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When Infrared Small Target Detection Meets Tensor
Ring Decomposition: A Multiscale Morphological
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Abstract—Detecting the small targets from heterogeneous
background in infrared image is a challenging problem, which
has received extensive attention. In this paper, we propose a
method in terms of tensor ring decomposition and nonlinear
multi-scale morphological top hat transformation for infrared
small target detection (ISTD). Firstly, a tensor model with prior
knowledge is constructed for extracting the structural features of
multiple infrared images. Then, the problem of small target detec-
tion is converted into a problem of minimizing tensor rank with
tensor ring. Based on the tensor ring decomposition model, we
introduce the top-hat regularization into our model with multiple
structural elements of different size to perform morphological
operations. The corresponding morphological model exploits a
more accurate ring top-hat regularization expression through
adaptive nonlinear combination for the ISTD problem. Finally,
the optimization of the model is realized by the closed solution
given by the alternating direction method of multipliers (ADMM)
algorithm. In order to verify the superior performance of our
method, our method is compared with a number of advanced
detection models. By analyzing the results of comparison experi-
ments, the detection accuracy and precision of our model in the
detection of small infrared targets have been improved. Even in
complex background conditions, our model also maintain a good
robustness.

Index Terms—Small Target Detection, Tensor Ring Decompo-
sition, Nonlinear Multi-scale, Ring Top-hat, ADMM.

I. INTRODUCTION

INFRARED imaging has the advantages of long imaging
distance, strong anti-interference and can be obtained in

all-weather and all-day. Therefore, vision technology based on
infrared images is widely used in aerospace technology [1],
remote sensing [2], [3], medical imaging [4], target detection
and tracking [5] and many other fields. As one of the key
technologies in the field of computer vision, infrared small
target detection technology has received extensive attention
and research in recent years. If the imaging system is far
away from the target, the target appears as a point target
in the infrared image, and there is no distance information.
Under this condition, the characteristics such as shape, size
and texture, cannot be used to identify the target [6] clearly.
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Moreover, the signal-to-noise ratio of infrared image is low,
and small targets may be affected by thick clouds or sea-
sky level [7], [8], and the point-wise or block-wise targets
submerge in the background and noise. Therefore, it is a
challenging problem to carry out the detection and tracking
of infrared targets under complex background, and it has
important theoretical significance and practical value for in-
depth research.

Due to the complex environment of infrared imaging, the
background of infrared image is complex and disturbed by
noise, which make it impossible to directly extract the target
from the original infrared image. In order to detect and rec-
ognize the target quickly and accurately, the original infrared
image must be preprocessed to highlight the salient features
of the target and provide convenience for subsequent target
detection and recognition. The classic methods are to use
prior knowledge of the image background such as median
filtering [9], the max-mean/max-median filtering [10] and the
top-hat filtering [1]. These methods use traditional methods of
background estimation to separate targets, usually using neigh-
borhoods to predict current pixels, and detect small targets by
subtracting the original picture and the estimated background.
In addition, some methods that use the discontinuity of the
target and the surrounding area and have significant features
can improve the detection effect, such as the local contrast
measure (LCM) [2], the multiscale patch-based contrast mea-
sure (MPCM) [11] and local adaptive comparison operation
based on regularized feature reconstruction [12]. Pang et al.
[13] proposed a novel spatiotemporal saliency method by using
the spatial saliency map and temporal saliency map. However,
these methods will be interfered by other factors such as strong
edges of the image, resulting in a high false alarm rate, that
is, high detection errors.

Recently, fuzzy metric methods have been proposed to solve
the above problems, such as multi-scale fuzzy metric [14],
multi-channel kernel fuzzy correlation map [15] and space-
based improved fuzzy mean [16] method. With the develop-
ment of the top-hat filter [1], matrix completion [6], [17], and
tensor completion [18]–[20] and other related technologies,
the detection technology has been greatly improved.

