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a b s t r a c t

Multimodal registration is a challenging problem in visual computing, commonly faced during medical
image-guided interventions, data fusion and 3D object retrieval. The main challenge of multimodal
registration is finding accurate correspondence between modalities, since different modalities do not
exhibit the same characteristics. This paper explores how the coherence of different modalities can
be utilized for the challenging task of 3D multimodal registration. A novel deep learning multimodal
registration framework is proposed by introducing a siamese deep learning architecture, especially
designed for aligning and fusing modalities of different structural and physical principles. The cross-
modal attention blocks lead the network to establish correspondences between features of different
modalities. The proposed framework focuses on the alignment of 3D point clouds and the micro-
CT 3D volumes of the same object. A multimodal dataset consisting of real micro-CT scans and
their synthetically generated 3D models (point clouds) is presented and utilized for evaluating our
methodology.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The exploitation of multimodal data has benefited many visual
omputing applications by increasing the performance of oper-
tions such as 3D object recognition [1], classification [2], 3D
hape retrieval [3,4] and data fusion [5,6]. Applications include
edical imaging [7], cultural heritage [8–10] and autonomous
riving [11,12].
Registration is the process of aligning different sets of spatial

ata by determining the proper geometrical transformation [13]
etween them. Multimodal registration is a special case, where
he data to be aligned are of different modalities (e.g. capture
echniques or sensors) but represent the same object. These data
an be 2D images, 2.5D data (image + depth), 3D images ac-
uired by tomographic modalities like CT, MR or PET, 3D point
louds or 3D meshes. Most multimodal registration research has
risen in the medical imaging field, but cultural heritage (CH) and
ther areas can equally benefit from the visual combination of
ultiple modalities in order to produce an accurate and useful

epresentation of, e.g., CH assets [9].
Cultural heritage documentation aims at a multimodal record

f CH objects that enables a range of operations, such as inspec-
ion, virtual reconstruction of fragmented artefacts and fabrica-
ion processes [14–18]. An accurate model of an object’s surface
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and inner structure can also contribute to preservation and mon-
itoring, by detecting any structural damages and deformations in
structure or cracks, blistering or erosion. The detailed represen-
tation of both the interior and external surface can be used as a
foundation for future change monitoring of the object. Alterations
can be accurately recorded, quantified and tracked through the
years [18]. While our specific motivation and data have arisen
from the CH field, the applications of the proposed method are
not limited to CH.

Geometry acquired from 3D surface scanners is a core aspect
of a digital model, but is limited due to the fact that only data
from the surface are acquired and the inner structure of the
object cannot be documented. The penetrative capabilities of
CT scanning allow the digitization of the interior of an object
without having to perform physically invasive actions [18]. By
combining 3D surface models and CT imaging techniques, it is
possible to produce more precise 3D representations of an object,
consisting of an accurate geometric model of the surface along
with a detailed representation of its internal structure [19–21].

Multimodal registration is a long standing research area with
many challenges. Finding an accurate, robust and fast multimodal
alignment1 is still very challenging, since different modalities
come from different acquisition systems, having different rep-
resentations and properties. In particular, the core difficulty of
aligning CT volumes and point clouds comes from the significant
difference in physical characteristics and representation which

1 We shall use the terms alignment and registration as synonyms.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Registration results of the proposed method on the ‘3DPCD-CT’ dataset when
andom rotations and translations are performed on the initial sub pieces. The
etrics evaluated are target registration error (TRE), and Recall with threshold
.00. The initial TRE of the transformations was 15.34.
Method TRE Recalla(%) Mean Exec.

time (s)

Proposed 5.15 62 0.12
Excluded module
3D PointCloud FE 12.42 12 0.12
3D Volume FE 11.37 14 0.05
Cross-modal attention 13.32 11 0.03

manifest themselves, for example, in the lack of a general rule for
the comparison and evaluation of the final alignment. The most
common practice for aligning such modalities is the conversion
of one modality into the other, or of both modalities into a third
common one, and their alignment using unimodal techniques.
Conversion however results in extra computational cost and loss
of structural information. This is the gap that we attempt to
address in the current paper.

We propose a deep network architecture capable of registering
wo different modalities, without transforming either of them
efore feeding them to the network which performs the registra-
ion process. The proposed PCD2VOL method aligns 3D surface
ata with 3D CT volume data. To the best of our knowledge,
his is the first time that a deep learning network is trained to
egister such modalities. The main contributions of this paper can
e summarized as follows:

• The problem of multimodal 3D registration of CT volumes
and 3D point clouds is formally defined and a framework
for such registration is proposed. Publicly available upon
publication.

