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i 
 

Additive manufacturing (AM) has opened new possibilities in the spare part sector, where 
conventional manufacturing (CM) has limitations. With on-demand abilities, toolless 
production and design freedom, AM has improved the supply chain (SC) to a more 
flexible and efficient form. Physical spare parts are transformed into digital 3D files, 
changing large warehouses into digital databases. This significantly impacts 
sustainability, especially the environmental impact per produced spare part, which is a 
high priority due to the well-known challenges created by climate change. The literature 
offers a wide selection of studies on the different impacts of a change from CM to AM or 
comparing both based on the environmental impacts. Several of these studies suggest 
that AM is a viable choice to replace CM due to reduced environmental impact and 
economic benefits. The literature also provides several papers comparing different AM 
methods, but in an SC design comparison of central and decentral production, also called 
on-site and off-site, is limited. No studies offer decision support to managers or 
practitioners when choosing the optimal SC design for sustainable AM of spare parts. 
When looking at sustainable SC design options for spare parts, several papers have 
investigated this with varying results. Similarities in the parameters used are production 
and transportation. The energy mix is mentioned several times as a parameter with a 
significant impact but is rarely included in calculations and comparisons. During this 
thesis, a mathematical model is developed to calculate on-site and off-site total carbon 
emissions and compare these. Then a parametric analysis will be performed where the 
result is fed into a decision tree algorithm to produce a decision support system (DSS) to 
assist managers and practitioners when choosing SC design. The results show that 
energy mix is the main parameter to impact the SC design choice. 

  

Abstract 
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Additiv produksjon (AM) har åpnet for nye muligheter i reservedelssektoren, hvor 
konvensjonell produksjon (CM) har begrensninger. Med evner til å produsere ved 
etterspørsel, verktøy løs produksjon og designfrihet, har AM forbedret forsyningskjeden 
(SC) til en mer fleksibel og effektiv form. Fysiske reservedeler omdannes til digitale 3D-
filer, og endrer store varehus til digitale databaser. Dette påvirker bærekraften betydelig, 
spesielt miljøbelastningen per produsert reservedel, som er høyt prioritert på grunn av 
de velkjente utfordringene klimaendringene har skapt. Litteraturen tilbyr et bredt utvalg 
av studier som ser på de ulike konsekvensene en endring fra CM til AM har, eller 
sammenligner begge basert på miljøpåvirkningene. Flere av disse studiene tyder på at 
AM er et fullverdig valg for å erstatte CM på grunn av redusert miljøpåvirkning og 
økonomiske fordeler. Litteraturen inneholder også flere artikler som sammenligner ulike 
AM-metoder, men ved en SC-designsammenligning av sentral og desentralisert 
produksjon, også kalt «på området» (on-site) og «utenfor området» (off-site), er veldig 
begrenset. Ingen studier tilbyr beslutningsstøtte til ledere eller utøvere når de skal velge 
det optimale SC-designet for bærekraftig AM av reservedeler. Når man ser på 
bærekraftige SC-designalternativer for reservedel produksjon, har flere artikler undersøkt 
dette med varierende resultater. Ved analysene av SC-designalternativene finnes det 
likheter i parameterne som er inkludert. Produksjon og transport er ofte brukt i slike 
analyser. Energimiksen nevnes flere ganger som en parameter med en betydelig 
innvirkning i slike analyser, men tas sjelden med i beregninger og sammenligninger. I 
løpet av denne avhandlingen er det utviklet en matematisk modell for å beregne totale 
karbonutslipp on-site og off-site, deretter blir de sammenlignet. Deretter vil det bli utført 
en parametrisk analyse hvor resultatet mates inn i en beslutnings tre algoritme for å 
produsere et beslutningsstøttesystem (DSS) for å hjelpe ledere og brukere ved valg av 
SC-design. Resultatene viser at energimiks er hovedparameteren for å påvirke et SC-
designvalg. 
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Additive Manufacturing (AM) is not a new technology, but the development of AM 
technology has opened new areas where AM can be beneficial to implement. AM is 
increasingly important in spare parts productions because it allows toolless 
manufacturing and ample design freedom. This eliminates lead time in tool change and 
assembly time by merging several components into one part (Holmström et al., 2010). 
One of the essential benefits of AM is the opportunity to produce spare parts when 
needed, “on-demand”, thus reducing or even eliminating large inventory levels that are 
costly and unnecessary. This opens the possibility of having a digital inventory of 3D files 
instead of physical spare parts, often referred to as a “digital warehouse” in the literature 
(Cardeal et al., 2022; Chekurov et al., 2018). The availability is crucial for producers to 
reduce the risk of high costs due to downtime, making spare part management a central 
part of preventing such expenses. Spare parts are usually characterized by shifting 
demand, making it hard to predict the demand. With conventional manufacturing (CM), 
the general solution to this difficulty is large warehouses with various spare parts. This 
leads to an expensive supply chain (SC) with low flexibility due to the cost-intensive 
storage facilities and tied-up capital in the spare parts stored. AM characteristics can 
provide an alternative SC where the mentioned digital warehouse is implemented. The 
on-demand capabilities drastically reduce the need for high inventory levels, leading to a 
more cost-efficient and flexible spare part production. There are many options for 
inventory management (IM), but most companies have some inventory at their 
production facility (on-site), even though a central warehouse is the primary IM solution. 
These on-site inventories can then be transformed into on-site production facilities for 
spare parts using AM. The transportation cost of bringing the spare part to the production 
facility is eliminated, reducing cost and CO2 emission from the transportation (Sasson & 
Johnson, 2016). It is undeniable that AM production of spare parts in small volumes is 
more efficient than CM, with a reduction of inventory levels, on-demand, and reduced 
complexity in supply chains, to mention a few benefits. When adding the on-site 
production factor and eliminating the transportation, the location of spare part production 
seems unambiguous with the environment in mind. However, some countries produce 
high CO2 emissions due to fossil-based energy production. This challenges on-site 
production due to the large variation in the energy mix for different countries. The 
importance of the energy mix is due to the high energy consumption when using AM 
technology, making the energy mix a vital parameter when looking at the environmental 
footprint of produced spare parts. This insight may suggest that on-site might not always 
be the best option from an environmental point of view and opens the possibility that off-
site production can have a lower environmental footprint due to the differences in energy 
mixes for different countries. Even with the transportation added to the off-site 
production, this has potentially a lower environmental footprint than producing it on-site. 
When calculating the environmental footprint of spare parts, life cycle phases relevant to 
a given SC and production method must be evaluated, which is done in this thesis. This 
thesis aims to find out when it is environmentally convenient to produce on-site, and 
whether it is always suitable to produce on-site or if there are situations where off-site is 
more environmentally friendly, meaning less CO2 is produced based on a control volume 
consisting of relevant life cycle phases. The thesis will also try to answer which 

1 Introduction 
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parameters are important to emphasize when choosing between on-site and off-site, also 
called the SC design. This results in a decision support system (DSS) presented as a 
decision tree to help managers and practitioners choose the most sustainable SC design 
based on their situation. 

