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Abstract

Renewable generation can cause challenges in the power grid, such as deviation in the genera-
tion/demand balance. Energy storage and grid reinforcement can solve this problem, but are
expensive measures. Renewable generation increases the relevance of flexibility in the power
system. Flexible loads can even out the demand profile by load shifting, leading to cost savings
for system operators. Flexibility is also beneficial for consumers as it can lead to a reduction in
their electricity bills. With the new grid tariff structure, flexibility will be even more valuable,
making it easier for consumers to shift their loads. Electric water heaters (EWH) have great
flexibility potential, and several projects using smart water heaters have been launched in the
last couple of years. In Norway, almost every household has a water heater, which stands for
approximately 20 % of the household’s total energy consumption. By flexibly controlling the
water heater, both system operators and consumers could save costs [1].

This master thesis builds on the specialization project ”Predicting flexibility potential of domes-
tic hot water” [2]. Both papers aim to make a model of an EWH by using gray box modelling.
The model uses thermoelectric analogy to describe the behavior of the water heater. The mod-
els tested in this thesis are called 1R1C, 2R2C, and 3R3C-models. R and C describes the
system’s amount of thermal resistances and thermal capacitances. These unknown parameters
are obtained using parameter fitting. Both the laboratory setup and the theoretical models are
improved in the master thesis. This led to better results.

High-frequency power and temperature measurements at the NTNU Smart House Lab are per-
formed, and the parameter fitting of R and C are decided using continuous-time-stochastic-
modeling (CTSM-R). The thermal resistance is estimated to have a combined value of 0.446

◦C
kW .

The thermal capacitance is estimated to a value of 170 kWh
◦C . This is a significant improvement

from the results obtained in the specialization project [2]. Graphical analysis, Log-Likelihood
value, and root-means-square-error are used to verify and decide the best EWH-model. The
3R3C-model is chosen as the best model. The new parameter fittings agree more with other
scientific papers.

This thesis makes a model of an EWH and decides its unknown parameters. Further work is
to make an optimization problem that minimizes the operational cost of EWHs and map their
flexibility potential.



Sammendrag

Fornybar produksjon kan gi utfordringer i kraftnettet, som for eksempel ubalanse mellom pro-
duksjon og etterspørsel. Energilagring og nettforsterkning kan løse dette problemet, men er
kostbare tiltak. Fornybar produksjon øker relevansen av fleksibilitet i kraftsystemet. Fleksi-
ble laster kan jevne ut lastsprofiler ved å flytte last til andre tider av døgnet. Dette fører til
kostnadsbesparelser for systemoperatører. Fleksibilitet er ogs̊a gunstig for forbrukerne, da det
kan føre til en lavere strømregning. Med den nye nettleiestrukturen vil fleksibilitet være enda
mer verdifult, da det kan være en stor økonomisk fordel å spre laster utover døgnet. Elektriske
varmtvannsberedere (EVVB) har stort fleksibilitetspotensial, og flere prosjekter med smarte
varmtvannsberedere er gjennomført de siste årene. I Norge har nesten hver husholdning en
varmtvannsbereder. Denne st̊ar for omtrent 20% av husholdningens totale energiforbruk. Ved
fleksibel styring av varmtvannsberederen kan b̊ade systemoperatører og forbrukere spare kost-
nader [1].

Denne masteroppgaven bygger p̊a fordypningsprosjektet ”Predicting flexibility potential of do-
mestic hot water” [2]. Begge oppgaver kartlegger egenskapene til varmtvannsberederen gjennom
eksperimenter, og lager en modell av tanken for å bestemme ukjente parametre. Modellen bruker
termoelektrisk sammenheng for å beskrive oppførselen til varmtvannsberederen. Ved å beskrive
den termiske modellen med RC-kretser, kan ukjente parametere bli funnet. Modellene som er
testet i denne oppgaven kalles 1R1C, 2R2C og 3R3C-modeller, og beskriver modellens mengde
av termiske motstander og kondensatorer. Parametertilpasning brukes for å finne disse ukjente
parameterne. B̊ade laboratorieoppsettet og modellene er forbedret i masteroppgaven. Dette
fører til bedre resultater.

Høyfrekvente effekt- og temperaturm̊alinger ved NTNU Smart House Lab utføres, og param-
etertilpasning av R (termisk motstand) og C (termisk kapasitans) bestemmes ved bruk av
kontinuerlig-tids-stokastisk-modellering (CTSM-R). Den termiske motstanden er beregnet til
å ha en verdi av 170

◦C
kW . Den totale termiske kapasitansen er beregnet til å ha en verdi

p̊a 0.446 kWh
◦C . Dette er en betydelig forbedring fra resultatene oppn̊add i prosjektoppgaven.

Grafisk analyse, sannsynlighetsverdi og kvadratisk gjennomsnittsverdi ble brukt for å verifisere
og bestemme den beste modellen. 3R3C-modellen ble valgt som den beste modellen. De nye
parametertilpasningene stemmer godt overens med andre artikler.

Denne oppgaven beskriver en varmtvannstank-modell og bestemmer dens ukjente parametere.
Dette kan brukes til å bestemme fleksibilitetspotensialet til en og flere varmtvannstanker. Videre
arbeid vil være å lage et optimaliseringsproblem som minimerer driftskostnadene til varmt-
vannstanken.
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1 Introduction

Less fossil and more renewable energy sources are needed to reduce the global climatic changes.
This was also the conclusion at the 2021 United Nations Climate Change Conference [3]. With
more renewable resources, the share of variable generation increases. This generation leads to
the establishment of new challenges in the power grid. These challenges include reverse power
flows, islanding issues, overvoltage, and voltage fluctuations [4]. An active demand side is critical
when dealing with these types of challenges because it enables the opportunity for cheap control
and quick reaction time.

The Smart House Lab at NTNU is a part of the National Smart Grid Laboratory and can be used
to simulate an active demand side. The Smart House Lab is equipped with standard household
equipment, like a water heater. The lab has advanced measurement and control equipment,
making it possible to control and monitor the equipment installed. The lab is accessible by both
business and research communities.

1.1 Motivation

Flexibility is the power system’s ability to change demand, or generation [5]. Demand-side flexi-
bility addresses the possibility of demand-side loads changing their consumption patterns. Smart
meters are installed in every household in Norway. Smart meters simplify the opportunity for
flexibility. Combined with demand-side loads such as EVs, battery storage and thermostatically
controlled loads increase the possibility of flexibility [6]. Flexibility can lead to cost optimization
for both system operators and consumers.

Electric water heaters have excellent energy storage potential due to sound insulation, and
water’s high specific heat capacity [7]. In Norway, almost every household has an EWH, and
20 % of a building’s total energy consumption is used by an EWH [1]. This makes the EWH
a highly relevant flexible energy source. The water heater’s flexibility could decrease costs for
end-users and system operators. The water heater installed in the NTNU Smart House Lab is
not a ”smart water heater,” but it is possible to access its data and use it in research projects.
This data can be used to quantify available flexibility for a water heater.

During the last couple of years, several test projects on smart water heaters have been performed
in Norway. The manufacturer Høiax has already launched their first smart electric water heater.
It enables remote control over temperature settings and the opportunity to change this in accor-
dance with the price of electricity. The Norwegian manufacturer OSO will launch their smart
water heater devices in 2022.

1.2 Hypothesis

By expanding the thermoelectric model made in the project thesis, [2], and installing new lab-
oratory equipment at the NTNU Smart House Lab, the model will improve, and the parameter
fitted values for resistance and capacitance will be better.

1.3 Scope

• Present relevant theoretical background electric water heaters, Power consumption habits
in a Norwegian scenario, grid tariff structure, flexibility and data communication systems.

• Perform a literature review of gray box modelling, previous work on parameter fitting and
previous work on flexibility of EWHs.
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• Perform experiments on the water heater at the NTNU Smart House Lab to obtain tem-
perature and power profiles.

• Make a model of an EWH, and use grey-box modelling to precisely estimate its unknown
parameters.

• Comparing estimated parameters with equivalent parameters of previous and others work.

1.4 Research Questions

• How will draining water from the tank change the value of thermal resistance and capaci-
tance?

• What is the reason for the differences in parameter fitted resistances and capacitances in
different scientific papers?

• Will a thermoelectric equivalent with more resistances and capacitances improve the
model?

• Will the new equipment improve the results obtained from the lab?

• How does a model based on steady state perform compared to a model based on dynamic
behavior.

• Is it appropriate to perform experiments with different set-point temperatures?

1.5 Limitations

There are several limitations with the equipment used at the NTNU Smart House Lab. There
are no temperature sensors inside the tank. There is not possible to remotely control the power
or the set-point temperature of the EWH. This has to be done manually. Some draining of hot
water may occur as the Lab is used by several people.

1.6 Context of thesis

• Section 1: Introduction, presents the motivation, hypothesis, Scope, Research Questions
and Limitations of the master thesis

• Section 2: Theory, presents general theory on electric water heaters, Norwegian power
usage, grid tariff structure, flexibility and data communication

• Section 3: Literature review, presents background on grey-box modelling and reviews
several papers on gray box-modelling. This section also reviews flexibility potential of an
EWH.

• Section 4: Experimental setup, presents a thorough description of the experimental setup.

• Section 5: Experimental Method, presents the method of how experiments are performed.
mathematical model

• Section 6: Mathematical Model, presents the mathematical models.

• Section 7: Experimental Results, presents the results of parameter fitting in tables and by
graphs. The residuals are also shown in this section.
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• Section 8: Verification of Mathematical Model establishes the one-step-ahead plots, simulated-
value plots, RMSE and LogLikelihood.

• Section 9: Discussion, analyses the results.

• Section 10: Further work, provides recommendations for further work.

• Section 11: Conclusion, provides a summary of the main findings in the report.
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2 Theory

This section is based on the theory section written in the project thesis [2]. The section is
reviewed and modified, and more theory has been added.

This section gives insight into the Norwegian power usage, grid tariff structure, flexibility, oper-
ation of an EWH and data communication systems.

2.1 Norwegian Power Usage

Due to significant climatic variations, Norwegian electrical power use varies throughout the
year. Figure 1 shows Norway’s monthly power consumption and the spot price for 2021. Figure
2 shows the average power use throughout a day for the first day of each month in Norway.
Figure 3 shows the spot price for this scenario [8]. There are typically power peaks around 09:00
and another peak in the afternoon. There is usually a strong correlation between power peaks
and power price, as can be seen when comparing Figure 2 and Figure 3. In the last two years,
the electricity price has been very high, especially in the southern parts of Norway. With dry
years, new overseas cables, and bottlenecks in the grid, this may not change at first. Utilizing
flexible loads could make society save money.

Figure 1: Monthly total power use and spot-price for Oslo, year 2021.
[8]
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Figure 2: Power consumption the first day of each month, June 2021 to May 2022.
[8]

Figure 3: Spot-Price for Oslo the first day of each month, June 2021 to May 2022.
[8]

5



2.2 Grid tariff structure

Until 2022, the grid tariff was divided into fixed costs, taxes, and electricity costs, given in
NOK/kWh. Figure 4 shows the average amount of each part. The fixed part was used to cover
the grid owner’s fixed cost of operation. This part was fixed throughout the year but varied for
different system operators. The most significant part of the grid tariff was the public taxes [9].
The public taxes consists of value-added tax (25%), electrical power fee (16.69 øre/kWh in 2021
[10]), and the ENOVA fee (1 øre/kWh).

Figure 4: Grid Tariff Structure of detached house with a consumption of 20 000 kWh/year.
[9]

In 2022 the grid tariff still consists of a fixed cost, the cost of electricity, and public taxes. The
cost of electricity is the same as in earlier years, and taxes represent a substantial part of the
electricity bill. The former fixed part is changed, as it now considers the amount of power used
by the consumer simultaneously. Table 1 shows Elvia’s price ranges for power [11]. This means
that if a person uses 8 kW maximum at the same time a month, the person must pay 280 NOK
in fixed costs that month.

Table 1: Fixed cost price 2022 (Elvia).

Step Fixed Cost (NOK/month)

0 - 2 kW 130

2 - 5 kW 190

5 - 10 kW 280

10 - 15 kW 375

15 - 20 kW 470

20 - 25 kW 565

25 - 50 kW 1250

50 - 75 kW 1720

75 - 100 kW 2190

Over 100 kW 4180

The additional cost of power is an incentive for power peak reduction. It, therefore, is an incen-
tive for flexibility. According to NVE [12], the change in structure provides efficient utilization
and development of the power grid.
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2.3 Flexibility

There are many definitions of flexibility. Flexibility can be seen as the power system’s ability to
change demand, or generation [5]. Flexibility states the changes and modifications that can be
performed to optimize desired parts of the system. There are several drivers for flexibility, such
as uncertain and uncontrollable generation, increasing distributed energy resources, synergies
with multi-vector energy systems, ICT (Information and Communication Technology Area of
Advance), and changes in consumer attitude and outlook [5].

District System Operator(DSO), Transmission System Operator(TSO), and Balancing Respon-
sible Party (BRP) are willing to buy flexibility services. BRP’s role is to maintain supply and
demand in the grid and use flexibility services to reduce sourcing costs and obtain system bal-
ance. The TSO uses flexibility services to manage transmission capacity, system balance, and
facilitate flexible trading across Europe. The DSO uses flexibility services due to increased
grid capacity demand from electric vehicles (EV), solar (PV), and heating, ventilation and air-
conditioning (HVAC). Grid reinforcements are expensive and time-consuming. It is also costly
to balance power, but flexible services could reduce costs. People tend to use electrical power
at the same time during the day. This pressurizes the capacity of the power grid. Therefore,
end users are vital in flexibility services as they change from passive consumers to prosumers
[5], [13]. Tables of flexibility services for TSO, DSO, BRP and Prosumers are given in Table 57
- 60 in Section 12.

2.3.1 Demand side flexibility

There are flexible resources at the supply, grid, and demand sides. An EWH is a part of
demand-side flexibility. Demand-side flexibility is the capacity of demand-side loads to change
their consumption patterns. Demand-side flexibility can help customers use less power when
prices are high and reduce stress on the grid [14] The demand-side flexibility can therefore be
an alternative to network reinforcement [15] [6]

Different types of demand-side flexibility resources are following [16]:

• PV

• Battery Storage

• EV

• Thermostatically controlled loads (TCL) such as EWH and HVAC

Following flexibility services can be provided [17]:

• Frequency control

• Voltage control

• Congestion Management

• Reduce maintenance and development costs of the power grid

• Grid capacity management

• Better planning and increased efficiency in grid operation
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In Norway, automatic metering systems (AMS) were installed in all households in 2018. AMS
increases the data availability and gives insights on consumption and consumption patterns to
facilitate smart electricity solutions. It also detects power failures in the grid more efficiently
and reduces the risk of congestion and power failure [18]. AMS installation is one step towards
a more flexible and smart power grid.

80% of the energy demand in the Norwegian building sector is met by electricity [12]. This fa-
cilitates a considerable potential for flexibility because of the storage opportunities of electricity.
Electricity can be stored in batteries, but the energy can also be stored as heat. The main goal
of energy flexibility in Norway is to avoid substantial power peaks to reduce the strain on the
distribution grid [19]. Typical load-shifting types are described below and shown in Figure 5.
[20]

• Peak clipping = Reducing load (mainly in-peak hours but also in general)

• Load Shifting = Reducing load in-peak hours and distribute this load to off-peak hours

• Valley Filling = Increase load during off-peak hours

Figure 5: End user flexibility types [21].

Frequency response is also a vital flexibility service, and it is separated into different types of
control with different working periods. There is Primary, Secondary, and Tertiary control.

Primary control: frequency response control or frequency containment reserves (FCR). FCR
has the fastest reaction time. It is an automatic function used when there is an imbalance
between generation and demand in the power grid. Imbalance leads to a change in frequency
which is unwanted. The primary control wants to bring the system back to stable conditions.
For example, if the load in the grid increases, the frequency will drop. The generated power
does not instantly increase, and compensation from kinetic energy from the rotating generators is
needed. This leads to a decrease in the velocity of the generator. The governor(speed controller)
increases generated power to recover speed and balance to the system [22]. The primary control
response time is 0 to 30 seconds, and it is operational for 15 minutes [23].

Secondary control: Frequency restoration reserves (FRR) brings the frequency back to its nomi-
nal value and restores the power reserve of the generators used for the primary frequency control
[22]. It has a response time of 30 seconds and can last 120 minutes.
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Tertiary control: Manually frequency restoration reserves (mFRR) or replacement reserves.
mFRR is executed on request from the grid operator [24]. It shall restore the power reserve of
the generators used for the secondary frequency control [22]. The response time is 15 minutes.

A negative consequence of flexibility is load rebound. Load rebound is an unwanted power peak
that occurs when the consumer compensates for the previous outage or resets the load state.
For example, if many users take advantage of the flexibility of the EWH and turn them off to
avoid the power peaks at a given the time of day, their EWH eventually needs to turn on, which
leads to new power peaks. This phenomenon may mislead grid operators to make non-optimal
regulations. One solution to this is to flatten the load profile of end-users [25].

2.3.2 Flexibility of EWHs

EWHs are perfect for storing energy because of the high heat capacity of water. High heat
capacity means storing more energy per mass at a given temperature than other substances
such as air [7]. An EWH is also insulated, which further increases the heat capacity and reduces
energy loss. Minor loss in energy enables the possibility of turning off the EWH in given periods
while the water temperature is still at a desirable level. The EWH can be switched on and
off in seconds, and heating patterns can change without loss in comfort [12]. This makes an
EWH flexible. The operation of an EWH is highly dependent on the lifestyle of consumers. The
number of showers, length of showers, and time of day of showers depend on the user. Therefore,
the consumers are set to significantly impact the flexibility aspect of an EWH [26].

There are several projects today where smart, flexible EWHs are used to support the strain on
the grid, like reducing power peaks and optimizing costs for system operators and consumers.
There is, among others, a project in Gjøvik where Elvia and OSO Energy collaborate on a pilot
project where 20 households with smart EWHs are analyzed [27]. The results are good, and OSO
smart water heaters will be available in 2022. The Norwegian company Høiax has also developed
a smart hot water tank in collaboration with Futurhome, and NxTech [28]. The smart water
heater is named Høiax CONNECTED. Both Høiax CONNECTED and OSO Charge enable the
opportunity of control via an application. This application enables cost savings as the user can
use the water heater as energy storage when power prices are high and recharge the storage
when prices are low. The water heaters could avoid heating when prices are high [29] [30]. A
smart water heater costs around 5000 - 7000 NOK more than a standard water heater. Enova
gives up to 5000 NOK in support of buying a smart water heater. There are also possible to
install smart metering on already installed water heaters. This will also give financial support
by Enova [31]. Tibber sells products that make it possible to control high-power units, such as
water heaters. This makes it possible to remotely turn on and off the power of the water heater
[32].