Obviously, the image representation and feature extraction
play a vital role in the infrared small target detection. With
the research and development of low-rank matrices, low-rank
matrix has demonstrated their excellent performance and has
been used in infrared small target detection technology [6],
[17], [21], [22]. Because small targets are often considered
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Fig. 1. The detection process of proposed model.

irrelevant to the background and belong to the high-frequency
part of the image. The inherent spatial correlation between
image pixels indicates that the pixels in the background
expressed in a continuous manner are highly correlated. It
can be considered that the small target destroys the local
correlation of the background. If the target is segmented from
the background, the obtained background image can restore
this correlation. Then the small target detection problem is
transformed into segmenting the target from the background
to achieve the restoration of the low-rank matrix of the
background. For example, Gao et al. [6] proposed an infrared
patch image model (IPM) based on the similarity of local block
structure, and described the detection of small infrared targets
as an optimization problem of low rank and sparse matrix
restoration of the background. Dai et al. [20] generalized IPM
to an infrared patch-tensor (IPT) model which uses the prior
information of image structure. However, the solution of low-
rank matrix is an NP-hard problem. In order to correctly detect
small infrared targets in a highly heterogeneous background,
He et al. [17] proposed a low-rank sparse representation model
under the assumption of multi-subspace clustering. However,
nuclear norm minimization (NNM) tends to shrink the rank
component excessively.

In recent years, convolutional neural networks combined
with classic computer version algorithms have developed
rapidly. Inspired by the advantages of deep learning tech-
nology in feature extraction and learning, More and more
target detection models have been proposed, such as tar-
get to clutter ratio convolutional neural network presented
by McIntosh et al. [23]. By using the filters of the first
convolutional layer are composed of the eigenvectors most
responsive to targets or to clutter to optimize a target to
clutter ratio metric defined as the ratio of the output energies
produced by the network in response to targets and clutter.
Kong et al. [24] proposed a model consisting of two winds,
Dual-Path Network module and fusion transition module, to
conduct efficient target extraction. Wang et al. [25] proposed
a new feature extraction back-bone network for small infrared
target detection. Dai et al. [26] proposed a model-driven deep
network which can make use of both labeled data and the
domain knowledge. However contemporary deep learning-
based methods have achieved high detection accuracy and real-
time speed in many fields, but these methods are highly data
driven. The availability of large amounts of training data is
essential to robust learn the features. Under certain conditions,
it is difficult to obtain massive amounts of marked infrared data
which requires a lot of labor costs. Therefore, some classic

methods without training have their unique advantages, such
as top-hat transformation and tensor decomposition.

Tensor decomposition has attracted considerable attention in
various fields. Some traditional tensor decomposition methods
are still widely followed, such as CANDECOMP/PARAFAC(
(CP) [27]. Xue et al. [28] proposed a new multilayer sparsity-
based tensor decomposition by using CP to measure the first-
layer sparsity. Other kinds of decompositions such as Trucker,
Tensor Train (TT) [29] and Tensor Ring (TR) are shown
to reveal the structure in the data with the notion of rank
extended to the notion of a multi-rank, expressed as a vector
of ranks of the factors in the contracted representation using
matrix product states. Bu et al. [30] proposed an image fusion
model by using tucker decomposition to fully exploit the
intrinsic global spatial-spectral information. Liu et al. [31]
established a spatio-temporal tensor model and reduced small
target Detection to a low-rank sparse tensor decomposition
problem. With the Tucker tensor decomposition method, better
detection performance is obtained in complex backgrounds.
Zhang et al. [32] improved the above spatio-temporal tensor
model by making it enhanced for edge and corner awareness.
Pang et al. [33] adopted greedy bilateral factorization strategy
for its low computational load to approximate the low-rank
term.