This is the first work where something like this is done. In the literature, nothing similar 
can be found, only papers with partial similarities. One of these is the work done by Rupp 
et al. (2022), where they aim to compare the subtractive and additive production of 
metal parts by calculating the carbon emissions produced during production and 
transportation. The comparison of subtractive production is irrelevant, but the life cycle 
phases and parameters used to calculate the emissions are mostly similar. Production 
and transport (two similar phases used), using the same transport modes (ship, train, 
truck and planes) and energy mix as a parameter in the carbon emissions calculations. 
Another similar work was done by Cantini et al. (2022), where methods like a 
mathematical model and decision tree were made to find the most optimal SC design to 
minimize costs instead of carbon emissions. Moreover, a DSS is created to guide 
managers and practitioners in choosing SC designs, which compare AM against CM and 
centralized- against decentralized production. The automotive industry is one sector 
where spare parts are a huge part of the business after-sales, where the balance 
between inventory cost and service level is critical, as well as the risk of obsolete spare 
parts. Isasi-Sanchez et al. (2020) investigate these problems with AM as a solution from 
a sustainability point of view using quantitative analysis. The results indicate that the 
location of production is an essential environmental aspect due to the reduction in 
transportation and inventories. This is consistent with the on-site argumentation from 
earlier but also limited to this for this paper, leaving out the energy mix related to the 
location. The energy mix is discussed in several papers. Still, it is not set in the context 
of comparing different energy mixes in other situations in an on-site/off-site scenario 
(Cerdas et al., 2017; Rupp et al., 2022; Walachowicz et al., 2017a). The general 
approach is to compare the AM with CM, where AM often are placed on-site to eliminate 
unnecessary transport. Cerdas et al. (2017) point out that the regional electricity mix 
(energy mix) can significantly influence the emission for production using AM. However, 
the energy mix is not included in the environmental analysis. Also, the production 
location is decided to be on-site regardless of the energy mix, and the economic side of 
cheap electricity is prioritized over the environmental aspect. As mentioned, the 
literature has some similarities to what this thesis aims to provide. However, with the 
introduction of DSS for managers and practitioners for choosing optimal SC design based 
on environmental impact, this thesis will provide new insight into the literature. 

This thesis is divided into five sections: Introduction, Theoretical background, 
Methodology, Result and discussion, and Conclusion. The Theoretical background section 
will give the theoretical insight needed to understand the different aspects implemented 
in the thesis. It will also explain the control volume used in this research. In the 
Methodology section, the working process for the results is given, and which tools have 
been used throughout this process. The results from the research will be presented and 
discussed in the Result and discussion section. The last section will be a conclusion, 
where the main features from the result section are presented. Moreover, the limitations 
of this thesis and future research are also included in the last section. 
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The theoretical background starts with a brief introduction to Additive Manufacturing 
(AM), with a more thorough explanation of the selective laser melting production method 
used in this thesis (Subsection 2.1). With the AM in mind, the life cycle for spare parts is 
presented by dividing it into phases (Subsection 2.2). These phases are assessed to find 
which phases are relevant to include in the parametric analysis, and these phases are 
defined as the control volume (Subsection 2.3). Lastly, we review the literature pertinent 
to this thesis (Subsection 2.4). 

2.1 Additive Manufacturing 
Additive Manufacturing is now a well-known technology and well-documented in the 
literature. Several different technologies are collected under the term AM, but the core 
principle is the layer-by-layer method, where you build from the ground up. The most 
common technology used for metal material is Powder Bed Fusion (PBF), where the metal 
powder is applied to the building platform with a layer height of 30–50 µm (Rupp et al., 
2022). The building platform is placed inside a chamber with an inert gas atmosphere in 
some cases and a vacuum in others. Then the layered material is sintered or melted using 
a laser, electron beam, or a fusing agent. After the first layer, the building plate is lowered, 
and the process starts over again and is repeated until the part is complete. The building 
plate is heated to make the merging between the layers as rigid as possible. There are five 
methods used in PBF: Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Direct 
Metal Laser Sintering (DMLS), Electron Beam Melting (EBM), and Multi Jet Fusion (MJF). 
Technology advances are continuous, and new methods and technology are regularly 
presented to the market. It must be noted that there may be other methods on the market 
that are not included here.  

In this thesis, the values used in the parametric analysis are based on the SLM method. 
SLM and DMLS use a laser for fusing the material, where the only difference is the 
temperature created by the laser. Metal powder is evenly distributed on the building 
plate using a feeding system and a re-coater blade that drags powder across the building 
surface (Sames et al., 2016). The SLM process is illustrated in Figure 1. SLM operates at 
a higher temperature than DMLS. The metal powder is fully melted by the laser, making 
the metal particles fused and creating the possibility of strong spare parts or prototypes. 
In the DMLS process, the lower temperature connects the metal particles through 
sintering. This limits material options to alloys and the produced parts' toughness. The 
layering process leads to challenges in the mechanical properties due to the residual 
stress that builds up inside the printed part, possibly exposing the part to distortion. 
Some post-production processes can be used to reduce these weaknesses, like heating- 
and pressure treatment. Also, the surface of the produced component may need some 
post-production processes to meet requirements set by the end-user or customer, like 
milling and polishing. 

2 Theoretical background 
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Figure 1: An illustration of the SLM process 

 

Of all the PBF technologies, SLM is one of the most mentioned methods in the literature 
and was used and studied in a preliminary literature study to this thesis. The preliminary 
study was the specialization project for the author and had two objectives, the first was to 
find which life cycle phases were used in the literature when using AM, and the second was 
to find values for phases defined by a control volume based on what was needed for this 
study. The result of these objectives is used and partly presented in Sections 2.2 and 2.3. 

2.2 The life cycle for spare parts 

In this section, defining the phases that contribute to the environmental footprint in the 
life cycle for the spare parts is done. The life cycle presented here is based on the result 
found in the specialization project. As shortly described, the first target was to present a 
consensus for the different life cycle phases found through a selective literature review 
(SLR). After the consensus, a control volume is established based on the most critical 
phases for assessing the environmental impact when locating a production for AM-
produced metal spare parts. Further, each phase in the control volume is described in 
detail for the second target, and the values for the control volume are also found through 
the SLR. These values are also the foundation for the parameters used in this thesis, and 
the result of this is partly replicated in Table 1 and Table 2. Figure 2 illustrates the 
phases found and considered during the SLR of the specialization project (the result of 
the SLR is displayed in Appendix A - SLR result). Each phase will now be explained from 
the starting point (Raw material extraction) and continue in a clockwise manner using 
Figure 2 as a guide. When referring to “the literature review”, it is the SLR performed in 
the specialization project it refers to. 
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Figure 2: An illustration of the life cycle phases 

 

The start of the life cycle for a spare part is the extraction of the raw material used in the 
production. This phase includes mining and refining before it is shipped to the raw 
material production used directly in the AM production. This is an energy- and emission-
intensive phase due to the heavy machinery needed to extract the material from the 
hard rocks. The literature review revealed that this is often a mentioned phase and is 
considered in the analyses. Still, in-depth explanations of the processes used to produce 
the numbers presented are rarely written. The keywords used in the literature review 
were aimed at papers with more general life cycle analyses, like the well-known Life 
Cycle Analysis (LCA). This general approach can partly explain why several papers are 
brief and not detailed in describing the phases used. Still, there were other phases with 
much more detailed descriptions than the raw material extraction phase. 

As mentioned earlier, this thesis uses SLM values and will use the SLM method as a base 
when evaluating the different phases. The raw material used in the production of SLM 
parts is powder, and specifically for this case, is stainless steel powder. There are several 
methods to produce this powder by handling the rough material from the extraction to 
produce a fine powder. The literature review revealed that one method is more used than 
another, the atomization process. The atomization process starts by melting the metal in 
a furnace, followed by transferring the molten metal to a spray chamber where it is 
atomized by sprayed out the melt simultaneously as compressed air, inert gas, or water 
jet at high-pressure (Nagarajan & Haapala, 2017) sprayed at the melt, as Figure 3 
shows. This leaves the finished powder that is used in the production phase. There are 
several methods to perform the atomization process, Figure 3 present four examples 
leading to the same result. The literature is not precise in what method is used when 
describing the raw material production phase, generally just saying the atomization 
process is used without further explanation. 
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Figure 3: Illustration of different atomization processes (Kale, 2020) 

For the transportation phase, there are several possibilities on how to define this phase 
and what to include. Theoretically, you can include every material- and product handling 
from the raw material extraction to the disposal/recycling phases and between the 
phases. If the analysis aims to see the more prominent lines, the small handling 
operations have a marginal influence on the total transport contribution to the 
environmental footprint. The most common transport modes stated in the literature 
review were plane, ship, train, and truck, and the main shipping of the part is most 
commonly defined as the transportation phase. 