Several projects abroad, such as Tucson Electric Power in Arizona, use solar power plants to
heat water heaters when the energy demand is low, and plenty of solar energy is available [33].
This provides cheap power to customers and works as a grid service for the system operators.
There is also a project by Bonneville Power Administration where 600 homes can participate in
a similar project with the same goal of reducing power peaks by utilizing a smart EWH. The
EWH will respond to demand response signals [34]. Smart water heaters and smart controllers
are available from several suppliers in response to these projects’ good results. Rheem [35] and
Aquanta [36] are some manufacturers introducing new smart technology for water heaters.

2.4 Water heaters

Water heaters are standard units in households. There are several types of water heaters, such as
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conventional storage-tank water heaters or tankless water heaters. These heaters use electricity
or gas as an energy source.

2.4.1 Design and operation of water heater

Figure 6 shows the main components of an electric water heater. EWHs are insulated to prevent
loss of energy. Cold water flows into the bottom of the tank, and hot water flows out of the
top of the tank. The exchange of water happens in the mixing valve. The water is heated by
heating elements placed in the tank. The number of heating elements usually varies from 1 to
3. A thermostat can adjust the set-point temperature of the heating element, which decides
the temperature of the water in the tank. There is also a pressure relief valve and a safety
valve/drain valve. The pressure valve is needed to ensure that pressure does not exceed the
given limitations of the tank. A safety/drain valve is used to empty the tank when maintenance
is needed [37].

The EWH wants to maintain the water temperature at the set-point temperature. In the
manufacturer settings, the set-point temperature usually is 75◦C. It is possible to change the
set-point temperature between 60◦C and 90◦C. The tank has a built-in ∆T which defines the
tank’s upper and lower temperature limit. This ∆T depends on the set-point temperature.
If the set-point temperature is 75◦C and the ∆T is 5◦C, the tank could have an upper limit
on temperature of 77.5◦C and a lower limit on temperature of 72.5◦C. It is also possible to
have an upper limit of 75◦C and a lower limit of 70◦C. The ∆T may also vary for different
set-point temperatures. It can be 1◦C for a set-point temperature of 60◦C and 5◦C for a set
point temperature of 85◦C. The heating element in the EWH is either on or off. If the water
heater has a 3kW heating element, the EWH will heat the water at maximum power until the
temperature reaches the desired temperature. Temperature sensors register the temperature of
the water in the tank. The heating element turns on when the temperature has decreased to the
lower limit. The heating element will turn off when the desired temperature level is reached.
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Figure 6: Illustration of electric water heater [38].

The general formula for heating an EWH:

E =
V · Cw ·∆T

t
(1)

where:

• E = (kWh)

• V = Volume of tank (m3)

• Cw = Specific heat capacity of water( kJ
◦Ckg )

• ∆T = change in temperature (◦C) from start temperature to set point temperature

• t = Time (h)

The most standard water heater in Norway is the OSO Saga water heater. There are several
sizes of the OSO Saga. The water heater used in this thesis is also an OSO Saga water heater.
The most common isolation material is glass wool, Glava. Table: 2 shows the specific heat
capacity of some isolation materials.
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Table 2: Isolation materials and their specific heat capacity [39].

Type Insultaion C( kWh
◦Ckg )

Rock wool, glass wool 0.000286

Plastic isolation (EPS, XPS, PUR) 0.000403

Foam glass 0.000278

2.4.2 Restrictions due to legionella

To avoid the development of the legionella bacterias, it is essential to have the hot water tank at
a set-point temperature above 60◦C. Temperatures of 20 − 55◦C are critical when considering
the growth of legionella bacterias. Following measures should be maintained according to FHI
[40]:

• Hot water temperature of minimum 60◦C

• Cold water temperature of maximum 20◦C

• Good water circulation

• Opportunity for cleaning and disinfection

The EWH can operate in the critical temperature zone for short periods, but the growth of
Legionella can occur after only a few days in the temperature zone of 20− 55◦C.

2.5 Data Communication

Data communication systems are necessary for smart houses and homes where smart/flexible
solutions are implemented. An application that makes it possible to control and communicate
with the system is needed. In the application, the user can control and monitor the system.
Further, there is a need for switches and sensors, making smart/flexible solutions possible. A
solution can be smart light that dims or turns on/off by itself or a flexible EWH. There are often
several interfaces interconnected in the smart house. This is because many companies specialize
in smart solutions. For example, DALI (Digital Addressable Lighting Interface) focuses on lights.
KNX is a standard that focuses on a broader amount of electrical instruments. A control system
is needed to control and interconnect the components in the smart house. These control systems
need to understand several types of interfaces due to the different suppliers.

2.5.1 Logic Machine

Logic Machine is developed by Embedded Systems, a control system and a central unit of the
data communication system. The primary purpose of the logic machine is its network interface.
It has an online application that gives a complete overview of the equipment connected to the
machine. The Logic Machine can also be programmed in the way the user desires. The logic
machine supports the KNX system and other interfaces and works as the system’s ”brain.” It
sends and receives information to and from the different units connected to the machine. The
Logic machine gives a logical name to every unit connected, which simplifies the system [41].
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2.5.2 KNX

KNX is an open standard for building automation both commercial and domestic buildings.
KNX is an intelligent way of managing heating, lighting, and access control systems. This is a
way of efficiently using energy [42]. With KNX, every device in the building can be intercon-
nected, making it possible to get a complete overview of the installations [43].

13



3 Literature Review

This section is based on the literature review written in the project thesis [2]. The section is
reviewed and modified, and additional content has been added.

This section will review previous work on grey-box modeling based on thermal-electric equivalent
circuits, and electric water heaters as a flexible load will be investigated.

3.1 Grey box modelling

To understand the grey-box modeling, a description of both black-box and white-box modeling
is necessary. A physical model with parameters of physical significance describes a white-box
model. The white-box model is also referred to as a clear-box or open-box model because it
has full physiological knowledge of the system [44]. The negative part of white-box modeling is
that it is often hard to derive the physical parameters. The model is also complicated due to its
differential equations [45] [46]. A black-box model has its name from the lack of insight into its
internal workings. Black-box models are based purely on the analysis of measured data. This
model’s inputs are known, and the following outputs are observed. It is then possible to map the
outputs when trying several different inputs [47], [45]. Black-box modeling is technically tricky
and highly dependent on the availability of appropriate inputs [48]. Grey-box models refer to a
combination of black-box and white-box modeling. The Grey-box model is partially theoretical
and data-driven [49] [45]. It uses stochastic differential equations and combines the advantages
of white-box, and black-box modeling [48].

Figure 7: Illustration of the concept of grey-box modelling [50].

The grey-box model can be used with a thermal-electric equivalent. The thermal-electric equiv-
alent uses an electrical analogy to quantify and analyze the thermal behavior. These equivalent
circuits use resistance-capacitance networks (RC-circuits). A thermal system that is constructed
using electrical component values enables the derivation of the necessary differential equations
based on simple electric circuit analysis. The electrical resistance and capacitance are param-
eters needed to solve these differential equations. These values can be obtained by performing
parameter fitting [51], [52], [50].
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3.1.1 Thermal equivalent model

The analogy between the thermal behavior and electric circuits makes the transformation be-
tween the two systems possible. Figure 8 shows this analogy, which is presented in Table 3.

Figure 8: Analogy between the electrical circuit and the thermal model.

In the electrical circuit, to the left, V1 is assumed to be greater than V2. The current will flow
from left to right due to potential differences. This gives the following correlation known from
ohms law:

I =
(V1 − V2)

R
(2)

In the thermal system (to the right), a wall with thickness L (m) is considered. The Thermal
conductivity of the wall is given as K ( W

mK ). The area of the wall is given as A (m2). There are
two different temperatures on each side of the wall. T1 is here greater than T2. The heat-flow
Q always goes from the highest to the lowest temperature. This gives the following equation:

Q =
(T1 − T2)

L
KA

(3)

When comparing the 2 and 3, the analogy between the electric circuit and the thermal behavior
can be observed. Table 3 presents analogies between thermal and electrical systems [52].
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Table 3: Analogies between thermal and electrical systems.

Thermal Electrical

Thermal resistance, L
KA , RTh[W/K] Electrical resistance, Rel[Ω]

Temperature, T [K] Voltage, U [V ]

Heat Transfer, Q[W ] Current, I[A]

Thermal Capacitance, C[J/K] Electrical capacitance, Cel[F ]

Steady Heat Conduction. Relationship
Between Temperature And Heat Flow,
∆T = Q ·R

Ohm´s Law, ∆U = I ·Rel

Thermal Capacitance. Relationship
Between Heat Flow and Change In
Temperature, Q = C dT

dt

Current Through Capacitor, I = C dV
dt

Heat Balance Kirchoff’s Current Law

The thermal-electrical model can be categorized as circuits with a given amount of resistors and
capacitors, such as 1R1C, 2R2C, ...nRkC. The resistors represent thermal resistance, and the
capacitor represents thermal capacitance. Thermal capacitance measures how much heat the
object can store. Other parameters in the RC-circuit can be inputs, such as a power source
or a temperature source [53]. There can also be disturbances in the model, such as solar gains
or draft. With an increase in resistances and capacitors, the complexity of solving the system
enhances, but the model’s accuracy often improves [45].

An example of a thermal-electric circuit is the model of an insulated water tank that is heated.
Rwall is defined as the thermal resistance in the water between the ambient and the enclosure.
The water in the tank has a thermal capacitance Cwater because the enclosure can store heat.
The water temperature is Twater, and the ambient temperature is Tambient. It also flows heat
into the enclosure, stated as Q. The system will have a physical setup as left in Figure 9 and
have the thermal-electric model as shown to the right.

Figure 9: Heating of insulated enclosure (left) and its electric equivalent circuit between electrical
circuit and thermal model (right).

Q = Heating element. Twater* = Temperature of the water. Tambient = Temperature of the ambient Cwater = heating

capacity of water Rwall = Thermal resistance in wall

The capacitance needs to be connected to the earth. This connection point equals the reference
temperature. The heat into the system is shown as a temperature source (Q). The temperature
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in the ambient and the temperature in the water tank are measured and therefore need a node.
The system is a parallel connection between heat, resistance, and capacitance. Figure 9 shows
the thermal-electric equivalent of the system.

When the thermal-electric equivalent is obtained, the differential equations can be established.
The general form of the differential equation used in a stochastic-differential-equation-based
model is on the form [50]:

dxt = f(xt, ut, t, θ)dt+ σ(ut, t, θ)dω (4)

yk = h(xk, uk, tk, θ) + ek (5)

Equation 4 describes the dynamics of the states of the system. It is separated into two parts,
f(xt, ut, t, θ) = drift term and σ(ut, t, θ) = diffusion term(approximations and noise from dis-
turbances). Including ut that represents inputs while θ represents the parameters. Equation 5
describe the observation equation and ek represents an error [50].

To be able to find the equations, it is necessary to decide on a base node. Looking at the node
called Twater, one can find the equations by looking at the currents entering and leaving this
node. Kirchhoff’s current law(KCL) states that the algebraic sum of all currents entering and
exiting a node must equal zero. The differential equation of the system, described in Figure 9,
will look like the following:

dTWater = (
ṁ · cw
Cwater

(Tin(t)− Twater(t)) +
Tambient − TWater

RWallCWater
+

Q̇

CWater
)dt+ edω (6)

The first part of the equation describes the water leaving the tank. The second part of the
equation describes the heat loss of the tank. The third part describes the heat added to the
system. The last part describes the error.

Expanding the model by bringing more resistors and capacitors to the system is possible. When
expanding the model, it becomes more complex and precise. The derivation of a 2R2C-model
and a 3R3C-model is located in Section 6.

3.1.2 Continuous Time Stochastic Modelling in R

When the equations are decided, CTSM-R is used for parameter fitting. It uses the equations
obtained in the thermal-equivalent model and estimates the unknown parameters, like resistance
and capacitance. CTSM-R is open source and developed by DTU Compute. CTSM-R, or
Continuous-Time Stochastic Modelling for R, is a tool for identifying and estimating partial
observable models using real-time series data. CTSM uses the known data, such as temperature
and power input, to estimate the unknown parameters. These parameters are obtained using
the maximum likelihood theory. CTSM is an additional package in R, and the modeling is
referred to as grey-box modeling. CTSM-R can handle both non-linear and linear models. Its
basic structure consists of a continuous-time stochastic differential equation and a discrete-time
observation of underlying physical systems. The differential equation is a physical description
of the system [54].
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3.2 Parameter fittings of academic papers

The section presents seven different papers that all look at parameter fitting. These build a
basis for parameter comparison.

Reference [51](Svendsen Master) establishes the flexibility potential of EWHs. To collect neces-
sary data for parameter fitting, experiments are performed at the NTNU Smart House Lab. The
set-point temperature was 75◦C and there was no water removed from the tank. The thermal-
electric model used in this work is a 1R1C and a 2R2C model. With parameter fitting, the
following R and C values were calculated for the 1R1C model: R = 286.6

◦C
kW and C = 0.17kWh

◦C .

Following R and C values were calculated for the 2R2C model: Rwa = 232.5
◦C
kW , Rww = 50.74

◦C
kW

and Cwater = 0.172kWh
◦C and Cwall = 0.00213kWh

◦C .

Reference [2] (Project thesis Løvstakken)has the same lab setup as Reference [51], Svendesn.
The project thesis uses CTSM-R to obtain the unknown parameters. A 1R1C-model is used,
and no water is removed from the tank. Using grey box modeling, the following R and C values
are estimated: R = 296

◦C
kW and C = 0.157kWh

◦C .

Reference [6](Lakshmanan) finds flexibility potential of EWHs. The authors use a first-order dif-
ferential equation-based EWH-model to calculate flexibility activation time. The water heaters
used in this work have a capacity of 200 Liters and a power rating of 2kW. The temperature
settings are 70 - 75◦C. This reference also used a 1R1C thermal-electric equivalent circuit. The
unknown parameters are calculated to be C = 0.335kWh

◦C and R = 600
◦C
kW . The heat demand

curve used in this paper varies a lot during the day. The EWH has high heat demand between 7
and 9 in the morning and quite high heat demand in the afternoon and evening. It is noticeable
that the EHW is used actively throughout the day.

Reference [55](Yu) establishes an optimized schedule of EWH operation to minimize the electrical
bill. A thermal-electric equivalent circuit of an EWH is established, and CTSM-R is used to
find necessary parameters. The EWH analyzed in this paper is approximately 2.8 kW and has
a volume of 92 Liters. The predefined temperature zone is 25◦C - 80◦C.The paper compared
four models, Ti, TiTh, TiTe and TiThTe. This refers to single-, two- or three-stage models, or
1R1C, 2R2C or 3R3C models. Subscript i refers to inside tank, subscript h refers to the heating
element, and subscript e refers to EWH envelope. The authors concluded that the TiThTe model
was the best due to better properties and less root-mean-square error than the other models.
Parameters were obtained for C (heat capacity of water inside the tank) and R(wall resistance).
All four models have C = 0.1069kWh

K but some difference in R values. For Ti R = 1055 K
kW . For

TiTh R = 929 K
kW . For TiTe model R = 1017 K

kW and for TiThTe model R = 1004 K
kW .

In Reference [56] (DTU), a solar thermal collector using a domestic hot water tank to store
energy. The tank has three heating elements of 3 kW each and a volume of 788 Liters. The
method presented in the paper also uses CTSM to estimate parameters. Their parameters were
C = 1.0781kWh

K and UA = 8.29(±0.0278)WK . UA equals U-value times area and needs to be
inverse to find the desired parameter, namely R. R = 120.627 K

kW .

Reference [48] uses economic model predictive control to optimize the electricity cost of a three
storage house. CTSM-R is used with a total of 6 differential equations to find unknown param-
eters. This article considers the heat capacity of air and thermal resistance of walls, which gives
different values for C and R, but the method used is similar to the other articles. Reference [57]
research optimal control of an HVAC system and use the same method as the above paper. It
states 4 differential equations. These papers show that the method is usable for several thermal
systems.
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3.3 Flexibility potential of EWH

The total electricity consumption of an EWH equals 20 % of the building’s total electricity
consumption [58]. Moving this load away from power peaks is vital for the future development
of the power grid and will be financially favorable for both consumers and distributors. With
the new grid tariff structure, end-users will experience a noticeable change in expenses if they
can shift their EWH away from power peaks. The new grid tariff structure motivates smart
technology and energy storage to reduce power peaks in the grid. Incentives to invest in smart
technology and energy storage leads to the development of flexibility management. A flexible
EWH that controls consumption away from power peaks can be essential with the new grid
tariff structure [59].

Several articles have researched the flexibility of an EWH. Reference [12], NVE, evaluates a
European case. The EU’s daily controllable storage capacity equals the storage capacity of 3
million Nissan Leaf batteries. In numbers, this is equal to 20 GW daily flexible capacity and
120 GWh daily storage capacity. The reference also states that one tank of 200-liter capacity
and 2 kW heating element has a capacity of 14 kWh. A 300 liter, 3 kW EWH has a capacity of
21 kWh. Reference [51], Svendsen, estimates a population of 12 EWHs to shift a load of 7kWh
during one hour. Reference[6], Lakshmanan, introduces a model that uses a population of 1000
EWHs, and the authors calculate the flexibility potential and rebound rates. They conclude
with a maximum flexibility potential of 53.9% but will lead to a rebound of 60%. With the
flexibility of 13.5%, the total rebound will be 15%. Reference [55], Yu, optimizes the energy
cost of an EWH and concludes with a savings of 11.965 %. Reference [56], Halvgaard, states an
economic model predictive control which gave savings in electricity cost of 25− 30%.

Demand response is the change of power consumption to match the demand and the supply.
An EWH can store energy, and by load shifting, it is possible to adjust the demand to fit the
supply. Reference [60], Saele, shows that the potential for demand response of an EWHs is 0.6
kWh/h, and if half of the Norwegian households use remote load control on their EWH. A total
of 600 MWh/h demand response is possible.

The EWH can be used in frequency regulation by storing energy, using more energy when the
frequency is high, and avoiding using energy when the frequency is low. Reference [61], Haider,
states that when the frequency is high, the water heater can heat the water in the tank to
a higher temperature. The frequency will be reduced, and energy will be stored in the tank.
Reference [6], Lakshmanan, states that EWHs flexibility activation can serve as FCR at peak
demand hours with high ramp-up and ramp-down rates of 48.5% and 23.8% per minute and as
FRR during non-peak hours.

