method gave the same results, but
with small deviations where cache misses sometimes gave larger values of g(m). The time
spent was significantly decreased with the new method, but it was still concluded to be too
slow for real-time applications.

3.3 Relevance
The proxy application of this thesis implements the shallow water equations by using the
finite volume method over a triangulation of the water surface. It is therefore interesting to
study similar implementations, such as [23], which implements the SWE with FVM over
a discretization of rectangular cells, and [24], which compares the finite volume method
with the finite difference method. The application is executed on multicore processors by
using MPI and OpenMP, which makes it interesting to study an SWE implemention with
FVM for a GPU environment from [25].

The hardware from the Idun cluster has two multicore CPUs per node, and only allows
a single thread for each core. The thread affinity explained from [26] is applied to the
application, by deciding the order to assign the threads to the two CPUs. A simple matrix
multiplication through the BLAS specification is used to find the maximum floating point
performance for the benchmarking tests, where improvements of this method are explained
in [27]. The application also makes an analysis of the communication time of message
passing by using the Hockney model, where [28] uses the LogP and LogGP models.
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Chapter 4
Proxy Application

This chapter describes the proxy application, which consists of a preprocessing of the data
and an implementation to execute the Shallow Water Equations.

The proxy application uses a triangulation to represent the water surface, and applies
the Lax-Friedrichs method for a discretization of SWE from Section 2.3. The triangles
are split into groups, to be distributed for different ranks. Each rank represents a node
from a distributed system, a core from a multicore processor or a mixture of both, where
each rank makes the SWE computations for their local triangles simultaneously. The ranks
use message passing to exchange updated data for each neighboring triangle, and spawn
parallel threads.

All the tests are based on a map of Mehamn harbor in the municipality of Gamvik,
while the proxy application can be configured for other maps.

4.1 Preprocessing
The preprocessing includes generating a triangulation of a given map for a given number
of vertices, and of distributing the triangles to the different ranks.

4.1.1 Triangulation
The triangulation is made based on the number of vertices V from input. The script starts
with generating the vertices by reading a color coded map, and distributes the vertices vi
based on the coverage ai and on a predefined density di of each color section i. Fig. 4.1 is a
map of Mehamn harbor divided into four color sections. The green and red area covers the
inner coast, which has a higher predefined density of vertices than the outer sea, colored
with blue and yellow. After the vertices are generated, a Delaunay triangulation is made.

The total number of vertices V is a summation of

V =

n∑
i=1

Vi (4.1)
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Figure 4.1: Map of Mehamn harbor in Gamvik municipality, Norway. The sea is divided in four
colors, allowing varied densities of triangles for each section. The height and width denotes the
vertical and horizontal dimensions of the map.

where Vi is the number of vertices in each color section i for a total of n sections. The
value ai is the water coverage for each color section i, adding up to

n∑
i=1

ai = 1 (4.2)

which does not include the land area. The density di of each color i is defined as

Vi

ai
= di · k (4.3)

where k is a constant for all i. This means di ·k is a factor to determine how many vertices
each sections has per unit of area, which gives a total vertices of

n∑
i=1

Vi =

n∑
i=1

di · k · ai (4.4)

The factor Vi/k can be calculated from the given ai and di through

Vi

k
= ai · di (4.5)

which gives a total number of vertices

n∑
i=1

Vi

k
=

V

k
(4.6)

giving

k =
V∑n
i=1

Vi

k

=
V∑n

i=1 ai · di
(4.7)

26



4.1 Preprocessing

Since V and Vi/k are known, k can be found and used to find Vi through

Vi = ai · di · k =
ai · di · V∑n
i=1 ai · di

(4.8)

The next step is to find the coordinates of the vertices, so that each color section i has
Vi evenly distributed vertices. The value ci is defined to describe the coverage of section i
of the map, including both the water and land area. For each color section, an overlapping
collection of V/ci vertices are made that covers the entire area of the map. Fig. 4.2 shows
the four color sections from Fig. 4.1, where each collection has V/ci vertices covering the
entire area. The vertices outside its section are then removed, so each collection is left
with Vi vertices, before they merged together. Fig. 4.3 shows the remaining vertices after
removing those outside of its section, merged together on the same map.

In order to find the coordinates for each section on Fig. 4.2, an estimate of the number
of vertices on both axes are made, so the vertices can be evenly distributed in a grid pattern.
The average number of vertices both horizontally and vertically is

avg(xi, yi) =

√
Vi

ci
(4.9)

where xi is the estimated number of horizontal vertices for section i, and yi is the estimated
number of vertical vertices for section i. The number of vertices on each axes is set to

xi = avg(xi, yi) ·
width

avg(width, height)
(4.10)

and
yi = avg(xi, yi) ·

height

avg(width, height)
(4.11)

where height and width are the vertical and horizontal dimensions of Fig. 4.1.
After generating the coordinates for all vertices V , a Delaunay triangulation is applied,

where the edges that crosses land are manually removed. Fig. 4.4 shows the triangulation
of Fig. 4.3.

4.1.2 Data Distribution
After generating the triangulation, the triangles are distributed to each processing unit,
referred to as ranks. A preprocessing script takes the triangulation data and restructures it
into new files before distribution.

First the triangles are sorted by their vertical coordinates y of the triangles’ center
point. By dividing them evenly among the ranks, most neighboring triangles stay in the
same group, which is shown in Fig. 4.5. Each rank keeps track of the neighboring triangles
belonging to another group, so these are added to the file as well, referred to as Halo
triangles. That means the ranks need to communicate to update the information of all
Halo triangles. All triangles at the border are grouped together and placed at the end of
the file right before the Halo triangles. These border and halo groups are sorted by an
identification number id, so that a group of Border triangles for one rank is identical to the
Halo triangles of the neighboring rank.
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Figure 4.2: Vertices for each color section from Fig. 4.1, before the vertices outside its section is
removed. Each section has a total of Vi/ci vertices, where Vi is the final number of vertices and ci
is the coverage for each section i. The total number of vertices is set as V = 200 and the density is
set for dgreen = 50, dred = 25, dblue = 9, and dyellow = 2.
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Figure 4.3: The coordinates of vertices after removing vertices outside its section and merging them
together on the same map. The total number of vertices is set to be roughly V = 2000, giving 1922
vertices, and the density is set for dgreen = 50, dred = 25, dblue = 9, and dyellow = 2.

Figure 4.4: A Delaunay triangulation of the vertices from Fig. 4.3. The total number of vertices is
set to be approximately V = 2000, giving 1922 vertices, and the density is set for dgreen = 50,
dred = 25, dblue = 9, and dyellow = 2.

29



Chapter 4. Proxy Application

Figure 4.5: Illustration of how triangles are split among three ranks. The left shape represents a list
of all triangles sorted by their vertical coordinates. The list is split evenly among the ranks, and the
triangles bordering another group are marked and shown with a darker color. The right side shows
each grouping of the triangles. The triangles along the border are placed at the bottom along with
the Border triangles from the neighboring group. Every group with the same color tone contains the
same triangles in the same order.
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Fig. 4.6 shows an example of how triangles are organized for a rank. As shown in
Fig. 4.5, the inner triangles are listed first, followed by the Border and Halo triangles.
Mirror triangles are created along the entire border, called Neumann triangles. These
triangles are created by mirroring triangles across the border for each triangle missing
neighbors. Neumann triangles belonging to this rank are listed in the end.

Figure 4.6: An example of how triangles are organized for a rank. The left figure has 32 triangles
split evenly among three ranks. Additionally, mirror triangles, with dotted edges, are added along
the edge, and referred to as Neumann triangles. Triangles belonging to rank 1 are colored green
and blue, with blue Border triangles and green inner triangles. Halo triangles for rank 1 are colored
purple and Neumann triangles are colored yellow. The right figure shows the order of triangles for
rank 1, starting with the inner triangles, the Border triangles, the Halo triangles, and finally the
Neumann triangles.

With the triangles sorted out, each file can be created, shown in detail in Fig. 4.7.
First all triangle neighbors, regardless if they belong to another group or the Neumann
triangles, are found. Each triangle has at most three neighbors, in which the identification
id are used. Then, a simple iteration is used to find the vertices relevant for each rank,
by filtering out all vertices connected to any local triangle, Halo triangle or Neumann
triangle. Information such as the total number of vertices and triangles are added to the
file, in addition to the local number of vertices, triangles and Neumann triangles, and
the number of border and Halo triangles. Then each triangle is listed, with its id, its three
vertices, the center coordinates, number of neighbor triangles, and the ids of each neighbor.
Finally the vertices are listed with ids and coordinates.

Table 4.1 sums up the different categorizations of the triangles. In total there are T
triangles, not including the Neumann triangles, where each rank gets Tlocal = T/ranks.
Each rank has two sets of Halo triangles Thalo, one for the upper border and one for the
lower border. Tneumann is the total number of Neumann triangles, which gives approxi-
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Figure 4.7: A detailed description of a file belonging to a single rank. First line has global values for
all triangles, including total number of vertices and triangles, and minimum and maximum coordi-
nates for both axes. Second and third lines have values relevant to the corresponding rank, including
the local number of vertices, triangles and Neumann triangles, the largest number of triangles among
the ranks, and the number of each border and Halo triangle. All local triangles are then listed, with
Border triangles and Neumann triangles at the end in the same way as in Fig. 4.6. Each triangles
has an id, the id of its three vertices, the three coordinates of its center, number of neighbors, and the
id of the neighboring triangles. Finally all vertices connected to the local triangles are listed, along
with their id and x, y and z coordinates.
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mately Tneumann/ranks for each rank. Ttot is the total number of triangles including the
Neumann triangles, and each rank has a total of Tlocal + 2 · Thalo + Tneumann/ranks
triangles.

Term Meaning
T Total number of triangles
Tlocal Number of triangles per rank
Thalo Length of a border between two ranks called Halo triangles
Tneumann Total number of Neumann triangles
Ttot Sum of T and Tneumann

Table 4.1: List of the triangular terms.

4.2 Implementation
The implementation includes an overview of the data structure used in the program, how
the program is executed, and how the program is distributed to the hardware.

4.2.1 Data Structure
The proxy application needs to keep track of both the triangular properties and the SWE
attributes for each triangle. These categories are separated into two types of lists, with an
array for the triangular properties, and a set of arrays for each attribute from the SWE.

Description

The program reads a file in the format of Fig. 4.7 for each rank. The structs for a triangle
and a vertex are shown in Fig. 4.8. A triangle takes the attributes id, the three vertices, the
center coordinates, the number of neighbors, and the neighboring triangles from the file,
and configures local ids for all triangles. Each vertex uses the id and the coordinates from
the same input file.

Fig. 4.9 illustrates how local ids are configured and used for each rank. The triangles
are counted from 0 in the same order as in the file input. Hence, triangles can be listed in
the same order, using the local id as an index, making accesses to neighboring triangles
faster. Local ids are never shared with other ranks. Additionally, Neumann triangles are
read from the file. These are mirrored triangles along the entire border, shown in Fig. 4.6,
and have always one neighbor along the border. All local triangles have three neighbors,
whether it be another local triangle, a Halo triangle or Neumann triangle.

Memory Space

Table 4.2 lists the datatypes used in the application. Both Int and Double take up 8 bytes.
The triangular structure from Table 4.8 is represented through the type Triangle, where
each triangle take up 128 bytes. The Vertex takes up 32B, but is only used for preprocess-
ing, meaning it is not stored in local memory for the execution of the program. Table 4.3

33



Chapter 4. Proxy Application

Figure 4.8: The structure of a triangle and a vertex. Each triangle has a global and local id, three
vertices ids, the coordinates of its center, number of neighboring triangles, and a list of the neighbors’
ids and local ids. Each vertex has an id and three coordinates for each axis.

Figure 4.9: An example of how local ids are used when splitting triangles into groups. The triangles
are first sorted by their vertical coordinates before they are split in two groups, colored with blue
and green. The triangles that are at the border of the other group are marked with a darker color, and
triangles at the edge that are missing a neighbor are marked with a lighter color. Rank 0 has the blue
triangles in addition to the neighboring triangles, and rank 1 has the green triangles in addition to
the neighboring triangles. Rank 0 and 1 also need to create mirror triangles, referred to as Neumann
triangles and shown in Fig. 4.6, that border the triangles missing a neighbor. For rank 0, triangle
113 is a mirror of triangle 101, always containing the same data as its mirror. All triangles are given
a local id starting from 0 which is only visible for its rank.
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lists the 11 attributes from the Shallow Water Equations, that are needed for each triangle
in order to compute the mass and momentum flux.