In this paper, we consider the use of tensor ring completion
to achieve low-rank matrix restoration of infrared images.
The key to the completion of the tensor ring is the low-rank
hypothesis of the tensor. The methods can be divided into
two categories: methods based on tensor decomposition and
methods based on rank minimization. Since the optimal rank
is usually data dependent, it is very challenging to specify the
optimal rank in advance. Therefore, the method based on rank
minimization is usually used to minimize the tensor rank using
convex algebra. Based on different definitions of tensor rank,
various nuclear norm regularized algorithms have been pro-
posed [18], [34], [35] to achieve tensor completion. Overall,
these existing methods [21], [36]–[38] are inevitably inheriting
the issues from inherent high sensitivity of rank selection and
low calculation efficiency. Different with above assumption,
in this paper, we adopt the tensor ring (TR) decomposition
to solve the ISTD problem, which establishes a theoretical
relationship between the rank of the multi-linear tensor and
the rank of the TR factor. Thus the low-rank constraint can
be implicitly realized on the TR latent space, and then further
combine with the kernel norm regularization to obtain a stable
solution. Furthermore, the proposed model can also improve
by the fast SVD calculation of small size factor. Therefore,
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this methodology provides performance stability and high
calculation efficiency from mode construction.

In addition, because the noise in the infrared image is
regarded as the high-frequency part of the image, it will be
mistaken for the target during the model detection process,
which reduces the detection accuracy. For example, in the
Top-Hat transformation [39], the noise in the infrared im-
age will increase the false alarm rate or false alarm rate
and reduce the detection probability, which is not conducive
to target detection. Mathematical morphology is the theory
and technology of analyzing and processing the geometric
structure of images [40]. The model based on morphology
can use the geometric feature information of the target in
the image to construct the corresponding structural elements,
remove the parts that are irrelevant to the structural elements,
and retain the coherent parts [41], which can effectively
remove noise and retain useful image information. Therefore,
in recent years, morphology has been widely used in infrared
small target detection, and the top-hat transformation is an
important operation in this application [1], [42]–[44], such
as a ring-based top-hat operator for small target detection
in [42], [45]. However, traditional morphological operators
use single-scale structural elements, ignoring the associated
information between the target and the surrounding area, and
the detection effect is not good if the image signal-to-noise
ratio(SNR) is low. In order to find suitable structural elements
for target detection, some algorithms based on neural networks
and genetic algorithms are proposed [1], [46], [47]. Although
these algorithms perform well in some situations, they do not
directly improve the top-hat transformation. The multi-scale
operation of top hat transformation [48] can directly improve
the performance of top hat transformation by changing struc-
tural elements to suppress the influence of noise [44].

This paper attempts to start from the perspective of changing
structural elements based on morphology [41] and perform
morphological operations on the structure elements of different
sizes. Intuitively, non-linear combination (point-wise maxi-
mum operation) [49] are embedded to achieve the multiscale
ring top-hat transformation to improve the detection effect
of small targets shown in Fig. 1. Therefore, in order to
solve the problem of insufficient background prior knowledge
and image noise affecting detection accuracy, we propose a
new improved infrared target detection method that combines
tensor ring approximation with ring top-hat regularization
based on adaptive morphology, termed as TRDSD. We list
the main contributions of this article as follows.
• By converting the small target detection problem into

a tensor rank minimization problem, the tensor ring is
introduced to complete the infrared small target detection.
The Properties of tensor ring decomposition can be used
to avoid curse of dimensionality, while providing strong
and generalized ability. Using tensor ring decomposition
in our model can effectively suppress background and
enhance detection.

• In order to achieve detail preservation and noise suppres-
sion, morphological reconstruction is used to filter the
image background, and multiscale morphological recon-
struction images based on different structural elements

are non-linearly combined to improve the traditional
top-hat regularization and obtain more accurate object
detection.

• The tensor ring completion and the adaptive top-hat
regularization term are combined to construct the ob-
jective function of the model, and the optimization of
the model is achieved by ADMM algorithm. The experi-
mental results compared with multiple advanced detection
methods confirm that our TRDSD has greatly improved
the detection probability and false alarm rate.

The rest of the paper is organized as follows. In Section II,
We introduce the theoretical basis of our model and related
work. then we introduce in detail our model in Section III.
Section IV analyzes the experiments and results of our model
and the state-of-the-art algorithms. Finally, a briefly conclusion
of our work is given in Section VI.