According to NVE, EWHs can also contribute to voltage control in the power grid as they can
react fast, provide up and down-regulation, automated response and are a highly distributed
resource. Voltage control is necessary as equipment connected to the grid has specific operating
ranges. EWH can be used in grid capacity management by shifting the loads in the power
grid, as shown in Figure 5. EWH can also be used in congestion management, using the power
available without violating system constraints [12].
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4 Experimental Setup

The section is based on the equivalent section written in the project thesis [2]. The section is
reviewed and modified, and theory has been added.

During the expansion of the lab setup, a weakness was discovered in the already existing lab
setup. The surrounding air temperature influenced the temperature sensor used in the project
thesis. This temperature sensor is called Tlow. Insulation was used to improve this. The lab
equipment and setup are described in this section.

4.1 Smart House

The Smart House Lab at NTNU is a part of the National Smart Grid Laboratory. It is accessible
by both business and research communities. The Smart House has equipment like a regular
Norwegian household, i.e., shower and washing machine. It also has advanced measurement and
control equipment, enabling it to control and monitor all the equipment installed. The function
of the laboratory is to research the electrical loads in the smart house. It is also used to research
the future digitized power markets where interaction between production, power grid, and end-
user is essential. The laboratory is used for research, demonstration, verification, testing, and
instruction of future electrical solutions [62].

There is no remotely controlled equipment in the existing lab. Set-point temperature, on/off-
state, and power measurements must be initialized/changed manually. The lab is a working
bathroom, meaning other people can influence the measurements. The shower and washing
machine in the bathroom is sometimes used by NTNU employees and could disturb the mea-
surements. The EWH is connected to either TN or IT network. It is only the TN network
that is measurable. Weeks of experiments were lost when plumbers changed connections during
maintenance and installation of new equipment. It was unfortunate, but the new equipment
improved the measurements drastically.

4.2 Control system

To be able to take advantage of the equipment, a control system is needed. This will tie every
piece of equipment together. The control system used at the NTNU Smart House Lab is a
Logic Machine 4. The PC in the lab is connected to the router, which is connected to the Logic
Machine4. LogicMachine is used to read the temperature data from the logic machine. It is
developed by Embedded Systems and accessed by typing the IP address in the web browser’s
tab. In LogicMachine, every KNX-device is visible and has its logical address. There are several
addresses used in this specific lab.

• 5/1/0(Bathroom/Temperature/lower EWH)

• 5/1/1(Bathroom/Temperature/Inlet Water)

• 5/1/2(Bathroom/Temperature/Outlet Water)

• 5/1/3(Bathroom/temperature/inside EWH)

• 5/1/4(Bathroom/temperature/inside EWH)

• 5/1/5(Bathroom/Watermeter/Watermeter)

• 5/2/2(Bathroom/Temperature/Bathroom)
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Logic machine enables to view trend logs of the different KNX equipment. LogicMachine has a
measurement interval of 5 minutes.

Figure 10: Logic Machine 4 (to the left) and LogicMachine application interface (to the right).

4.3 Equipment

The experiments performed at the NTNU Smart House Lab will use the EWH with attached
temperature sensors, power meter and volume flow meter. Table 4 shows the equipment is used
in the lab.

Table 4: List of equipment used in the smart house.

Producer Model Interface Function Application

Embedded Systems Logic machine 4
KNX, Modbus
Bac-net, ENOcean,
DALI, 1-Wire

Controls LogicMachine

Schneider Electric MTN647895 KNX Relay -

ASUS RT-AC3200 USB, ethernet Wireless Router -

OSO Hotwater
S300 - 3kW/1x230v
SAGA heater

- Water heater -

DENT Instruments ELITEpro XC USB, ethernet Power meter ELOG 15

Lingg and Janke GWF Multi-JET WATER METER KNX Water meter -

Arcus SK10-TC-HTF KNX Temperature sensor -

Arcus SK10-TC-ALTF1 contacting/tube sensor KNX Temperature sensor -

Arcus SK10-TC-ETF3 WITH SCREW-IN KNX Temperature sensor -

4.3.1 OSO Saga S 300 water heater

The OSO Saga S300 water heater is an electrical water heater. It is only used for the bathroom
at the smart house. It has one heating element at the bottom of the tank with a power rating of
3 kW. OSO Saga S300 was the best-insulated water heater when introduced in 2017 [19]. The
∆T of the tank is variable with the set-point temperature. A smaller set-point temperature
gives a smaller ∆T . Table 5 presents technical data of the water tank [37].
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Table 5: Technical data of OSO Saga S300 water heater.

Product code S 300 - 3kW / 1x230 V

Capacity (persons) 5.5

Capacity (L) 281

Factory thermostat setting (◦C) 75

Time to heat the water to 65 ◦C (h) 7.2

Heating elements 1

Figure 11: OSO S300 Water Heater schematics [37].

The thermostat located at point 5 in Figure 11 will be adjusted to obtain different temperatures.
The temperature is manually adjusted using a screwdriver. The temperature can be set between
60◦C and 90◦C. Figure 12 shows design of thermostat.

Figure 12: Illustration of thermostat [37].
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4.3.2 Temperature sensors

Six temperature sensors are fitted at different places surrounding the tank. There are two
temperature sensors on the water tubes connected to the EWH. One measures the temperature
of the outlet water, Tout, and one measures the temperature of the inlet water, Tin. Three
sensors measure the temperature inside the tank. Tlower is located at the heating element.
This is placed on the metal next to the thermostat. This sensor was not insulated, but several
layers of Glava is placed on the outside of this sensor. The temperature sensor is located 15
cm from the bottom of the tank. There are two sensors inside the tank. They cannot be fitted
simultaneously because they use the same thermowell. Tupper describes the temperature sensor
in the tank’s upper parts. This is placed 10 cm down in the thermowell. Tmiddle is located in
the middle of the tank. This is placed 55 cm down the thermowell. One temperature sensor
measures the temperature of the room, Ta. This is placed on the wall next to the water heater.
The temperature sensors are shown in Figure 13 and Figure 14.

Figure 13: Tlower and Tmiddle to the left and Tin and Tout to the right.

Figure 14: Tupper to the left and Ta to the right.
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Figure 15 shows the thermowell and its installation point. Figure 16 shows the location of the
temperature sensors.

Figure 15: Thermowell to the left and installation point to the right.

Figure 16: Illustration of the temperature sensors in the tank.

4.3.3 Water flow meter

The water flow meter is installed at the outgoing hot water tube. Figure 17 shows the water
meter used in the lab. The water flow meter is connected to hot water only. This makes it
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possible to observe the amount of water leaving and entering the tank.

Figure 17: GWF Multi Jet Water Meter.

4.3.4 Power meter

A separate system is used to read the power ratings. The power is measured with a power
meter called ELITEpro XC. ELITEpro XC uses a clamp and probes to get current and load
profiles. The power meter is connected to The PC in the lab by a USB port. To easily read the
values gathered by the power meter, an application called ELOG 15 is used. DENT Instruments
develop ELOG15. ELOG 15 collects measurements but can also control and specify how the
measurements will be performed. It can specify how many measurements we will perform in a
given time frame. In these experiments, a 5-minute interval is used. This is to get measurements
of the same time profile as LogicMachine. The clamp uses a relationship of 1mV to 1mA and
reads on one phase, phase 2, which is the physical power channel that must be specified in ELOG
15. Figure 18 shows the power meter.

Figure 18: ELITEpro XC (to the left) and ELOG 15 application interface(to the right).
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4.3.5 Other Equipment

Figure 19: Asus router RT-AC3200 and Relay MTN647895 from Schneider Electric.

4.4 Physical Setup

Figure 20 shows the physical setup of the lab. Temperature sensors, power meter, and water flow
meter enable to obtain temperature and power profiles. A control system controls the system,
and the router and the relay are essential to communicate and send signals between different
physical components.

Figure 20: The communication system structure of the Smart House.

Figure 21 shows the installation points of the temperature senors and the water flow meter.
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Figure 21: OSO Saga S300 with temperature sensor location.
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5 Experimental Method

The experiments address three different cases. The set-point temperature is changed between
three different temperatures in all cases. These set point temperatures are 60 ◦C)(minimum
temperature), 75 ◦C(normal factory setting) and 85 ◦C(maximum temperature). The reason
for choosing 85 ◦C as a maximum is that a set-point temperature of 90 ◦C makes the fuse blow.
To drain water from the tank, the shower is used. The shower is adjusted to 38 ◦C and drains
water at the maximum flow rate. This is chosen as it gives equal water flow during all the
experiments. The flow meter measures that the tank uses around 40 liters of hot water every
five minutes. Enova estimates 160 liters of water is used per ten-minute shower.

The experiments use different temperature sensors located on/in the tank. This is to see if
they give different parameter fittings and if there are some temperature-change delays in the
tank’s different areas. The lower temperature sensor is always available. The upper and the
middle-temperature sensor cannot be used simultaneously because they have to be put into the
thermowell, which only fits one sensor at a time. This is manually changed.

5.1 Case 1: Steady state of the EWH at different set-point temperatures

Case 1 considers a scenario where no water is drained from the tank. Case 1 is executed two
times. This is because it is desirable to do measurements for three different temperature sensor
locations, and only two sensors can be used at the same time. Case 1 is therefore divided into
Case 1.1 and Case 1.2. Case 1.1 considers the upper and the lower temperature sensor. It will
start with a set-point temperature of 70◦C, decrease to 60◦C, and then immediately increase to
85◦C before returning to the set-point temperature of 75◦C. Case 1.2 considers the middle and
the lower temperature sensor, and the set-point temperature starts at 85◦C, then is adjusted to
60◦C and then increased to 75◦C. The goal with the different temperature settings is to get a
rich dataset.

5.2 Case 2: 3-4 showers a day while the EWH is in on-mode

Case 2 considers a scenario where the water heater is connected to a power source and water is
drained from the tank. The middle temperature sensor is used in Case 2. Showers will be taken
throughout the day to simulate hot water usage by an average family. Three showers will be
taken at the start of the day, then 1-to 2 showers will occur later the same day. The length of
the showers varies between 5, 10, and 15 minutes and does not occur at the same hours each
day. This is to make a realistic dataset. Experiments will last for three days to see how the
tank behaves. Set-point temperatures start at 60◦C, then adjusted to 75◦C and then asjusted
to 85◦C the last day.

5.3 Case 3: 3-4 showers a day while the EWH is in off-mode

Case 3 considers a scenario where the water heater is not connected to a power source in the
period where water is drained. Case 3 is divided into Case 3.1 and Case 3.2 to test both upper
and middle temperature sensor. 1-3 showers occur every day. The length of the showers varies
between 5, 10, and 15 minutes and does not occur at the same hours each day. This is to make
a realistic dataset. This case is equal to experiment 2, but the EWH is turned off between
the first and the last shower every day. This case is performed two times. One for the upper
temperature sensor and one for the middle temperature sensor. The set-point temperature of
Case 3.1 starts at 85◦C, then adjusted down to 75◦C, then further down 60◦C, and then back
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to 75◦C again. The set-point temperature of Case 3.2 starts at 75◦C, adjusted down to 60◦C,
increased to 85◦C, and then back to 75◦C. Case 3.2 does only show the upper temperature
sensor. This is because the data file obtained from the lower temperature sensor was damaged
due to maintenance in the KNX-system.

5.4 Overview of the Cases

Table 6 shows an overview of the experiments performed at the lab.

Table 6: Overview of the different experiments.

Case Tupper Tmiddle Tlower Showers Set-point temperature EWH

1.1 X X No 75-60-85 On

1.2 X X No 85-60-75 On

2 X X Yes 60-75-85 On

3.1 X X Yes 85-75-60-75 Off in periods

3.2 X Yes 75-60-85-75 Off in periods

The power ratings are gathered in ELOG 15. The data is stored in CSV-files/xlsx-files. The
temperature ratings are gathered from Logic Machine and stored in a separate CSV-file/xlsx-
files. The water flow is manually read from the water flow meter. The files are merged on the
computer in the lab. The files include 8 columns (time,Q̇,Tlower , Tupper/middle,Ta,Tin ,Tout,Mass
of water) with a measurement every fifth minute. Figure 7 shows an example of a data file. The
file is sent to the author’s personal computer.

Table 7: CSV-file.

t Q̇ Tlower Tmiddle Ta Tin Tout M

0 1.229 73.56 76.256 22.84 54.024 39.76 0

0.083333333 0 73.328 76.328 22.86 52.568 37.144 0

0.166666666 0 73.296 76.296 22.87 47.808 34.9 0

0.249999999 0 73.192 76.192 22.89 43.32 33.248 0

0.333333332 0 72.96 76.16 22.9 39.964 31.784 0

0.416666665 0 72.86 76.136 22.89 37.368 30.708 0

0.499999998 0 72.72 76.072 22.9 35.84 29.812 0

0.583333331 0 72.7 76.112 22.9 34.856 29.176 0

0.666666664 0 72.634 76.024 22.89 34.056 28.544 0

0.749999997 0 72.57 75.96 22.87 34.424 28.032 0

0.83333333 0 72.47 76.024 22.88 33.38 27.612 0

0.916666663 0 72.45 75.976 22.9 32.792 27.28 0

0.999999996 0 72.44 75.944 22.89 32.656 26.992 0
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6 Method and Model

The system is represented as an 1R1C, 2R2C and 3R3C-circuit.

6.1 1R1C

The thermal equivalent circuit of the EWH can be represented as an 1R1C-circuit as shown in
Figure 22.

Figure 22: Final RC-equivalent circuit.

Rwater = Resistance between wall and ambient. Vwater = Voltage water. Twater = Temperature water. Cwater = Heat

capacity of water. A = Current source Q̇ = heat source Vin = Voltage in Tin = Temperature of inlet water I = currents

Heat is added when the temperature drops below a given set-point temperature, as stated in
2.4. This heat is added in Q̇. The water in the EWH can store heat, giving a temperature
Twater and a thermal capacity Cwater. Between the ambient and the water in the tank, there is
a resistance named Rwall.

To obtain the differential equation for the system in Figure 22 KCL is used. Using node Vwater

as a reference, currents into this point must equal the outgoing currents. Current I1 is the
current/heat added to the system, and the current I2 is the water that flows into the system.
I2 equals Vin - Vwater. I1 and I2 come into Vwater and must be equal to the outgoing currents
I3 and I4. I3 equals the current over the capacitor, C dV

dt , and I4 equals the current over the

resistor, Vwater−Va
R . This gives us the following equations:

I1 + I2 = I3 + I4 (7)

I1 + (Vin − Vwater) = C
dVwater

dt
+

Vwater − Va

Rwater
(8)

Given this is a thermal-electrical equivalent, it is known that Q̇ = I and T = V .

Q̇+ (Tin − Twater) = Cwater
dTwater

dt
+

Twater − Ta

Rwater
(9)

It is desirable to look at the equation regarding dTwater. It is also important to add the diffusion
term, being an error and stated as σdω. This leads to the following equation:
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dTwater = (
ṁ · cw
Cwater

(Tin − Twater) +
Ta − Twater

RwaterCwater
+

Q̇

Cwater
)dt+ σdω (10)

The observation equation is essential when using CTSM-R. The observation equation gives the
model information about the actual parameter values. This makes it possible for the model to
perform accurate parameter fitting. The observation equation used in calculations is as follows:

Y Twater = Twater + σ (11)

A comparison between measured and simulated data will be performed to verify the model. This
comparison will happen through one-step-ahead plots and simulated-value plots. To obtain
simulated data, Equation 10 will be solved using Euler’s method. Equation 12 is solved for
TEWH(t + 1). This equation finds all Twater values by using the initial measured values and
parameter fitted values. The equation will iterate through the entire spreadsheet of measured
data, making Twater(t+ 1) into Twater(t) in the next iteration.

Twater(t+ 1) = Twater(t) + dt · ( ṁ · cw
Cwater

(Tin(t)− Twater(t)) +
Ta(t)− Twater(t)

RwaterCwater
+

Q̇(t)

Cwater
) (12)

6.2 2R2C

The literature review indicated that models using more resistances and capacitors gained more
accurate results. The following thermoelectric model is used in the 2R2C model:

Figure 23: The thermoelectric equivalent of the system.

Rww = Resistance between water and wall. Rwa = Resistance between wall and ambient. Vwater = Voltage water. Vwall

= Voltage wall. Cwater = Heat capacity of water. Cwall = Heat capacity of wall. A = Current source Va = Voltage source

This model is expanded with one more R and one more C. It is the same system, but the
water and the ambient are further divided with a wall. It is not just one resistance between the
water and the ambient, but there is a water-wall resistance and a wall-ambient resistance in this
system. It is also a specific heat capacity for water and a specific heat capacity for the wall.
This is the same approach as previous work, stated in reference [51].
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In the 1R1C model, KCL is used to obtain the differential equations for the system. The currents
flowing in and out of node Vwater and node Vwall must be the same.

When looking at node Vwater, currents I1 and I4 equals the currents I2 and I3. This is almost
the same circuit as the 1R1C model. I1 equals the heat added to the system and I4 equals the
water flowing into the system, given as Vin - Vwater. Current I3 is the current through Rww,
given as Vwater−Vwall

Rww
. The current I2 is the current through the capacitor, given asC dV

dt . Figure
24 shows the circuit as seen from Vwater.

I1 + I4 = I2 + I3 (13)

Figure 24: The Vwater node.

I1 + (Vin − Vwater) = Cwater
dTwater

dt
+

Vwater − Va

Rwater
(14)

Looking at node Vwall, one have to consider three currents. I3 represents the current through
Rww, I5 represents the current through Cwall and I6 represents the current through Rwa.

I3 = I5 + I6 (15)

Figure 25: The Vwall node
.

This gives us the following equation:
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Vwater − Vwall

Rww
= Cwater

dVwall

dt
+

Vwall − Va

Rwa
(16)

The above Equations 14 and 16 are changed to thermo-electric analogy and shown with regard
to dT. The diffusion term, σdω, is added. This leads to the following equations:

dTwater

dt
=

ṁ · cw(Tin − Twater)

Cwater
+

Twall − Twater

RwwCwater
+

Q̇

Cwater
+

σwaterdω

dt
(17)

dTwall

dt
=

Twater − Twall

RwwCwall
+

Ta − Twall

RwaCwall
+

σwalldω

dt
(18)

The observation equation is the same as for the 1R1C model.

YTwater = Twater + σ (19)

Equation 17 and 18 is solved using Euler’s to be able to find Twater(t+ 1) and Twall(t+ 1).