The application has two types of arrays of significant memory space, where the first
is a single array of the triangular properties and the second consists of 11 arrays for each
attribute from the SWE. Table 4.4 describes the properties of the two, which has a total
memory space of

Ttot · 128B + 11 · Ttot · 8B = (T + Tneumann) · 216B (4.12)

for all ranks. The ranks on a multicore processor can use a shared memory, even as they
only access their local triangles. If the ranks are distributed on different processors with
their own memory, each rank takes up(

Tlocal + 2 · Thalo +
Tneumann

ranks

)
· 216B (4.13)

of memory space.

Datatype Memory space [B]
Int 8
Double 8
Triangle 128
Vertex 32

Table 4.2: The datatypes and their memory space.

SWE attribute Description

ρηn Mass
ρηn+1 Mass next
ρηun Horizontal momentum

ρηun+1 Horizontal momentum next
ρηvn Vertical momentum

ρηvn+1 Vertical momentum next
ρηuv Momentum
u Horizontal speed
v Vertical speed

ρηu2 + 1
2ρgη

2 Horizontal acceleration

ρηv2 + 1
2ρgη

2 Horizontal acceleration

Table 4.3: The 11 SWE attributes used in the proxy application. Each uses the datatype Double of
8B.
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Array Datatype Elements Memory space [B]
Triangles Triangle Ttot Ttot · 128
SWE attribute Double 11 · Ttot 11 · Ttot · 8

Table 4.4: The arrays and their total memory space for all ranks, used for the proxy application,
where Ttot = T + Tneumann.

4.2.2 Execution
Listing 4.1 shows an overview of the program code, which is executed for each rank.
The main function is the outer frame of the program, and starts with the preprocessing
from Section 4.1. The triangulation is created and distributed to the different ranks. The
main part is an iteration for all supersteps, which is a computation of the Shallow Water
Equations for a single time step, described in Section 2.3.4. After each computation, a halo
exchange is executed, where the ranks communicate with their neighboring ranks through
message passing, to give an update of the triangles along their border. The program finishes
by freeing all memory and summarizing the runtime.

The computation function has three parts p1, p2 and p3. The first part executes the
boundary conditions for all Neumann triangles, which is defined to reflect the water back
into the domain, and updates attributes from Table 4.3 for all triangles belonging to the
rank. The second part computes both the horizontal and vertical momentum flux, and the
third part computes the mass flux for each triangle Tlocal.

Table 4.5 lists the number of iterations, memory operations per iteration and FLOP per
iteration, for each part p1, p2 and p3. Both p2 and p3 access the arrays of Triangles and
SWE attributes from Table 4.4, for all local triangles Tlocal. For p1, the Triangles array is
only accessed for the Neumann triangles Tneumann, which add up to a memory space of

Tneumann · 128B + 11 · Ttot · 8B = T · 88B + Tneumann · 216B (4.14)

for all ranks, where each rank uses

Tlocal · 88B +
Tneumann

ranks
· 216B (4.15)

of memory space.

Part Iterations Memory operations FLOP
p1 Tneumann/ranks 8 0
p1 Tneumann/ranks+ 2Thalo + Tlocal 22 18
p2 Tlocal 47 70
p3 Tlocal 36 49

Table 4.5: The number of memory and FLOP operations and iterations for each part p1, p2 and p3
in the proxy application.
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void computation()
{

/* PART 1 */
//find boundary condition
for each t in T_neumann {

access_triangle(t);
update_wave_attribute(t);

}
for each t in T_local, T_neumann, T_halo {

update_wave_attribute(t);
}

/* PART 2 */
//find momentum flux
for each t in T_local {

access_triangle(t);
update_wave_attribute(t);

}

/* PART 3 */
//find mass flux
for each t in T_local {

access_triangle(t);
update_wave_attribute(t);

}
}

void main()
{

preprocessing();
for each superstep {

computation();
halo_exchange();

}
finish();

}

Listing 4.1: Pseudocode of the proxy application. Each superstep has computation and halo ex-
change, and each computation step has three parts p1, p2 and p3.

4.2.3 Hardware Distribution
A rank can be assigned to an entire processor of multiple cores or a subset of cores, which
utilizes a shared memory. The processors can be a part of a multiprocessor system, dis-
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tributed on separate nodes, or use a mixture of both. The iterations from Table 4.5 compute
SWE attributes for independent triangles, meaning the computations can be parallelized.
Each loop can be divided into threads, so the iterations are run simultaneously on all the
cores assigned to the rank. Fig. 4.10 shows a distribution of four ranks to two processors,
with eight cores per processor. Since each rank has four cores with a shared memory, they
can spawn four parallel threads. Each rank must execute halo exchange through message
passing, even if they share the same memory space.

Figure 4.10: The distribution of four ranks to two processors, where each processor has eight cores.
Each rank has four cores with a shared memory, allowing four threads to be created. The ranks,
including those sharing a memory space, communicate through message passing to execute the halo
exchange.
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Performance Analysis

This chapter presents performance models of the application, by predicting the parameters
of the generated triangulation, and creating a model of the computation time and commu-
nication time, based on the parameter predictions, where a deeper analysis of the scaling
characteristics are made for the computation time. Both the predictions of the triangular
parameters and runtime predictions are made for a triangulation of Mehamn harbor.

5.1 Predictions of Triangulation

A triangular mesh is used to represent the surface for the fluid flow. The mesh is split
horizontally and shared evenly among the ranks, so they can process the mesh in parallel.
The overall performance is dependent on the total number of triangles, the number of
Halo triangles and the number of Neumann triangles, where Halo triangles represent the
horizontal border size and Neumann triangles represents the outline around the domain.
A rank has up to two neighboring ranks, adding up to two sets of Halo triangles. With
Delaunay triangulation, the triangular boundaries can be estimated, given the number of
vertices.

Table 5.1 lists the terms used for the structural predictions, so each type of triangles
can be expressed with the number of vertices.

Term Meaning
V Total number of vertices
T Total number of triangles
Tlocal Number of triangles per rank
Thalo Length of a border between two ranks called Halo triangles
Tneumann Total number of Neumann triangles

Table 5.1: List of terms used for predicting the number of triangles.
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5.1.1 Total Triangles
To find a lower and upper bound for the number of triangles T , a continuous mesh of tri-
angles is assumed, described in Fig. 5.1. This means there are no floating vertices without
edges, shown in the left part of the figure, or any partitions where the two parts of the mesh
are only connected by a single vertex, shown in the right part of the figure. Exceptions can
appear after the Delaunay triangulation is created, when the edges crossing land are re-
moved, shown in Fig. 5.2. These can appear along the coastline where small irregularities
cannot be covered by triangles. Since most of the triangles, including the ones on the edge
of the domain, follow the criteria, these exceptions can be ignored when estimating the
lower and upper bound of the number of triangles.

Figure 5.1: The triangular mesh is assumed to have no disconnected vertices, as in the left figure,
and no parts only connected by a single vertex, such as the figure on the right.

Figure 5.2: After the triangular mesh is created, the triangles crossing land are removed, and can
leave exceptions to the assumptions, with sections connected through a single vertex or disconnected
vertices.

Fig. 5.3 shows an initial state of a triangle and three vertices, with a new vertex being
added for each step. Given the criteria from Fig. 5.1, at least one triangle must be created
for every new vertex. This gives a lower bound for the number of triangles of

T ≥ V − 2 (5.1)

where V ≥ 3 is assumed.
The Euler formula describes the relation between the number of vertices v, the number

of edges e, and the number of regions r. A region is a closed cycle, which includes the
unbound area outside the whole graph. From [29], the Euler formula states that

v − e+ r = 2 (5.2)

This can be proved by induction. A graph of a single vertex has one outer unbound region
and no edges, giving

1− 0 + 1 = 2 (5.3)
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Figure 5.3: A triangular mesh, with one vertex being added at a time. For every new vertex, a new
triangle must be created.

Eq. (5.2) can be assumed to be correct for all graphs up to e = n edges. For a graph of
e = n + 1 edges, one edge from a cycle can be removed. This will reduce the number of
regions by one, as two regions are merged. This gives

v − (e− 1) + (r − 1) = v − e+ r = 2 (5.4)

If the graph has no cycles, a vertex connected to only one edge can be removed as well as
the connecting edge, which gives

(v − 1) + (e− 1) + r = v − e+ r = 2 (5.5)

Thus, the equation holds for all number of edges.
Each edge in a triangular mesh has up to two connecting triangles. If all possible

triangles are counted for each edge e, while allowing overlapping triangles, the sum is 2 · e
possible triangles. During the count, all the existing triangles T are counted three times,
since each triangle has exactly three edges. This gives

3 · T ≤ 2 · e⇒ 3T

2
≤ e (5.6)

In the triangular mesh, there are fewer triangles than regions, since bent edges are not
allowed and other shapes than triangles are not counted. From Eq. (5.2), v, e and r can be
expressed with the number of vertices V and the number of triangles T , giving

V − 3T

2
+ T ≥ 2 (5.7)

resulting in an upper bound of
T ≤ 2V − 4 (5.8)

With the total number of triangles within

T ∈ [V − 2, 2V − 4] (5.9)

the size of T depends on the size of the coastline. A long and narrow river would create a
mesh closer to the lower bound, while a large gulf or an ocean would create a mesh closer
to the upper bound.

Since the triangles are shared evenly among the ranks, each rank has T/ranks trian-
gles. Given Eq. (5.9), the local triangles are defined as

Tlocal ∈
[
V − 2

ranks
,
2V − 4

ranks

]
(5.10)
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5.1.2 Halo and Neumann Triangles
For a serial program, there is no horizontal partition of the triangular mesh, resulting in
zero Halo triangles. For two or more ranks, the number of triangles are distributed evenly.
A rank’s halo cannot be exceed Tlocal, since the halo can only overlap with the neighboring
rank’s local triangles. Two ranks give the maximum Tlocal = T/2, making the bounds of
Halo triangles

Thalo ∈
[
0,

T

2

]
= [0, V − 2] (5.11)

There must at least be three Neumann triangles, since the whole the domain is sur-
rounded by these. A continuous mesh of triangles is assumed from Fig. 5.1, meaning each
triangle must have at least one neighbor and a maximum of two Neumann edges, making
the number of Neumann triangles within

Tneumann ∈ [3, 2 · T ] = [3, 4V − 8] (5.12)

where each rank has an average of

Tneumann

ranks
∈
[

3

ranks
,
4V − 8

ranks

]
(5.13)

5.2 Performance Model
BSP is a model for cost prediction of a parallel program, that runs iterations over the same
superstep [16]. Each superstep has computations over the data, communications between
the different parallel processing units, and a synchronization process. The estimated total
runtime is a summation of all supersteps S, given as

S∑
s=1

ts =

S∑
s=1

(ws + ghs + l) (5.14)

where ts is the runtime, ws is the maximum computation time for one processing unit, g
is the communication bandwidth, hs is the maximum number of messages between a pair
of two processing units, and l the is synchronization latency.

From [11], the runtime ts for each superstep can be written as

ts = tcomp + tcomm − toverlap (5.15)

by setting tcomp = ws and tcomm = ghs + l. The value toverlap is the runtime of the
overlap between the computations and communications. For the proxy application, com-
putations and communications are separated with a barrier, making toverlap = 0.

Fig. 5.4 shows the details of tcomp and tcomm. Each rank has an equal share of Tlocal

triangles. They are assigned to different physical processing units, and run the computa-
tions in parallel for the computation time tcomp. The ranks can be assigned to multiple
processors, and spawn parallel threads, so the computations of Tlocal can be done in par-
allel as well. This sums up to a total of ranks · threads parallel processing units, also
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called processes. A barrier makes the ranks wait until all the computations are finished, in
order to make sure the data is ready before exchanging the Halo triangles Thalo with the
upper and lower neighboring rank. The time to execute halo exchange is referred to as the
communication time tcomm.

Figure 5.4: Details of the computation time tcomp and communication time tcomm for four ranks
and threads. During tcomp, each of the ranks R0, R1, R2 and R3 computes their local triangles
Tlocal. Each rank has four parallel threads T0, T1, T2 and T3, which sums up to 16 parallel
processing units. A barrier forces the ranks to wait before they can exchange the halo Thalo for the
communication part.

5.2.1 Computation Time
The value tcomp represents the runtime for calculating all the triangles T for each iteration.
It has three parts, p1, p2 and p3. The first part is a preprocessing of the triangular mesh,
the second part calculates the momentum flux, and the third part calculates the mass flux.

An ideal parallel program has the runtime of

tcomp =
tT · Tlocal

threads
=

tT · T
ranks · threads

(5.16)

where tT is the computation time of single triangle. In this case, there is a linear speedup
and no overhead as the number of parallel processes increases. For the proxy application,
each rank has two sets of Halo triangles, 2 · Thalo, and an average of Tneumann/ranks
Neumann triangles. The runtime tcomp is dependent on these variables as well, which
makes Eq. (5.16) too simplified.