II. RELATED WORK

A. Tensor Ring Decomposition and Tensor Completion

The notations of tensor in [27] are adopted in this paper.
A vector is denoted by a lower case letter, e.g., t ∈ RI . A
matrix is denoted by a upper case letter, e.g.,, ID ∈ RI×N ,
and a tensor of order N is denoted by a calligraphic letter,
e.g., ID ∈ RI1×I2×···×IN , then the tensor sequence is ID =
id1 , · · · , idn , · · · , idn , where 1 6 dn 6 In. The inner product
of two tensor ID, IB ∈ RI1×I2×···×IN is defined as < ID ·
IB >=

∑
i1

∑
i2
· · ·
∑
iN
id(i1···iN )ib(i1···iN ).

The tensor ring (TR) decomposition is a general decompo-
sition model in tensor research area. The tensor ring is a high-
order tensor of the circular multi-linear product on a series of
low-order latent core tensors (TR factors). And the TR factors
are denoted as G(n) ∈ RRn×In×Rn+1 , and each contains three
modes, where mode-1 and mode-3 are rank-modes and mode-
2 is a dimension-mode, thus all the TR factors can be set in
3-order.

Next we discuss the relationship between TR decomposition
and traditional decomposition. tensor-SVD (t-SVD) [50] can
only handle third-order tensors, which limits it to handle
higher-order tensors. Numerically, for a given rth-order tensor,
the space complexity of CANDECOMP/PARAFAC(CP) [27],
Tensor Train (TT) [29], and Tensor Ring(TR) [51] decomposi-
tion are linear to tensor order, while the number of parameters
in Tucker model is O

(
dnr + rd

)
that is exponential to tensor

order causing the curse of dimensionality. Besides, although
the number of parameters in CP decomposition is linear to
tensor order, the optimization problem about searching for best
latent tensors is not easy. Since TT decomposition has strict
condition R1 = RN+1 = 1 and relatively fixed pattern, i,e.,
rank-1 condition on the border factors and larger in middle
factors which ends up with restricted representation ability and
flexibility. It should be noted that TR decomposition takes use
of trace operations and thus the TR decomposition relaxes the
rank constraint on the first and last core of TT to R1 = RN+1.
Moreover, TR can be considered as a linear combination of
TTs for the reason that TR decomposition linearly scales to
the order of the tensor and alleviates highly dependence on
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permutation of the original tensor. Thus, it can offer a powerful
and generalized representation ability.

The element-wise relation of TR decomposition and the
generated tensor are given by:

ID(i1, i2, · · · , iN ) = trace{
N∏
n=1

G
(n)
in
} (1)

where trace{·} is the matrix trace operation, G
(n)
in

∈
RRn×Rn+1 denotes the in-th mode-2 slice matrix of G(n), that
is, G(n)(:, in, :).

For the formulation of the model, the tensor completion
problem is set to weighted least squares (WLS) model. The
tensor completion algorithms are different based on different
tensor decompositions, and the TRALS [51], TRWOPT [52]
and RTRC [53] are both TR-based tensor completion. The
optimization model used in above algorithms is formulated
as:

min
[G]
‖PΩ(T −Ψ([G]))‖2F (2)

where the optimization objective is the TR factors [G], T
is the N-dimension incomplete tensor and PΩ(T ) represents
the entries with respect to the set of indices Ω. The Ψ([G])
represents the approximated tensor which is generated by G
and can be calculated by Equ. 2.

B. Ring Top-Hat Transformation

The classical Top-Hat transformation uses two same struc-
turing elements. In this way, it inappropriately considers
the differences between the target and surrounding regions.
In order to utilize the difference information between the
target region and surrounding background, the method of two
different ring shape structuring elements in the transformation
is proposed.