Twater(t+1) = Twater(t) + dt · (ṁ · cw(Tin(t)− Twater(t))

Cwater
+

Twall(t)− Twater(t)

RwwCwater
+

Q̇

Cwater
) (20)

Twall(t+ 1) = Twall(t) + dt(
Twater(t)− Twall(t)

RwwCwall
+

Ta(t)− Twall(t)

RwaCwall
(21)

6.3 3R3C

The system is also solved as a 3R3C-model. The following thermoelectric model is used:

Figure 26: The thermoelectric equivalent of the system.

Rhew = Resistance between heating element and water. Rww = Resistance between water and wall. Rwa = Resistance

between wall and ambient. Vhe = Voltage heating element. Vwater = Voltage water. Vwall = Voltage wall. Che = Heat

capacity of heating element. Cwater = Heat capacity of water. Cwall = Heat capacity of wall. A = Current source Va =

Voltage source
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This is the same system as the 1R1C-model and the 2R2C-model. The difference is that it also
considers the heating element. This gives another node described as Vhe. The heating element
has a heating capacity of Che. There is a resistance between the heating element and the water,
and also a resistance between the water and the wall and between the wall and the ambient.
The water and the wall both have their thermal capacities.

To obtain the differential equation for the system in Figure 26 KCL is used. There are three
nodes in the model, Vhe, Vwater and Vwall. The currents flowing into these nodes must equal
the currents flowing out of the nodes. The circuit is divided into these three nodes and then
analyzed.

The first node, Vhe, as seen in Figure 27 represents the heating element. I1 needs to be the same
as the two other currents. Current over a capacitor equals, Che

dV
dt and current over the resistor

equals Vhe−Vwater

Rhe
. Equation 23 shows the complete equation.

I1 = I2 + I3 (22)

Figure 27: The thermoelectric equivalent of the system.

I1 =
Vhe − Vwater

Rhew
+ Cwater

dVhe

dt
(23)

The second node, Vwater, describes the water inside the EWH. The current I3 and I4 equals the
current I5 and the current I6. The current over the resistor Rehw, I3, is equal to Vhe−Vwater

Rehw
.

Since water is withdrawn from the tank, some water will enter the tank. This will be seen as the
current I4 and will be stated as Tin - Twater. The current over the capacitor, I5 equals Cwater

dV
dt .

and current over the resistor Rww, I6 is equal to Vwater−Vwall
Rww

. This gives the complete equation
as shown in Equation 25.

I3 + I4 = I5 + I6 (24)
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Figure 28: The thermoelectric equivalent of the system.

Vhe − Vwater

Rhew
+ (Vin − Vwater) =

Vwater − Vwall

Rww
+ Cwater

dVwater

dt
(25)

Looking at node Vwall, one have to consider three currents. I6 represents the current through
Rww, I7 represents the current over Cwall and I8 represents the current over Rwa. Equation 27
shows this.

I6 = I7 + I8 (26)

Figure 29: The thermoelectric equivalent of the system.

Vwater − Vwall

Rww
= Cwall

dVwall

dt
+

Vwall − Va

Rwa
(27)

Given this is a thermal-electrical equivalent, it is known that Q = I and T = V . It is also
important to add the diffusion term, stated as σdω. This leads to the following equations:

dThe

dt
=

Twater − The

RhewChe
+

Q̇

Che
+

σhedω

dt
(28)

dTwater

dt
=

ṁ · cw(Tin − Twater)

Cwater
+

Twall − Twater

RwwCwater
+

The − Twater

RhewCwater
+

σwaterdω

dt
(29)
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dTwall

dt
=

Twater − Twall

RwwCwall
+

Ta − Twall

RwaCwall
+

σwalldω

dt
(30)

The observation equation is the same as for the 1R1C and the 2R2C model.

YTwater = Twater + σ (31)

A comparison between measured and simulated data will be performed to verify the model.
To obtain simulated data, Euler’s method is used. It is interesting to solve for Twater(t + 1),
The(t+ 1) and Twall(t+ 1). Equation 33, Equation 32 and Equation 34 shows these equations.

The(t+ 1) = The(t) + dt · (Twater(t)− The(t)

RhewChe
+

Q̇(t)

Che
) (32)

Twater(t+1) = Twater(t)+dt·(ṁ · cw(Tin(t)− Twater(t))

Cwater
+
Twall(t)− Twater(t)

RwwCwater
+
The(t)− Twater(t)

RhewCwater
)

(33)

Twall(t+ 1) = Twall(t) + dt(
Twater(t)− Twall(t)

RwwCwall
+

Ta(t)− Twall(t)

Rwa − Cwall
(34)

6.4 Using The CTSM-R tool

With CTSM-R, the unknown resistances and capacitances are obtained for each case. All
cases will use three models for parameter fitting. It is an 1R1C-model, a 2R2C-model and a
3R3C-model. Script of the CTSM-R code can be found in Figure 55 - Figure 58 in Section
12. This bases on the CTSM-R examples found on the CTSM.info homepage [63]. The specific
system equations, inputs, observation equation, and variance were changed to fit the experiments
performed at the NTNU Smart House Lab. Initial values of parameters are stated to fit the cases.
Changing initial values and their boundaries is essential to obtain accurate parameter fitting.
The boundaries are decided based on examples, references, and trial and error. The boundaries
specify the upper and lower limit of where the parameters are allowed to move during iterations.
A wide area of movement may lead to poor parameter fitting. By adjusting the initial values
and their range, it is possible to get the best possible parameter fitting. Figure 7 shows how
the CSV file looks like. Using the known parameters from the file, CTSM-R iterates through to
find the optimal solution to the unknown. Figure 30 shows the iteration. CTSM-R uses trial
and error on different R and C values to find maximum likelihood values.

Figure 30: Iterations performed by CTSM-R.
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The developers do not specify the units used for R and C in their examples on CTSM-R. CTSM-
R is therefore applied with different units. Further, the results are compared with the results
of other references. Professors at DTU were contacted for the verification of units. Units are
decided as following: R (

◦C
kW ), C(kWh

◦C ) and Q(kW).

6.5 Model Validation

Model validation is essential. When running CTSM-R, one retrieves a coefficient matrix and a
correlation matrix. There are four essential observations to these two matrixes. These are as
follows:

• The p-value of the t-tests (Pr(> |t| is below 0.05 for all parameters. Helping parameters
can exceed this limit.

• dF/dPar is close to zero.

• dPen/dPar is not significant compared to dF/dPar

• The correlation matrix do not have any off diagonal values close to +/- 1. This does not
apply for non-important parameters.

By looking at residuals, ACF, cumulated periodogram, one-step-ahead plot, simulated-value
plot, LogLikelihood, and the root-mean-square error(RMSE), it is possible to analyze what
model is the best.

Residual means the amount leftover after the operation. The residuals ACF plot is the autocor-
relation in the residuals and shows the independence of the residuals. If there is autocorrelation
in the residuals, which extends beyond the dotted line in the plot, it would suggest that the
forecast is inefficient. The results are not wrong, but they may have a larger prediction inter-
val than necessary [64]. The Cumulated periodogram is also plotted and shows the dominant
frequencies of the time series. If the frequencies are inside the blue dotted interval, the residual
has satisfactory white noise properties [55]. The script used for plotting residuals, ACF, and
cumulated periodogram can be seen in Figure 58 in the Attachments.

The one-step-ahead plot shows the temperature of the water and is solved by an inbuilt function
in R. To compute these plots, Euler’s method is used. Equation 12 for the 1R1C-model, Equation
20 for the 2R2C-model and Equation 33, for the 3R3C-model. The measured parameter values
of temperature and power and fitted parameters of R and C are used as inputs in the equations.
The one-step-ahead plot is compared with the measured temperature plot. A simulated-value
plot shows the water temperature plots using the last step’s simulated values instead of the
measured values. For the 1R1C-model, Equation 12 is used. For the 2R2C-model, Equation 21
and Equation 20 are used. For the 3R3C-model Equation 33, Equation 32 and Equation 34 are
used. It is only the temperature of the water that is interesting to plot. The values of the other
parameters must be obtained to plot this graph. When all values are calculated, the simulated
temperature plots are compared with the actual measured-value plot.

Log-likelihood and root-mean-square-error are calculated using built-in functions in R. The script
is shown in Figure 58. A higher likelihood is positive, while it is desirable with the lowest possible
RMSE. These values indicate how good the models are compared to each other. Equation 35
shows the equation for finding the RMSE manually.

RMSE =

√√√√ N∑
i=n

(Predictedi −Actuali)2

N
(35)
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7 Experimental Results

In this section, graphs of experiments, results from parameter fitting and residual plots are
shown.

7.1 Case 1.1: Steady state of the EWH at different set-point temperatures
using the upper temperature sensor

Case 1.1 uses an experimental setup where the upper and the lower temperature sensors are
fitted. Figure 31 shows measured power ratings and measured temperature ratings of the lower
and the upper-temperature sensor. The black line indicates the set-point temperature. Some
draining of water occurred around hour 45. The lower temperature sensor reacts more to little
water draining than the upper sensor. The upper-temperature sensor measures temperatures
closer to the set-point temperature, except for the set-point temperature of 85 ◦C.

Figure 31: Temperatures and power rating measurements of Case 1.1.

The coefficient matrix and the correlation matrix indicate how good the parameter fittings are.
It shows if the results check the four important points stated in Section 6.4. Table 8 and Table
9 shows the coefficient and correlation matrix of experiment 1.1 with upper temperature sensor
for the 1R1C model. The coefficient and correlation matrixes of the 2R2C and 3R3C cases can
be found in Table 25 - 32 in Section 12, Attachments. The coefficient matrix of experiment 1.1
shows that the model validates considering the four points stated in Section 6. The correlation
matrix shows that the diagonal is close to 0, validating the model.

38



Table 8: Coefficient Matrix of the 1R1C-model for case 1.1 with upper temperature sensor.

Estimate Std. Error t value Pr( > | t |) dF/dPar dPen/dPar
Tewh0 7.7320e+01 8.9519e-02 8.6372e+02 0.0000e+00 5.9866e-05 0.0023
C 4.2531e-01 8.7496e-03 4.8609e+01 0.0000e+00 2.6738e-08 0.0000
e11 -1.7800e+01 2.4193e+01 -7.3573e-01 4.6202e-01 -2.0570e-07 0.0073
p11 -1.1260e+00 2.0597e-02 -5.4668e+01 0.0000e+00 -2.4300e-06 0.0000
R 4.0597e+02 4.0836e+01 9.9415e+00 0.0000e+00 5.6887e-07 0.0001

Table 10 shows the R and C values obtained. Table 32 shows the R and C values graphically.
Figure 33 shows the residual, ACF and cumulated periodograms of case 1.1.

Table 9: Correlation Matrix of the 1R1C-model for Case 1.1 using the upper temperature sensor.

Tewh0 C e11 p11

C 0.04

e11 0.01 0.06

p11 0.00 0.15 0.00

R 0.01 0.26 0.02 0.00

Table 10: Estimated values for resistance and capacitance of Case 1.1.

Case Tset (
◦C) R(

◦C
kW ) C(kWh

◦C ) Iterations

1.1 (1R1C) Upper 60-85 405.970 0.425 39

1.1 (2R2C) Upper 60-85 409.19, 1.1899* 0.425, 0.0114* 31

1.1 (3R3C) Upper 60-85 333.14, 3.2258*, 2.3335** 0.22917, 0.1623*, 0.10608** 133

1.1 (1R1C) Low 60-85 271.636 0.343 34

1.1 (2R2C) Low 60-85 270.83, 0.794* 0.343, 0.00774* 49

1.1 (3R3C) Low 60-85 251.07, 20.357*, 1.0955** 0.19289, 0.14419*, 0.088475** 282

R = Resistance between water and wall/(water and ambient for the 1R1C-model). R* = Resistance between wall and
ambient. R** = Resistance between heating element and water.

C = Heat capacity of water. C* = Heat capacity of wall. C** = Heat capacity of heating element.

Figure 32: Estimated values for resistances and capacitances for Case 1.1.
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The resistance and capacitance values are higher for the upper-temperature sensor experiments.
The 3R3C models have the highest combined capacitance values.

Figure 33: Comparing residuals of Case 1.1 using upper temperature sensor.

The residual plot, cumulated periodogram, and ACF plots show fewer disturbances in the 3R3C-
model than in the 1R1C and 2R2C models.

7.2 Case 1.2: Steady state of the EWH at different set-point temperatures
using the upper temperature sensor

Case 1.2 uses an experiment setup with the lower and the middle-temperature sensor. The
procedure is the same as for Case 1.1. Figure 34 shows power use and temperature measured
during Case 1.2. There occurred some water draining around hour 75, but not as much as in
Case 1.1. The temperature profile of the middle sensor is above the temperature profile of the
lower temperature sensor.
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Figure 34: Temperatures and power rating measurements of Case 1.2.

Coefficient matrixes and correlation matrixes of Case 1.2 with middle temperature sensor are
shown in Table 33 - 38 in the Section 12 Attachment. They give a good validation of the model.
Table 11 shows the predicted R and C values. Figure 35 shows the correlation in R and C-values
graphically. Figure 36 shows the residual, ACF and cumulated periodograms of Case 1.2.

Table 11: Estimated values for R and C of Case 1.2.

Reference Tset (
◦C) R(

◦C
kW ) C(kWh

◦C ) iterations

1.2 (1R1C) Middle 60-90 357.98 0.367 40

1.2 (2R2C) Middle 60-90 352.1, 1.738* 0.3759, 0.0159* 130

1.2 (3R3C) Middle 60-90 355.17, 4.0647*, 1.1736** 0.31734, 0.01065*, 0.01165** 84

1.2 (1R1C) Low 60-90 302.07 0.3031 40

1.2 (2R2C) Low 60-90 288.46, 1.7295* 0.3211, 0.018206* 100

1.2 (3R3C) Low 60-90 313.57, 9.735*, 5.356** 0.2447, 0.1304*, 0.01206** 97

R = Resistance between water and wall/(water and ambient if it is 1R1C). R* = Resistance between wall and ambient.
R** = Resistance between heating element and water.

C = Heat capacity of water. C* = Heat capacity of wall. C** = Heat capacity of heating element.
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Figure 35: Estimated values for resistances and capacitances in Case 1.2.

The capacitance values are similar for both middle- and lower-temperature sensor predictions.
The measurements are better for Case 1.2 than for Case 1.1 because of fewer disturbances from
water draining. The resistance obtained for the middle-temperature sensor is higher than for
the lower-temperature sensor.

Figure 36: Comparing residuals of Case 1.2 using middle temperature sensor.

The residual plot, cumulated periodogram, and ACF plots show fewer disturbances in the 3R3C-
model than in the 1R1C and 2R2C models. The 1R1C model is the worst of the three models.
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7.3 Case 2: 3-4 showers a day while the EWH is in on-mode

This case simulates the operation of an EWH in a family home. 3-to 4 showers are performed
each day. The showers occur at different times a day, and the duration of the showers varies to
simulate the hot water usage in a family home. The water heater is connected to a power source
during showering periods. Figure 37 shows the temperature and power ratings of Case 2, and
Table 12 shows the number of showers with duration and time. The graph shows that the lower
temperature sensor is susceptible to inlet water.

Figure 37: Temperatures and power ratings of the EWH during Case 2.

Table 12: Showers performed during Case 2.

Shower number Duration Time

1 10 min 15:20

2 10 min 15:40

3 10 min 16:00

4 15 min 20:00

6 10 min 63:50

7 10 min 64:40

8 10 min 87:40

9 10 min 88:00

10 10 min 88:20

11 15 min 93:00

Coefficient matrixes and correlation matrixes of Case 2 with middle temperature sensor are
shown in Table 39 - 44 in Section 12 Attachments. Table 13 shows this experiment’s fitted R
and C values. Figure 38 compares the models’ different R and C values. The values for the
lower sensor are not shown, as the measurements are poor due to the sensor being too sensitive
to inlet water. Figure 39 shows the residual, ACF and cumulated periodogram of Case 2.
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Table 13: Parameter fitting for Case 2.

Case Tset (
◦C) R(

◦C
kW ) C(kWh

◦C ) Iterations

2 (1R1C) Mid 60-85 167.69 0.507 44

2 (2R2C) Mid 60-85 123.82, 4.5471* 0.3845, 0.0.04013* 58

2 (3R3C) Mid 60-85 119.58, 3.985*, 1.9024** 0.14499, 0.16214*, 0.028879** 174

R = Resistance between water and wall/(water and ambient if it is 1R1C). R* = Resistance between wall and ambient.
R** = Resistance between heating element and water.

C = Heat capacity of water. C* = Heat capacity of wall. C** = Heat capacity of heating element.

Figure 38: Estimated values for resistances and capacitances in Case 2.

The resistance is much lower in Case 2 than in Case 1. The capacitance is at the same level as
in Case 1. Resistance and capacitance values reduce some when the model increases the number
of resistances and capacitances.
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Figure 39: Comparing residuals of Case 2 using middle temperature sensor.

The residual plots, cumulated periodogram, and ACF plots show that the 1R1C-model varies
greatly. The 3R3C model is favorable.

7.4 Case 3.1: 3-4 showers a day while the EWH is in off-mode

This case simulates the operation of an EWH in a family home, but the EWH is turned off
during the period when showers occur. 3-to 4 showers are performed each day. Showers occur
at different times of the day. This is to simulate a flexible water heater in a normal family
home. The middle and the lower-temperature sensor is used in this experiment. Figure 40
shows the experiment, and Table 14 shows the number of showers with duration, time, and
on-time for EWH. The plot shows that the lower temperature sensor is very dependent on cold
water entering the tank.
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Figure 40: Temperatures and power ratings of Case 3.1.

Table 14: Showers and state of EWH during Case 3.1.

Shower number Duration Time

1 10 min 08:00

2 10 min 08:30

3 5 min 09:15

4 10 min 14:30

6 10 min 30:40

7 10 min 31:20

8 5 min 31:50

9 5 min 36:00

10 5 min 53:00

11 5 min 53:45

12 5 min 54:30

Time State

0-8:00 On

8:00-14:40 Off

14:40-30:40 On

30:40-36:00 Off

36:00-53:00 On

53:00-56:45 Off

57:00-89:00 On

The coefficient matrix and correlation are shown in Table 45 - 50 in Section 12 Attachments.
Table 15 shows the calculated R and C values. Figure 41 shows the residual plots for Case 3.1.

Table 15: Parameter fitting for Case 3.1.