To make a detailed estimation of tcomp, the number of byte operations and floating
point operation can be counted and compared. The arithmetic intensity is the ratio between
floating point and memory operations, and can be used to find the maximum attainable
performance through the roofline model [13].
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Memory Function

The memory operations can be counted for each part p1, p2 and p3. Table 5.2 lists the
number of iterations for each part, and the number of 8B memory operations for each
iteration.

Part Iterations Memory operations
p1 Tneumann/ranks 8
p1 Tneumann/ranks+ 2Thalo + Tlocal 22
p2 Tlocal 47
p3 Tlocal 36

Table 5.2: The number of memory operations and iterations for each part p1, p2 and p3 in the proxy
application.

Each part has the total of

p1 =

((
Tneumann

ranks

)
· 8 +

(
Tneumann

ranks
+ 2 · Thalo + Tlocal

)
· 22
)
· 8B (5.17)

p2 = (Tlocal · 47) · 8B (5.18)

and
p3 = (Tlocal · 36) · 8B (5.19)

By setting Tlocal =
T

ranks , this sums up to

p1 + p2 + p3 =

(
240 · Tneumann

ranks
+ 352 · Thalo + 840 · T

ranks

)
B (5.20)

FLOP Function

Table 5.3 lists the number of iterations for each part p1, p2 and p3, and the number of
floating point operations for each iteration.

Part Iterations FLOP
p1 Tneumann/ranks+ 2Thalo + Tlocal 18
p2 Tlocal 70
p3 Tlocal 49

Table 5.3: The number of floating point operations and iterations for each part p1, p2 and p3 in the
proxy application.

The total number of floating point operations for each part is

p1 =

(
Tneumann

ranks
+ 2 · Thalo + Tlocal

)
· 18FLOP (5.21)

p2 = Tlocal · 70FLOP (5.22)
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and
p3 = Tlocal · 49FLOP (5.23)

Having Tlocal =
T

ranks , this sums up to

p1 + p2 + p3 =

(
18 · Tneumann

ranks
+ 36 · Thalo + 137 · T

ranks

)
FLOP (5.24)

Arithmetic Intensity

The arithmetic intensity of the proxy application is the ratio of the total byte operations
from Eq. (5.20) and the total floating point operations from Eq. (5.24), given as

AI =
18 · Tneumann

ranks
+ 36 · Thalo + 137 · T

ranks

240 · Tneumann

ranks
+ 352 · Thalo + 840 · T

ranks

FLOP/B (5.25)

Eq. (5.25) converges as each of all the four variables, T , Thalo, Tneumann, and ranks,
approaches infinity, resulting in

lim
T→∞

AI =
137

840
≈ 0.163FLOP/B (5.26)

lim
Thalo→∞

AI =
36

352
≈ 0.102FLOP/B (5.27)

lim
Tneumann→∞

AI =
18

240
≈ 0.075FLOP/B (5.28)

and
lim

ranks→∞
AI =

36

352
≈ 0.102FLOP/B (5.29)

The arithmetic intensity has a maximum of 0.163FLOP/B, for an infinite number of
triangles T .

From Section 5.1.2, both Thalo and Tneumann are limited by T , and since they are
both O(T ), they cannot approach infinity faster than T . In order to find the minimum
arithmetic intensity, the values Thalo and Tneumann must be maximized, so the impact of
T is lessened. This gives

AImin =
18 · 2·T

ranks + 36 · T2 + 137 · T
ranks

240 · 2·T
ranks + 352 · T2 + 840 · T

ranks

FLOP/B =
18 + 173

ranks

176 + 1320
ranks

FLOP/B

(5.30)
for the minimum value AImin. The minimum arithmetic intensity is found when ranks
approaches infinity, which is 0.102FLOP/B, the same for when Thalo approaches in-
finity, as Thalo is the only value not divided by ranks in Eq. (5.25). The value ranks
is limited by the number of physical processors, which makes the absolute minimum un-
likely. For a single rank, the lowest arithmetic intensity is

AImin(ranks = 1) =
18 + 173

1

176 + 1320
1

FLOP/B ≈ 0.128FLOP/B (5.31)
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With an arithmetic intensity of

AI ∈ [0.102, 0.163] (5.32)

the proxy application is memory bound, meaning the floating point operations will not
be the main performance bottleneck. From the roofline model, the highest attainable per-
formance is determined by the memory bandwidth. The computation time tcomp can be
estimated using only the number of memory operations from Eq. (5.20), formulated as

tcomp =
(p1 + p2 + p3) · 8B
bandwidth · threads

=(
240 · Tneumann

ranks
+ 352 · Thalo + 840 · T

ranks

)
B

bandwidth · threads

(5.33)

5.2.2 Scaling of Computation Time
Scalability is the ability to handle work as the resources increase. The predicted computa-
tion time, tcomp from Eq. (5.33), can be analyzed for its ability to handle the triangles T ,
Thalo and Tneumann for the number of processes, given by ranks and threads.

Load Balancing

Load balancing is the distribution of workload for the processes. In Fig. 5.4, the compu-
tation time tcomp is limited by the slowest rank, since the barrier forces the other ranks
to wait. Each rank must also wait for its own threads to finish. An unbalanced workload
causes a longer wait. This adds up as overhead for speedup, and gets more significant for
larger amount of data to compute.

In the proxy application, the triangles T are distributed evenly among the ranks. The
halo and Neumann triangles Thalo and Tneumann can vary for each rank depending on the
triangulation, and can cause imbalance and overhead for scaling of ranks. For a triangu-
lation where T is significantly larger than Thalo and Tneumann, the imbalance caused by
Thalo and Tneumann gives little overhead, meaning they must be close to their absolute
maximum to have an effect for scaling.

Each rank distributes workload from loop iterations to the threads, which gives each
thread an equal workload regardless of the number of Thalo and Tneumann. This means the
data distribution, given from the triangulation, does not add overhead for thread scaling.

For the computation time prediction Eq. (5.33), an equal number of triangles Tlocal,
Halo triangles Thalo and Neumann triangles Tneunmann is assumed, as well as an equal
workload for all threads. The predicted overhead for scaling is thereby not affected by
load imbalance.

Ranks and Threads

Fig. 5.5 shows strong and weak scaling of Eq. (5.33). The number of processes describes
the number of parallel processing units, which can be both ranks and threads. The scaling
for ranks and threads are separated. For a scaling of ranks, each rank spawns a single
thread, and for scaling of threads, a single rank spawns all the threads. Eq. (5.33) uses the
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number of memory operations divided by the bandwidth to predict runtime, as the proxy
application is memory bound. Since the bandwidth is unknown, the number of memory
operations is used to describe the predicted performance, being only a constant away from
the predicted runtime. The upper and lower bounds of predicted performance is found by
setting T , Thalo and Tneumann to their maximum and minimum, given a fixed number of
vertices V for strong scaling and a fixed number of vertices V per processing unit for weak
scaling.

Fig. 5.5a shows strong scaling of Eq. (5.33) with a total number of vertices of V =
20000. In Eq. (5.33), only T and Tneumann is shared for ranks, meaning their impact
shrinks for rank scaling, while Thalo stays unaffected. For thread scaling, all the triangular
values are divided by threads. For the upper bound, the difference between ranks and
threads is shown, as rank scaling converges toward the constant provided by Thalo while
thread scaling converges toward zero. The lower bound has no Halo triangles, which gives
the same scaling for ranks and threads.

Fig. 5.5b shows weak scaling of Eq. (5.33) with V = 2000 for each process. For
the upper bound, the number of memory operations increases linearly for rank scaling,
since Thalo can grow unaffected by ranks, while T/ranks and Tneumann/ranks stay as
a constant. For thread scaling, all triangles are divided by threads, which gives a constant
number of memory operations. For the lower bound, there are zero Halo triangles, which
makes the affect of ranks and threads the same.

Ideally, strong and weak scaling follow the pattern of Fig. 5.5 for an infinite number of
triangles and processes. Because of hardware limitations, such as limited memory storage,
the performance is expected to fall at a certain problem size.

(a) Predicted performance for strong scaling, with a
total of 20000 vertices.

(b) Predicted performance for weak scaling, with 2000
vertices per process.

Figure 5.5: A performance estimation for strong and weak scaling, based on Eq. (5.33). Since the
bandwidth is unknown, the number of memory operations is displayed, as this is a factor of the
predicted runtime. The number of parallel processors is the product of ranks and threads. For a
given number of vertices, the upper and lower performance is found, by setting Tlocal, Thalo and
Tneumann to maximum and minimum. Both scaling for ranks and threads are used, by fixing the
other to 1.
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5.2.3 Communication Time
The value tcomm describes the time spent on halo exchange, where all the ranks exchange
Halo triangles with their upper and lower neighboring rank. The exchange is assumed
to be handled simultaneously, giving a constant communication time for any number of
ranks, so tcomm can be given as the total exchange time for a single rank with both its
neighbors.

The Hockney model formulates the communication time between two processors as a
linear function

t(n) = α+ β−1n (5.34)

for the message size n, with bandwidth β and latency α [17]. The function is linear until
the message size reaches a maximum, where additional overhead starts to show.

The function of the Hockney model can be applied to the communication estimation
from Eq. (5.14) and Eq. (5.15), resulting in

tcomm = ghs + l = β−1n+ α (5.35)

where the communication in a superstep from the BSP model ghs is set as β−1n, and the
synchronization latency l from BSP is set as the communication latency α.

The proxy application exchanges data for mass flux ρη, and momentum flux ρηu and
ρηv with both upper and lower neighbor, which adds up to 2 · 3 messages. Each message
is an array of 8 byte doubles, with the size of the number of Halo triangles Thalo. This
gives a communication estimate of

tcomm = 2 · 3 ·
(
β−1(8B · Thalo) + α

)
(5.36)

This model assumes that 8B · Thalo is within the message size n where the function stays
linear.

5.3 Case Study: Mehamn Harbor
The proxy application uses a triangulation of Mehamn harbor, shown in Fig. 5.6. Mehamn
harbor is located in Gamvik municipality, and have two breakwaters arranged by the Nor-
wegian Coastal Administation, where it is of interest to make wave simulations [1]. The
map has four sections with different numbers of vertices, which has a higher density of
vertices in the sections along the coastline. Each section has vertices placed in a grid
pattern, so the distances within a section have the same distance vertically and horizon-
tally. A Delaunay triangulation is made for these vertices, and the triangulation is split
into even horizontal segments, so each rank can calculate its own segment in parallel. An
approximation of the structure can be made using the properties of the map, and further
approximate the performance of the proxy application.

5.3.1 Predictions of Triangulation
A triangulation of a grid will create twice as many triangles as vertices, where two triangles
are made for each rectangle. Since there are different sections of grids for the Mehamn
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Figure 5.6: A triangulation of Mehamn harbor using 20000 vertices.

map, irregular triangles are created at the borders of the sections. Most of the triangles are
placed completely within a section, so the total number of triangles T can be approximated
as

T ≈ 2V (5.37)

The mesh is split evenly among the ranks, which makes each segment

Tlocal ≈
2V

ranks
(5.38)

The triangulation is based on a 2088× 1638 image of the Mehamn harbor. In order to
make each section of the grid squared, the number of vertices vertically and horizontally
are adjusted based on the image height and width, estimated as

Vvertical =
√
V · height

width+height
2

=
√
V · 1638

2088+1638
2

≈
√
V · 0.88 (5.39)

and

Vhorizontal =
√
V · width

width+height
2

=
√
V · 2088

2088+1638
2

≈
√
V · 1.12 (5.40)

The halo of a rank is expected to be a straight line, since the triangular mesh is split
horizontally. This map in particular has roughly two parts, where the right part has the
two most dense sections, and the left part has the two most sparse sections. A vertical line
will have a varied number of triangles, since it depends whether it is placed on the right or
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left side of the map, but any horizontal line can be approximated to be of the same size,
making the estimation of halo

Thalo ≈ Vhorizontal ≈
√
V · 1.12 (5.41)

Given the number of vertices, Neumann triangles can be assumed to increase in the
same rate as the Halo triangles. An approximation of Neumann triangles can be written
as

Tneumann ≈ k · Thalo (5.42)

where k is a constant of the ratio. The constant k can be found by using Tneumann and
Thalo for a triangulation of a specific number of vertices V . Table 5.4 lists the total number
of Neumann triangles and the number of Halo triangles for each rank, given a triangulation
of 20000 vertices and four ranks.

Neumann Rank 0 Rank 1 Rank 2 Rank 3
1156 0 138 138 145

137 136 146 0

Table 5.4: The total number of Neumann triangles and the number of Halo triangles for each rank,
for 20000 vertices and four ranks.