• To the best of our knowledge, it is the first deep learning
network that combines regular CNNs suited for data with a
standard grid structure and geometric deep learning suited
for unstructured data.

• The proposed network employs a siamese architecture for
a novel attention mechanism for effective multimodality
fusion.

• A multimodal dataset for evaluating algorithms for aligning
CT volumes and 3D point clouds. Publicly available upon
publication.

The remainder of this paper is organized as follows: In Sec-
ion 2 related works are discussed while in Section 3 the problem
f 3D multimodal registration of CT volumes and Point clouds
s defined. In Section 4 the proposed methodology for 3D multi-
odal registration is introduced. The proposed evaluation bench-
ark and experimental results on multimodal alignment are
resented in Section 5. The paper is concluded in Section 6.

. Related work

Multimodal datasets are increasingly being created and ex-
loited. There has also been growing research on the registration
f 3D data obtained from different acquisition sensors or data of
ifferent structure. Approaches have been proposed for integrat-
ng different data modalities so as to produce complete models.
owever, according to the specific application, the modalities
nd the approach vary considerably. Medical imaging [22], re-
ote sensing [23] and cultural heritage documentation [6] have
merged as the most fruitful application areas for 3D multimodal
egistration. A comprehensive review of 3D multimodal regis-
ration methodologies across application domains can be found
n [24].
260
3D multimodal registration has been extensively researched
in the medical domain, due to the variety of medical modalities
that need to be fused. Medically oriented registration methods
focus on specific modality pairs, clinical task or body organs.
Detailed surveys on medical multimodal registration can be found
in [25–27].

Registration methodologies can be broadly classified based on
the type of correspondence between the data (parts, structure or
context of each dataset). They may be feature-based or intensity-
based. In feature-based registration, features (such as interest
points, contours or lines) are first extracted from each dataset and
are subsequently used to determine the proper correspondence
and alignment. Intensity-based methodologies attempt to identify
context similarity between the datasets based on the correlation
between pixel/voxel intensities [28]. Both techniques have been
successfully employed for aligning data from different modalities
by identifying salient structures [29] or statistical dependency
of the intensities [30–32] across the different modalities. Al-
ternatively, methods exist that try to simplify the multimodal
registration problem to unimodal by reconstructing or mapping
one modality onto the other [33,34].

Over the last few years, there is a clear predominance in
the use of deep learning techniques for registration [35–38].
However, most of these methods involve the same modality, the
specific combination of 2D images/3D model, or are somehow re-
stricted in application to the medical field due to the assumptions
made. There is virtually no research in 3D multimodal registration
outside the medical field where the modalities are differentiated
in both structure and physical principles.

Our work is motivated by the idea of using attention mecha-
nisms for multimodal registration. An attention mechanism en-
ables a model to focus on important information for a task; thus
it has been applied widely to various computer vision problems,
including image classification [39], object detection [40], image
generation [41] and image captioning [42]. Recently this tech-
nique has also been used for multimodal registration. [43] fused
RGB images and point clouds by learning feature interactions
between the modalities with a cross-modal attention scheme
while [44] developed a self-attention mechanism specifically for
aligning 3D medical volumes of MRI and TRUS modalities.

Our problem is generic in that it concerns the alignment of
3D modalities that are complementary since they jointly describe
the interior and the surface of a 3D object. The proposed network
exploits cross attention for the challenging task of aligning 3D
modalities of different geometric data structures. The proposed
framework is a combination of CNN, geometric deep learning
for feature extraction and a siamese architecture of cross modal
attention network, trained to identify correspondences and fuse
regular input data formats (like 3D voxels) and irregular 3D geo-
metric data (like 3D point clouds). To the best of our knowledge,
this is the first time that registration of such different modalities,
without projecting one modality onto the other, is explored.

3. Problem statement

Given a set of 3D points P = {pi ∈ R3
| i = 1, 2, . . . ,N} and a

3D CT Volume V = {vlwh ∈ Z | l = 1, . . . , L, w = 1, . . . ,W , h =

1, . . . ,H}, the aim is to find the unknown rigid transformation T,
so as to align the two input modalities as well as possible.