Case Tset (
◦C) R(

◦C
kW ) C(kWh

◦C ) Iterations

3.1 (1R1C) Middle 60 - 85 195.94 0.316 43

3.1 (2R2C) Middle 60 - 85 180.74, 2.194* 0.311, 0.0452* 84

3.1 (3R3C) Middle 60 - 85 168.13, 1.5448*, 0.86995** 0.12567, 0.16464*, 0.1552** 178

R = Resistance between water and wall/(water and ambient if it is 1R1C). R* = Resistance between wall and ambient.
R** = Resistance between heating element and water.

C = Heat capacity of water. C* = Heat capacity of wall. C** = Heat capacity of heating element.
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The resistance decreases as the model is expanded. The combined capacitance is higher for
increasing model complexity. Both resistance and capacitance for water decrease as the model
get more complex.

Figure 41: Comparing residuals of Case 3.1, using middle temperature sensor.

The residual plots, cumulated periodogram, and ACF plots show that the 1R1C-model is the
weakest. The best model considering these plots is the 3R3C-model.

7.5 Case 3.2: 3-4 showers while the EWH is in off-mode

This experiment has the same procedure as Experiment 3.1, but the upper-temperature sensor
is used. Figure 42 shows the plot of the experiment, and Table 16 shows the duration, time of
showers, and the state of the EWH. Only the upper sensor temperatures are shown because the
lower sensor temperatures were too dependent on the inlet water.
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Figure 42: Temperatures and power ratings of Case 3.2 with the upper temperature sensor.

Table 16: Showers and state of water heater during Case 3.2.

Shower Number Duration Time

1 10 min 01:45

2 10 min 02:25

3 10 min 03:15

4 10 min 27:40

5 5 min 28:10

6 5 min 28:30

7 5 min 29:40

8 5 min 45:00

9 10 min 49:55

10 10 min 50:45

11 10 min 51:45

12 10 min 53:40

Time State

0-3:50 Off

3:50-27:20 On

27:20-30:00 Off

30:00-45:00 On

45:00-54:00 Off

54:00-70:00 On

Coefficient matrix and correlation matrix of Case 3.2 with upper temperature sensor are shown
in Table 51 - 56 in the Attachments. Table 17 shows the parameter fittings of Experiment 3.2,
and Figure 43 shows the graphical presentation of R and C-values of both Experiment 3.1 and
Experiment 3.2. Figure 44 shows the residuals, ACF, and cumulated periodogram of case 3.2.
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Table 17: Parameter fitting of case 3.2.

Case Tset (
◦C) R(

◦C
kW ) C(kWh

◦C ) Iterations

3.2 (1R1C) Upper 60 - 85 137.83 0.4795 28

3.2 (2R2C) Upper 60 - 85 102.08, 1.373* 0.361, 0.181* 72

3.2 (3R3C) Upper 60 - 85 97.877, 4.8837*, 1.5251** 0.214, 0.1701*, 0.1731** 82

R = Resistance between water and wall/(water and ambient if it is 1R1C). R* = Resistance between wall and ambient.
R** = Resistance between heating element and water.

C = Heat capacity of water. C* = Heat capacity of wall. C** = Heat capacity of heating element.

Figure 43: The relationship between the different resistances and capacitances of Case 3.1 and
Case 3.2.

When plotting the middle and upper experiments of Case 3, it is interesting to see that the
resistance decreases while the capacitance increases for the combined plots. The resistance and
capacitance of water decrease with a more complex model with more resistances and capaci-
tances.
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Figure 44: Comparing residuals of Case 3.2, using upper temperature sensor.

The residual plots, cumulated periodogram, and ACF plots show that the 1R1C-model is the
poorer model. 2R2C and 3R3C-models are very similar considering these plots.
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8 Verification of Mathematical Model

Simulated-value plots, one-step-ahead plots, Log-Likelihood values, and Root-means-square-
error are evaluated. Simulated-value plots and one-step-ahead plots are found using the Eulers
method. The difference between the two is that the simulated-value plots always use the sim-
ulated value of the last iteration to predict the next value. The one-step ahead uses the last
measured value to predict the next simulated value. Euler’s method is shown in Section 6. Log-
Likelihood is an inbuilt function in R, and RMSE is solved using the formula stated in Section
6.

8.1 Case 1

Table 18: Likelihood, RMSE, R and C-values of Case 1.

Case R(
◦C
kW ) Combined(

◦C
kW ) C(kWh

◦C ) Combined(kWh
◦C ) LogLikelihood RMSE

1.1 (1R1C) Upper 405.970 405.970 0.425 0.425 1299.120 0.102

1.1 (2R2C) Upper 409.190, 1.189* 410.379 0.425, 0.011* 0.436 1299.180 0.099

1.1 (3R3C) Upper 333.140, 3.226*, 2.334** 338.699 0.229, 0.162*, 0.106** 0.498 1879.070 0.068

1.1 (1R1C) Low 271.636 271.636 0.343 0.343 1320.427 0.109

1.1 (2R2C) Low 270.830, 0.794* 271.624 0.343, 0.008* 0.351 1337.936 0.106

1.1 (3R3C) Low 251.070, 20.357*, 1.096** 272.523 0.193, 0.144*, 0.089** 0.426 1882.659 0.074

1.2 (1R1C) Middle 357.980 357.980 0.367 0.367 2626.700 0.066

1.2 (2R2C) Middle 352.100, 1.738* 353.838 0.376, 0.016* 0.392 2698.819 0.062

1.2 (3R3C) Middle 355.17, 4.0647*, 1.173** 360.4077 0.317, 0.011*, 0.012** 0.340 3474.716 0.036

1.2 (1R1C) Low 302.070 302.070 0.303 0.303 1925.644 0.091

1.2 (2R2C) Low 288.460, 1.730* 290.190 0.321, 0.018* 0.339 1984.102 0.087

1.2 (3R3C) Low 313.570, 9.735*, 5.356** 328.661 0.245, 0.130*, 0.012** 0.387 2804.914 0.055

The RMSE and Likelihood values show that the 3R3C model is favorable for all models and
both experiments. The combined resistance and capacitance are also shown in this table.

Figure 45: Comparing one-step-ahead functions for Case 1.1 using upper temperature sensor.
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Figure 46: Comparing simulated value-plots for Case 1.1 using the upper temperature sensor.

Figure 47: Comparing one-step-ahead functions for Case 1.2 using middle temperature sensor.
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Figure 48: Comparing simulated-value-plots for Case 1.2 using middle temperature sensor.

The one-step-ahead plots for Case 1.1 and Case 1.2 show that all models fit the measured
temperature well. The simulated-value plots show that the 3R3C model almost equals the
measured temperature. The 2R2C and 1R1C models are not great compared to the measured
values. The 2R2C-model is better than the 1R1C-model.

8.2 Case 2

Table 19: R (
◦C
kW ) and C (kWh

◦C ), LogLikelihood and RSME-value for Case 2.

Case R(
◦C
kW ) Combined(

◦C
kW ) C(kWh

◦C ) Combined(kWh
◦C ) LogLikelihood RMSE

2 (1R1C) Mid 167.690 167.690 0.507 0.507 -685.195 0.746

2 (2R2C) Mid 123.820, 4.547* 128.3671 0.3845, 0.040* 0.425 -146.092 0.605

2 (3R3C) Mid 119.580, 3.985*, 1.902** 125.467 0.145, 0.162*, 0.0289** 0.336 -127.612 0.613

The LogLikelihood-value is negative, but the most negligible negative value is the 3R3C, which
means that this is the best model. The RMSE-value favors the 3R3C-model too.
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Figure 49: Comparing one-step-ahead plots of Case 2 using middle temperature sensor.

Figure 50: Comparing simulated-value-plots for Case 2 using the middle temperature sensor.

The one-step ahead functions are good for all models. They are all equal to the measured plot.
The simulated-value plot shows that the 3R3C-model is very similar to the measured plot. The
1R1C and 2R2C models are off, but the 1R1C model is the least good of the two. The models
fit better for the parameters of Case 2.
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8.3 Case 3

Table 20: Resistance (
◦C
kW ), capacitance (kWh

◦C ), LogLikelihood and RMSE-value for Case 3.

Case R(
◦C
kW ) Combined(

◦C
kW ) C(kWh

◦C ) Combined(kWh
◦C ) LogLikelihood RMSE

3 (1R1C) Middle 195.940 195.940 0.316 0.316 -810.797 1.174

3 (2R2C) Middle 180.740, 2.194* 182.934 0.311, 0.045* 0.356 -647.904 0.928

3 (3R3C) Middle 168.130, 1.545*, 0.869** 170.545 0.126, 0.165*, 0.155** 0.446 -594.504 0.921

3 (1R1C) Upper 137.830 137.830 0.479 0.479 -676.247 1.053

3 (2R2C) Upper 102.080, 1.373* 103.453 0.361, 0.181* 0.542 -404.300 0.851

3 (3R3C) Upper 97.877, 4.884*, 1.525** 104.286 0.214, 0.170*, 0.173** 0.557 -409.125 0.844

The Loglikelihood and RMSE favor the 3R3C model for the middle-temperature sensor. For the
experiments with the upper-temperature sensor, RMSE-value favors the 3R3C, and LogLikeli-
hood favors the 2R2C model.

Figure 51: Comparing one-step-ahead plots of 1R1C, 2R2C and 3R3C for Case 3.1.

Figure 52: Comparing simulated-value-plots for Case 3.2, middle temperature sensor.
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Figure 53: Comparing one-step-ahead plots of 1R1C, 2R2C and 3R3C for case 3.2.

Figure 54: Comparing simulated-value-plots for Case 3.2 using the upper temperature sensor.

The one-step-ahead function shows that the models fit well with the measured temperature.
The predicted-value plots show that the 3R3C models fit well, and the 1R1C and 2R2C models
do not fit well. The models fit better for the parameters of Case 3.
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9 Discussion

In this section, the results of every case are discussed. Table 21 and Table 22 shows a comparison
between resistances and capacitances of different research papers. Table 21 shows values of R
◦C
kW and C kWh

◦C . Table 22 shows values of R
◦C

kWkg and C kWh
◦Ckg . Case 1.2, the middle-temperature

sensor, is chosen as the best parameter fitted values of Case 1. Case 1.1 had too much disturbance
from water being drained from the water heater. The lower temperature sensor is not stated
in the tables because it was too dependent on the temperature of the inlet water. For Case 2
and 3, only the 3R3C-model are stated in the tables. This is because RMSE, LogLikelihood,
one-step-ahead predictions, predicted-value-plot, residual, ACF, and cumulated periodograms
all state that the 3R3C model is the best model for almost every case and experiment.

Table 21: R (
◦C
kW ) and C (kWh

◦C ) compared with other papers.

Reference Tset (
◦C) V (L) P (kW) R(

◦C
kW ) C(kWh

◦C )

Case 1.2 (1R1C) Middle 60-85 281 3 357.98 0.367

Case 1.2 (2R2C) Middle 60-85 281 3 352.1, 1.738* 0.3759, 0.0159*

Case 1.2 (3R3C) Middle 60-85 281 3 333.29, 26.142*, 7.2524** 0.31734, 0.01065*, 0.01165**

Case 2 (3R3C) Middle 60-85 281 3 119.58, 3.985*, 1.9024** 0.14499, 0.16214*, 0.028879**

Case 3 (3R3C) Middle 60-85 281 3 168.13, 1.5448*, 0.86995** 0.12567, 0.16464*, 0.1552**

Case 3 (3R3C) Upper 60-85 281 3 97.877, 4.8837*, 1.5251** 0.214, 0.1701*, 0.1731***

[2] Løvstakken (1R1C) 70 281 3 286.21 0.185

[2] Løvstakken (1R1C) 75 281 3 296 0.157

[2] Løvstakken (1R1C) 80 281 3 295.2 0.158

[2] Løvstakken (1R1C) 85 281 3 247.11 0.185

[51] Svendsen (1R1C) 75 281 3 286.6 0.17

[51] Svendsen (2R2C) 75 281 3 283.24 0.174

[6] Lakshmanan (1R1C) 70-75 200 2 600 0.335

[55] Yu (1R1C) 25-80 92 2.8 1055 0.1055

[55] Yu (2R2C) 25-80 92 2.8 929, 39.73** 0.1055, 0.003**

[55] Yu (2R2C) 25-80 92 2.8 0.4041, 1017* 0.1055, 0.074*

[55] Yu (3R3C) 25-80 92 2.8 855.2, 1004*, 66.72** 0.1055, 0.001*, 0.0017**

[56] DTU 50-95 788 3 x 3 120.627 1.0781

Table 22: R (
◦C

kWkg ) and C ( kWh
◦Ckg ) compared with other papers.

Reference V (L) R(
◦C

kWkg ) R combined C( kWh
◦Ckg ) C combined

Case 1.2 (1R1C) Middle 281 1.2739 1.2739 0.00131 0.00131

Case 1.2 (2R2C) Middle 281 1.253, 0.00618* 1.25918 0.00134, 0.00006* 0.00140

Case 1.2 (3R3C) Middle 281 0.00615, 1.2657*, 0.403** 1.67485 0.000847, 0.00035*, 0.000004** 0.00123

Case 2 (3R3C) Middle 281 0.0062, 0.516*, 0.021** 0.5432 0.00067, 0.00098*, 0.00004** 0.00119

Case 3 (3R3C) Middle 281 0.0121, 0.655*, 0.01504** 0.68214 0.00011, 0.00066*, 0.00020** 0.00159

Case 3 (3R3C) Upper 281 0.2849, 0.00749*, 0.00550** 0.29789 0.00076, 0.00017*, 0.00061** 0.00154

[2] Løvstakken (1R1C) 281 1.0185 1.0185 0.00066 0.00066

[2] Løvstakken (1R1C) 281 1.0533 1.0533 0.00056 0.00056

[2] Løvstakken (1R1C) 281 1.0505 1.0505 0.00056 0.00056

[2] Løvstakken (1R1C) 281 0.87039 0.87039 0.00066 0.00066

[51] Svendsen (1R1C) 281 1.018 1.018 0.0006 0.0006

[51] Svendsen (2R2C) 281 1.008 1.008 0.0006 0.0006

[6] Lakshmanan (1R1C) 200 3 3 0.0016 0.0016

[55] Yu (1R1C) 92 11.467 11.467 0.0011 0.0011

[55] Yu (2R2C) 92 10.097, 0.431** 10.528 0.0011, 0.00003** 0.00113

[55] Yu (2R2C) 92 0.0043, 11.054* 11.0583 0.0011, 0.0008* 0.0019

[55] Yu (3R3C) 92 9.29, 10.91*, 0.725** 20.925 0.0011, 0.00001*, 0.00001** 0.00112

[56] DTU 788 0.153 0.153 0.0013 0.0013

R = Resistance between water and wall/(water and ambient if it is 1R1C). R* = Resistance between wall and ambient.
R** = Resistance between heating element and water.

C = Heat capacity of water. C* = Heat capacity of wall. C** = Heat capacity of heating element.

Table 23 and Table 24 shows the specific heat capacity of water. Comparing capacitance values
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with these tables is interesting because the parameter fitted capacitance should be at least equal
to the values in these tables. Table 2 shows the heat capacity of isolation. This is interesting
when considering the 2R2C and 3R3C-models, as these split the capacitance and resistance into
several capacitances and resistances, including looking at the heat capacity of the wall.

Table 23: Specific heat capacity of water.

Temperature (◦C) Specific Heat Capacity of Water

20 4184 J
kg◦C 0.001162 kWh

kg◦C

80 4198 J
kg◦C 0.0011661 kWh

kg◦C

Table 24: Specific heat capacity of water at different volumes (L).

Volume (L) C(kWh
◦C ) at 20◦C C(kWh

◦C ) at 80◦C

200 0.232 0.233

281 0.327 0.328

788 0.916 0.920

9.1 Case 1

Experiments in Case 1.1 are the same as those performed in the project thesis, Løvstakken
[2]. However, the experiments span a more extensive period, and the set-point temperature is
adjusted during the experiments. This was to obtain a richer dataset at a steady state. More
temperature sensors and improved insulation of the lower temperature sensor improved the
results. The parameter fitting is equal to the parameters obtained in other research papers. The
temperature measurements depend on the temperature sensor location. The lower temperature
sensor measures a lower temperature than the temperature sensor located in the middle and
the upper parts of the tank. The difference between the temperatures is around 5 ◦C. The
parameter fittings are lower for the measurements using the lower temperature sensor. The
lower temperature sensor is also more sensitive to disturbances, such as temperature change and
water draining. There occurred some water draining during both simulations. This is because
the lab is a functional bathroom, and people may use hot water. There occurred noticeable
water draining during Experiment 1.1, which can be seen in the parameter fitting using the
lower temperature sensor values.

9.1.1 Case 1.1

Lower Temperature Sensor: The initial parameters are given an extensive range between
upper and lower boundaries. The temperatures ranged from 0-100 ◦C, capacitances from 0.0001-
1 kWh

◦C , and resistances from 0.1 to 500
◦C
kW . The 1R1C-model and the 2R2C-model obtained

equal thermal resistance and thermal capacitance values. The summation of resistances and
capacitances in the 2R2C-model equals the parameter values obtained for the 1R1C model.
This makes sense, as the resistance in the 1R1C-model spans the area of the two resistances
in the 2R2C-model combined. When performing parameter fitting of the 3R3C model, initial
values had to specified more thoroughly. The boundaries of the initial parameters had to be
narrowed down. There are a lot of possible parameter fittings, and the best solution considering
model validation, as stated in 6.4, may not be the best solution to the parameter fitting.

If forcing Rww (resistance between water and wall) to a higher minimum value, in the 3R3C-
model, the other parameters automatically adjust accordingly. The combined resistance becomes
around 270

◦C
kW . Combined value of capacitance equals 0.336 kWh

◦C . This parameter fitting gives
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a good model validation, but there are other parameter fittings with better model validation.
These other parameter fittings are not chosen because the fitted parameters did not make sense
compared to other parameters obtained in other scientific papers.

The R-values obtained using the lower-temperature sensor are some lower for Case 1.1 than for
Case 1.2. There is some use of hot water by visitors during both experiments. This is very clear
when looking at Case 1.1, Figure 31. There is a clear drop in the blue line at around 45 hours.
This use of hot water disturbs the results, especially considering the lower temperature sensor.

Upper Temperature sensor: Both 1R1C and 2R2C-models give the same results for pa-
rameter fitting of resistance and capacitance. There are some differences in the 3R3C-model, as
the resistance value is much lower than calculated in the 1R1C and 2R2C-models. Combined
capacitance is at the same level for the 3R3C model as the 1R1C- and 2R2C-models. It was
much easier to fit the 3R3C model using the upper-temperature sensor compared with the 3R3C
model with the lower temperature sensor. This is because the sensor is not as sensitive to water
drained from the tank.