A lower number of vertices will ignore the small details surrounding the coast, which
results in a shorter estimated coastline. This effect becomes less significant as the number
of vertices increases, and more of the details are covered. Assuming that a triangulation of
20000 vertices, from Fig. 5.6, has yet to cover the full size of the coast, the smallest halo
from Table 5.4 can be picked, so k can be slightly overestimated, resulting in

k =
Tneumann(V = 20000)

min(Thalo(V = 20000))
=

1156

136
= 8.5 (5.43)

For all number of vertices, the number of Neumann triangles can be formulated as

Tneumann ≈ 8.5 · Thalo ≈ 8.5
√
V · 1.12 (5.44)

with an average of

Tneumann

ranks
≈ 8.5

√
V · 1.12

ranks
(5.45)

for each rank.

5.3.2 Performance Model

An estimation of a superstep from Eq. (5.15) can be applied to Mehamn harbor by using
the new triangular estimates of T , Thalo and Tneumann for tcomp and tcomm.

50



5.3 Case Study: Mehamn Harbor

Computation Time

The computation time tcomp is memory bound, where each of the parts p1, p2 and p3 can
be taken from the memory operations of Eq. (5.17), Eq. (5.18) and Eq. (5.19). By applying
the new values of T , Thalo and Tneumann, each part can be written as

p1 =
Tneumann

ranks
· 8 +

(
Tneumann

ranks
+ 2 · Thalo + Tlocal

)
· 22 =(

8.5
√
V · 1.12

ranks

)
· 8 +

(
8.5
√
V · 1.12

ranks
+ 2 ·

√
V · 1.12 + 2V

ranks

)
· 22

(5.46)

p2 = Tlocal · 47 =
2V

ranks
· 47 (5.47)

and

p3 = Tlocal · 36 =
2V

ranks
· 36 (5.48)

which gives a total of

tcomp =
(p1 + p2 + p3) · 8B
bandwidth · threads

=(
210V

ranks
+

285.6
√
V

ranks
+ 49.28

√
V

)
8B

bandwidth · threads

(5.49)

Load Balancing

Each of the ranks has an equal distribution of local triangles Tlocal, but can have varied
Halo triangles Thalo and Neumann triangles Tneumann. The values Thalo and Tneumann

are significantly smaller than T , as Thalo and Tneumann are factors of
√
T , meaning an

imbalanced distribution of Thalo and Tneumann will cause little overhead of the speedup.
The time prediction Eq. (5.49) can thereby assume an equal share of all triangular values
for all ranks.

Ranks and Threads

Fig. 5.7 shows strong and weak scaling for the time prediction Eq. (5.49). The number of
parallel processes is applied for both ranks and threads, where the Eq. (5.49) is scaled
for both, by fixing the other value to 1. The number of memory operations is used as a
scalar of predicted runtime, since the bandwidth is unknown. The upper and lower bounds
from Fig. 5.5 are shown as dotted lines, to be used for comparison.

Fig. 5.7a shows strong scaling of Eq. (5.49) for a total of 20000 vertices. The esti-
mate lies within the upper and lower bound, and has a similar function shape. The gap
between Eq. (5.49) and the upper bound is caused by the large maximum of Thalo and
Tneumann, since the two plots uses the same Tlocal = 2V . The halo Thalo of Mehamn
harbor is significantly smaller than T , which causes the scaling for ranks and threads to
be overlapping.
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Fig. 5.7b shows weak scaling of Eq. (5.49) for 2000 vertices per process, which lies
between the upper and lower bound. Since Thalo is of a squared size from T , it cannot
grow faster than T , avoiding it from causing a linear time growth as the upper bound. For
the same reason, scaling for ranks and threads are overlapping.

(a) Predicted performance for strong scaling, with a
total vertices of V = 20000.

(b) Predicted performance for weak scaling, with ver-
tices of V = 2000 per process.

Figure 5.7: A performance estimate of triangulation of Mehamn harbor, for strong and weak scaling,
from Eq. (5.49). Since the bandwidth is unknown, the number of memory operations is displayed,
which is a scalar of the predicted runtime. The number of processes is the product of ranks and
threads, but the scaling for ranks and threads are separated, so each one is scaled while the
other value is fixed to 1. The upper and lower limits from Fig. 5.5 are shown as dotted lines for
comparison.

Communication Time

The communication time from Eq. (5.36) can be applied to Mehamn harbor by using the
estimate for Thalo, given as

tcomm = 2 · 3 ·
(
β−1(8B · Thalo) + α

)
= 6 ·

(
β−1(8B ·

√
V · 1.12) + α

)
(5.50)

for bandwidth β, message size of 8B · Thalo, and communication latency α. The commu-
nication time estimation is constant for any number of communicating endpoints. Since
communication time is dependent on Thalo and computation time is dependent on T , a
constant communication time is assumed, as Thalo is predicted to be significantly smaller
than T for Mehamn harbor.
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Chapter 6
Experimental Setup

This chapter explains the experimental setup of the software and hardware used, and the
configurations of the benchmarking and application tests.

6.1 Software and Hardware
For the implementation of the proxy application, a set of software APIs and hardware
supercomputers are selected as tools, which are used for parallel computing, preprocessing
and performance analysis, and for running the application.

6.1.1 API
Table 6.1 lists the selected software and their version. MPI and OpenMP are combined
for parallel programming, so MPI creates parallel ranks, and OpenMP allows each rank to
spawn parallel threads [9, 10]. MPI also provides the function MPI Wtime() to measure
time for runtime testing.

Python 3 is used for preprocessing of data, predicting performance and for displaying
results, by implementing libraries from Table 6.1 [30]. The Image library allows reading
and modifying of an image of Mehamn harbor, before a triangulation through the Delaunay
library is made [31, 32]. The Numpy library provides mathematical tools for various
calculations such as making performance analysis, and the Pyplot library allows plots, so
performance predictions and results can be displayed [33, 34].

6.1.2 The Idun Cluster
The Idun cluster is a research project provided by the NTNU’s faculties and IT division,
used for providing rapid testing and prototyping for HPC software [2]. Table 6.2 lists the
properties used from the Idun cluster. The selected nodes are Dell PowerEdge, featuring
Intel Xeon processors, with two CPUs of 12 cores each and 30 MB cache [35, 36]. They
have Intel ICC compilers including MPI implementation for Linux [37, 38].
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API Version
MPI 3.1
OpenMP 4.5
Python 3.8.6
Image from PIL 8.0.1
Delaunay from SciPy 1.5.4
Numpy 1.19.4
Pyplot from Matplotlib 3.3.3

Table 6.1: List of API and its version used for the proxy application.

Attribute Detail
Node Dell PowerEdge R730
Processor Intel Xeon E5-2650 v4
Compiler ICC 19.1.3.304
Compile flags -O2 -std=c99 -qopenmp -g -lm -liomp5
MPI implementation Intel® MPI Library for Linux* OS
CPU 2
Cores per CPU 12
Cache per CPU [MB] 30

Table 6.2: List of specifications of a selected group of nodes from the Idun cluster.

6.2 Benchmarking
A set of benchmarking tests are used to analyse the hardware limitations of the chosen
nodes from Table 6.2, before running the proxy application.

6.2.1 Roofline Model

A roofline model is a prediction of peak performance, shown in Fig. 6.1, which is de-
cided by the maximum floating point performance and the maximum bandwidth, given
the arithmetic intensity of the application. By running benchmarking tests, the peak band-
width and FLOP/s are estimated, in order to find the peak performance of the proxy
application given the hardware from the Idun cluster.

Peak Floating Point Performance

To find the maximum floating point performance, a benchmark of simple multiplications
of two matrices is used, as two matrices with size n × n gives O(n3)FLOP and O(n2)
memory operations. For large n, the floating point operations become so significantly
larger than memory operations that memory operations can be ignored when measuring
runtime.

The test has repeated function calls to DGEMM, which is a level 3 function routine
from the BLAS library, that calculates multiplication of two matrices A and B of size
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Figure 6.1: Illustration of the roofline model, that shows peak performance given the arithmetic
intensity of a program. This is decided by the maximum bandwidth and floating point performance,
where bandwidth is the gradient of the slope line and maximum FLOP/s is the horizontal line.

M ×K and K × N , resulting with matrix C of size M × N [39]. The two constants α
and β are multiplied with the matrices, making

C ← αAB + βC (6.1)

This adds up to

MNK +MNK + 2MNFLOP = 2MN · (K + 1)FLOP (6.2)

The benchmark sets the same matrix size n, giving M = N = K = n and updating
Eq. (6.2) to 2n2(n + 1)FLOP . The runtime is measured for each call to the DGEMM
function, and since memory operations are insignificant in runtime for large n, the per-
formance is estimated by dividing the number of FLOP with the runtime. The highest
performance of 500 function calls is selected as the peak performance. The matrix size
n = 7000 and n = 10000 is used for testing, and then increased until the peak perfor-
mance stops improving.

Peak Memory Bandwidth

An estimate of the maximum bandwidth can be found by running benchmark of memory
operations. OpenMP has a thread affinity policy that decides how the threads are assigned
to the different cores of the hardware. The peak bandwidth estimate can be confirmed
by comparing the results using affinity of scatter and compact, and see if they behave as
expected when testing for an increasing number of threads.

The node selected from the Idun cluster has two CPUs of 12 cores each. Fig. 6.2
shows the order threads are allocated the cores. The affinity scatter distributes the threads
evenly across the CPUs, while compact fills up one CPU at a time. While compact is only
utilizing one CPU, it is expected to reach towards half the bandwidth of scatter, since it
has half the resources. When all 24 cores are utilized, scatter and compact are expected to
reach the same maximum bandwidth.
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The benchmarking test measures the time to access the memory of a 100MB array
of doubles, and uses the arithmetic mean of the runtime for 50 tests. This is repeated for
both affinities, scatter and compact, and for all number of threads, from 1 to 24. The peak
bandwidth is selected from the highest value of the tests.

Figure 6.2: The order threads are distributed across the cores of the Idun cluster, with OpenMP
thread affinity for compact and scatter. The compact affinity fills up one CPU at a time, and scatter
distributes the threads evenly.

6.2.2 Communication

The benchmarking of communication is a test of MPI communication between ranks.
Fig. 6.3 shows three different ways of MPI communication, where the communicating
ranks can be on the same CPU, on different CPUs, but within the same node, and on two
different nodes. The test aims to find the communication time for all three variants, by
finding the latency α and MPI bandwidth β for the Hockney model

t(n) = α+ β−1n (6.3)

for a message size n.
The latency α is found through a ping pong test, where two ranks send a message of

1B to the other repeatedly, so the time spent on latency is significantly longer than the
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time sending and receiving the message. The latency is estimated by dividing the runtime
with the number of repetitions, which is set to 1000000 for the benchmark.

The MPI bandwidth β is estimated as the gradient of the communication time for an
increasing message size. For each of the three communication variations from Fig. 6.3,
the benchmarking test samples the communication time of a 100 different arrays of sizes
from zero to 16KB. The message size of the application is not expected to exceed 12KB,
which is further discussed in Section 6.3.2. Each test is repeated 50 times, and the average
time is used.

Figure 6.3: The three types of communication between ranks, which can be between two ranks on
the same CPU, between two ranks on different CPU, but on the same node, and between two ranks
on different nodes.

6.3 Application Prework
The proxy application uses Mehamn harbor for all its tests. Before running the proxy
application, the configurations of the shallow water equations must be set. In addition, a
structural analysis can be made, given the chosen sizes of the vertices V .

6.3.1 SWE Configuration
The application consists of a repeated processing of a triangulation. From the BSP model,
the runtime is given as a sum of supersteps,

S∑
s=1

ts =

S∑
s=1

(ws + ghs + l) =

S∑
s=1

(tcomp + tcomm − toverlap) (6.4)

where tcomp represents the time to compute the SWE. From Section 2.3.4, the discretiza-
tion of SWE is

ρηn+1
i = ρηni · w +

∑
j∈Adj(i) ρη

n
j

|Adj(i)|
· (1− w)−∆t ·

∑
j∈Adj(i)

Fi,j(ρη) (6.5)
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ρηun+1
i = ρηun

i · w +

∑
j∈Adj(i) ρηu

n
j

|Adj(i)|
· (1− w)−∆t ·

∑
j∈Adj(i)

Fi,j(ρηu) (6.6)

and

ρηvn+1
i = ρηvni · w +

∑
j∈Adj(i) ρηv

n
j

|Adj(i)|
· (1− w)−∆t ·

∑
j∈Adj(i)

Fi,j(ρηv) (6.7)

for each triangle i, where Adj(i) are all the neighbors of i. A time step n from the formula
is presented as a superstep from the BSP model.

The SWE configurations includes setting the attributes needed for the SWE formula,
and setting the initial state for the first superstep.