The registration result is a rigid transformation matrix T(R, t),
where T ∈ SE(3). It consists of two components; a rotation
submatrix R ∈ SO(3) and a translation vector t ∈ R3. The
rigid transformation T can then be represented by the following
homogeneous 4 × 4 matrix:

T =

[
R | t

]
(1)
0 | 1
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Table 2
Performance comparison between multimodal registration methods.
Method Data modalities Modalities structure Data Runtime Initial TRE Percent

M1 M2 S1 S2 conversion (s) TRE change

[45] MRI US 3D volume 3D volume No 20 6.76 2.12 68%
[44] MRI TRUS 3D volume 3D volume No 0.003 8.00 3.63 54%
[46] RGB Depth Map 2D image 2D image No n/a 35.46 6.93 80%
[22] MRI CT 3D volume 3D volume No 320.4 13.49 7.12 47%
[29] RGB Point cloud 2D image 3D model Yes 9000 n/a 30.19 n/a
Proposed CT Point cloud 3D volume 3D model No 0.12 15.34 5.15 62%
Fig. 1. Overview of the proposed cross-modal 3D registration framework. The 3D cross-modal registration network consists of three stages. 1. Each input modality
Point Cloud and 3D CT Volume) is fed into an independent feature extractor network that is suitable for that modality. 2. The captured features are fed to a siamese
rchitecture of cross-modal attention blocks. 3. The registration block fuses the cross-modal features into the final registration parameters.
n
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t
t
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3D Point Clouds and 3D CT Volumes have different geometrical
nd physical characteristics. Hence, identifying a distance mea-
ure for alignment is challenging. Parameters like the centroid or
he bounding box (orientation and location) could approximately
easure if two instances of these modalities are aligned. It is

nherently difficult to come up with a traditional algorithm which
ould find correspondences across these modalities. Both modal-
ties represent the same object, therefore common features exist
o guide the registration. In our methodology and experiments
e take advantage of a ground truth in order to train a neural
etwork and evaluate our results.

. Method overview

The proposed framework, as illustrated in Fig. 1 consists of
hree main components. Initially, the 3D point cloud and the 3D
T volume are fed into two modality-specific feature extraction
etwork blocks to identify regional and geometric features of
ach modality independently. Then, the modality-based features
re passed to a siamese architecture of cross-modal attention
locks, in order to capture local features and their global cor-
espondence across the modalities. Finally, the deep registra-
ion block processes the fused feature representation to extract
he registration parameters. The details of each component are
iscussed in the following subsections.

.1. Feature extraction

Each input modality is initially passed to the respective feature
xtraction network. The feature extraction of the 3D point cloud
odality, adopts a variant of PointNet [47]. PointNet has been
hosen for this task due to its efficiency in capturing critical
eometric features of point clouds. The architecture is shown in
ig. 2.
The 3D CT Volume is passed through CTVolNet, a CNN-based

rchitecture to efficiently represent the CT volume. Based on [48],
wo sets of convolutional and max-pooling layers are used to

apture regional features, shown in Fig. 3. o

261
Fig. 2. The adopted PointNet [47] architecture used to extract point cloud
features. For each point P = {pi | i = 1, . . . ,N} of the point cloud, the network
computes C features.

Fig. 3. The CNN architecture used to extract 3D volume features. Given the
input volume V = {vlwh ∈ Z | l = 1, . . . , L, w = 1, . . . ,W , h = 1, . . . ,H}, the
etwork computes the FV ∈ RLWHxC feature map.

.2. Cross-modal attention siamese architecture

The proposed cross-modal attention block identifies local fea-
ures and jointly determines the spatial correspondence between
he input modalities. The cross-modal module utilizes the modal
orrelations and adaptively adjusts the modality features for an
ccurate fusion result. After the representations for each modality
ave been extracted, the cross-modal attention block captures the
istinct parts of one modality given the context features of the
ther modality as proposed in [49,50]. Rather than considering
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eatures of each modality equally, the proposed cross modal
ttention block estimates a bidirectional relationship between the
nput modalities. The cross-modal attention block highlights the
mportant information for one modality related to the other and
chieves a inter-modality relationship.
The two input modality feature maps are denoted as FP =

fpi | i = 1, . . . ,N} and FV = {f vlwh | l = 1, . . . , L, w =

, . . . ,W , h = 1, . . . ,H}; FP and FV are the point cloud feature
ap and the CT volume feature map respectively. The modality