Since this thesis has a sustainable focus on the environmental effects, the production 
phase contribution to the analysis is energy consumption, which is converted to carbon 
emission. Other minor operations and processes that could be included in this phase are 
neglected. As mentioned several times in the literature and earlier in this thesis, one of 
the main drawbacks of AM is the energy-intensive production process. From heating the 
building plate, the powder distribution system, and the laser as the primary energy user. 
The finished part often needs some post-production treatment depending on the 
requirements set by regulations or end-user. With different requirements and materials 
used in the printing process, many possible processes are caught under the post-
production phase. As the literature review revealed, the post-production phase and the 
environmental assessment of this phase are minimal (Liao & Cooper, 2020). The SLM 
printing process often needs post-production processes, which are already mentioned, 
but in short, milling- and polishing processes for surface and heat and pressure 
treatment for the material properties.  

In the literature, the use- and maintenance/repair phase is often entangled, meaning 
that a phase can be called the “use phase” but also includes maintenance and repair. 
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Often this phase is neglected with the arguments that there is no significant associated 
energy consumption to this (Lyons et al., 2021b). Other papers look at the effects that 
the AM can provide regarding the use phase and compare the effects with other 
manufacturing processes. Liao and Cooper (2020) use life cycle phases to cover different 
aspects of the environmental impact of AM. In the use phase, they emphasize the 
positive effect of a lightweight AM-produced part on the fuel economy, leading to reduced 
greenhouse gas emissions (Liao & Cooper, 2020). If the perspective is a whole lifetime 
for a spare part, this phase would have significantly influenced the environmental 
footprint. 

The recycling and disposal phases are defined differently in the literature, and in several 
cases, they are combined into a phase called “end of life”. In papers where a 
comparative analysis of AM and CM is done, the recycle can be an important factor due 
to the reuse through recycling. When materials can be reused with recycling instead of 
disposal, it reduces the need for raw material extraction and affects the environmental 
footprint. 

2.3 Control volume 
With the life cycle phases defined in the previous section, a control volume can now be 
established for the relevant phases of this thesis. Due to the intentions of this study, only 
some of the phases are relevant to include in the parametric analysis. Since we are 
comparing AM with AM, the parameters that change between scenarios are the location 
and transportation. The raw material extraction, raw material production, use and 
maintenance, and at last, the recycling/disposal will all be identical when comparing the 
same production method (AM) and will therefore cancel each other out. This means that 
six of the nine phases are not relevant for the analysis, and we can therefore establish a 
control volume based on the defined life cycle. 

 

Figure 4: Illustration of the control volume 
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The control volume used as the framework for this thesis is illustrated in Figure 4. The 
transportation phase between raw material production and production is also excluded 
from the control volume. The reason for this is based on the same arguments as 
excluding the other phases, even though this phase may change when different locations 
are evaluated. If the scenario is set to be off-site instead of on-site, the transportation 
mode and distance to send the materials will be different. However, since this research is 
not based on or has a starting point, the placement of raw material production can be 
closer or further to the destination of the production. For this study, the assumption is 
that every spar part production facility chose a producer of raw material as closely as 
possible. With this assumption, the distance can be seen as “equal” for every scenario 
and will cancel each other out when comparing on-site and off-site.  

We are now left with three phases in the control volume: Production, post-production and 
transportation. For this analysis, the production and post-production phases will be 
added together in the parametric analysis. As mentioned earlier, the other part of the 
results from the specialization project was to quantify the values for the phases defined 
as the control volume. The result for the production phase is displayed in Table 1. 

 

Machine Material Energy consumption 
(kWh/kg) 

Citation 

MTT SLM 250 316L 23.06-29.44 (Huang et al., 2016) 
M3Linear 316L 117.5-163.33 (Huang et al., 2016) 
M3 Linear 316L 107.6 (Kellens et al., 2011) 

Table 1: Values for the SLM production 

 

This study will use stainless-steel 316L as a reference point for material. Due to the 
spare part's complexity in design, size and machine, the energy consumption varies 
greatly, as Table 1 shows (Isasi-Sanchez et al., 2020). The range of energy consumption 
found in the literature was 23.06-163.3 kWh/kg. To represent this in the parametric 
analysis, a range of values will also be represented based on these values. For the post-
production phase, finding good sources for values is difficult due to the limited studies in 
the literature. Paris et al. (2016) use milling as a finishing process to improve the surface 
of the printed part and quantify the process to use the specific energy consumption of 

0.219 kWh/cm3 (Paris et al., 2016). The energy consumption for the production is given 
in kWh/kg, so by using the density for stainless-steel 316L (8000 kg/m3), a simple 
conversion is performed, and we get 27.375 kWh/kg for the post-production phase. This 
is then combined with the range for the energy consumption for the production phase 
used in the analysis. The post-production phase is assumed to be performed at the same 
site as the printing process. This assumption removes the potential of a new 
transportation phase.  
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Transportation mode Fuel CO2 emission (gCO2/t*km) 
Cargo ship Residual fuel 14.4 

Railway Diesel fuel 18.9 

Road Diesel fuel 90 

Plane Jet fuel 1050 
Table 2: Fuel emission for different means of transportation (Huang et al., 2016) 

 

Table 2 presents the emission intensity for the four transportation modes used in the 
parametric analysis found in the literature review. The four means of transportation are 
long-haul diesel trucks, diesel engine railway, air freight, and residual fuel engine cargo 
ships. In U. S domestic and international freight, these are the most commonly used 
(Huang et al., 2016). These values are picked explicitly from the referred paper, but it is 
compared throughout the literature review and therefore assumed to be sufficiently 
approved. The most used unit for this phase in the literature is gCO2/t*km. In this unit, 
the “t” is the metric ton of material multiplied by the distance travelled (km). To include 
these values in the parametric analysis, we need to multiply the weight of the shipped 
part or parts and add a conversion factor for a ton to kilogram (kg). The transportation 
phase will only be added to the off-site scenario since the transportation on-site is 
considered negligible. This will be explained in more detail in the Methodology section. 

2.4 AM in supply chains from an environmental point of view 
Since the invention of additive production technologies, they have been compared to 
traditional- and conventional methods. At the start, the comparison focus was centred on 
the productivity and economic benefits AM could offer (Alexander et al., 1998; Hopkinson 
& Dickens, 2003; Ruffo et al., 2006). During the last decade, the focus has now slightly 
shifted and increased to more focus on the sustainability benefits AM offers as well (Boer 
et al., 2020; DeBoer et al., 2021; Ford & Despeisse, 2016; Liu et al., 2017; Paris et al., 
2016). The research has also led to more specific analytic studies of AM technology 
where the well-known life cycle analysis (LCA) method is used (Cerdas et al., 2017; 
Hapuwatte et al., 2016; Ma et al., 2018). The LCA is also the basis of the analysis used 
to define phases in the preliminary study that the thesis has used to define a control 
volume and framework for performing the parametric analysis. When implementing AM, 
changes and challenges will naturally occur throughout the supply chain, which has led to 
the development of new business models to utilize these challenges in a sustainable way 
(Cardeal et al., 2022; Cardeal et al., 2020; Godina et al., 2020; González-Varona et al., 
2020). 

In the implementation of AM, Godina et al. (2020) are trying to increase the knowledge 
of the impact AM has on sustainable business models and evaluate the impact of the 
different pillars under Industry 4.0. In addition, they investigate models and scales that 
can be used to evaluate these impacts. The paper indicates that AM makes the 
production processes more flexible to adapt to the market's needs and streamline several 
processes in manufacturing enterprises and is now at a turning point to become a viable 
alternative to conventional production. Cardeal et al. (2020) introduce a new method to 
conceive, design, and map sustainable business models, the Business Model Canvas for 
Sustainability (BMCS). This BMCS is used to assess the long-term sustainability effects in 
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a proposed model that will pre-select a selection of business models. Regarding the spare 
part industry, AM has vast potential due to the on-demand, handles complex and flexible 
design, and fits small production volumes best. These properties can change the 
traditional inventory to a digital inventory, where large warehouses can be moved to the 
cloud as 3D files. Felt Cardeal et al. (2022) researched the change to a digital inventory, 
and they have introduced a business model to handle the switch to digital inventory with 
a focus on sustainability. The proposed model has been assessed using the same BMCS 
method to compare the business model to current practices, which has raised concern for 
the economic potential of small- and medium-sized enterprises (SMEs) regarding 
competitiveness against large enterprises. The findings for the environmental aspects are 
a reduction in raw material use, but a concern is raised for energy consumption which is 
presented as the most significant contributor to the environmental impact. They suggest 
using clean power sources like solar panels, which in other words refer to the energy mix 
used for production, which emphasizes the importance of implementing the energy mix 
when analysing environmental impact for AM production. Most of the mentioned papers 
that look into supply chains and business models have focused on large-scale 
enterprises, which makes it difficult for smaller enterprises to apply. Due to increasing 
numbers of SMEs, González-Varona et al. (2020) have tried to fill this gap by developing 
a business model that integrates a digital supply chain for global operating 
manufacturers and local producers. The model allows SMEs to operate globally with 
sustainability criteria and simultaneously guarantee a high service level to their 
customers for the supply of spare parts (González-Varona et al., 2020). One of the most 
mentioned benefits regarding the implementation of AM is the decentralization of 
production, leading to minimized transportation and increased service level. In this 
context, none of the business model-based papers mentioned has considered energy use 
versus transportation as the thesis aims to do.  