9.1.2 Case 1.2

There was not as much disturbance in the measurements in case 1.2 as in Case 1.1, but some
water draining occurred at around hour 70. This can be seen in Figure 34.

Lower Temperature Sensor: It was difficult to fit the parameters of the lower sensor. This
is probably because of some water being drained from the tank at hour 70. The resistance
obtained is of a higher value than what was obtained in Case 1.1. The resistance obtained lies
between 290 and 330

◦C
kW . The capacitance is between 0.3 and 0.38716 kWh

◦C .

Middle Temperature Sensor: It was easier to fit the parameters for the middle sensor.
The resistances obtained using the middle sensor lie between the parameter fitting for the upper
sensor (Case 1.1) and the lower sensor. The resistance had a value of 350 - 370

◦C
kW . The

capacitance is more or less the same for all parameter fittings and is similar to values obtained
in Case 1.1. Combined capacitance lies between 0.3 and 0.39 kWh

◦C .

9.1.3 Take home from experiments without draining water

The resistances obtained using the middle sensor lie between the values obtained by the high
and the low-temperature sensor. This is a good observation and makes sense because of the lag
in temperature change when cold water flows into the bottom of the tank. The upper and the
middle-temperature sensor is located inside the thermowell located inside the tank. The lower
temperature sensor is located on the outside of the water heater. The middle and the upper-
temperature sensor is favorable considering water draining and location. Given that the water
is drained from the top of the water heater, one can argue for the upper-temperature sensor
as the best base when deciding on the model. The middle, however, is more centered on the
water heater and may give a more general overview of the water’s behavior. The resistances are
measured to be between 270 and 410

◦C
kW and the capacitance is between 0.3 and 0.5 kWh

◦C . During

the project thesis, Løvstakken [2] the resistance was decided to be 295.47
◦C
kW and the capacitance

was decided to be 0.157 kWh
◦C , which is similar to what was established in Svendsen [51]. The

new measurements and models are improving the results. By looking at the parameter fittings
of Case 1, it is possible to establish new values for the resistance and capacitance. Considering
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the case using the middle-temperature sensor, an average value of resistances and capacitance
are chosen as a possible parameter fitting. This gives a resistance of 357.408

◦C
kW for the whole

system and capacitance of 0.366 kWh
◦C for the whole system. When considering the case with the

upper-temperature sensor, the capacitance can be chosen as 0.453 kWh
◦C for the whole system.

The resistance is more difficult to decide, but an estimate is that it holds a value of around 400
◦C
kW . The parameters obtained using the middle sensor are used in the predicted-value plots.
These experiments are considered the best, and the parameters are great compared to other
research papers.

9.2 Case 2

Case 2 considers the middle-temperature sensor. This sensor was chosen because it gave the
best measurements and parameter fitting in Case 1. It was also chosen because it represents the
average of the system. It is challenging to fit the parameters in Case 2. Adjustments were made
to the initial parameters and their boundaries to be able to fit the model. The most challenging
fit was the 2R2C-model.

The lower temperature sensor gives poor results when water is drained from the tank. The inlet
water enters the bottom of the tank, where the lower temperature sensor is located. This means
that the temperature measured by this sensor quickly drops to a temperature of around 20 ◦C.
The outgoing water leaves the tank from the top. The middle and upper-temperature sensor is
not as influenced by the inlet water. It takes time for the cold water to mix with the hot water
in the middle and upper parts.

The obtained heat capacity for the different RC models varies a lot. The thermal capacitance of
the 1R1C model is fitted to be 0.507 kWh

◦C , which is very high, but can make sense considering
that the 1R1C-model looks at the complete system from water to ambient described by only 1
R and 1 C. The 2R2C-model estimated a thermal capacity of 0.3845 kWh

◦C for water and 0.42463
kWh
◦C combined value. The 3R3C-model estimated a heat capacity of 0.14499 and a combined

heat capacity of 0.336 kWh
◦C . The thermal resistance of the 1R1C-model is estimated to a value

of 167.69
◦C
kW . The 2R2C model estimates a combined value of 128.3671

◦C
kW . The 3R3C model

estimates a value of 125.4674
◦C
kW .

The reason for the low resistance in Case 2 compared with Case 1 is the draining of water. The
water heater loses much thermal energy when hot water leaves and cold water enters the water
heater. When several long showers are taken in a short period, the heating element struggles to
maintain a desirable temperature in the tank. This leads to a quick drop in temperature for the
middle sensor as well as the lower sensor. It is also observable that the water heater is good at
keeping a high temperature as long as no cold water enters the system. This may be the reason
for the low thermal resistance in Case 2. The 3R3C model had a combined heat capacity similar
to the one of the middle-temperature sensor in Case 1. It is optimistic that the heat capacity
fittings equal those obtained in Case 1.

9.3 Case 3

Case 3 was tested for both upper and middle temperature sensors. This was to see if there were
significant differences in parameter fitting of the two different temperature sensors. The results
of Case 2 were surprising regarding the thermal resistance. Two different experiments in Case 3
would form a solid basis for comparison. It was challenging to fit the parameters in Case 3 but
more manageable than the parameter fittings of Case 2. Many adjustments had to be made to
the initial parameters and their boundaries. The most challenging fit was the 2R2C-model.
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9.3.1 Case 3.1

Case 3.1 investigates the middle temperature sensor. The results are similar to the ones obtained
in Case 2. The thermal resistances are low, and the heat capacity is more or less the same as
in Case 1. It is interesting to see that higher combined thermal resistance gives lower combined
heat capacitance. This is the opposite of both Case 1 and Case 2, where the capacitance and
resistance followed each other. The reason for this is because the EWH is off for more extended
periods. The heat capacity of just water is reduced as the model adds more resistances and
capacitances. This also happens in Case 1 and Case 2. The combined resistance is estimated to
be 170 - 195

◦C
kW and the combined capacitance has a value of 0.316 - 0.446 kWh

◦C .

9.3.2 Case 3.2

The heat capacity fitted after experiments using the upper temperature sensor is of higher value
than for the experiment using the middle temperature sensor. The heat capacity equals the heat
capacity obtained in Case 1 for the upper temperature sensor. The thermal resistance is at its
lowest during Case 3.2. Combined thermal resistance has a value of 103 to 138

◦C
kW . Higher heat

capacity gives lower thermal resistance, just as in Case 3.1 The combined heat capacity has a
value of 0.48 and 0.557 kWh

◦C .

9.4 Take home from experiments where water is drained from the EWH

The measurements of the lower temperature sensor are poor and hence not further used when
draining water. When looking at Figure 37 and Figure 40 from Case 2 and case 3.1, it is clear
that the blue line, which describes the lower temperature sensor, quickly drops to a temperature
of around 20 ◦C. The green line shows the middle-temperature sensor and a more appropriate
temperature behavior. The fitted thermal capacitance values are very similar to the values
obtained in Case 1. The thermal resistance deviates a lot from case 1. The value of the
resistance is more than half from Case 1 to Case 2 and 3. This is a lot but can be because of
the draining of water. When looking at the Residual plots, ACF, and cumulated periodograms,
it shows that the 3R3C-model is the best. The RMSE and LogLikelihood verify this. The
simulated-value plots show that the best parameters to use are the ones obtained in Case 3.
The parameters used in Case 1 lead to poorer simulated-value plots. A combined resistance for
Case 3 using the middle-temperature sensor is 170.545

◦C
kW and combined capacitance is 0.446

kWh
◦C . The combined resistance for Case 3 using the upper-temperature sensor is 104.286

◦C
kW and

combined capacitance is 0.557 kWh
◦C . The reason for using the combined heating capacity is that

the 3R3C model splits the capacity into three more or less equal capacities. This is something
the model does to easier obtain a good model validated fit. It is possible to fit the model with
the heat capacity of water or water-ambient being 0.327 kWh

◦C . The middle-temperature sensor
is chosen as a good temperature sensor because of its location in the tank. The

9.5 Parameter fitting computed with CTSM-R

The first obtained parameter fitting is not necessarily the best one, and it is important to not
just look at the model validation when choosing parameter fittings. The 1R1C-model can often
be used as an indication of how the fittings of the 2R2C and 3R3C-models are going to be. The
1R1C-model does not need initial parameters with strict upper/lower boundaries to find a good
parameter fitting. The obtained parameter fittings of the 1R1C-model are therefore used when
fitting parameters for the 2R2C and 3R3C-models. What characterizes the 2R2C and 3R3C-
models is that it is necessary to actively change the initial parameters and their upper/lower
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boundaries to fit the model in the best possible way. There are several possible parameter
fittings of each case with good model validation. Some of these validated parameter fittings
are not chosen because they could contain very high/low resistance and capacitance values.
Some parameters are forced to specific values by adjusting the upper and lower boundaries
for which the parameters can operate. This means that the parameter fittings chosen for the
2R2C and 3R3C-models are evaluated regarding other scientific papers, the 1R1C-models, and
the model validation. An example of this is the 3R3C-model of Case 1.1. By looking at the
correlation matrix of this case, 30, the dPen/dPar value of the parameter The0 (temperature of
heating element) is at 10.4694. This should be close to 0 if the only desire is to obtain the best
possible model validation. The reason for this parameter fitting to be chosen is that all obtained
parameters are good compared to other scientific papers and 1R1C-models.

It is possible to decide how good the model is by comparing the specific heat capacity of water
with the fitted value of Cwater. Table 24 and Table 23 shows the specific heat capacity of water.
Last year’s project thesis obtained a heat capacity of 0.185 kWh

◦C , 0.000658 kWh
kg◦C . This is a lot

lower than the specific heat capacity of water. The experiments performed during Case 1 - Case
3 gave the lowest combined estimate of 0.303 kWh

◦C (0.001078 kWh
kg◦C ). Some estimates of Cwater

in the 3R3C models gave smaller values than this, but combined values for water to ambient all
gave results above 0.3 kWh

◦C , 0.001 kWh
kg◦C . This is very similar to the specific heat capacity of water.

Table 2 in Section 2.4 shows the heat capacity of isolation materials. This is significantly lower
than the heat capacity of water. This is considered when choosing proper parameter fittings
for the heat capacity of the wall. Most of the estimated heat capacities for the wall are of
lower value than the heat capacity of water. Glass wool has a specific heat capacity of 0.000286
kWh
◦Ckg . In contrast, water has a heat capacity of 0.001162 kWh

◦Ckg . The heat capacity of the heating
element is considered the lowest heat capacity. It does not store any heat, but it adds heat to
the system.

By comparing the fitted heat capacity with earlier research, it is noticeable that both the project
thesis, Løvstakken [2] and Svendsen [51] had approximately half the predicted value for their
parameters compared to the other references. These references do not have good experiments
because of weaknesses in the lab setup. The other scientific papers all have a specific heat
capacity around the specific heat capacity of water. The new estimations in this thesis do also
estimate a specific heat capacity to be around the heat capacity of water.

The RMSE and LogLikelihood of all the cases favor the 3R3C-model in all the cases. The
Log-Likelihood of Case 2 and Case 3 is negative, but the 3R3C-model has the most negligible
negative value and is, therefore, a better fit. The residual plots show that the peaks are lower
for the 3R3C model compared to the 1R1C and 2R2C models. The 1R1C and 2R2C-models are
very similar in residual plots. The cumulated periodogram shows that the 1R1C model is very
off the designated boundary area. The 2R2C and 3R3C-models are equal to each other with
small variations. The ACF plot also indicates that the 2R2C and 3R3C-models are the better
options. The 3R3C-model has minor peaks. One-step-ahead plots show that each case model is
a good fit for the measured values. The Simulated-value-plots show that the 3R3C is the better
fit, as it is almost equal to the measured values. The 1R1C and 2R2C-models are more alike
but do not fit the measured temperature. The 1R1C and 2R2C models miss the significant drop
in temperature.
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10 Further Work

There are still possible to improve the NTNU Smart House Lab. Installing an OSO Charge R
to the OSO Saga S 300 enables better control of the water heater. It enables the opportunity
to control hot water heating at times of the day with the lowest electricity price. It also gives
insight into how much hot water is available and other functions such as ”sleep mode.” With
this installation, further insights and control are added to the system.

The next step will be to make an optimization model that minimizes the cost of operation
and shows the flexibility potential of water heaters. Using the one-day-ahead power price and
simulating a case with a given number of water heaters, it is possible to estimate the water
heater’s cost savings and flexibility potential. The 3R3C-model is the better model to use and
should be investigated more thoroughly if one is to simulate the water heaters.

It would be great to fit more temperature sensors inside the tank. The lower temperature sensor
can be ignored as it does not give good enough measurements.
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11 Conclusion

By insulating the existing temperature sensor, the results improve significantly. This is possible
by comparing the measurements and the predicted parameters of this thesis and the project
thesis [2]. The new sensor installations do also improve the results. The new parameters fittings
are similar to other scientific papers. An expanded thermoelectric equivalent also improves the
model. By calculating the root-mean-square-error and LogLikelihood it is possible to see that
the 3R3C model is favorable in all cases. By looking at the simulated-value plots, it is easy to see
that the plotted 3R3C-model fits the measured plots better than the 1R1C and 2R2C-models.

By draining water, the thermal resistance changed a lot. The thermal resistance more than
halves its value in Case 2 and Case 3 compared to Case 1. This is because of the water draining.
The temperature quickly drops when the shower is in use. The tank used 30 to 40 liters of hot
water per 5 minutes, which means much cold water enters the tank. The thermal capacitance
did not change significantly when water was drained from the EWH. There were more minor
changes in the capacitance, but this is normal when simulating different experiments and models.

It was interesting to perform experiments by looking at different temperature sensors, as the
results differed. The low-temperature sensor gave poor measurements as it was too dependent
on the air surrounding the sensor and the cold inlet water. The middle and upper-temperature
sensors gave better results as they had a delay in temperature change. This makes sense as the
out-water leaves the tank from the top of the tank. Testing for different set-point temperatures
was also interesting. this gave a rich dataset.

The parameter fittings vary for the different scientific papers mentioned in Section 3. The heat
capacitance obtained in this thesis is equal to the heat capacitance obtained in Reference [6]
Lakshmanan, [55] Yu, and [56] DTU. Reference [51] and [2] have approximately half the thermal
capacitance-value. This is because these two references used the old lab setup at NTNU without
insulation on the lower temperature sensor and new temperature sensors and flow meter.

The preferred model is the 3R3C-model, and the preferred thermal capacitance of water to
ambient for this model is a minimum of 0.3 kWh

◦C , and 0.446 kWh
◦C for the combined thermal

capacitance. The preferred thermal resistance of this model is 170 kWh
◦C for water to ambient.

This parameter values are obtained using the middle temperature sensor. The heating element’s
heat capacity and thermal resistance are regarded as low.

The lab setup can be further improved by adding the OSO Charge R or buying a new smart
water heater. This would make it easier to monitor the EWH and obtain its flexibility potential.
It would also be exciting to optimize the operation of the EWH regarding electricity price. This
is possible by making use of the model established in this thesis.

64



References

1. Viseth E. Høye strømpriser: Dette trekker mest strøm hjemme hos deg. 2021. Available
from: https://www.tu.no/artikler/hoye-strompriser- i- sor-norge-dette-trekker-mest-strom-
hjemme-hos-deg/513128. accessed 30.05.2022

2. Løvstakken EM. Predicting flexibility potential of domestic hot water. PhD thesis. 2021

3. Nations U. Science, Solutions, Solidarity. 2021. Available from: https ://www.un .org/
climatechange?gclid=CjwKCAiA7dKMBhBCEiwAO crFHjnkt4aGOaVqSzqqw9y6DbRUVWZ
n5sZRj9VWUvI4blwdes1wTD1RoCJNYQAvD BwE

4. Medepalli N, Joy M, Gorre R, and Rabbani M. MITIGATION OF POWER QUALITY
ISSUES IN GRID INTEGRATED RENEWABLE ENERGY RESOURCES. 2020. doi:
10.13140/RG.2.2.35224.21764. Available from: https://www.researchgate.net/publication/
345959213

5. Rajasekharan J. ELK-15: Hydro Power Scheduling and Miscellaneous Topics on Electricity
Markets. University Lecture. 2021. accessed: 18.10.2021

6. Lakshmanan V, Sæle H, and Degefa MZ. Electric water heater flexibility potential and
activation impact in system operator perspective – Norwegian scenario case study. Energy.
Vol. 236. Elsevier Ltd, 2021 Dec. doi: 10.1016/j.energy.2021.121490

7. Wikipedia. Specific heat capacity. Available from: https://en.wikipedia.org/wiki/Specific
heat capacity. (accessed: 07.10.2021)

8. NordPool. Market Data. 2022. Available from: https://www.nordpoolgroup.com/en/Market-
data1/Power-system-data/Consumption1/Consumption/ALL/Hourly1/?view=table. accessed
01.06.2022

9. Elvia. Hva er nettleie? 2021. Available from: https : //www.elvia . no/nettleie /alt - om-
nettleie/hva-er-nettleie. accessed: 14.12.2021

10. Skatteetaten. 2021. Available from: https://www.skatteetaten.no/bedrift-og-organisasjon/
avgifter/saravgifter/om/elektrisk-kraft/. accessed: 14.12.2021

11. Elvia. De nye nettleieprisene fra 1. januar 2022 er n̊a klare. 2021. Available from: https:
//www.elvia.no/nettleie/alt-du-ma-vite-om-ny-nettleie-for-2022/. accessed: 14.12.2021

12. Nve. Value of flexibility from electrical storage water heaters. 2021. Available from: www.
nve.no

13. Statnett. Balance Agreement. Tech. rep. 2018 :1–4. Available from: https://www.statnett.
no/contentassets/6d34576d29d042859511eda73bbacd45/balanseavtale-gjeldende- fra-01.05.
18.pdf

14. Demand Flexibility. 2021. Available from: https ://buildings . lbl .gov/demand- flexibility.
accessed: 10.11.2021

15. Pudjianto D, Djapic P, Aunedi M, Gan CK, Strbac G, Huang S, and Infield D. Smart
control for minimizing distribution network reinforcement cost due to electrification. Energy
Policy 2013 Jan; 52:76–84. doi: 10.1016/j .enpol .2012.05.021. Available from: https :
//www.sciencedirect.com/science/article/pii/S0301421512004338

16. Institute of Electrical and Electronics Engineers, IEEE Signal Processing Society, and
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12 Appendix

12.1 Case 1.1

12.1.1 2R2C

Table 25: Coefficient Matrix of the 2R2C-model in Case 1.1, using the upper temperature sensor.