Attributes

Table 6.3 lists the number of supersteps, the number of time samples taken from the super-
steps, and constants from Eq. (6.5), Eq. (6.6) and Eq. (6.7). There are fewer time samples
than supersteps to give time for the hardware to warm up.

Attribute Value
Supersteps 5000

Time samples 40
∆t 0.05
g 9.81
ρ 997.0
w 0.4

Table 6.3: List of constants for the discretization of the Shallow Water Equations from Eq. (6.5),
Eq. (6.6) and Eq. (6.7). In addition, supersteps, the number of iterations of the formula, and time
samples are listed.

Initial State

The first superstep starts with a drop at the center of the triangulation, giving a lower mass
than its surroundings, which will force wave propagation out of the center for the next time
steps. The initial momentum is set as zero, making

ρηu0
i = 0 (6.8)

and
ρηv0i = 0 (6.9)

The drop has a circular shape with a radius of

r =
width+ height

2
· 1
10

(6.10)
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where width and height are the maximum axes sizes of the triangulation. For each trian-
gle i, the horizontal and vertical distance to the center is defined as

c(xi) = xi −
width

2
(6.11)

and

c(yi) = yi −
height

2
(6.12)

given the x-coordinate xi and y-coordinate yi. An exponential function is used to make an
initial drop shape, making the mass for each triangle i

ρη0i =


1

1000

(
1− 1.5 exp

(
−4c(xi)

2

width
− 4c(yi)

2

height

))
, if c(xi)

2 + c(yi)
2 < r2

ρ

1000
, otherwise

(6.13)
Fig. 6.4 shows the initial mass for the triangulation for 20000 vertices, based on Eq. (6.13).

Figure 6.4: The initial state of the triangulation of Mehamn harbor of 20000 vertices. The height of
each dot represents the mass ρηi for triangle i from Eq. (6.13). The momentum for both ρηui and
ρηvi for triangle i are zero, from Eq. (6.8) and Eq. (6.9).
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6.3.2 Triangulation

After a triangulation is made, given a number of vertices V , the triangular sizes T , Thalo

and Tneumann are compared with their estimations. This further validates the performance
models of application runtime and scaling, as they are dependent on the parameters of the
triangular structure.

Table 6.4 lists a subset of the vertices V used in the application test, between size
50000 and the maximum 160000, with the lower and upper bound of triangles T , Halo
triangles Thalo and Neumann triangles Tneumann. Thalo can vary depending on the num-
ber of ranks, where the average of the maximum Thalo for each configuration is used. The
triangular bounds to be compared with are taken from Section 5.1.1 and Section 5.1.2.

V T Thalo Tneumann

[V − 2, 2V − 4] [0, V − 2] [3, 4V − 8]
50000 [49998, 99996] [0, 49998] [3, 199992]
100000 [99998, 199996] [0, 99998] [3, 399992]
200000 [199998, 399996] [0, 199998] [3, 799992]
400000 [399998, 799996] [0, 399998] [3, 1599992]
800000 [799998, 1599996] [0, 799998] [3, 3199992]
1600000 [1599998, 3199996] [0, 1599998] [3, 6399992]

Table 6.4: List of initial vertices and the upper and lower triangular bounds from Section 5.1.1 and
Section 5.1.2.

The gap between the lower and upper bound is too large to make an accurate validation
of the performance models. Since only Mehamn harbor is used, an estimation of the
triangular sizes is applied, which is found in Section 5.3.1. Table 6.5 lists the same vertices
V from Table 6.4 and the estimates of the triangular sizes T , Thalo and Tneumann. The
ranks communicate by exchanging Halo triangles Thalo. The maximum expected size
for Thalo of 1417 Halo triangles gives an overestimate of a maximum message size of
1500 · 8 = 12KB.

V T Thalo Tneumann

2V
√
V · 1.12 8.5

√
V · 1.12

50000 100000 250.44 2128.74
100000 200000 354.18 3010.49
200000 400000 500.88 4257.47
400000 800000 708.35 6020.98
800000 1600000 1001.76 8514.95
1600000 3200000 1416.70 12041.95

Table 6.5: List of initial vertices and the triangular estimations from Section 5.3.1.
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6.4 Application Test
The proxy application is run for the triangulation of Mehamn harbor. The performance
model is compared with the sampled runtime of the application, for different setups of
scaling and distribution of hardware cores.

6.4.1 Runtime Test
A runtime test is made for all application runs, where the time tcomp and tcomm for differ-
ent scaling and hardware setups are compared with the performance models.

From Section 5.3.2, the computation time tcomp for processing Mehamn harbor is
estimated as

tcomp =

(
210V

ranks
+

285.6
√
V

ranks
+ 49.28

√
V

)
8B

bandwidth · threads
(6.14)

given the number of ranks and threads, and the number of vertices V . The maximum
bandwidth of the roofline benchmarking test, from Section 6.2.1, is used as an overesti-
mated bandwidth for the prediction of tcomp.

The communication time tcomm is estimated as

tcomm = 6 ·
(
β−1(8B ·

√
V · 1.12) + α

)
(6.15)

The proxy application measures both tcomp and tcomm through the MPI function
MPI Wtime(), which is sampled for each rank. The ranks send each time sample to the
master rank, and use the average value. After all iterations of the supersteps are finished,
the average of the time samples is found through the general formula

t̄ =

∑40
i=1 ti
40

(6.16)

for the runtime t and for 40 samples from Table 6.3. The standard deviation,

SD =

√
Σ40

i=1(ti − t̄)2

39
(6.17)

is used to check that the measured runtime is stable.

Computation Partitions

The computation time tcomp is divided into three parts p1, p2 and p3, which are from
Section 5.3.2 estimated as

p1 =

((
8.5
√
V · 1.12

ranks

)
· 8+(

8.5
√
V · 1.12

ranks
+ 2 ·

√
V · 1.12 + 2V

ranks

)
· 22

)
8B

bandwidth · threads

(6.18)
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p2 =
2V

ranks
47 · 8B

bandwidth · threads
(6.19)

and

p3 =
2V

ranks
36 · 8B

bandwidth · threads
(6.20)

for the number of ranks and threads and the number of vertices V . Each part is measured
to be compared with the estimation formula.

6.4.2 Comparison with Benchmark
The results from the application can be compared with the hardware benchmarking tests,
by using the measured computation and communication time tcomp and tcomm.

Roofline Model

The results from the application is compared with the roofline model from the bench-
marking tests in Section 6.2.1, by comparing application performance of FLOP/s over
arithmetic intensity.

From Section 5.2.1, the number of floating point and memory operations are(
18 · Tneumann

ranks
+ 36 · Thalo + 137 · T

ranks

)
FLOP (6.21)

and (
240 · Tneumann

ranks
+ 352 · Thalo + 840 · T

ranks

)
B (6.22)

given the triangular sizes T , Thalo and Tneumann. The arithmetic intensity of each appli-
cation test is found by dividing the number of floating point operations with the number of
memory operations, and the performance by dividing the number of floating point opera-
tions with the runtime tcomp.

The performance from the application test is plotted on the roofline model made from
benchmarking, in order to compare peak performance from the roofline with the appli-
cation performance, given the same arithmetic intensity. The configurations used for the
comparison are taken from Section 6.4.4, where a single full node of 24 cores are utilized.

Communication

The benchmarking test for MPI communication, from Section 6.2.2, is compared with
the communication time from the application test, by using the estimations of α and β in
Eq. (6.15) and comparing it with tcomm.

There are three types of α and β from the benchmarking tests, which is communication
between two cores on the same CPU, two cores on different CPUs and two cores on dif-
ferent nodes. The measured communication time for the application does not differentiate
between the first two, and has only communication between two cores on the same node
and two cores on different nodes. The measurements of communication time tcomm are
taken from Section 6.4.6, which has configurations with multiple nodes.
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6.4.3 Load Balancing

Each rank samples the computation time tcomp, which is compared to the other ranks, in
order to show the time distribution and determine the load balance of the ranks. The ranks
are run in serial, by only spawning a single thread each. OpenMP uses a scheduler to
balance out the threads spawned by each rank, so an even load balance for threads can be
assumed. The ranks used are

ranks ∈ [1, 2, 4, 8, 16, 24] (6.23)

6.4.4 Ranks and Threads

The number ranks and threads can be configured arbitrarily. In order to compare the
effects of having different configurations of ranks and threads, a single full node with
full utilization of all 24 cores are used, such as in Fig. 6.5, which has a full utilized node
of four ranks with six threads per rank.

Figure 6.5: The distribution of four ranks with six threads each rank, for a node from the Idun
cluster. Each node has two CPUs of 12 cores. A rank can be assigned to multiple cores and will
spawn threads to cover them. All the CPUs do not necessarily have to be covered, as the number of
cores for each rank is decided through the configuration.

The computation time tcomp is used to compare the variations of ranks and threads, and
is also compared with the estimation Eq. (6.14). Table 6.6 lists the setup for the application
test, which tests all variations of ranks and threads for a fully utilized node, and for the
same vertices V .

6.4.5 Scaling of Computation Time

For the scaling tests of the application, the computation time tcomp is compared with the
computation time estimation Eq. (6.14) for strong and weak scaling. The speedup and
efficiency are also measured. Both cases have a scaling of cores, which is the product of
ranks and threads. Ranks and threads are separated for different tests, where one is fixed
to 1 while the other is scaled. The number of vertices V represents the problem size, since
the number of triangles T is bounded by V .
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Cores Ranks Threads Vertices
24 24 1 50000 100000 200000
24 12 2 50000 100000 200000
24 8 3 50000 100000 200000
24 6 4 50000 100000 200000
24 4 6 50000 100000 200000
24 3 8 50000 100000 200000
24 2 12 50000 100000 200000
24 1 24 50000 100000 200000

Table 6.6: List of test configurations for a full utilization of a node from Idun. All 24 cores are
covered for all combinations of ranks and threads, and are tested for all initial vertices.

The node selected from the Idun cluster has two CPUs of 12 cores each, where the
scaling tests are run from 1 to all 24 cores. The cores allocated are similar to the OpenMP
compact affinity from Fig. 6.2, where the cores close to one other and on the same CPU
are allocated first.

Strong Scaling

Amdahl’s law of strong scaling uses a constant problem size, meaning V must be constant
for an increased number of N processing units, so each core gets a smaller number of
triangles to process. The speedup is

speedupN =
t1(V )

tN (V )
(6.24)

where tN (V ) is the computation time tcomp given V as the input size and t1(V ) is the
computation time for a serial program. The efficiency is

efficiencyN =
speedupN

N
(6.25)

Table 6.7 lists the configurations for ranks and threads, so both are scaled for separate
tests, and the number of vertices V for each configuration.

Weak Scaling

Gustafson’s law of weak scaling uses a scaled problem size as the number of N processing
units increases. V must be scaled so that each core has the same number of triangles to
process. The efficiency is

efficiencyN =
t1(V )

tN (V ·N)
(6.26)

where tN (V ) is the computation time tcomp given V as the input size and t1(V ) is the
computation time for a serial program. The speedup is

speedupN = efficiencyN ·N (6.27)
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Cores Ranks Threads Ranks Threads Vertices
1 1 1 1 1 50000 100000 200000
2 2 1 1 2 50000 100000 200000
4 4 1 1 4 50000 100000 200000
8 8 1 1 8 50000 100000 200000

16 16 1 1 16 50000 100000 200000
24 24 1 1 24 50000 100000 200000

Table 6.7: List of configurations for strong scaling for both ranks and threads separately. While one
value is scaled, the other is fixed to one, so the number of cores is scaled the same way. All vertices
are tested for both scalings.

Table 6.8 lists the configurations of ranks and threads, where each is scaled for a sepa-
rate test. The number of vertices are scaled so each core has a constant number of triangles.

Cores Ranks Threads Ranks Threads Vertices
1 1 1 1 1 3125 6250 12500
2 2 1 1 2 6250 12500 25000
4 4 1 1 4 12500 25000 50000
8 8 1 1 8 25000 50000 100000

16 16 1 1 16 50000 100000 200000
24 24 1 1 24 75000 150000 300000

Table 6.8: List of configurations for weak scaling for both ranks and threads separately. While one
value is scaled, the other is fixed to one, so the number of cores is scaled the same way. The vertices
are scaled so each core has a constant number of vertices.

6.4.6 Node Scaling

The application is also scaled for up to eight nodes, where each node has a full utilization
of all 24 cores, shown in Fig. 6.6. Fig 6.6 has a setup of two nodes, with six ranks for each
node and four threads for each rank. The computation time tcomp, the speedup and the
efficiency are compared for strong and weak scaling.

The tests for node scaling have two configurations of ranks and threads, with six ranks
per node and four threads per rank, and with eight ranks per node and three threads per
rank.