During the specialization project, the SLR analyzed forty-one papers evaluating which life 
cycle phases to use. The selection process was over several stages, but the common 
denominator was that all had to include life cycle phases, AM technology and be 
sustainability related. An interesting finding is that only twenty-six of the forty-one 
papers included the transportation phase. One paper has also chosen to include 
transportation in every phase instead of having an individual phase (DeBoer et al., 
2021). Di and Yang (2021) investigate a new type of supply chain structure called 
production-inventory-transportation (PIT), which has been enabled due to AM's capability 
of fabricating with little to no assembly. The PIT structure combines all the included 
processes in mobile production, meaning the AM technology is mounted on a truck to 
drive directly to the customer when needed. This PIT structure calculates GHG emissions 
from the electricity used in production and transportation and then compares this with 
the traditional manufacturing method. When applied to a real case, the results show the 
potential to reduce CO2 emissions, but this is tested for a limited-sized case, and the 
material used is plastic. Moreover, the results state that transportation emission is 
significantly lower than the emission from production, which again emphasizes the 
importance of energy consumption in environmental analyses. 

As mentioned, the researcher's focus and interest have shifted towards more 
sustainability-grounded studies, where methods like life cycle analysis (LCA) are 
frequently used to map the phases for products. Several papers use different frameworks 
to do the LCA. Hapuwatte et al. (2016) use the Product Sustainability Index (ProdSI) 
framework to give a holistic sustainability analysis that covers the entire life cycle, which 
they state was lacking in the literature at that time (2016). The framework is thorough 
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and considers the three pillars of sustainability, also called the triple bottom line: 
economic, environmental and societal, related to the intertwined manufacturing 
elements: products, process and system levels. The results from case studies using this 
framework are compared with CM products, indicating that AM products can be more 
sustainable than CM products for complex geometrical products (Hapuwatte et al., 2016). 
One major drawback of ProdSI is the inability to include the production quantity as a 
factor, which directly influences the score and, thus, the sustainability of the products. 
This is one of the factors included in the analysis for the thesis, which is essential for the 
production and transportation phases. 

Rupp et al. (2022) aim to compare the subtractive and additive production of metal parts 
by calculating the carbon emissions produced during production and the transportation 
ways. They also use a decentral production perspective comparable to off-site 
production, and the values collected for the research are done by a literature review. This 
research shows that the main drivers are not transportation but the buy-to-fly ratio and 
the energy mix. This research is highly comparable to the present study, with the same 
parameters (production and transport) and using the same transport modes (ship, train, 
truck and planes) and energy mix as a factor in the carbon emissions calculations. The 
difference is the comparison to the subtractive production instead of on-site AM. Due to 
the comparison of different production methods (AM and CM), more phases are included 
in the calculations than in the thesis. Rupp et al. (2022) point out that there is a need for 
further research on the carbon emission relevance of AM on production and its supply 
chain, which is close to what this thesis intends to investigate. 

With sustainability in mind, the general perception after reading literature related to AM 
and sustainability is that you either analyze an AM-specific technology in detail or analyze 
AM and then compare it with CM. In general, the result when comparing the AM and CM 
is that with some limitations (especially high production volumes), AM is more 
sustainable than CM. With this general perception, the natural step forward is to look 
closer into the possibilities and challenges AM technology brings. This thesis will 
contribute new knowledge to the literature and can act as decision-making support when 
choosing the location of spare part production. 
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This thesis aims to find the most sustainable way to produce spare parts and, with this 
result, give a decision support system (DSS) for managers and practitioners when 
choosing a spare part supply chain (SC). The two SC options investigated in this thesis 
are on-site or off-site production. A mathematical model is developed to determine which 
SC design is most suitable for specific scenarios. A decision tree is produced from the 
mathematical model and parametric analysis results to produce the proposed DSS. 

The Methodology section is divided into three sub-sections. In Subsection 3.1, the 
mathematical model is developed to calculate the emissions and compare scenarios to 
find which SC design (on-site or off-site) has the lowest total emission. Subsection 3.2 
present the parametric analysis and how the analysis has produced over 100,000 
scenarios to analyze. Finally, Subsection 3.3 explains how the decision tree is created 
using a decision tree algorithm trained by the result from the parametric analysis. The 
DSS is the decision tree created and further explained in the Results and discussion 
section. 

3.1 Mathematical model 
The mathematical model is developed to compare the emissions of the two SC options. 
The model has two main parts, one for selecting the number of parts based on an 
economic assessment and the other for calculating the emission for on-site and off-site 
production scenarios. 

 
Input 

parameter 
Description  Unit 

𝑇 Time period Time  
h Holding rate  

MTTF Mean time to failure Time  
λ Failure rate  Unit/time 
𝑐! Unitary backorder cost Euro/unit 
𝑐" Unitary production cost Euro/unit 
L#$ Leadtime on-site Time  
L%&'() Leadtime off-site Time  
𝐸* Energy consumption in production kWh/kg 
Dist Distance from site to costumer Km 
𝑇+,-. Transportation mode  gCO2/ton*km 

Energy#$ Energy-mix on-site gCO2/kWh 
Energy#// Energy-mix off-site gCO2/kWh 
Part	size The size of the part Kg 

𝑆 Order-up-to level Unit 
Constrains   

Smax Maximum order-up-to level Unit 

3 Methodology 
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Costs   
C0 Holding cost each time unit Euro/time 
C1 Backorder cost each time unit Euro/time 
C2 Production cost each time unit Euro/time 

Table 3: Decision variables, constraints, costs and input parameters for the mathematical 
model 

 

The first part of the model is developed to calculate the number of parts (S) to order 
based on minimizing the cost, also called an inventory management system (IMS). This 
part of the model is inspired by Sgarbossa et al. (2021) and Babai et al. (2011). Their 
implementation of evaluating scenarios to decide the order-up-to level is limited to 
resemble the applications for a limited storage capacity. The implemented part of this 
model is a simplified version to cover its function and nothing more. Table 3 lists the 
system decision variables, constraints, costs and input parameters for the IMS. To 
simplify the model, the element of part size and complexity is removed, meaning that the 
unitary backorder cost and the unitary production cost are fixed. Equation 1 (Eq. from 
now) shows that failure rate (λ) is calculated with the mean time to failure (MTTF). In the 
simplification of the model, the MTTF is chosen to be constant, which also makes λ 
constant. 

 

𝜆 = 	
1

𝑀𝑇𝑇𝐹 1 

 

The Poisson distribution function is used to model the demand due to the fit with the 
accelerated test used for getting the reliability data. The system is periodic with the 
demand of (T+Li) periods. The lead time is divided between on- and off-site, where Loff 
has calculated the like Eq. 2 illustrates.  

 

𝐿!"" = 𝐿!# + 𝐿$%&'( 2 

Given the stochastic demand y, number of part (Si) is optimized following Eq. 3-7. 