Estimate Std.Error t value Pr(> | t | ) dF/dPar dPen/dPar
Twater0 7.732e+01 8.6653e-02 8.923e+02 0.000e+00 6.1929e-05 0.0018
Twall0 9.9302e+01 1.5247e+01 6.4474e+01 1.5613e-10 2.297e-07 0.3409
Cwall 1.2308e-02 8.206e-02 1.4999e-01 8.8079e-01 -4.7484e-08 0.0000
Cwater 4.2516e-01 9.6554e-03 4.4034e+01 0.0000e+00 -8.7699e-07 0.0001
e11 -2.6010e+01 1.3828e+02 -1.8809e-01 8.5083e-01 -1.9623e-07 0.0000
p11 -1.1263+e00 2.0619e-02 -5.4624e+01 0.0000e+00 3.7367e-06 0.0000
p22 -6.2691e+00 1.9165e+01 -3.271e-01 7.4364e-01 1.6107e-07 0.0000
Rwa 9.6805e+00 6.0233e+01 1.6072e-01 8.7234e-01 -3.0721e-08 0.0000
Rww 3.9287e+02 5.0927e+01 7.7143e+00 2.2871e-14 -1.9202e-06 0.3093

Table 26: Correlation Matrix for the 2R2C model in Case 1.1 using the upper temperature
sensor.

Twater0 Twall0 Cwall Cwater e11 p11 p22 Rwa
Twall0 0.02
Cwall -0.03 -0.03
Cwater -0.07 0.02 0.00
e11 -0.02 -0.02 -0.16 0.00
p11 0.06 0.00 0.03 0.14 0.02
p22 0.00 -0.01 0.62 -0.05 -0.86 -0.02
Rwa 0.05 0.03 -0.95 -0.01 0.15 -0.04 -0.62
Rww -0.06 -0.03 0.66 0.03 -0.11 0.04 0.43 -0.72

Table 27: Coefficient Matrix of the 2R2C-model in Case 1.1, using the lower temperature sensor.

Estimate Std.Error t value Pr(> | t | ) dF/dPar dPen/dPar
Twater0 8.2800e+01 5.6222e-02 1.4727e+03 0.000e+00 1.7993e-02 0.0049
Twall0 2.8797e+01 1.3750e+01 2.0942e+00 3.6385e02 -3.9631e-05 -0.007
Cwall 1.8206e-02 1.2479e-03 1.4589e+01 0.0000e+00 2.0393e-04 0.0000
Cwater 3.2110e-01 6.1827e-03 5.1936e+01 0.0000e+00 -1.18856e-03 0.0005
e11 -2.4639e+01 5.3256e+00 -4.6265e+00 4.0021e-06 -1.6230e-05 0.0000
p11 5.6947e-07 4.0027e-02 1.4227e-02 9.9999e-01 1.9134e-10 0.0000
p22 6.7807e+00 7.5915e-02 8.9320e+01 0.0000e+00 5.4212e-03 0.0000
Rwa 1.7295e+00 1.2047e-01 1.4357e+01 0.0000e+00 9.2444e-04 0.0000
Rww 2.8846e+02 1.4023e+01 2.0571e+00 0.0000e+00 -8.9207e-04 -0.0002
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Table 28: Correlation Matrix for the 2R2C model in Case 1.1 using the lower temperature
sensor.

Twater0 Twall0 Cwall Cwater e11 p11 p22 Rwa
Twall0 0.00
Cwall 0.00 -0.70
Cwater 0.01 0.03 0.22
e11 0.01 0.27 -0.33 -0.47
p11 0.00 0.06 0.02 0.03 -0.02
p22 0.01 0.54 -0.77 -0.14 0.41 0.02
Rwa 0.01 0.66 -0.31 0.25 0.09 -0.02 -0.06
Rww 0.01 0.8 -0.6 -0.14 0.58 0.03 0.67 0.5

12.1.2 3R3C

Table 29: Coefficient Matrix for the 3R3C-model in Case 1.1 using the upper temperature sensor.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
The0 7.8409e+01 3.6278e-01 2.1614e+02 0.0000e+00 -1.2965e-04 0.0001
Twater0 7.7332e+01 5.2899e-02 1.4619e+03 0.0000e+00 1.0544e-04 0.0021
Twall0 4.6231e-29 1.8046e-27 2.5619e-02 9.7956e-01 -2.1631e-06 0.0000
Che 9.5786e-02 2.1518e-03 4.4514e+01 0.0000e+00 -1.4964e-03 0.0539
Cwall 2.0408e-01 1.2624e-01 1.6166e+00 1.0619e-01 1.1330e-04 0.0000
Cwater 2.3947e-01 5.3025e-03 4.5161e+01 0.0000e+00 -1.0152e-03 -0.0001
e11 -6.8882e+00 1.4990e-01 -4.5953e+01 0.0000e+00 -4.8095e-05 0.0000
p11 4.5481e-08 4.2350e-01 1.0739e-07 1.0000e+00 1.0752e-14 0.0000
p22 -1.6237e-01 1.3964e-02 -1.1628e+01 0.0000e+00 -7.9994e-06 0.0000
p33 -4.7349e+01 1.1236e+1 -4.2141e+00 2.6668e-05 1.8057e-04 0.0000
Rhew 2.4732e+00 1.0578e-01 2.3381e+01 0.0000e+00 -7.9994e-04 0.0000
Rwa 2.5422e+00 1.7499e+00 1.4528e+00 1.4650e-01 1.8849e-04 0.0000
Rww 3.3412e+02 9,7013e+00 3.4441e+01 0.0000e+00 -2.4211e-04 -0.0006

Table 30: Correlation Matrix for the 3R3C-model in Case 1.1 using the upper temperature
sensor.

The0 Twater0 Twall0 Che Cwall Cwater e11 p11 p22 p33 Rhew Rwa
Twater0 -0.17
Twall0 -0.02 0.00
Che -0.03 0.01 0.19
Cwall 0.03 0.00 -0.98 -0.17
Cwater -0.03 0.01 0.08 -0.28 0.00
e11 0.00 0.03 -0.10 0.00 0.02 -0.18
p11 0.01 0.01 -0.02 -0.01 0.02 -0.01 0.01
p22 -0.01 0.05 -0.11 0.01 -0.01 -0.25 0.85 0.00
p33 0.02 -0.04 0.21 0.08 -0.02 0.33 -0.54 -0.01 -0.68
Rhew 0.09 0.00 -0.14 -0.48 0.15 -0.14 0.05 0.00 0.08 -0.18
Rwa -0.02 -0.01 0.96 0.20 -0.88 0.22 -0.21 -0.02 -0.26 0.45 -0.15
Rww -0.05 0.00 0.01 -0.60 0.01 0.64 -0.10 0.01 -0.16 0.05 -0.27 0.06
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Table 31: Coefficient Matrix for the 3R3C-model in Case 1.1 using the lower temperature sensor.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
The0 8.9722e+01 1.0836e+00 8.2798e+01 0.0000e+00 -2.6755e-04 10.4694
Twater0 7.3300e+01 4.5020e-02 1.6282e+03 0.0000e+00 -8.7234e-04 0.0008
Twall0 7.2425e+01 3.8918e-01 1.8610e+02 0.0000e+00 2.9028e-04 0.0013
Che 3.1260e-03 2.3549e-03 1.3275e+00 1.8457e-01 6.4033e-05 -0.0001
Cwall 2.1301e-01 9.0528e-03 2.3530e+01 0.0000e+00 -4.8777e-05 0.0000
Cwater 1.2239e-01 8.0710e-03 1.5164e+01 0.0000e+00 9.7048e-06 0.0000
e11 -1.2766e+02 1.4456e+01 -8.8306e+00 0.0000e+00 4.6406e-04 0.0005
p11 2.9695e-05 3.1880e+00 9.3145e-06 9.9999e-01 8.8250e-11 0.0000
p22 -1.7389e-01 4.9278e-03 -3.5288e+01 0.0000e+00 -1.0051e-05 0.0000
p33 2.7549e-01 1.9369-02 1.4223e+01 0.0000e+00 6.7141e-06 0.0000
Rhew 4.4071e+01 3.3038e+01 1.3340e+00 1.8243e-01 -6.4147e-06 0.0000
Rwa 3.0155e+02 1.2584e+01 2.3963e+01 0.0000e+00 6.6350e-05 0.0004
Rww 1.8313e+00 9.0577e-02 2.0218e+01 0.0000e+00 -9.8286e-05 0.0000

Table 32: Correlation Matrix for the 3R3C-model in Case 1.1 using the lower temperature
sensor.

The0 Twater0 Twall0 Che Cwall Cwater e11 p11 p22 p33 Rhew Rwa
Twater0 0.02
Twall0 -0.88 0.06
Che -0.27 -0.04 0.06
Cwall 0.14 0.03 0.04 -0.08
Cwater -0.20 -0.03 -0.01 0.15 -0.83
e11 -0.17 -0.03 0.04 0.45 -0.13 0.20
p11 0.00 0.01 0.02 -0.07 0.00 -0.01 -0.05
p22 0.00 0.00 0.01 -0.04 0.05 -0.07 -0.02 0.01
p33 -0.04 -0.01 -0.07 0.04 -0.27 0.28 0.06 -0.01 0.26
Rhew 0.32 0.05 -0.05 -0.83 0.50 -0.62 -0.47 0.07 0.05 -0.18
Rwa -0.04 -0.02 -0.01 0.10 0.00 0.07 0.23 -0.03 -0.01 0.01 -0.13
Rww -0.23 -0.02 0.04 0.09 -0.55 0.65 0.11 -0.02 0.04 0.49 -0.37 0.06

12.2 Case 1.2

12.2.1 1R1C

Table 33: Coefficient Matrix for the 1R1C-model in Case 1.2.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
Tewh0 8.9200e+01 4.0515e-02 2.2016e+03 0.0000e+00 5.4235e-03 0.0252
C 3.6721e-01 3.6721e-01 9.9680e+01 0.0000e+00 -2.0304e-04 0.0000
e11 -1.8972e+01 5.2572e+00 -3.6087e+00 3.1658e-04 2.2276e-05 0.0359
p11 -1.8935e+00 2.0831e-02 -9.0895+01 0.0000e+00 4.2487e-04 0.0000
R 3.5798e+02 1.0673e+01 3.3541e+01 0.0000e+00 -8.5413e-06 0.0000
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Table 34: Correlation Matrix for the 1R1C-model in Case 1.2.

Tewh0 C e11 p11
C 0.06
e11 0.23 -0.41
p11 0.11 0.15 -.088
R -0.07 -0.17 0.19 -0.13

12.2.2 2R2C

Table 35: Coefficient Matrix of the 2R2C-model of Case 1.2 with middle temperature sensor.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
Twater0 8.9194e+01 3.9466e-02 2.2600e+03 0.0000e+00 1.1881e-03 0.0248
Twall0 9.3266e+01 1.4841e+01 6.2845e+00 4.1798e-10 5.3357e-03 0.2947
Cwall 1.5927e-02 1.5884e-03 1.0027e+01 0.0000e+00 -6.7542e-04 0.0000
Cwater 3.7598e-01 5.2299e-03 7.1890e+01 0.0000e+00 4.1120e-04 0.0000
e11 -1.8142e+01 8.9702e+01 -2.0225e-01 8.3975e-01 -1.5465e-03 0.0000
p11 -6.3790e+00 1.8028e+01 -3.5384e-01 7.2350e-01 -2.6914e-03 0.0000
p22 6.7858e+00 6.8865e-02 9.8537e+01 0.0000e+00 3.5496e-05 0.0000
Rwa 1.7388e+00 1.7467e-01 9.9550e+00 0.0000e+00 -3.0537e-04 0.0000
Rww 3.5210e+02 1.2856e+01 2.7388e+01 0.0000e+00 3.7293e-04 0.0008

Table 36: Correlation Matrix of the 2R2C-model for case 1.2 using the middle temperature
sensor.

Tewh0 Twall0 Cwall Cwater e11 p11 p22 Rwa
Twall0 0.05
Cwall 0.00 0.33
Cwater 0.02 0.01 0.12
e11 0.01 -0.12 -0.86 -0.1
p11 -0.01 0.01 0.83 0.01 -0.99
p22 -0.01 -0.05 -0.35 -0.07 0.00 0.00
Rwa 0.00 -0.32 -0.70 0.08 0.86 -0.83 -0.27
Rww -0.04 -0.07 -0.08 -0.22 -0.02 0.02 0.52 0.03
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12.2.3 3R3C

Table 37: Coefficient Matrix for the 3R3C-model in Case 1.2 using the middle temperature
sensor.

Estimate Std. Error t value Pr(>(abs(t))) dF/dPar dPen/dPar
The0 9.1944e+01 1.2075e+00 7.6147e+01 0.0000e+00 -8.3765e-04 0.0002
Twater0 8.9200e+01 2.4559e-02 3.6321e+03 0.0000e+00 1.9872e-03 0.0250
Twall0 7.2112e-19 1.6017e-17 4.5021e-02 9.6410e-01 0.0000e+00 0.0000
Che 1.1636e-02 1.7000e-03 6.8447e+00 1.0707e-11 -2.5353e-03 0.0000
Cwall 1.0655e-02 1.3217e-03 8.0617e+00 1.3323e-15 6.3950e-03 -0.0248
Cwater 3.1734e-01 3.3207e-03 9.5566e+01 0.0000e+00 3.1612e-03 0.0000
e11 -9.3295e+01 3.5298e+01 -2.6431e+00 8.2907e-03 7.5185e-05 0.0001
p11 2.3390e+00 4.0575e-01 5.7646e+00 9.7189e-09 -2.7997e-05 0.0000
p22 -9.3453e-02 3.0556e-01 -3.0584e+01 0.0000e+00 3.8998e-05 0.0000
p33 -1.0412e-04 1.4441e+01 -7.2101e-06 9.9999e-01 5.4329e-11 0.0000
Rhew 7.2524e+00 8.9805e+01 8.0757e+00 1.3323e-15 4.5175e-03 0.0010
Rwa 2.6142e+01 2.5027e+01 1.0446e+00 2.9637e-01 -2.5766e-04 0.0000
Rww 3.3329e+02 2.2795e+01 1.4621+01 0.0000e+00 -9.9088e-04 -0.0006

Table 38: Correlation Matrix for the 3R3C-model in Case 1.2 using the middle temperature
sensor.

The0 Twater0 Twall0 Che Cwall Cwater e11 p11 p22 p33 Rhew Rwa
Twater0 0.03
Twall0 -0.52 0.00
Che -0.53 0.00 0.99
Cwall -0.50 0.00 0.99 0.99
Cwater 0.31 0.01 -0.57 -0.59 -0.60
e11 -0.52 0.00 1.00 0.99 0.99 -0.57
p11 0.49 0.00 -0.85 -0.88 -0.84 0.45 -0.85
p22 0.04 -0.05 -0.05 -0.07 -0.03 -0.07 -0.05 0.36
p33 0.01 -0.04 -0.01 -0.02 -0.02 0.03 -0.01 -0.01 -0.03
Rhew 0.53 0..00 -0.99 -0.98 -0.98 0.52 -0.99 0.89 0.08 0.02
Rwa 0.52 0.01 -0.90 -0.87 -0.82 0.43 -0.90 0.78 0.09 0.00 0.88
Rww -0.53 0.00 0.99 0.97 -0.53 0.99 -0.85 -0.07 0.00 0.97 -0.96 0.01

12.3 Case 2

12.3.1 1R1C

Table 39: Coefficient Matrix for the 1R1C-model in Case 2.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
Tewh0 5.9008e+01 3.4713e-01 1.6999e+02 0.0000e+00 9.3661e-05 4e-04
C 5.0712e-01 2.4470e-02 2.0724e+01 0.0000e+00 1.9742e-05 0e+00
e11 -2.2969e-01 6.3934e+1 -3.5925e-01 7.1947e-01 -1.3706e-06 0e+00
p11 1.9057e-01 2.4138e-02 7.8951e+00 6.4393e-15 1.1399e-05 0e+00
R 1.6769e+02 3.2970e+01 5.0863e+00 4.2293e-07 1.0991e-05 0e+000
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Table 40: Correlation Matrix for the 1R1C-model in Case 2.

Tewh0 C e11 p11
C -0.07
e11 0.00 -0.00
p11 0.05 -0.01 0.00
R -0.03 0.20 -0.04 -0.08

12.3.2 2R2C

Table 41: Coefficient Matrix of the 2R2C-model in Case 2, using the middle temperature sensor.

Estimate Std.Error t value Pr(> | t | ) dF/dPar dPen/dPar
Twater0 5.8994e+01 1.3439e-01 4.3899e+02 0.000e+00 -9.2049e-03 -0.0032
Twall0 9.6296e+01 4.4318e+01 2.1728e+00 2.9983e-02 5.9726e-03 0.0702
Cwall 4.0130e-02 2.8057e-02 1.4303e+00 1.5288e-01 1.8207e-03 0.0000
Cwater 3.8450e-01 2.1690e-02 1.7728e+01 0.0000e+00 -6.6839e-04 0.0001
e11 -2.2163e+01 6.1321e+00 -3.6143e+00 3.1346e+00 -1.8053e-04 0.0000
p11 1.0884e-08 4.7086e-02 2.3116e-07 1.0000e+00 5.2616e-14 0.0000
p22 6.5242e+00 2.6685e-01 2.4449e+01 0.0000e+00 5.7031e-04 0.0000
Rwa 4.5472e+00 3.2899e+00 1.3822e+00 1.6717e-01 -1.5766e-03 0.0000
Rww 1.2382e+02 3.09397e+01 4.0023e+00 6.6535e-05 -2.2175e-05 0.0000

Table 42: Correlation Matrix for the 2R2C model in Case 2 using the middle temperature sensor.