As shown in Fig. 2, bi and bo are two planar structural
elements with the same shape and different sizes. Let the size
of the structural element b be S(b), that is, the radial distance
from the center of b to the contour of b. Then, bo means a
structural element larger than the target area and is called
a outer structural element. bi represents an inner structural
element, where S(bi) < (bo). Then the margin area between
bi and bo is the edge structure element ∆b = bo − bi. ,
S(∆b) is the radial distance from the center of ∆b to the
outer contour of ∆B, then S(∆b) = S(bo). Let M(∆b) be
the radial distance from the inner contour to the outer contour
of ∆b, then M(∆b) = S(bo)−S(bi). bd represents a structural
element whose size is between S(bo) and S(bi). In Fig. 2, O
is the origin of the structuring elements. Then, based on Equ.
3, the opening operation and closing operations of ring top-hat
transformation are defined as follows:

(f ◦ boi)(x, y) = (f 	∆b)⊕ bd
(f • boi)(x, y) = (f ⊕∆b)	 bd

(3)

where boi means the operation related to bo and bi. Then, the
ring top-hat transformation can be defined as follows:

RWTH(x, y) = f(x, y)− (f ◦ boi)(x, y)

RBTH(x, y) = (f • boi)(x, y)− f(x, y)
(4)

Fig. 2. Relationship of the structuring elements.

III. PROPOSED METHOD FOR SMALL TARGET DETECTION

In this part, we introduce the construction and reasoning
of the proposed model. We superimpose multiple frames
of infrared images into a tensor as an input image block
(ID). Based on the typical problem of essentially recovering
low-rank components and sparse components from the data
matrix of traditional small target detection, we improve the
target detection task to take the background low-rank and
morphological operators as constraints to solve the convex
optimization minimization problem of Gaussian noise. In ad-
dition, we also introduce the entire model for target detection,
namely adaptive ring top-hat and tensor ring decomposition.
Finally, the solution process of each part based on ADMM is
explained in detail.

A. The Improved Target Detection Task

In order to facilitate the discussion, the matrix form is
generally used to represent the image. Therefore, given the
original infrared image ID, it is mainly composed of three
parts: target image, background image and noise image, which
are represented by IT , IB and IN respectively. The description
of small target detection is presented as follows:

ID = IT + IB + IN (5)

To achieve effective and accurate detection of small infrared
targets, the model starts from two aspects: (1) Suppress the
background IB and noise IN of the input image ID. (2)
Use morphological operators to enhance the target IT . Thus
the model can be considered as a minimization problem of
Gaussian noise as follows:

min
ID,IT

‖ID − IT − IB‖2F (6)

B. Motivations on multiscale morphological transformation

Classical top-hat transformation has been widely used in
image processing, which is based on the structural elements
such as square and circular. The basic idea is applying a
certain structural element to execute the traversal operation
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and corresponding calculation in an image. However, the
classical top-hat transformation is based on the same structural
elements for opening or closing operations, and does not use
the difference information between the small target and the
background, which may reduce the efficiency of the classical
top-hat transformation. Moreover, operations based on the
same structural elements cannot distinguish the real target area
from the noise or clutter area [40], [54]. Image noise may
cause the target to be lost or the number of false alarms to
increase, thereby affecting the performance of the classical
top-hat transform.

If the difference information between the target and back-
ground is directly used to construct the elements, the per-
formance of the top-hat transformation will be significantly
improved, that is, the ring top-hat transformation [48]. For
image processing using morphological operators, large-scale
structural elements can suppress noise, while may also blur
image details, and small-scale structural elements can retain
image details, while may not suppress noise. In order to
compromise the effects of the two, some researchers have
proposed multi-scale and adaptive morphological operators to
improve the performance of traditional morphological opera-
tors. However, most multi-scale morphological operators, such
as morphological gradient operator and morphological filter
operator [55], [56], average the morphological operation re-
sults of all scales as the final output. Some researchers improve
the multi-scale morphological operator [57] by introducing
weighting coefficients with low efficiency. Moreover, both
multi-scale and adaptive morphological operators use linear
combinations, which are not suitable for multi-scale morpho-
logical operations. Therefore, inspired by [49], we try to use
nonlinear combinations (that is, point-to-maximum operations
represented by ∨) to design adaptive morphological operators.
Let b and f represent the structuring element and the image
to be processed. The dilation of adaptive ring top-hat operator
can be defined as δ(n)(f), where δ(1)(f) = (f 	 b1) ∧ f
and δ(k)(f) = (δ(k−1)(f) 	 bk) ∧ δ(k−1)(f), 2 ≤ k ≤ n,
k, n ∈ N+, and ∧ stands for the point-wise minimum at each
pixel of two images. And the erosion operation of ring top-
hat transformation is defined by ε(n)(f), where ε(1)(f) =
(f 	 b1) ∨ f , ε(k)(f) = (ε(k−1)(f) 	 bk) ∨ ε(k−1)(f) for
2 ≤ k ≤ n, k, n ∈ N+. Thus the adaptive opening and closing
of ring top-hat is obtained as follows.