 

𝑚𝑖𝑛 𝐶'!' = 𝑚𝑖𝑛	(𝐶) + 𝐶* + 𝐶+) 3 

  

𝑚𝑖𝑛 ℎ ∙ 𝑐,,. ∙ 	5(𝑆. − 𝑦) ∙ 𝑃/3,0123,3 + 𝑐* ∙ 5 (𝑦 − 𝑆.) ∙ 𝑃/3,0123,3 + 𝜆. ∙ 𝑐+,.

4

356317

6387

359

 
4 
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𝑃/3,0123,3 =
;𝜆.(𝑇 +	𝐿.)<

3𝑒8/3(01	23)

𝑦! 										𝑖 = 1,… , 𝑛 
5 

  

0 ≤ 𝑆. ≤ 𝑆=(>  6 

  

𝑆. ∈ 	ℕ 7 

 

The time unit cost is minimized in Eq. 3, where Ch is the holding cost for the parts, 𝐶!  is 
the backorder cost and is placed every time the demand exceeds the parts in stock. 𝐶" is 
the production cost. Eq. 4 rewrite Eq. 3 to a more detailed display, where Ch is replaced 
by ∑ (𝑆4 − 𝑦) ∙ 𝑃5!,789!,:

;!<=
:>?  which is the average of parts in stock for period (𝑇 + 𝐿4), and when 

multiplied with ℎ ∙ 𝑐@,4 (holding cost). 𝐶! is replaced by ∑ (𝑦 − 𝑆4) ∙ 𝑃5!,789!,:
A
:>;!8=  which is the 

average of parts in backorder for period (𝑇 + 𝐿4), and then multiplied with 𝑐! (unitary 
backorder cost). The final cost is the 𝐶" (production cost) which is replaced by 𝑐",4 
(unitary production cost) multiplied by 𝜆4 (failure rate), which gives the expected demand 
of parts for a period (T). Eq. 5 uses a Poisson distribution to calculate the probability that 
y numbers of failures occur in the period (𝑇 + 𝐿4). The expected demand is 𝜆4(𝑇 + 𝐿4). Eq. 6 
defines the constraints, and Eq. 7 define 𝑆4 as discrete. In the inventory management 
system part of the model, the part size is chosen dependent on the lead time on-site due 
to illustrating longer production time for larger parts. The three lead times on-site: 0.1, 
0.2, and 0.4, are equivalent to part size: small (0.8 kg), medium (4 kg) and large (8 kg). 
These part sizes are also equivalent to the lead time off-site, but since the off-site lead 
time is calculated out of on-site lead time, as Eq. 2 shows, the size of the part(s) is 
determent out of the on-site lead time. This is used in the emission calculation part of the 
model, which is described next. 

The calculations for the total emission for on-site production and off-site production are 
displayed in Eq. 8-13: 

 

𝐶𝑂?𝑜𝑛 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 8 

  

𝐶𝑂?𝑜𝑓𝑓 = 	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	 9 

  

𝐶𝑂?𝑜𝑛 = 𝐸@ ∙ 𝑆. ∙ 𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒	 ∙ 𝑒𝑛𝑒𝑟𝑔𝑦!# 10 
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𝐶𝑂?𝑜𝑓𝑓 = 𝐸@ ∙ 𝑆. ∙ 𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒	 ∙ 𝑒𝑛𝑒𝑟𝑔𝑦!"" + 𝐷𝑖𝑠𝑡 ∙ 𝑇=!$% ∙ 𝑆. ∙ 𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒 ∙
1

1000 
11 

  

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 	𝐸@ ∙ 𝑆. ∙ 𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒	 ∙ 𝑒𝑛𝑒𝑟𝑔𝑦	𝑚𝑖𝑥 12 

  

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 	𝐷𝑖𝑠𝑡 ∙ 𝑇=!$% ∙ 𝑆. ∙ 𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒 ∙
1

1000 
13 

  

𝐷𝑖𝑠𝑡 ∙ 𝑇=!$% ∙ 𝑆. ∙ 𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒 ∙
1

1000 = 𝑘𝑚 ∙
𝑔𝐶𝑂?
𝑡𝑜𝑛 ∙ 𝑘𝑚 ∙ 𝑘𝑔 ∙

𝑡𝑜𝑛
𝑘𝑔 = 𝑔𝐶𝑂? 

10 

 

 

Eq. 8 and 9 show the general approach to calculate the emission for on- and off-site 
production and are rewritten in Eq. 10 and 11 to show the input parameters used. 𝐸* is 
the energy consumption for the production, including the post-production processes. 𝐸* is 
then multiplied with 𝑆4, which comes from the cost calculations in Eq. 3-7., where the 
𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒 is also calculated from. Lastly, the energy mix is multiplied with 𝐸* , 	𝑆4, and 
𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒 to get a location-dependent emission for production. For the off-site production, 
we add the transportation emission to the production emission, as displayed in Eq. 9. The 
transportation emission uses some additional parameters, 𝐷𝑖𝑠𝑡 is the distance from the 
spare part production to the customer multiplied by 𝑇+,-., which is the transportation 
mode used for transportation. Then multiply with the spare part size (𝑝𝑎𝑟𝑡	𝑠𝑖𝑧𝑒) to add 
the weight per part transported and finally multiply this with 𝑆4 to get the actual weight 
for the whole shipment. Due to the units in the parameters used, a conversion factor is 
used. This is displayed in Eq. 14. 

3.2 Parametric analysis 
As mentioned, we aim to provide managers and practitioners with a DSS to support them 
when choosing the design of their SC (location). This DSS is presented as a decision tree 
for visual and factual guidance. When producing this decision tree, the decision tree 
algorithm requires a dataset to categorize the scenarios into different classes. For this 
reason, we developed a mathematical model to calculate emissions and then did a 
parametric analysis, resulting in 105,840 unique scenarios. Table 4: Parameters and 
values used in the model displays the parameters and values used, except the number of 
parts (SB) per order-up since this is calculated in the IMS part of the model and not 
manually typed in. 
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Input 
parameter 

Values Source 

𝑇 8 (Sgarbossa et 
al., 2021) 

h 0.0058 (Sgarbossa et 
al., 2021) 

MTTF 91 (Sgarbossa et 
al., 2021) 

𝑐! 26000 (Sgarbossa et 
al., 2021) 

𝑐" 750 (Sgarbossa et 
al., 2021) 

L#$ 0.1;0.2;0.4 (Sgarbossa et 
al., 2021) 

L%&'() 1;2;3;4 (Sgarbossa et 
al., 2021) 

𝐸* 20;60;100;140;180 (Huang et al., 
2016) 

𝐷𝑖𝑠𝑡 200;2050;3900;5750;7600;9450;11300;13150;15000 Author´s 
experience 

𝑇+,-. 14.4;18.9;90;1080 (Huang et al., 
2016) 

Energy#$ 50;150;250;350;450;550;650 (Ritchie et al., 
2022) 

Energy#// 50;150;250;350;450;550;650 (Ritchie et al., 
2022) 

Part	size 0.8;4;8 (Sgarbossa et 
al., 2021) 

Table 4: Parameters and values used in the model 

 

When considering different values for the parameters, by testing and failing, the distance 
and energy mix seemed to have the most influence on the results, which is supported by 
Rupp et al. (2022) and Di and Yang (2021). Due to this, more values are added to the 
range for these parameters resulting in a more detailed DSS. For the same reason that 
some parameters have a more significant influence on the DSS, others influence minimal. 
This is further discussed in the Results and discussion section. 

3.3 Decision tree 
To make the SC design choice as easy as possible, we produce a decision tree for the 
DSS to guide against the optimal (lowest emission) solution. An algorithm, a supervised 
classification system technique, generates the decision tree. This technique divides the 
scenarios into classes based on a given set of attributes. To train the decision tree 
algorithm (MathLab’s classification learner), parametric analysis was used. For each 
scenario, all the values from the input parameters were given. In addition to this, a final 
class label was added to the mathematical model to train the decision tree algorithm, 
what the optimal SC design was and be able to predict it. This final label was a simple 
comparison of the total emissions from the on-site scenario versus the off-site scenario, 
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with the same attributes, resulting in a zero if the on-site had the lowest emission and 
one for the opposite. These numbers are replaced by the predicted SC design in Figure 7 
and Figure 8. 