eature maps are sent to a siamese architecture of cross-modal at-
ention blocks; each modality feature map will be sent as primary
odality to one cross-modal attention block and as cross-modal
odality to the second block (see Fig. 1).
Without loss of generality, we will present the cross-modal

ttention block independently of the input modality context. The
lock receives a primary input M1 ∈ RCxN and a cross-modal
nput M2 ∈ RCxLWH . C denotes the number of features that have
een identified in the previous steps (we use C = 32 in our
xperiments), N and LWH indicate the size of each 3D feature
ap. The cross-modal attention block computes a new feature
ap MCor that shows the modality correlation, as the sum of the

nitial primary feature map M1 and the cross-modal feature map
M:

Cor = CM + M1 (2)

The cross-modal feature map CM shows the corresponding
elationship between a position i of the primary input M1 and
ll positions j of the cross-modal input M2 and is computed
ollowing [44,51] as an extended non-local operation:

Mi =
1
F

∑
j∈M2

f (M2,M1)g(M1) (3)

Function f (M2,M1) computes the relationship between the
feature in the ith position of the first modality and all features
j of the second modality. Function g computes a representation
of the first modality at position j:

f (M2,M1) = eφT (M2i)θ (M1i) (4)

g(M1i) = WgM1i (5)

θ , φ are also linear embeddings:

θ (M1i) = WθM1i and φ(M2j) = WφM2j (6)

where Wg,Wθ and Wφ are the weight matrices to be learned
during training. F is a normalization factor of the final result and
can be calculated as:

F =

∑
j∈M2

f (M2,M1). (7)

Therefore, CMi is calculated as:

CMi =
eφT (M2i)θ (M1i)∑

j∈M2
eφT (M2j)θ (M1i)

(8)

which can be estimated by a softmax computation for i along j:

Mi = softmaxi
(
φT (M2)θ (M1)

)
g(M1) (9)

This cross-modal attention module plays a vital role when the
features to be fused are from different modalities. It preserves
the information from each individual modality and makes them
complementary to each other so as to eliminate the modality
gap. The module’s output MCor summarizes the features on all
locations of the first modality weighted by their correlations
with the cross-modal features on the specific location. By using
a Siamese network of cross-modal attention blocks, the network
262
Fig. 4. The detailed architecture of the proposed cross-modal attention module.

Fig. 5. The detailed architecture of the deep registration module.

investigates the relationships of each modality as both a pri-
mary and a cross-modality input and identifies their respective
correlations. Fig. 4 shows details of the cross-modal attention
block.

4.3. Deep registration block

After computing the spatial correspondences between the in-
put point cloud and volume, the registration block fuses the two
sets of feature maps and computes the registration parameters.
The deep registration block’s architecture is shown in Fig. 5.

The network is supervised by calculating the RMSE (Registra-
tion Mean Square Error) between the predicted and the ground
truth transformation as the loss function. The loss function of
the Deep Registration Module is then back-propagated through
all three components and allows the adjustment of the network
parameters and the minimization of the error.

5. Evaluation

5.1. Dataset

The proposed fully supervised deep learning method is depen-
dent on sufficient training data with ground truth. The biggest
challenge was the lack of a publicly available dataset with ground
truth for aligning 3D models from the source modalities of 3D
point clouds and 3D micro-CT volumes. The dataset of the PRE-
SIOUS project [52–54], is publicly available and contains 3D mod-
els of the modalities of interest. It consists of 17 stone slabs,
captured in several modalities across accelerated erosion cycles;
the modalities involved are 3D geometry scans (point clouds and
3D meshes), micro-CT volumes, 3D microscopy and petrography.
A total of 38 pairs of 3D geometry scans and micro-CT volumes
of stone slabs exist.

The use of the PRESIOUS dataset presented a number of chal-
lenges. First, the amount of data are limited and insufficient for
training our deep network. Moreover, the 3D geometry scans and
micro-CT captures were performed independently, without the
use of any external reference points; thus the data from the two
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Fig. 6. The process of creating the 3DPCD-CT dataset.

odalities do not possess the necessary ground truth for training
ur supervised network.
We thus followed a different path in order to expand and aug-

ent the cultural heritage dataset of PRESIOUS stones for bench-
arking and training multimodal 3D registration algorithms. The
rocess for the creation of the ‘3DPCD-CT’ dataset is outlined in

Fig. 6. Starting with the micro-CT data of the PRESIOUS stone
slabs, we sliced each slab resulting in a larger dataset of sub-
volumes and then synthetically generated the 3D surface geom-
etry of each piece. Since, the generated 3D point clouds exactly
correspond to the respective 3D CT volumes, we consider this as
ground truth for training and evaluation purposes.