Strong Scaling

Table 6.9 lists the configurations for strong scaling of nodes, where both variations of ranks
and threads are tested for all number of vertices. The speedup is

speedupN =
t1(V )

tN (V )
(6.28)
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Figure 6.6: The distribution of six ranks per node and four threads per rank, for two nodes from
the Idun cluster. Each node has two CPUs of 12 cores, adding up to 48 cores. Rank 5 and 6 must
communication across the nodes, while the other ranks only communicate within the same node.
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where N is the number of nodes. The value tN (V ) is the computation time tcomp given
V as the input size and t1(V ) is the computation time for a single node. This gives an
efficiency of

efficiencyN =
speedupN

N
(6.29)

Nodes Cores Ranks Threads Ranks Threads Vertices
1 24 6 4 8 3 100000 200000
2 24 6 4 8 3 100000 200000
4 24 6 4 8 3 100000 200000
8 24 6 4 8 3 100000 200000

Table 6.9: List of configurations for strong node scaling, where each node is fully utilized. The
cores are filled up with six ranks and four threads, and eight ranks and three threads, adding up to 24
cores. All initial vertices are tested for both variants of ranks and threads.

Weak Scaling

Table 6.10 lists the configurations for weak scaling of nodes, with both variations of ranks
and threads. The number of vertices is scaled so the number of triangles is constant for
each node. This gives an efficiency of

efficiencyN =
t1(V )

tN (V ·N)
(6.30)

where N is the number of nodes. The value tN (V ) is the computation time tcomp given V
as the input size and t1(V ) is the computation time for a single node. The speedup is

speedupN = efficiencyN ·N (6.31)

Nodes Cores Ranks Threads Ranks Threads Vertices
1 24 6 4 8 3 100000 200000
2 24 6 4 8 3 200000 400000
4 24 6 4 8 3 400000 800000
8 24 6 4 8 3 800000 1600000

Table 6.10: List of configurations for weak node scaling, where each node is fully utilized. The
cores are filled up with six ranks and four threads, and eight ranks and three threads, adding up to
24 cores. The initial vertices are scaled for both variants of ranks and threads, so each node has a
constant number of vertices.
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Chapter 7
Results and Discussion

This chapter takes the results from running the proxy application for a triangulation of
Mehamn harbor, with the configurations of Section 6.3.1, and makes a comparison with
the performance predictions.

First, the prediction of the parameters of the triangular structure are compared with
the generated triangulation for all application tests, which are used to validate the per-
formance models, as they are based on the triangular parameters. Then, the roofline and
Hockney model, based on the results from the benchmarking tests, are compared with the
application runtime. The benchmarking results are used to validate assumptions made for
the performance models, including a memory bound computation time, and a constant
communication time.

The analysis separates computation time and communication time, which are com-
pared with the performance models. Since a constant communication time is assumed in
Section 5.3.2, the performance tests for scaling are focused on computation time. This
includes results for load balancing, comparing the distribution of threads and ranks, and
comparing the computation time with its prediction, with both strong and weak scaling of
ranks and threads. A scaling of nodes from the Idun cluster is also provided, where each
node has a full utilization of all cores.

7.1 Triangulation

The triangulation of Mehamn harbor, from the configurations of Section 6.3.2, is compared
with the predictions from 5.1 and 5.3.1, for the triangles T , Halo triangles Thalo and
Neumann triangles Tneumann, given the number of vertices V .
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7.1.1 Total Triangles
Fig. 7.1 shows the number of generated triangles T for vertices V between the size 50000
and 1600000. The estimation of T and the upper and lower bounds are

T ≈ 2V ∈ [V − 2, 2V − 4] (7.1)

which are shown in the figure.

Figure 7.1: The number of generated triangles T from the triangulation of Mehamn harbor, given
the number of vertices V . The dotted lines shows the upper and lower limits of T , where T is
estimated to follow the upper limit.

The number of triangles T increases almost in the same rate as the predicted T , but
can be seen to be slightly smaller for large T . This can be attributed to the geometry
of Mehamn harbor. The vertices are spread out in grid patterns, making room for two
triangles in each grid. A rectangular surface would give 2V triangles for large V , but since
Mehamn harbor has an irregular shaped border surrounding the surface, the grid pattern is
cut off, which can decrease the total number of triangles.

7.1.2 Halo and Neumann Triangles
Fig. 7.2a and Fig. 7.2b show the number of generated Halo triangles and Neumann tri-
angles, for the number of vertices V . The estimation and the upper and lower bounds of
Thalo and Tneumann are

Thalo ≈
√
V · 1.12 ∈ [0, V − 2] (7.2)

and
Tneumann ≈ 8.5

√
V · 1.12 ∈ [3, 4V − 8] (7.3)
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(a) Thalo compared to estimation
√
V 1.12. (b) Tneumann compared to estimation 8.5

√
V 1.12.

Figure 7.2: The number of generated Halo triangles Thalo and Neumann triangles Tneumann of
Mehamn harbor, given the number of vertices V . The dotted lines are the predictions of Thalo and
Tneumann.

where only the estimations are shown in the figure.
Thalo follows the prediction, but is starting to outgrow the prediction at 1600000 ver-

tices. This is attributed to the geometry of Mehamn harbor, which is used to find the
prediction formula. The prediction is based on a uniform distribution of vertices, where
irregularities are expected from the map of Mehamn, due to it having four sections with
different densitites of vertices.

Tneumann follows the prediction up to 800000 vertices, and is outgrowing the predic-
tion for larger V . This is also attributed to the geometry of Mehamn harbor, used to find
the prediction formula. Tneumann is predicted to grow in the same rate as 8.5·Thalo, where
the constant 8.5 is taken from a triangulation of 20000 vertices. A triangulation of 20000
vertices will take shortcuts and ignore small irregular shapes along the border, because
of the low resolution. As V increases, details such as small slopes are included, making
Tneumann grow slightly faster than Thalo, which is represented as a straight horizontal line
of the triangulation.

The curvature of the measured Thalo and Tneumann indicate that they will stay below
their upper bounds of V − 2 and 4V − 8, as the number of vertices increases indefinitely,
and continue to grow significantly slower than the number of triangles T . This is attributed
to the shape of Mehamn harbor, which has a large and dense two dimensional area, while
Thalo and Tneumann are based on one dimensional borders.

7.1.3 Validation of Performance Formula

For the vertices up to size 1600000, which includes all vertices sizes of the application
tests, T , Thalo and Tneumann are confirmed to follow their prediction sizes, meaning they
can all be predicted based only on the number of vertices V . This confirms the prediction
formulas of the application tests from Section 6.4.1, which already use the predicted values
of T , Thalo and Tneumann.

For other triangulations, it may not be possible to accurately predict the triangular
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sizes, other than knowing the upper and lower bounds. This can make performance predic-
tions inaccurate, if they end up having a wide range between the upper and lower bound of
the performance formulas. In this case, it can be useful to know if T is significantly bigger
than Thalo and Tneumann, which is the case for triangulations of large areas, to determine
whether the effects from Thalo and Tneumann can be ignored for large V . T can also be
estimated as 2V , if the triangulation has a large and dense area.

7.2 Comparison with Benchmarking
The benchmarking tests from Section 6.2, for making a roofline model of peak perfor-
mance and for making a model for MPI communication, are compared with the application
performance and application communication from Section 6.4.2.

7.2.1 Roofline Model
The roofline model gives an estimation of the maximum possible performance, given the
arithmetic intensity of a program, and can be used to confirm if a program is compute or
memory bound.

Benchmarking

The estimation of peak floating point performance is based on matrix multiplication tests,
and gave a maximum performance of 357.785GFLOP/s, for matrices of n × n where
n = 7000. Since the application is memory bound, it is outside of this scope to test if
rectangular matrices give a higher performance.

Fig. 7.3 shows the measured bandwidth from the benchmarking tests, where the peak
memory bandwidth is 42.677GB/s. The figure displays the bandwidth for both OpenMP
thread affinity compact and scatter for an increasing number of threads. An analysis of
their bandwidths pattern are used to assure that the peak memory bandwidth was found.
Compact fills up the cores of one CPU at a time, and for the first 12 threads, it reaches
the maximum bandwidth of a single CPU with the value 20GB/s, which is half of the
maximum bandwidth. For the threads added after, the bandwidth increases linearly, as the
second CPU gets increasingly utilized. Scatter distributes the threads evenly for the two
CPUs, and reaches the peak memory bandwidth faster than compact. An even number of
threads with scatter would utilize the CPUs more than an odd number, which is shown as
an alternating pattern on the figure.

Fig. 7.4a shows the roofline models based on the estimated peak floating point perfor-
mance and on the estimated peak memory bandwidth. Fig. 7.4b shows the same model
with the upper and lower limits of the arithmetic intensity of the application. With an up-
per limit of 0.1631, the application is memory bound, meaning the application is expected
to spend a significantly longer time for memory operations than for computations.

Runtime Test

Fig. 7.5 shows the estimated roofline model from Fig. 7.4b with the performance results
from the application, where all 24 cores are utilized for a single node. The application per-
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Figure 7.3: Measured bandwidth from benchmarking test, for increasing number of threads, with
OpenMP thread affinity compact and scatter.

(a) The estimated roofline model from the
benchmarking tests.

(b) The roofline model with the boundaries of the arith-
metic intensities for the application.

Figure 7.4: The roofline model made from benchmarking tests on the Idun cluster, with the maxi-
mum and minimum boundaries of the arithmetic intensity of the proxy application. The minimum
arithmetic intensity, given a single rank, is also included.
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formance is confirmed to be memory bound, since the performance is below the rooftop
based on the peak memory bandwidth and has a low arithmetic intensity. The arithmetic
intensity of the application is approximately the value of the upper bound. This is at-
tributed to the geometry of Mehamn harbor, which has a significantly larger number of
triangles T than Thalo and Tneumann. From Section 5.2.1, the upper limit of arithmetic
intensity is caused by having a significantly large T , and the lower limit of arithmetic in-
tensity is caused by having a significantly large Thalo or ranks. The number of ranks is
limited by the number of hardware cores, and cannot outgrow the number of triangles.

The performance formula from Section 5.2.1 is based on the assumption that the appli-
cation is memory bound, which is validated by having that assumption confirmed through
the analysis of the roofline model. The maximum bandwidth from the roofline model is
also used as an estimate of the bandwidth in the performance formula, which is expected to
be overestimated, since the application performance is lower than the rooftop performance.

Figure 7.5: The roofline model with the boundaries of arithmetic intensity from Fig. 7.4b, and with
the application performance for all tests utilizing all 24 cores on a single node of the Idun cluster.

7.2.2 Communication

The Hockney model gives an estimation of the communication time between two process-
ing units given a message size, and is used for communication benchmarking.

Benchmarking

The communication formula of the Hockney model is

t(n) = α+ β−1n (7.4)
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where t(n) is the communication time given the message size n and the constants α and
β. There are three types of communications explained in Section 6.2.2, for cores on the
same CPU, different CPU and on different nodes, which gives three versions of α and β.

Fig. 7.6 shows the communication time for messages up to 15000B, which covers the
maximum size of the Halo triangles Thalo sent for all application tests. The three different
types are all linear, with the exception of communication within the same node for small
messages, which is attributed to latency due to packaging protocols. The communication
time between nodes are longer than the other two, which is attributed to software cost
of making system calls to the network rather than using the memory bus, in addition to
having a longer physical communication distance.

Figure 7.6: The MPI communication time from the benchmarking tests of the three types, which
are communication between cores on the same CPU, on different CPU and on different nodes.

Table 7.1 lists the estimated α and β for the three types of communication. The con-
stants of α are measured from ping pong tests described in Section 6.2.2, and the constants
of β are taken from the gradients of each result in Fig. 7.6. The constants of α are small
compared to β, which indicates a small communication latency. The α constants have the
lowest value for communication within the same CPU, and the highest value for commu-
nication between nodes, while the β constants have the highest value for communication
within the CPU, and the lowest value for communication between nodes. The commu-
nication between cores on the same CPU and different CPU have more similar constants
than communication between nodes. This is attributed to the physical network and dis-
tance, where two nodes are expected to have a greater distance and slower network than
any communication link within the same node.

The application tests do not differentiate between communication of different and same
CPU within the same node, as it is assumed they have a close communication time com-
pared to communication between two nodes. The results from Table 7.1 can be used to
confirm this assumption.
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Constant Different nodes Different CPUs Same CPU
α 2.829573µs 1.162463µs 0.728319µs
β 2.013228GB/s 5.657298GB/s 7.218045GB/s

Table 7.1: The measured constants α and β of the extended Hockney model. There are three types
of communications, which are for cores on the same CPU, cores on different CPU, and cores on
different nodes.