The decision tree is made as follows. The root node is the first recursively split in the 
decision tree, followed by binary subsets (called branches) based on the Gini diversity 
index (𝑔𝑑𝑖). Eq. 11 shows the calculation behind the 𝑔𝑑𝑖, where K represent the number 
of class labels (in this case, 𝐾 = 2, on-site or off-site), and the probability of choosing the 
data point for class 𝑘 is 𝑝(𝑘) (Cantini et al., 2022).  The purpose of the Gini diversity 
index is to measure the probability of a given data point from the dataset being wrongly 
classified when it is randomly chosen (Arena et al., 2022). Being a probability, the 𝑔𝑑𝑖 
value is between 0 and 1. Low probability means that most of the data point of the 
dataset belongs to a particular class, and when 𝑔𝑑𝑖 = 0, all the data point belongs to one 
class. For higher probability, the data points are more randomly divided between several 
classes, and for 𝑔𝑑𝑖 = 1 indicates that the data points are entirely randomly divided 
between several classes (Cantini et al., 2022). 

 

𝑔𝑑𝑖 = 1 −5𝑝(𝑘)?
A

A57

 11 

 

Every node in the tree generates two branches out of an attribute and its cut point. The 
aim in these branches is to minimize Eq. 12 and simultaneously identify the split that will 
provide the split with the highest purity.  

 

𝑚𝑖𝑛	(
𝑛&%"'
𝑛 𝑔𝑑𝑖&%"' +

𝑛B.C)'
𝑛 𝑔𝑑𝑖B.C)') 12 

 

In Eq. 12, 𝑛 represent the total number of data points in the start node, 𝑛C.DE represent 
the number of data points in the new node for the left branch, and the same goes for the 
right branch, 𝑛F4GHE represent the number of data points in the new node for the right 
branch. 𝑔𝑑𝑖C.DE and 𝑔𝑑𝑖F4GHE represent the Gini diversity index for the new node in the left 
and right branch (Sgarbossa et al., 2021). At the end of the tree, or the end of the last 
split for every branch, are leaves. Each split in the tree represents a level, a measure of 
the depth of the tree. When performed, the algorithm produces a tree with a large depth, 
which is not exceptionally user-friendly in a DSS. To deal with this complex tree, the tree 
was pruned to reduce the depth. When reducing the depth of a tree, you also reduce the 
accuracy of the prediction, but on the other hand, you increase user-friendliness. For this 
case, user-friendliness is prioritized, and therefore some accuracy was sacrificed for a 
more user-friendly DSS. Three key performance indicators (KPIs) are introduced to the 
leaves to evaluate the effectiveness of the decision tree predictions. In Eq. 13, the 
accuracy of the leaves is calculated, which is the first KPI. The accuracy (a) is the ratio 
between the correct number of predictions (#𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑C.ID) and the number of 
predictions for the leaf (#𝑝𝑟𝑒𝑑C.ID). The probability (p) for ending at each leaf is calculated 



 18 

in Eq. 14 and is the second KPI. The probability is given by the ratio between the number 
of elements reaching the leaf given the constraints (#𝑝𝑟𝑒𝑑C.ID) and the total number of 
elements in the tree (#𝑝𝑟𝑒𝑑EF..). The last KPI present what consequence the wrong choice 
of location (off-site vs on-site) will have on the CO2 emission on average, in this case, 
called the cost (c). The result of Eq. 15 is a mean percentage of the increased CO2 
emission of the wrongly predicted scenarios. This is obtained as the arithmetic mean of 
the generated increase of CO2 emission for each wrong prediction. 

 

𝑎 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑&%("

#𝑝𝑟𝑒𝑑&%("
 13 

  

𝑝 =
#𝑝𝑟𝑒𝑑&%("
#𝑝𝑟𝑒𝑑'B%%

 14 

  

𝑐 =
YZ∑ 𝑐𝑜𝑠𝑡	𝑓𝑜𝑟	𝑤𝑟𝑜𝑛𝑔	𝑝𝑟𝑒𝑑D − 𝑐𝑜𝑠𝑡	𝑓𝑜𝑟	𝑟𝑖𝑔ℎ𝑡	𝑝𝑟𝑒𝑑D

𝑜𝑠𝑡	𝑓𝑜𝑟	𝑟𝑖𝑔ℎ𝑡	𝑝𝑟𝑒𝑑D
#FB!#C	+B%$JKLM
D57 Z ∗ 100^

#𝑤𝑟𝑜𝑛𝑔	𝑝𝑟𝑒𝑑&%("
 15 

 

To summarize, first, the development of the mathematical model is explained, which 
compare the emissions for on-site and off-site production with a range of different 
parameters (Section 3.1). Then, all the parameters were included in the parametric 
analysis (Section 3.2) after an internal evaluation and testing were done by the author. 
The values for each parameter are presented in. These are then joined together through 
the mathematical model in a parametric analysis, creating 105,840 realistic scenarios to 
evaluate which SC design is the best. This result was fed into the decision tree algorithm, 
as described in Section 3.3, the different values for the scenarios are used as input 
attributes, and the final class label is described as the identifier. The decision to choose 
on-site over off-site if it has the same CO2 emission is justified with easier logistics and 
shorter lead time, which the author assumes that managers and practitioners will use the 
same arguments. 
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This section will present and discuss the results from the parametric analysis and the 
decision tree algorithm. In Section 4.1, the result of the decision tree algorithm is 
presented and discussed. Section 4.2 discusses the influence each parameter presented 
in the decision tree has on the SC design choice, and a guide to orient the DSS is given. 
The final section presents an explanatory case study to better understand how to use the 
DSS (Section 4.3). 

4.1 Decision tree selection 
As mentioned in Section 3.3, the aim is to make the DSS user-friendly with the cost of 
some accuracy. When evaluating how many splits (depth) to use, four different trees 
were produced as a comparison with the following depths (Dmax) and accuracies: Dmax = 3 
(90.3%, small tree), Dmax = 5 (97.1%, medium tree), Dmax = 9 (99.2%, large tree) and 
Dmax = 14 (99.9%, optimized tree). A sensitivity analysis for the accuracy of the trees is 
displayed in Figure 5, where the red mark represents the chosen depth for the tree used 
in this thesis. To get the most accurate prediction, the optimized tree would be the best 
option but also the least user-friendly tree with a Dmax = 14. This means that there are 
fourteen splits, with one new constraint to consider for each split. Compared with the 
large tree, you only lose 0.7% accuracy by pruning down the Dmax = 9. This tree also has 
high accuracy (99.2%), with considerably fewer splits and constraints. Even with this 
reduction in depth, nine is still a large tree that is hard to use for a DSS with a user-
friendly focus and is pruned even more to increase user-friendliness. Figure 5 shows that 
the accuracy drops significantly from Dmax = 5 to Dmax = 3. This is where the trade-off 
between user-friendliness and accuracy starts to tip in favour of user-friendliness, and 
Dmax = 3 is therefore seen as not accurate enough for the DSS.  