Every micro-CT volume was divided into a smaller volumes of
50 slices each, providing an average of 35 new smaller volumes.
From these smaller volumes, we excluded those with high noise
content and no beneficial stone information, resulting in 636
smaller CT volumes, which were then resized to 90 × 90 × 50
oxels each. The corresponding 3D point clouds were then syn-
hetically generated using the marching cubes method of [55].
he outcome consisted of very dense surfaces, so we simplified
ach model to 13.455 points using the algorithms from [56,57].
he dataset is split into a training set (80% of the dataset) and
test set (20% of the dataset). The training set contains 508
bjects and the test set has 128 objects. Each object contains
he CT volume, the respective point cloud and the ground truth
ransformation (see Fig. 7).

.2. Experimental results

We evaluated our 3D multimodal registration framework on
he ‘3DPCD-CT’ dataset. Since there is no established performance
easure for the registration error between a volume and a
eometry surface, we employed the target registration error
TRE) [58]. TRE measures the effect of the predicted transfor-
ation Tpred against the ground truth transformation TGT on the

initial point cloud P = {pi | i = 1, . . . ,N} based on [59]:

TRE =

√ 1
N

N∑
i=1

∥(Tpredpi − TGTpi)∥2 (10)

All tests were run on a PC with an i7-7700K CPU at 4.20 GHz,
VIDIA GeForce GTX 1080 Ti GPU and 32 GB of RAM. In Table 1
e summarize the quantitative registration results on the chal-

enging ‘3DPCD-CT’ dataset for multimodal 3D alignment; Fig. 8
llustrates some qualitative results.

An accurate and fair comparison between our method and
ifferent literature approaches is not straightforward because we
ould not identify any previous registration method that directly

ligns point clouds and CT volumes. We thus used the classic b
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ICP [60] as a baseline, but in order to do so, we pre-processed
the CT volumes and converted them into point clouds. We then
run the ICP algorithm between these point clouds and the point
clouds of the ‘3DPCD-CT’ dataset. In general, ICP fails when it
comes to large rigid transformation differences. To succeed, ICP
needs a good initial transformation estimation (not the case in
realistic applications). Thus, in most cases, ICP did not converge.
Moreover, ICP and other state of the art registration techniques,
requires inputs of the same modality (point clouds in general) ne-
cessitating the conversion of one of the inputs in order to address
the modality gap. This conversion involves loss of information,
which can significantly affect the registration result. In addition,
such a conversion can be expensive, especially when large 3D
volumes are involved, as in CH applications. For example, in our
experiments the conversion of a CT volume into a point cloud
representation took approximately 1 h. Conversely, after training,
our method requires 0.12 s per registration.

We thus opted for a direct comparison of our method against
other multimodal registration methods, even though they may
represent different modalities, as this was the nearest we could
get to comparing against other methods. Table 2 presents quan-
titative registration results of the latest state-of-the-art 3D mul-
timodal registration methods. Most of these methods align data
of different modalities but of the same structure. Of course, the
results are only indicative, since each method registers different
modalities and the datasets that experiments were conducted on
are different and oriented to the specific modalities and task.
The table shows the TRE metric as it is considered to be a more
generic measure of registration accuracy [58]. In general, TRE is
the distance between the corresponding points of the inputs, but
due to the fact that the modalities that each method fuses are
different, the exact calculation of TRE may differ.

The methods that align different representations of data are
[29] and the proposed one (Table 2). [29] aligns 2D images against
a 3d model. However this method converts one modality to the
other as a first step (the 2D images to a 3D model) and then
executes a typical unimodal registration; the conversion involves
the penalties of cost [29] and information loss, as also attested
by its high TRE. The proposed method directly registers different
data modalities and of different structure, which is a more chal-
lenging task compared to registering multimodal data of the same
structure.

Interestingly the initial TRE, corresponding to the initial pose
of the inputs of the compared methods, varies significantly. The
results displayed in Table 2 show that the registration error is
associated to the difference in initial pose of the inputs.2 When
input modalities start with a pose close to the ideal solution, the
initial TRE is lower and so is the registration (final TRE). However,
many commonly used registration methods could produce non
sufficient results if the modalities are not initialized properly [61].