Runtime Test

The application tests for MPI communication are taken from the configurations for node
scaling from Section 6.4.6. Each node has utilization of all 24 cores, with two configu-
rations of ranks and threads, of six ranks and four threads, and of eight ranks and three
threads. There are two types of communication, which are between two cores on the same
node, and two cores on different nodes.

Fig. 7.7 shows the average measured communication time for the application, over an
increasing number of nodes. The total number of vertices is 200000, which makes approx-
imately 500 Halo triangles to be sent for each message. The communication time between
nodes is more varied compared to communication time within the same node. This is
attributed to each node having different communication properties, as they are different
physical machines. This makes the communication time dependent on which node from
the cluster is chosen. The number of nodes does not seem to affect communication time.
This can be applied to the communication prediction, where the same communication time
is assumed for any number of nodes.

Figure 7.7: The average measured MPI communication time for the application tests with a total of
200000 vertices, for an increasing number of nodes. There are two types of communication, with
messages sent between nodes and sent between cores within the same node.
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The constants α and β from Table 7.1 are used to formulate a prediction of communi-
cation time

tcomm = 2 · 3 ·
(
β−1(8B · Thalo) + α

)
(7.5)

which is described in Section 5.2.3. Fig. 7.8a and Fig. 7.8b show a comparison of the
predicted and measured communication time over the number of Halo triangles Thalo.
The results for node communication are split into three groups and plotted separately,
because of the assumption that communication is dependent on the specific node selected.
The figure only shows the lowest group of node communication, as there is not enough
data from the other two to be used in comparison to the prediction. The arithmetic mean
of the time with the standard deviation for each group is listed in Table 7.2, which confirms
the split of the different communication times.

Group Average communication time
Lowest 0.286908± 0.023409
Middle 0.582280± 0.073029
Highest 1.025291± 0.010927

Table 7.2: The average communication time between nodes split into three different groups.

The prediction from Fig. 7.8a shows a similar communication time for cores within the
same node, to the core communication from Fig. 7.8b, in addition to having an increas-
ing communication time with the number of Halo triangles. The node communication
from the lowest group is also increasing slightly, following a linear pattern fitting for a
Hockney model, but is not corresponding to the prediction of node communication. This
is attributed to latency due to the application having a heavy workload of computations
between each communication, which take up significantly more local memory than Halo
triangles, causing cache pollution.

7.2.3 Benchmarking and Performance Models
Section 5.2.1 and Section 5.2.3 give the estimation of computation time tcomp and com-
munication time tcomm

tcomp =

(
240 · Tneumann

ranks
+ 352 · Thalo + 840 · T

ranks

)
B

bandwidth · threads
(7.6)

and
tcomm = 2 · 3 ·

(
β−1(8B · Thalo) + α

)
(7.7)

The benchmarking results show that the roofline model fits better for the prediction of
tcomp, than the Hockney model fits for the prediction of tcomm. The comparison of the
roofline model and the application measurements confirms that the application is memory
bound, which is further assumed for the performance models. The performance mod-
els can in addition use the maximum memory bandwidth to make an overestimate of the
predicted computation time, and use that to predict scaling characteristics. The Hock-
ney model confirmed a constant communication time for a different number of processing
units. The communication time of the application is expected to grow significantly slower
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(a) Predicted communication time from Eq. (7.5). (b) Measured communication time.

Figure 7.8: Comparison of predicted and measured MPI communication, for the number of Halo
triangles Thalo being sent. The prediction has three types of communication, for cores on different
nodes, different CPUs and same CPU, while the application uses two types, for cores on different
and same nodes. The nodes with different communication time are separated into three groups,
where only the fastest group is displayed.

than the computation time of the application, which is due to the communication time be-
ing dependent on the Halo triangles, while the computation time is dependent on all the
triangles. The overall communication time can thereby be confirmed to stay constant, and
the performance models can be focused on the computation time.

7.3 Scaling of Computation Time

The analysis of the application’s scaling characteristics is mainly focused on the compu-
tation of the triangulation of Mehamn harbor. This includes both scaling of resources and
problem size, which is made by adding processor cores and nodes from the Idun clus-
ter, and by increasing the number of vertices V . The number of ranks and threads in the
application scales the parallel resources, explained in Section 5.2. The predictions from
Section 5.3.2 are compared with the measurements from Section 6.4.3, Section 6.4.4, Sec-
tion 6.4.5 and Section 6.4.6.

The results from Section 7.1 are used to confirm the predictions of the triangular sizes
T , Thalo and Tneumann for Mehamn harbor, which are applied to the performance predic-
tions of the computation time tcomp, given as

tcomp =

(
210V

ranks
+

285.6
√
V

ranks
+ 49.28

√
V

)
8B

bandwidth · threads
(7.8)

The results from the roofline model from Section 7.2 are used to confirm that tcomp can be
estimated through counting memory operations, in addition to giving a maximum band-
width to the tcomp formula, so Eq. (7.8) can used for further scaling predictions.

Since the scaling analysis is focused on computation time, the prediction of the com-
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munication time

tcomm = 6 ·
(
β−1(8B ·

√
V · 1.12) + α

)
(7.9)

is not used for scaling prediction. The results from Section 7.2 show that communication
time is unaffected by the number of processing units, meaning it has little effects from
a scaling of nodes. The communication time is also dependent on the Halo triangles
Thalo =

√
V ·1.12, which makes it grow significantly slower than tcomp, dependent on the

total triangles T = 2V . This makes communication time constant for the problem size V ,
as computation time has a significantly longer runtime. For triangulations of other maps,
such as an irregular triangulation of a one dimensional horizontal line, the communication
time can be scalable, since it would give approximately the same number of Thalo and T .

7.3.1 Load Balancing

For a given number of ranks, the overall computation time tcomp equals the computation
time of the slowest rank, leaving the other ranks to wait. This overhead grows as the
problem size and the number of processing units increases, which makes load balance
affect the scaling abilities.

Fig. 7.9 shows the computation time, measured in proportions for each rank. Each rank
makes the computations in serial, since they only have a single thread each. For up to all
24 numbers of ranks, the workload is balanced, which adds little overhead for application
scaling.

Figure 7.9: The computation time for each rank, measured in proportions of one other, where each
rank has one thread.
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7.3.2 Ranks and Threads

The prediction formula from Eq. (7.8) estimates the same runtime for both scaling of ranks
and threads, where the extra runtime for ranks can be ignored, since it is only bigger by a
factor of

√
V . The prediction tcomp is O(V ), meaning it is expected to scale linearly for

the problem size V .
Fig. 7.10a and Fig. 7.10b show a comparison of predicted and measured computation

time for different ranks and threads, where all 24 cores are utilized. The measured runtime
is about three time as high as the predicted runtime for 50000 and 100000 vertices, and
over six times as high for 200000 vertices. The time difference is attributed to the band-
width used in the prediction formula, which is the highest memory bandwidth from the
roofline benchmarking tests, making the prediction the highest attainable performance.

The predicted runtime shows a linear scaling for all vertices V , whereas the measured
runtime only has linear scaling for 50000 and 100000 vertices. This is attributed to the
local memory capacity. The selected nodes from the Idun cluster has a local memory of
60MB, described in Section 6.1.2. From Section 4.2.1 and Section 4.2.2 the triangles take
up a memory space of

Ttot · 128B + 11 · Ttot · 8B = (2V + 8.5
√
V · 1.12) · 216B (7.10)

with Ttot = T+Tneumann, where the memory storage of each number of vertices are listed
in Table 7.3. 50000 and 100000 vertices take up storage that fit in the local memory of 60B
while 200000 vertices surpasses it. This causes the latter to access main memory during
the computation, which is slower than accessing cache, and can hinder the scalability of
the problem size V .

Vertices Memory storage [MB]
50000 22.059807
100000 43.850265
200000 87.319614

Table 7.3: The memory storage for each number of vertices V , from Eq. (7.10).

The runtime prediction has the same performance for all combinations of ranks and
threads that add up to 24 cores, which is the maximum performance for a single node. The
runtime for 50000 and 100000 vertices have the same pattern for ranks and threads, while
the runtime of 200000 vertices is significantly longer for a single rank. This is attributed
to the overhead of OpenMP synchronization with multiple CPUs. The used nodes from
the Idun cluster have two CPUs with 30MB memory each. For an even number of ranks,
the triangles are completely separated on different CPUs, and are only interfering through
the MPI communication for halo exchange. For a single rank, there is no halo exchange
through MPI, and all cores from both CPUs have access to the same data, which can cause
delay when cores from different CPUs are accessing the same data on the main memory.
This would happen more frequently for 200000 vertices, which takes up a larger storage
space than the cache size. A higher frequency of cache pollution can also occur as the
cores from both CPUs with different cache memories needs access to the same data.
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The configuration of three ranks and eight threads with 200000 vertices give a slightly
longer computation time. This is attributed to overhead from OpenMP synchronization
with two CPUs, as one of the ranks will have four cores from each CPU that have access
to the same triangles from main memory. A setup of 24 ranks with one thread each has
also given a slightly longer computation time. This can be attributed to the overhead of
manually using MPI ranks, than the overhead of the internal handling of the OpenMP
threads.

(a) Runtime prediction for ranks and threads. (b) Measured runtime for ranks and threads.

Figure 7.10: The predicted and measured runtime for the numbers of ranks and threads that adds up
to all 24 cores, and for different number of vertices.

Fig. 7.11a and Fig. 7.11b compare the predicted and measured computation time for
ranks and threads configurations that add up to 24 cores, for each computation part p1, p2
and p3, and for 200000 vertices. From two ranks and upwards, predicted time for p1 is
longer than measured p1, in proportion to p2 and p3. This is attributed to caching. Sec-
tion 4.2.1 describes the memory storage of the application, where the triangles are stored
in a 128B array, and the values from the Shallow Water Equations are stored in eleven
different 8B arrays. In p1, the triangular array is only accessed for Neumann triangles,
which adds up to

Tneumann · 128B + 11 · Ttot · 8B = (8.5
√
V · 1.12) · 216B + (2V ) · 88B (7.11)

memory storage used. 200000 vertices use 36.12MB for p1, which fits in cache memory
of 60MB.

The configurations of a single rank give a similar distribution of p1, p2 and p3 for
predicted and measured runtime, making p1 slower. This is attributed to cache pollution,
and lack of cache optimization for p1. Since the cores from both CPUs have access to all
the data, an update in one of the cache memories will invalidate the data from the other.

7.3.3 Runtime Scaling
The analysis of scaling of ranks and threads are made separately, by measuring the com-
putation time for an increasing number of threads and an increasing number of ranks. The
results are compared with the performance model of Eq. (7.8).
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(a) Runtime prediction for ranks and threads. (b) Measured runtime for ranks and threads.

Figure 7.11: The predicted and measured runtime for the numbers of ranks and threads adding up
to all 24 cores, given 200000 vertices. The computation time is split in the three parts p1, p2 and p3.

Ranks

Fig. 7.12a and Fig. 7.12b show a comparison of the predicted and measured computa-
tion time for a strong scaling of ranks, with a single thread for each rank. They both
have the same pattern of a reduced runtime as more ranks are added, which increases par-
allel processing of the triangles. The predicted runtime is shorter by a factor of three,
which is attributed to the peak memory bandwidth used in the formula, as discussed in
Section 7.3.2. The measured runtime has a poorer scaling for 200000 vertices, which is
attributed to caching. Section 7.3.2 also discusses how 200000 vertices take up a larger
memory space than the cache size, from Table 7.3, which causes delay due to more main
memory accesses.

(a) Predicted computation time for ranks. (b) Measured computation time for ranks.

Figure 7.12: The predicted and measured computation time for a strong scaling of ranks, while hav-
ing a single thread per rank. Note that the measured time is approximately three times the predicted
time.

Fig. 7.13a and Fig. 7.13b show a comparison of predicted and measured computation
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time for weak scaling of ranks. The prediction formula estimates a constant runtime as the
number of ranks increases, since each rank has a constant problem size, and estimates a
linear scale as the number of vertices per rank increases. For up to eight ranks, the mea-
sured runtime is constant for increasing ranks, and scales linearly for increasing number of
vertices per rank. From 16 ranks, the runtime of 12500 vertices per rank increases. This is
attributed to caching, as an overfilled cache causes delay due to main memory accesses, as
discussed for strong scaling of ranks. Table 7.4 lists the memory storage for each number
of processes, which is referring to the number of ranks, and for each number of vertices
per process. The cache memory of 60MB is overfilled for 12500 vertices for 16 and 24
ranks, and for 6250 vertices for 24 ranks, but Fig. 7.13b only shows a measured overhead
for 12500 vertices. Section 7.3.2 discusses caching during the first compute phase p1, de-
spite having a larger storage space than the cache size, which could be the case for 6250
vertices, as it only takes up 65.60MB memory for 24 ranks.