 

 

Figure 5: Sensitivity analysis for the accuracy of the decision trees 

4 Results and discussion 
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Another essential aspect when considering the accuracy level is the KPIs (Section 3.3) for 
the leaves, especially cost (c, increase in CO2 emission for the wrong prediction of SC 
design), meaning that a high cost should demand a higher accuracy to decrease the risk 
of ending up with a less sustainable solution. The KPIs show that seven leaves have an 
accuracy of 100%, and the cost is zero. Regarding the accuracy/cost evaluation, these 
leaves are less interesting since there is a larger portion with lower accuracy. For these 
leaves, the cost rate increase is between 5.19% to 134.56%, with a mean increase rate 
of approximant 36%. Figure 6 represents the two KPIs for the leaves where the accuracy 
rate and cost rate are compared for the leaves with lower accuracy than 100%. The 
comparison reveals that leaves with lower accuracy than around 90% tend to have 
higher costs than those with over 90%, which further means that lower accuracy leads to 
a higher cost risk if the prediction fails from the chosen SC design. The mean cost rate 
for these leaves (less than 90 %) is 45.81%. This cost rate is considered high, and high 
accuracy is therefore required when choosing the depth of the tree to decrease this risk. 
It further supports the selected tree with associated accuracy. When considering the 
decision tree as a tool, the excluded leaves with 100% are important to include to give a 
better perspective for the general effectiveness as a tool. The mean accuracy rate for all 
the leaves is around 89%, and the cost is around 23%. This is still a high cost to pay if 
the chosen prediction is wrong, but with an accuracy that is almost 90%, the risk is 
considered acceptable, with some exceptions. There are some leaves with a high cost 
(50% < c) combined with low accuracy (a < 70%) that make it too risky to trust the 
prediction of the tree, this requires additional measures. Consulting a tree with a higher 
maximum depth will offer higher accuracy, reduce the risk, and verify the DSS 
prediction. 

 

 

Figure 6: Accuracy compared with cost rate (KPIs for the leaves) 
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4.2 The influence from the parameters 
The decision tree (Figure 7) reveals that some parameters are more important when 
choosing optimal SC design than others. There are six parameters included in the 
constraints for the splits in the decision tree: energyon (energy_on), energyoff 
(energy_off), transportation mode, E_c, Lead time off-site (Loff) and Distance. The further 
up the tree and the number of times mentioned, the more crucial they are for the SC 
design choice. It emerges that energyon and energyoff are the two parameters with the 
most impact on CO2 emission and the two with the most influence when choosing the 
optimal SC design. These findings are the same as Rupp et al. (2022) found, that the 
main drivers are not transportation but the energy mix. As mentioned earlier (Table 3: 
Decision variables, constraints, costs and input parameters for the mathematical model 
energyon and energyoff is the energy mix for a given location and will always be different 
for the on-site and off-site location in the mathematical model made in this thesis. This is 
not necessarily the case in the real world, where several countries have similar energy 
mixes. However, this is complex due to the transportation mode and distance related to 
the calculation. For instance, a slightly lower CO2 intensity in the energy mix in the 
closest countries might be enough for a lower total CO2 emission due to the short 
distance and the weighting of the energy mix. Another interesting aspect of the 
parameters represented in the tree is Loff and the values used in the split. Lead time off-
site is only included in the first part of the mathematical model as described in Section 
3.1, which is not the case for the other parameters represented in the tree. The dividing 
between 1.3 weeks is interesting due to the broad range used in the model (1.1-4.4), but 
after investigating the parametric analysis, the result of using values under 1.3 is that 
the re-order quantity (S) for off-site is two and increases to three when lead time is over 
1.3. In contrast, the on-site production quantity is two for all values of on-site lead time. 
This means that most off-site production produces three spare parts, while on-site only 
produces two. This will further lead to increased CO2 production compared with on-site 
production since one more spare part is produced. This also increases transportation 
emissions since it is based on how many spare parts are being shipped. At the same 
time, the quantity is based on an optimized quantity based on cost, so it will often be a 
different quantity for a site based off-site than a close spare part production (on-site) 
where the lead time is much lower, allowing increasing order frequency instead of 
ordering larger quantities.  

The transportation mode used in the part shipping is also represented in the decision 
tree, and the choice given in the splits is either using a ship, train or truck, or just a 
plane. Table 2 reveals that the plane has a significantly higher CO2 intensity than the 
three other alternatives, which dramatically impacts the transportation mode as a 
parameter. Just looking at the values for the transportation alternatives, a plane could 
have been ruled out when you compare it to the other alternatives, but the ability for 
rapid shipping over long distances makes the plane a valid choice for many. When using 
a plane, the focus is not on sustainability but on economic aspects due to the low lead 
time compared to the other alternatives. Moreover, the transportation mode is multiplied 
by the distance the spare parts are shipped, and the influence of the distance is also 
represented in the tree, just as the last split before the leaves. This suggests that the 
distance does not have the same degree of influence as the transportation mode, which 
can be explained by the vast distance in values for the transportation mode. At the same 
time, the two parameters are dependent on each other and, multiplied with the quantity 
(S) and part size, constitute the transport emission as a whole. 
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The last parameter mentioned in the decision tree is energy consumption (𝐸*), which is 
placed in the same way as distance (the last split before the leaves) and has a minor 
impact on the SC design choice. The energy consumption is on parameters where the 
values inside vary a lot, and due to technological development, the values will likely 
decrease due to more efficient processes. This can have an interesting effect since the 
split in value for the energy consumption is done in the lowest part of the value range. 

In general, the DSS has a higher probability (p) to suggest on-site (6%) production than 
off-site (4.3%) when looking at the mean for the leaves. This corresponds to the result of 
the parametric analysis, where only 31.2% of the scenarios resulted in lower carbon 
emissions for off-site SC design. However, the importance of some parameters can 
change this. The energy mix is already mentioned as an important parameter, which is 
confirmed by the fact that it is the first choice in the tree. When choosing less than 300 
gCO2/kWh for energy mix off-site changes the number of off-site scenarios in the dataset 
(parametric analysis results) by 62% in favour of off-site production. Regardless of what 
is chosen in the first split, both of the following splits (D = 2) give on-site energy 
intensity options. The energy mix for both SC designs is crucial when choosing the right 
SC design, and due to this, there are possible to draw some general conclusions or 
pointers based on this. If the energy mix off-site is lower than 300 (gCO2/kWh) and the 
energy mix on-site is: (i) lower than 200, the prediction is most likely on-site; (i) equal 
or higher than 200, the prediction is most likely off-site. If the energy mix (gCO2/kWh) 
off-site is equal to or higher than 300, the prediction is most likely on-site SC design.   

 

 

 

With the DSS presented in the form of the decision tree, the actual use for managers and 
practitioners is not that clearly explained. When using the DSS, the user starts at the top 
of the tree and has two options to choose between. When finding the right path, the user 
follows this down to the next split, where two new options exist. This continues down 
until you reach the end (a leaf), where you have the prediction of which SC design is the 
most sustainable. When the user is at the leaf, the next step will be to look at the KPIs 

Figure 7: The decision tree with Dmax = 5, accuracy = 97.1% 
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and, most importantly, the cost (c) and accuracy (a) to evaluate how significant the risk 
is for choosing wrong. At this point, there are two outcomes detected by the author. 
Firstly, high accuracy at the leaf relevant for the user means that the prediction can be 
trusted. Secondly, if the accuracy is lower, the cost should be included in the evaluation 
to assess the actual risk. If the cost is low, the risk connected to the low accuracy must 
be evaluated as acceptable. With the high cost and unacceptable risk, a solution could be 
to consult the more accurate decision trees (Dmax = 9 and Dmax = 14) mentioned earlier. 
To illustrate the use of the DSS, an explanatory case study is presented. 

4.3 Explanatory case study 
This case study is fiction but with a base of facts due to some known values related to 
the chosen locations. Regardless of internal spare part production or the customer's 
location, the on-site values are assumed to be the same for both scenarios. The first part 
of the mathematical model is not altered from the values set as constant values. To 
decide the distance between Norway and Italy, the transportation mode is set to TN#%&	= 
90, which means the truck is the chosen mode. Distance by road is approximant 2400 
km (Oslo-Bologna) and about 25 hours of driving, which is about 2-3 days equivalent to 
L%&'() = 1 week and further gives L#// = 1.2 weeks. The on-site location is set to Italy, and 
the off-site is set to Norway. This gives us the exact values for the energy mixes: 
Energy#$ = 226 and Energy#// = 26 (Ritchie et al., 2022). It is important to note that this is 
for 2021. Italy is a vel developed country, especially in terms of technology, and the 
energy consumption for the printing machines and post-production processes is therefore 
set to 35.  