Twater0 Twall0 Cwall Cwater e11 p11 p22 Rwa
Twall0 0.33
Cwall -0.33 -1.00
Cwater 0.06 -0.07 0.05
e11 -0.21 -0.47 0.45 0.15
p11 0.00 -0.01 0.01 0.00 0.00
p22 -0.09 -0.16 0.13 0.35 0.92 -0.01
Rwa 0.33 1.00 -0.99 -0.08 -0.47 0.00 -0.17
Rww -0.11 -0.16 0.14 0.13 0.95 0.00 0.97 -0.16
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12.3.3 3R3C

Table 43: Coefficient Matrix of the 3R3C-model of Case 2 with middle temperature sensor.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
The0 5.9276e+01 1.2298e+00 4.8361e+01 0.0000e+00 3.0267e-03 0.0004
Twater0 5.9008e+01 1.5323e-01 3.8508e+02 0.0000e+00 7.1823e-03 -0.0002
Twall0 5.1429e+01 2.2800e+00 2.2557e+01 0.0000e+00 -8.0904e-03 0.0003
Che 2.8879e-01 6.9906e-02 4.1311e+00 3.8599e-05 -7.5477e-04 0.0001
Cwall 1.6214e-01 1.0457e-02 1.5506e+01 0.0000e+00 6.5839e-04 -0.0004
Cwater 1.4499e-01 8.1630e-03 1.7762e+01 0.0000e+00 -2.6914e-03 -0.0007
e11 -2.0165e+01 1.5116e+00 -1.3341e+01 0.0000e+00 -6.7890e-04 0.0000
p11 -9.1383e-04 1.0937e+01 -8.3551e-05 9.9993e-01 -1.6634e-08 0.0000
p22 -3.2263e-07 5.4511e-02 -5.9186e-06 1.0000e+00 5.3382e-01 0.0000
p33 -2.3817e+02 1.4168e+01 -1.6811e+01 0.0000e+00 -9.6701e-04 0.0425
Rhew 1.9024e+00 3.6085e-01 5.2721e+00 1.5986e-07 -7.2748e-04 0.0000
Rwa 3.9850e+00 7.7696e-01 5.1290e+00 3.3938e-07 3.8182e-04 0.0000
Rww 1.1958e+02 1.2538e+01 9.5373e+00 0.0000e+00 2.8549e-03 0.0000

Table 44: Correlation Matrix of the 3R3C-model for Case 2 using the middle temperature sensor.

The0 Twater0 Twall0 Che Cwall Cwater e11 p11 p22 p33 Rhew Rwa
Twater0 0.74
Twall0 0.07 -0.09
Che 0.08 0.13 -0.72
Cwall -0.04 -0.17 0.92 -0.63
Cwater -0.03 -0.05 0.38 -0.45 0.24
e11 -0.12 -0.22 0.88 -0.75 0.92 0.18
p11 0.04 0.17 -0.97 0.77 -0.96 -0.35 -0.93
p22 -0.02 -0.02 0.05 -0.03 0.05 0.04 0.12 -0.05
p33 -0.14 -0.22 0.92 -0.86 0.88 0.4 0.94 -0.96 0.04
Rhew 0.14 0.12 -0.38 0.48 -0.2 -0.50 -0.17 0.36 -0.05 -0.45
Rwa 0.05 0.11 -0.68 0.88 -0.5 -0.59 -0.59 0.70 –0.04 -0..78 0.62
Rww 0.11 0.15 -0.68 0.78 -0.54 -0.80 -0.55 0.69 -0.05 -0.77 0.73 0.85

12.4 Case 3.1

12.4.1 1R1C

Table 45: Coefficient Matrix for the 1R1C-model in Case 3.1.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
Tewh0 8.8224e+01 3.5607e-01 2.4777e+02 0.0000e+00 3.2613e-04 0.0182
C 3.1663e-01 9.4934e-03 3.3353e+01 0.0000e+00 -1.4953e-04 0.0000
e11 -2.2747e+01 1.1633e+02 -1.9554e-01 8.4500e-01 -1.5582e-07 0.0000
p11 2.3705e-01 2.2676e-02 1.0453e+01 0.0000e+00 2.2198e-06 0.0000
R 1.9594e+02 2.9350e+01 6.6760e+00 3.9015e-11 1.4359e-06 0.0000
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Table 46: Correlation Matrix for the 1R1C-model in Case 3.1.

Tewh0 C e11 p11
C 0.10
e11 -0.01 0.04
p11 0.03 0.01 0.00
R 0.02 0.10 0.02 -0.03

12.4.2 2R2C

Table 47: Coefficient Matrix of the 2R2C-model in Case 3.1 using the middle temperature sensor.

Estimate Std.Error t value Pr(> | t | ) dF/dPar dPen/dPar
Twater0 8.8223e+01 1.8923e-01 4.6622e+02 0.000e+00 2.4692 0.0179
Twall0 7.4891e+01 1.3184e+01 5.6804e+00 1.7229e-08 -1.0780e-04 0.0018
Cwall 4.5212e-02 2.9192e-03 1.5488e+01 0.0000e+00 6.8519e-05 0.0001
Cwater 3.1164e-01 1.4340e-02 2.1731e+01 0.0000e+00 1.3447e-03 0.0001
e11 -1.5503e+02 1.2864e+01 -1.2051e+01 0.0000e+00 1.9885e-04 0.0002
p11 1.0760e-06 1.5386e-01 6.9935e-06 9.9999e-01 4.2927e-11 0.0000
p22 7.2317e+00 1.5222e-01 4.7509e+01 0.0000e+00 -6.8476e-03 0.0000
Rwa 2.1938e+00 3.86883e-01 5.6711e+00 1.8168e-08 -5.2650e-04 0.0000
Rww 1.8016e+02 2.0560e+01 8.7628e+00 0.0000e+00 2.4502e-05 0.0001

Table 48: Correlation Matrix for the 2R2C model in Case 3.1 using the middle temperature
sensor.

Twater0 Twall0 Cwall Cwater e11 p11 p22 Rwa
Twall0 0.06
Cwall 0.03 -0.25
Cwater 0.00 0.13 0.14
e11 -0.07 -0.78 -0.31 -0.23
p11 0.06 0.03 0.05 0.02 -0.07
p22 0.06 0.3 0.61 0.50 -0.79 0.08
Rwa -0.03 0.03 -0.66 -0.13 0.55 -0.05 -0.78
Rww 0.08 0.3 0.74 0.27 -0.79 0.09 0.91 -0.67
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12.4.3 3R3C

Table 49: The coefficient Matrix of the 3R3C-model for Case 3.1 using the middle temperature
sensor.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
The0 8.8177e+01 7.5310e-01 1.1709e+02 0.0000e+00 -2.7783e-03 0.0180
Twater0 8.8219e+01 2.0210e-01 4.3652e+02 0.0000e+00 5.1375e-03 0.0181
Twall0 8.7626e+01 4.8467e+00 1.8080e+01 0.0000e+00 6.0126e-04 0.0153
Che 1.5520e-01 1.6319e-02 9.5108e+00 0.0000e+00 1.0736e-04 0.0000
Cwall 1.6464e-01 3.6680e-03 4.4886e+01 0.0000e+00 -6.2218e-04 -0.0004
Cwater 1.2567e-01 7.1632-03 1.7544e+01 0.0000e+00 4.0965e-04 -0.0019
e11 -2.3556e+01 1.9797e+00 -1.1898e+01 0.0000e+00 2.4032e-04 0.0000
p11 1.5693e-04 1.1585e+00 1.3779e-04 9.9989e-01 7.3794e-10 0.0000
p22 7.1438e-07 9.1108e-02 7.8410e-06 9.9999e-01 6.1379e-11 0.0000
p33 5.3016e+02 3.4509e+01 1.5363e+01 0.0000e+00 -1.4208e-03 0.0065
Rhew 8.6995e-01 8.0608e-02 1.0792e+01 0.0000e+00 -3.7817e-07 0.0000
Rwa 1.5448e+00 1.4411e-01 1.0719e+01 0.0000e+00 -2.7115e-04 0.0000
Rww 1.6813e+02 1.3683e+01 1.2287e+01 0.0000e+00 6.8522e-04 0.0001

Table 50: Correlation Matrix of the 3R3C-model for Case 3.1 using the middle temperature
sensor.

The0 Twater0 Twall0 Che Cwall Cwater e11 p11 p22 p33 Rhew Rwa
Twater0 0.63
Twall0 0.04 0.05
Che -0.04 -0.03 -0.03
Cwall -0.04 -0.01 0.66 0.01
Cwater -0.04 -0.05 0.03 -0.40 -0.02
e11 -0.03 -0.04 -0.99 0.03 -0.66 -0.04
p11 0.07 0.06 0.24 -0.16 0.18 -0.15 -0.23
p22 0.00 -0.03 -0.04 0.01 -0.04 -0.04 0.17 0.04
p33 0.05 0.01 -0.85 -0.11 -0.59 0.18 0.84 -0.11 0.01
Rhew -0.01 -0.02 0.00 -0.34 0.27 -0.13 0.00 0.19 0.01 -0.08
Rwa -0.04 -0.03 -0.09 0.05 0.40 -0.12 0.10 0.06 0.01 0.02 0.52
Rww 0.04 0.02 -0.72 -0.06 -0.31 -0.39 0.72 0.12 0.06 0.66 0.39 0.39

12.5 Case 3.2

12.5.1 1R1C

Table 51: Coefficient Matrix for the 1R1C-model in Case 3.2.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
Tewh0 7.6256e+01 4.2200e-01 1.8070e+02 0.0000e+00 -4.3801e-07 0.002
C 4.7953e-01 2.8420e-02 1.6873e+01 0.0000e+00 -8.2417e-07 0.000
e11 -2.2055e+01 6.5886e+02 -3.3474e-02 9.7330e-01 1.3121e-06 0.000
p11 3.9613e-01 3.0391e-02 1.3034e+01 0.0000e+00 -6.4529e-07 0.000
R 1.3789e+02 3.5107e+01 3.9277e+00 9.2917e-05 9.8318e-07 0.000
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Table 52: Correlation Matrix for the 1R1C-model in Case 3.2.

Tewh0 C e11 p11
C -0.01
e11 0.00 0.00
p11 -0.05 0.04 0.00
R 0.01 0.14 0.00 -0.04

12.5.2 2R2C

Table 53: Coefficient Matrix of the 2R2C-model in Case 3.2 using the middle temperature sensor.

Estimate Std.Error t value Pr(> | t | ) dF/dPar dPen/dPar
Twater0 7.6288e+01 1.8880e-01 4.0407e+02 0.000e+00 -4.8746e-04 0.0015
Twall0 2.1191e+01 5.5656e+00 3.8075e+00 1.5077e-04 -5.3744e-04 -0.0299
Cwall 1.8046e-01 2.6837e-02 6.7243e+00 3.3123e-11 -6.1924e-04 0.0000
Cwater 3.6097e-01 2.5563e-02 1.4121e+01 0.0000e+00 7.0129e-05 0.0001
e11 -1.9257e+01 1.3225e+00 -1.4562e+01 0.0000e+00 -6.1937e-04 0.0000
p11 4.2471e-01 2.2532e-02 1.8849e+01 0.0000e+00 5.1255e-07 0.0000
p22 6.3991e+00 1.5642e-01 4.0911e+01 0.0000e+00 -6.1937e-04 0.0000
Rwa 1.3731e+00 2.0209e-01 6.7944e+00 2.0943e-11 4-1093e-04 0.0000
Rww 1.0208e+02 1.3129e+01 7.7749e+00 2.2871e-14 -1.8162e-03 -0.2363

Table 54: Correlation Matrix for the 2R2C model in Case 3.2 using the middle temperature
sensor.

Twater0 Twall0 Cwall Cwater e11 p11 p22 Rwa
Twall0 0.03
Cwall 0.05 0.76
Cwater 0.03 0.12 -0.25
e11 0.02 0.97 0.68 0.19
p11 -0.02 0.00 -0.02 -0.04 0.01
p22 0.00 -0.66 -0.87 0.57 -0.57 0.00
Rwa -0.05 -0.77 -0.68 0.01 -0.71 -0.04 0.62
Rww -0.04 -0.95 -0.89 0.04 -0.89 0.00 0.79 0.87
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12.5.3 3R3C

Table 55: Coefficient Matrix of the 3R3C-model for Case 3.2 using the middle temperature
sensor.

Estimate Std. Error t value Pr(> | t | ) dF/dPar dPen/dPar
The0 7.6898e+01 1.9805e+00 3.8828e+01 0.0000e+00 -2.6908e-03 0.0022
Twater0 7.6256e+01 1.9125e-01 3.9873e+02 0.0000e+00 1.4694e-02 0.0018
Twall0 4.8561e+01 8.7191e-01 5.5695e+01 0.0000e+00 -5.4196e-03 0.0001
Che 1.7316e-01 4.2636e-02 4.0613e+00 5.3479e-05 -2.0223e-04 0.0000
Cwall 1.7010e-01 7.1467e-03 2.3801e+01 0.0000e+00 -3.4846e-03 -0.0003
Cwater 2.1461e-01 1.4698e-02 1.4601e+01 0.0000e+00 2.7557e-04 -0.0001
e11 -1.5751e+01 2.2276e-01 -7.0706e+01 0.0000e+00 1.1592e-03 0.0000
p11 5.3901e+00 7.3066e-01 7.3770e+00 4.0035e-13 -2.6629e-04 0.0000
p22 4.1010e-01 2.7015e02 1.5180e+01 0.0000e+00 8.1052e-05 0.0000
p33 1.7950e+02 1.3295e+01 1.3501e+01 0.0000e+00 9.9716e-04 0.0000
Rhew 1.5251e+00 2.4129e-01 6.3206e+00 4.2883e-10 -4.5321e-05 0.0000
Rwa 4.8837e+00 1.3614e+00 3.5873+00 3.5383e-04 6.5383e-04 0.0000
Rww 9.7877e+01 2.7614e+01 3.544e+00 4.1564e-04 -2.8338e-04 0.0000

Table 56: Correlation Matrix of the 3R3C-model for Case 3.2 using the middle temperature
sensor.

The0 Twater0 Twall0 Che Cwall Cwater e11 p11 p22 p33 Rhew Rwa
Twater0 0.57
Twall0 0.36 0.15
Che 0.01 -0.08 0.53
Cwall -0.07 -0.14 0.24 0.37
Cwater 0.32 0.15 0.36 0.04 -0.04
e11 0.05 0.05 0.05 0.06 0.01 0.12
p11 0.20 0.15 -0.08 -0.34 0.26 0.26 0.13
p22 0.05 0.08 0.06 0.21 0.02 0.03 0.38 0.16
p33 -0.05 -0.05 0.21 0.44 0.29 -0.13 0.06 0.08 0.15
Rhew 0.10 0.12 -0.25 -0.29 0.06 -0.33 0.09 0.68 0.22 0.12
Rwa -0.05 -0.12 0.28 0.45 0.92 -0.04 0.02 0.28 0.05 0.39 0.07
Rww -0.09 -0.10 0.23 0.40 0.72 -0.12 0.05 0.34 0.13 0.59 0.14 0.82
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12.6 Tables

Table 57: Flexibility service for TSO.

Flexibility service for TSO Pros

Primary control
Maintain sustem stability and
reliability (fast reaction)

Secondary control
Maintain system stability
and reliability

Tertiary control
Maintain system stability
and reliability

National Capacity Market
Reduce requirement for peak
generation capacity

Congestion Management
Delay grid reinforcements
Avoid grid reinforsements

Grid Capacity Management
Optimize Asset Use
Reduce grid losses

Controlled islanding
Reduce frequency and
duration of outage

Redundancy (n-1) support
Reduce frequency and
duration of outage

Table 58: Flexibility services for DSO.

Flexibility service of DSO Pros

Congestion Management
Delay grid reinforcement
Avoid grid reinforcement

Voltage control Avoid grid reinforcement

Grid Capacity Management
Optimize asset use
reduce grid losses

Controlled islanding
Reduce frequency and
duration of outage

Redundacy (n-1) support
Reduce frequency and
duration of outage

Power quality support Avoid grid investments

Table 59: Flexibility services for BRP.

Flexibility services for BRP Pros

Day-ahead Optimixation Reduce sourcing costs

Intraday Optimization Reduce sourcing costs

Self-/Passive Balancing Reduce balancing costs

Generation Optimization Reduce sourcing costs
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Table 60: Flexibility services for Prosumers.

Flexibility services for Prosumers Pros

ToU Optimization Reduce energy costs

KWmax Control Reduce grid connection costs

Self Balancing Reduce energy costs

Controlled islanding Increase availability

12.7 Code

Figure 55: Code for initializing and system equations.

Figure 56: Code for reading files and setting initial values.
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Figure 57: Code for plotting temperature and power graphs.

Figure 58: Code for parameter fitting, RMSE and LogLikelihood value and Residual plots.

82



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

Erlend Magnus Løvstakken

Grey-box modelling of a domestic hot
water tank to be used for flexibility
services

Master’s thesis in Energy and Environmental Engineering
Supervisor: Karen Byskov Lindberg
June 2022

M
as

te
r’s

 th
es

is


	List of Figures
	List of Tables
	Introduction
	Motivation
	Hypothesis
	Scope
	Research Questions
	Limitations
	Context of thesis

	Theory
	Norwegian Power Usage
	Grid tariff structure
	Flexibility
	Demand side flexibility
	Flexibility of EWHs

	Water heaters
	Design and operation of water heater
	Restrictions due to legionella

	Data Communication
	Logic Machine
	KNX


	Literature Review
	Grey box modelling
	Thermal equivalent model
	Continuous Time Stochastic Modelling in R

	Parameter fittings of academic papers
	Flexibility potential of EWH

	Experimental Setup
	Smart House
	Control system
	Equipment
	OSO Saga S 300 water heater
	Temperature sensors
	Water flow meter
	Power meter
	Other Equipment

	Physical Setup

	Experimental Method
	Case 1: Steady state of the EWH at different set-point temperatures
	Case 2: 3-4 showers a day while the EWH is in on-mode
	Case 3: 3-4 showers a day while the EWH is in off-mode
	Overview of the Cases

	Method and Model
	1R1C
	2R2C
	3R3C
	Using The CTSM-R tool
	Model Validation

	Experimental Results
	Case 1.1: Steady state of the EWH at different set-point temperatures using the upper temperature sensor
	Case 1.2: Steady state of the EWH at different set-point temperatures using the upper temperature sensor
	Case 2: 3-4 showers a day while the EWH is in on-mode
	Case 3.1: 3-4 showers a day while the EWH is in off-mode
	Case 3.2: 3-4 showers while the EWH is in off-mode

	Verification of Mathematical Model
	Case 1
	Case 2
	Case 3

	Discussion
	Case 1
	Case 1.1
	Case 1.2
	Take home from experiments without draining water

	Case 2
	Case 3
	Case 3.1
	Case 3.2

	Take home from experiments where water is drained from the EWH
	Parameter fitting computed with CTSM-R

	Further Work
	Conclusion
	References
	Appendix
	Case 1.1
	2R2C
	3R3C

	Case 1.2
	1R1C
	2R2C
	3R3C

	Case 2
	1R1C
	2R2C
	3R3C

	Case 3.1
	1R1C
	2R2C
	3R3C

	Case 3.2
	1R1C
	2R2C
	3R3C

	Tables
	Code