In an attempt to measure the improvement in alignment of
the compared methods, we also calculated the percentage change
(PC) in TRE as [62]:

PC =
|TRE − InitTRE|

InitTRE
100% (11)

Higher values of PC denote a larger improvement on the
initial pose. We chose a high initial TRE for the evaluation of our
method in order to mimic real, challenging, situations. Taking into
consideration the PC of the proposed method and the fact that
it operates on modalities of different data structure, the results
obtained can be considered as very competitive.

However, there are some cases where our method fails to
accurately register the inputs. Such an example is depicted in

2 Depending on the application and input modalities, an initial pose might
e considered as poor if it is within the range of 8 mm and 16 mm [61].
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Fig. 7. Example point clouds in the 3DPCD-CT dataset. Two different object cases are shown: a. the Nidaros GSmall 01 stone and b. the Nidaros BLarge 02 stone.
For each case it is shown: on the left the whole 3D geometry of the stone and on the right: point clouds of different stone pieces generated from the respective
piece of CT-volume.
Fig. 8. Example multimodal registration outcomes for the proposed method.

he last row of Fig. 8, where the initial pose of the inputs was
onsiderable, both in terms of rotation and translation; although
he method determined the proper rotation it failed to detect the
orrect translation.
The modified registration Siamese network proposed here is

he first registration mechanism that attempts to align two dif-
erent data modalities not only in terms of data type but data
tructure as well. In this light, the achieved results can be consid-
red as satisfactory as well as promising. For example, the work
f [44] which also uses a cross-modal attention block to register
RI and TRUS data, achieves comparable registration results and
as competitive computational cost. [44] achieves target registra-
ion error between the surfaces of 3.63 and a PC of 54%. However,
RI and TRUS have the same structure (sequences of images), so

he network uses the same feature extractor for representing both
nput volumes. Moreover, method [44] seems to be more efficient
n terms of run-time; since this involved absolute execution time
ased on specific experiments and datasets, we do not think
264
that it represents a conclusive comparison against the proposed.
Our method deals with high resolution input data of different
structures, thus the search for spatial correspondences through
the cross-modal block increases the computational cost.

3D volume modalities (i.e. CT, MRI, TRUS) contain details about
the inner structure of the object, like cracks, porosity and voids.
Methods like [22,44,45] can detect and use contextual informa-
tion based on the respective intensities in order to fuse different
modalities of 3D volumes. On the other hand, 3D models contain
a precise representation of the external surface of the object. A
conversion from one modality to the other might result in infor-
mation loss that will significantly affect the registration result.
For example, a 3D model of the surface lacks information of
the inner details, so a conversion will not contain any valuable
contextual information of the interior and this is likely to affect
the registration result. Conversely, a conversion of a 3D volume
to a 3D model might add extra computational time without the
respective benefit on registration accuracy.

5.3. Ablation study

To demonstrate the contribution of the proposed framework
and to validate the effectiveness of each component we executed
three different trials of our network by excluding a different
module each time.

The results are shown in the lower part of Table 1. It can be
seen that removing any of the components has strongly diminu-
tive effects in the registration accuracy; removing the cross-
modal attention module results in the worst loss.

6. Conclusions and future work

In this work, we present a direct solution for the challenging
task of 3D multimodal registration between 3D volumes and 3D
point clouds. A novel deep network that consumes and fuses
different 3D modalities (CT-volumes and point clouds) is pro-
posed. These modalities are treated directly (no conversion of
one onto the other) to avoid information loss and time penalty.
Our network introduces a novel siamese architecture of cross-
modal attention blocks that captures and fuses features of two
structurally different modalities.

We believe that this approach is an important step forward as
it addresses the non-trivial task of aligning modalities of different
structural and physical principles, for which it is also extremely
challenging to write traditional (non deep learning) code. The
method presented can potentially be extended to other com-
puter vision tasks, such as multimodal retrieval and recognition.
Moreover, it can be generalized to different modalities due to
its adjustable framework. Using alternative feature extraction



E. Saiti and T. Theoharis Computers & Graphics 106 (2022) 259–266

m
f
m

C

i
S

A

H
S
a
[
P
g
u
t

D

c
t

R

ethods suitable per modality, the method can be extended to
use modalities such as 3D meshes, voxel data or medical imaging
odalities such as MRI, 3D TRUS etc.
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