 

Input 
parameter 

Values 

L#$ 0.2 
L%&'() 1 
L#// 1.2 
𝐷𝑖𝑠𝑡 2400 
𝑇+,-. 90 

Energy#$ 226 
Energy#// 26 

𝐸* 35 
  

Table 5: Input parameters relevant to the DSS explanatory case study 

Table 5 displays the relevant parameters and values for the DSS choices. When applying 
these values to the parameters in the DSS (Figure 7: The decision tree with Dmax = 5, 
accuracy = 97.1%, the optimal SC design is predicted to be off-site production. The path 
of choices in the DSS is illustrated in Figure 8: Illustration of choices done in the 
explanatory case study, with the end leaf coloured in red. The KPIs for the leaf reveal 
that the prediction accuracy is 99.38%, which means that this prediction is to be trusted. 
This also confirms the general conclusion or pointer mentioned earlier, where the energy 
mix off-site is lower than 300 (gCO2/kWh) and the energy mix on-site is higher than 
200, the prediction is most likely off-site. 
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Figure 8: Illustration of choices done in the explanatory case study 

 

An interesting observation of the result is that the transportation mode is an essential 
factor for this result. If the transportation mode had been a plane instead of a truck, ship 
or train, the prediction would have been on-site production due to the low production and 
post-production energy consumption. A plane is often used for shipping spare parts due 
to often time-sensitive scenarios like production stoppage. This type of scenario is 
presented by Rupp et al. (2022), where a plane was the only alternative for express 
deliveries over long distances due to the urgency of the costumer. For managers or 
practitioners using the DSS, precise information is important to get the best and most 
realistic prediction possible. 
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This thesis proposes a DSS to guide managers and practitioners in choosing an 
environmental SC design for spare part production based on their situation. Only two 
different SC designs are considered in this work, which is on-site and off-site production, 
with the use of AM as the production method. Three steps were followed to develop such 
a DSS: (i) A mathematical model with two parts was developed. The first part is a cost 
calculation to determine the optimal order quantity (one calculation for each SC design) 
to use in the second part. The second part calculates the total emissions for the two SC 
designs and then compares them to determine which has the lowest total emission; (ii) 
105,840 realistic scenarios were developed through a parametric analysis, where all 
parameters were included, but some parameters were assigned more values after an 
assessment by the author that some parameters were more relevant than others. For all 
the scenarios developed, the optimal SC design (lowest CO2 emission) was identified 
using the mathematical model mentioned in (i); (iii) The result of the parametric analysis 
was used as the dataset in a decision tree algorithm, which produced the DSS. A 
sensitivity analysis was performed to find the right balance between accuracy (high 
maximum depth) and user-friendliness (low maximum depth), which was found to be a 
maximum depth of five levels with an accuracy of 97.1%. There were established three 
KPIs for each leaf, accuracy (a), probability (p) and cost (c), which revealed that some 
leaves had low accuracy and others high. The same goes for the cost of the leaves, which 
is the percentage increase in emission if the prediction in the tree was wrong. A 
comparison between the cost and accuracy revealed that leaves with lower accuracy than 
around 90% tend to have higher costs than those with over 90%, which further means 
that lower accuracy leads to a higher cost risk if the prediction fails from the chosen SC 
design. The cost is high, but with the high accuracy for the tree and generally high 
accuracy for the leaves, the risk of increased cost for managers and practitioners is 
considered acceptable. Therefore, the DSS is seen as a robust tool in decision support 
since it selects the optimal SC design with a very low risk of the additional cost.  

There are not found any similar studies in the literature with the same aim and focus 
provided by the literature, and especially no DSS tool for managers and practitioners for 
choosing optimal SC design for minimizing the environmental footprint. For this study, a 
decision tree algorithm is used since it consists of an easy-to-use tool with a tree-like 
model of decisions, which is designed as a set of logical rules describing the decision 
criteria (Arena et al., 2022). Moreover, the decision tree provides KPIs to make the 
predictions easier to assess regarding the risk of extra cost. In the development of the 
DSS, fourteen parameters (𝑇, h, MTTF, 𝑐!, 𝑐", L#$, L%&'(), 𝐸*, 𝐷𝑖𝑠𝑡, 𝑇+,-. , Energy#$, Energy#//, 
Part	size) was used as input, another two parameters (S and L#//) is generated in the 
calculations carried out in the mathematical model. The decision tree revealed that some 
parameters were more important than others. The energy mix for both SC designs is the 
two parameter with the greatest influence on the SC design choice. The results reveal 
that it is possible to make some general outcomes (with some uncertainty, but with an 
overwhelming probability): 

5 Conclusion 
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• With an energy mix (gCO2/kWh) for off-site production lower than 300 and an 
energy mix lower than 200, the prediction is on-site. If the energy mix on-site is 
higher than 200, the prediction is off-site. 

• Conversely, the prediction is on-site if the energy mix off-site is higher than 300. 

5.1 Limitations and future research 
Since this study has used the specialization project as a base, some limitations are 
carried forward and may impact this study. Three main limitations were put forward: (i) 
During the SLR, only one database was used to collect relevant papers; (i) When 
searching, a set of keywords was used that naturally had some limitations in addition to 
its function; (iii) The SLR was performed early February 2022. These limitations may 
mean that new or relevant articles have been omitted, which for this study means that 
the values picked for some parameters are missing to cover all possibilities. Regardless, 
a range of values is established for parameters where the literature is inconsistent. 

There are several assumptions made to make this study easier to handle and comply 
with formulas and models. To simplify the first part of the mathematical model, the 
element of part size and complexity is neglected, meaning that the unitary backorder 
cost and the unitary production cost are fixed. Moreover, the MTTF is chosen to be 
constant, which also makes λ constant. This was done to make the parametric analysis 
easier to run, and since the first part is small compared with the second, it did not have a 
major impact on the result. However, this could be extended into the model for a more 
nuanced picture. Some assumptions were made to create a control volume: (i) Every 
spar part production facility chose a raw material supplier as closely as possible. With this 
assumption, the distance can be seen as “equal” for every scenario and will cancel each 
other out when comparing on-site and off-site; (ii) The post-production phase is assumed 
to be performed at the same site as the printing process. This assumption removes the 
potential of a new transportation phase.  

Since this is the first study of its kind, there are several opportunities to develop this 
study in the future further. Here are some suggestions: 

• Rapid development in technology and the sustainable focus worldwide will affect 
the values and inputs in the near future, which makes a re-do of the study with 
updated values and insight to compare to the current study. 

• Some of the assumptions in the mathematical model could be adjusted since their 
intended function was to simplify the model, which means that several 
assumptions can be relaxed, and some input parameters can be increased. MTTF, 
𝑐! and 𝑐" are all fixed costs that can be expanded or adjusted to adapt the tool for 
a larger user market.  

• Another possible development could be to expand the first part of the 
mathematical model to be a fully integrated cost part, where an SC design of 
optimized sustainability and profit could be developed and included in the DSS.  
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Appendix A - SLR result 
Placed on the next page due to the orientation of the table. 
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material 
extraction 
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production Transportation Production 

Post 
processing 
stages Use Maintenance/repair recycling Disposal 

(Raoufi et al., 
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Cost and environmental 
impact assessment of 
stainless steel microscale 
chemical reactor 
components using 
conventional and additive 
manufacturing processes 

 x  x      

(Gao et al., 
2021) 

Eco-friendly additive 
manufacturing of metals: 
Energy efficiency and life 
cycle analysis 

x x x x x x  x  

(DeBoer et al., 
2021) 

Additive, subtractive, and 
formative manufacturing 
of metal components: a 
life cycle assessment 
comparison 

 x x x  x  x  

(Liao & Cooper, 
2020) 

The environmental 
impacts of metal powder 
bed additive 
manufacturing 

 x  x x x  x  

(Serra et al., 
2021) 

Comparing environmental 
impacts of additive 
manufacturing vs. 
Investment casting for 
the production of a 
shroud for gas turbine 

x x x x x     

(Di & Yang, 
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Greenhouse gas emission 
analysis of integrated 
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transportation supply 
chain enabled by additive 
manufacturing 

x x x x      
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Environmental impacts of 
conventional and additive 
manufacturing for the 
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knee implant: a life cycle 
approach 
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assessment of desktop 
stereolithography 

x x x x x     
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