(a) Predicted computation time for ranks. (b) Measured computation time for ranks.

Figure 7.13: The predicted and measured computation time for a weak scaling of ranks, while
having a single thread per rank. Note that the measured time is approximately three times or longer
than the predicted time.

Processes 3125 6250 12500
1 1.46MB 2.86MB 5.63MB
2 2.86MB 5.63MB 11.13MB
4 5.63MB 11.13MB 22.06MB
8 11.13MB 22.06MB 43.85MB

16 22.06MB 43.85MB 87.32MB
24 32.96MB 65.60MB 130.73MB

Table 7.4: The memory storage for weak scaling from Eq. (7.10), where each processing unit has a
constant number of vertices of 3125, 6250 and 12500.
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Threads

Fig. 7.14a and Fig. 7.14b show a comparison of predicted and measured runtime for strong
scaling of threads, while having a single rank, and Fig. 7.15a and Fig. 7.15b show the same
comparison for weak scaling. The scaling of threads have the same pattern as both strong
and weak scaling of ranks, where 200000 vertices have a poorer strong scaling and 12500
vertices per process have a poorer weak scaling. This is also attributed to caching, where
200000 and 12500 · 16 = 200000 vertices take up more storage space than the cache
size. The scaling of ranks and threads are different for large number of vertices, where the
overhead is worse for thread scaling. This is attributed to a main memory issues for two
CPUs when only having a single rank, which is discussed in Section 7.3.2.

(a) Predicted computation time for threads. (b) Measured computation time for threads.

Figure 7.14: The predicted and measured computation time for a strong scaling of threads, while
keeping a fixed singled rank. Note that the measured time is approximately three times the predicted
time.

(a) Predicted computation time for threads. (b) Measured computation time for threads.

Figure 7.15: The predicted and measured computation time for a weak scaling of threads, while
keeping a fixed singled rank. Note that the measured time is approximately three times or longer
than the predicted time.
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7.3.4 Speedup and Efficiency
A measurement of speedup and efficiency are made for both scaling of ranks and threads,
with respect to strong scaling from Amdahl’s law and of weak scaling from Gustafson’s
law.

Ranks

Fig. 7.16a and Fig. 7.16b show the strong speedup and efficiency for ranks. An ideal
speedup is linear, where there is no added overhead by increasing the number of ranks.
This is the case for 50000 and 100000 vertices, whereas 200000 vertices is falling in
speedup. This is attributed to having full cache memory, discussed in Section 7.3.3.

An ideal efficiency is a constant of the value 1, with each rank performing the same
as a single rank. The speedup of 100000 vertices is superlinear for two and four ranks,
meaning it has a higher efficiency than 1. This can be attributed to a suboptimal serial
performance. Shown for the computation time in Fig. 7.12b, the runtime is more than
twice the length between 50000 and 100000 vertices for a single rank, meaning it is not
scaling linearly over the problem size V for a serial application setup. A rank with a single
thread can only utilize a single CPU of 30MB memory space, where a 100000 vertices
take up a storage space of 43.85MB, from Table 7.3 in Section 7.3.2. The benchmarking
tests from Section 7.2.1 also showed a poorer bandwidth when using a single CPU.

(a) Strong speedup for ranks. (b) Strong efficiency for ranks.

Figure 7.16: The speedup and efficiency for strong scaling of ranks, while having a single thread
per rank.

Fig. 7.17a and Fig. 7.17b show the weak speedup and efficiency for ranks. The scal-
ing is similar to strong scaling from Fig. 7.16a and Fig. 7.16b, but has a larger fall in
speedup for 6250 and 12500 vertices per rank than the fall in speedup for 100000 and
200000 vertices for strong scaling. This is attributed to the scaling of the problem size,
as weak scaling increases the number of vertices V and takes up more memory space.
6250 vertices take up 65.60MB for 24 ranks and 12500 vertices take up 87.32MB for
16 ranks, which is larger than the cache size, and causes main memory accesses. There is
also a superlinear speedup for 12500 vertices with four ranks, which can be attributed to
an increased bandwidth, discussed for strong speedup for ranks.
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(a) Weak speedup for ranks. (b) Weak efficiency for ranks.

Figure 7.17: The speedup and efficiency for weak scaling of ranks, while having a single thread per
rank.

Threads

Fig. 7.18a and Fig. 7.18b show the strong speedup and efficiency for thread scaling, and
Fig. 7.19a and Fig. 7.19b show the weak speedup and efficiency for thread scaling. Both
strong and weak scaling have the same pattern as for strong and weak scaling for ranks,
where 200000 vertices is falling for strong speedup, and where 6250 and 12500 vertices
per process is falling for weak speedup. This is attributed to a full cache memory causing
frequent main memory accesses. There is also a superlinear speedup with 100000 ver-
tices for strong scaling of both ranks and threads, which is attributed to a poorer serial
performance of 100000 vertices due to both having a full cache and slower bandwidth.

The performance of thread scaling is generally lower than the performance for ranks,
especially in the cases of 200000 vertices for strong scaling and 12500 for weak scal-
ing. This is attributed to synchronization issues of using main memory for a single rank,
discussed in Section 7.3.2.

(a) Strong speedup for threads. (b) Strong efficiency for threads.

Figure 7.18: The speedup and efficiency for strong scaling of threads, while keeping a fixed single
rank.
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(a) Weak speedup for threads. (b) Weak efficiency for threads.

Figure 7.19: The speedup and efficiency for weak scaling of threads, while keeping a fixed single
rank.

7.3.5 Node Scaling

A scaling has been made for an increasing number of nodes, where each node has a full
utilization of all 24 cores. The application tests have two configurations, of six ranks with
four threads each and of eight ranks with three threads each. Strong and weak scaling are
analysed for 100000 and 200000 total vertices, and 100000 and 200000 vertices per node.

Fig. 7.20a shows the runtime for strong scaling of nodes, which decreases as the work-
load is shared among the nodes. The runtime of 200000 vertices is four times the runtime
of 100000 vertices for a single node, and twice as long for multiple nodes. This is at-
tributed to delay due to a full cache memory, as 200000 vertices take up 87.32MB for a
60MB cache memory. For two nodes, only half the storage room is needed for each node,
in which the cache memory can be utilized.

Fig. 7.20b shows the runtime for weak scaling of nodes, where each node has a con-
stant workload, but with a lower runtime for four nodes with 200000 vertices each. This
can be attributed to fewer cache misses, since the memory storage allocated is too large to
be utilized by cache memory. The runtime of 200000 vertices per node is four times the
runtime of 100000 vertices per node, which is also attributed to cache issues, as each node
of 200000 vertices has a constant memory space that is larger than available cache space.

The two configurations of ranks and threads give similar runtimes, which is looked
into in Section. 7.3.2

Fig. 7.21a and Fig. 7.21b show the strong and weak speedup, and Fig. 7.22a and
Fig. 7.22b show the strong and weak efficiency. The speedup for both strong and weak
scaling is close to linear for 100000 vertices. Strong scaling has a superlinear speedup for
200000 vertices, which is attributed to a suboptimal serial code, which uses more mem-
ory space than cache memory. Weak scaling also has a superlinear speedup for 200000
vertices for four nodes, which can be attributed to having fewer cache conflicts due to the
used memory being too big to be utilized for caching.
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(a) Strong scaling of runtime over nodes. (b) Weak scaling of runtime over nodes.

Figure 7.20: Strong and weak scaling of computation time for nodes, with two configurations to
utilize all 24 cores in each node. There are six ranks with four threads each, and eight ranks with
three threads each.

(a) Strong speedup of nodes. (b) Weak speedup of nodes.

Figure 7.21: Strong and weak speedup for nodes, with two configurations to utilize all 24 cores in
each node. There are six ranks with four threads each, and eight ranks with three threads each.

88



7.3 Scaling of Computation Time

(a) Strong efficiency of nodes. (b) Weak efficiency of nodes.

Figure 7.22: Strong and weak efficiency for nodes, with two configurations to utilize all 24 cores in
each node. There are six ranks with four threads each, and eight ranks with three threads each.

7.3.6 Summary of Scaling Characteristics
The proxy application can be scaled for the problem size, the number of vertices V , and
for the number of processing units, determined by the number of ranks, threads and nodes.
The prediction of computation time

tcomp =

(
210V

ranks
+

285.6
√
V

ranks
+ 49.28

√
V

)
8B

bandwidth · threads
(7.12)

is the basis for all scaling analysis.
The results show that the application can be scaled for both threads and ranks, where

the predicted runtime have the same scaling pattern as the measured runtime. Since the
triangles are evenly distributed for the ranks, an even load balance gives little overhead to
scaling. A better performance is gained by using both ranks and threads to fill out all the
cores, whereas using a single rank and 24 threads gives the worst performance, which can
be attributed to poor utilization of the two CPUs when using a single rank.

The performance model does not take in account caching of the hardware, which
makes linearity of scaling dependent on whether the same type of memory is used. For
weak scaling of ranks or threads for a single node, the memory usage increases, which
can make the node switch from utilizing cache memory to using the main memory. For a
strong scaling of nodes, the memory usage per node decreases, which can make the nodes
switch from using main memory to utilizing cache. When scaling for nodes, a number of
vertices between 100000 and 150000 for each node gives an optimal performance, where
weak scaling gives a stable and predictable performance.
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Chapter 8
Conclusion

In this thesis, a proxy application was developed for solving shallow water equations using
the finite volume method over a triangulation. Performance models were created for the
application, including models made from benchmarking results, and validated through
comparison with application execution of the Mehamn harbor.

The performance model was based on the triangulation structure, generated from the
number of vertices. A general triangulation gave a wide range between the upper and
lower bound for the number of triangles, which also gave a wide range for further perfor-
mance estimations. By using Mehamn harbor geometrical exceptions could be ignored,
and more accurate estimations were made. The new predictions of the triangular sizes
were confirmed to fit the generated triangulations from all the application tests.

The benchmarking tests gave a basis to make the roofline and the Hockney models.
The roofline model confirmed that the application was memory bound, where the maxi-
mum bandwidth was used to create an overestimated performance model of the application
computation time. The Hockney model was used to predict communication time for mes-
sage passing, which was similar to the application communication time between cores on
the same node, but predicted approximately ten times lower communication time than the
application communication time between nodes. The analysis also predicted the commu-
nication time to stay constant over an increasing number of ranks, and to grow slightly
with the message size, given by the number of Halo triangles, which both were confirmed
with the measured communication time from the application.

The runtime predictions separate application computation time and communication
time. Since the communication time was estimated and confirmed to stay constant with
the number of processors, the performance model for scaling was focused mainly on the
computation time. Computation time was also expected to grow faster for the problem
size, as it is dependent on the number of triangles, whereas communication time is only
dependent on the Halo triangles.

The predicted computation time was expected and confirmed to overestimate the mea-
sured computation time from the application, and confirmed to scale similarly with both
ranks and threads, for both strong and weak scaling. An exception occurs when assigning
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Chapter 8. Conclusion

a single rank to multiple CPUs, where multiple threads cause cache pollution to the sep-
arate cache memories. The load balance was even, as the application distributes triangles
evenly among the ranks. It was discovered that the cache size affected the performance,
where an overfull cache caused further delay. An optimal utilization of cache, where the
problem size take up a memory space of the entire cache, gives an optimal performance
for computation time. Together with a constant communication time, this gives an overall
optimal performance, with a predictable and stable weak scaling of multiprocessor nodes.

8.1 Future Work
The performance model did not take in account the effects of caching, where the results
differed from the model when the cache was overfilled. A model that considers the hard-
ware used, could improve the accuracy of the runtime predictions. The Hockney model
also did not manage to predict communication time between nodes. A deeper study of the
message time could be used to discover a new communication model.

The proxy application provides a flexible solution by using an arbitrary triangulation
of the water surface. It could be of interest to compare this to other applications to locate
the advantages and disadvantages of the different approaches, such as solutions using the
finite difference method or different types of discretizations.

92



Bibliography

[1] Weizhi Wang, Hans Bihs, Arun Kamath, and Øivind Asgeir Arntsen. Large scale cfd
modelling of wave propagation into mehamn harbour, 2017. URL http://hdl.
handle.net/11250/2485580.
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[27] Stéphane Zuckerman, Marc Pérache, and William Jalby. Fine tuning matrix multi-
plications on multicore. High Performance Computing - HiPC 2008, page 30–41,
2008. doi: 10.1007/978-3-540-89894-8 7.

[28] Thilo Kielmann, Henri E. Bal, and Kees Verstoep. Fast measurement of logp param-
eters for message passing platforms. In José Rolim, editor, Parallel and Distributed
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