γ(f) = δ(n)(ε(n)(f))

φ(f) = ε(n)(δ(n)(f))
(7)

Then the new white top-hat transformation and black top-hat
transformation of image f is defined by

ωTH = f − γ(f)

[TH = φ(f)− f
(8)

Therefore, the tensor representation of multiple frames of
infrared images is constructed in our model, we present a new
adaptive ring top-hat operator here:

W (IT ) = IT −OS(IT ) (9)

C. Tensor decomposition based on tensor ring low-rank kernel

In infrared images, the adjacent pixels of the local back-
ground are highly correlated. Assuming that the background
transition is slow, the low-rank prior information of the back-
ground has high usability. Therefore, the problem of small
target detection is transformed into a background low-rank
tensor recovery problem. The initial assumption of the low-
rank property in background can be described as

rank(IB) < k (10)

where k is a constant, representing the complexity of the
background image. Generally speaking, the value k of the
complex background is greater than the value k of the uniform
background.

However, rank minimization is an NP-hard problem. Based
on the concept of low-rank matrix completion, the tensor rank
is defined as the sum of rank in mode-n unfolding of the object
tensor [27]. In order to solve the problems of traditional tensor
completion methods, we applied a low rank to each TR factor,
thus establishing our basic tensor completion model. Then the
tensor completion problem can be defined as:

min
[G],X

N∑
n=1

∥∥∥G(n)
(2)

∥∥∥
∗

+
λ

2
‖IB − Φ([G])‖2F (11)

where G
(n)
in
∈ RRn×Rn+1 denotes the in-th mode-2 slice

matrix of G(n).
Completion by TR decomposition The algorithm based

on tensor decomposition does not directly use rank constraints
on the object tensor, but sets the tensor completion problem
to a weighted least squares (WLS) model, and uses the latent
factors of tensor decomposition to predict the missing content.
The specific expression is as follows:

min
[G]
‖PΩ(I − Φ([G]))‖2F (12)

There is a detailed introduction of model functions in related
work.

Completion by nuclear norm regularization The nuclear
norm defined by ‖IB‖∗ :=

∑
k σk(IB) is a commonly used

method at present. The convex algebra of the nuclear norm
is applied to the low-rank tensor model, and all the mode-n
unfolding simultaneously of the object tensor are regularized.
Thus the model of rank minimization-based tensor completion
can be formulated as:

min
X

rank(X ) +
λ

2
‖PΩ(I − X )‖2F (13)

where Rank(·) is a rank regularizer and X represents a
recovered low-rank tensor. The model can find the low-rank
structure of the data and approximate the restored tensor.

To solve the issues traditional tensor completion methods,
we impose low-rankness on each of the TR factors.

min
[G],X

N∑
n=1

∥∥∥G(n)
∥∥∥
∗

+
λ

2
‖IB − Φ([G])‖2F

s.t. PΩ(X ) = PΩ(I)

(14)
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The rank of mode-n unfolding of the tensor X is upper
bounded by the rank of the dimension-mode unfolding of the
corresponding core tensor G(n), which allows us to impose a
low-rank constraint on G(n). By the new surrogate, Equ. 14
can be transformed as:

min
[G],X

N∑
n=1

∥∥∥G(n)
(2)

∥∥∥
∗

+
λ

2
‖IB − Φ([G])‖2F

s.t. PΩ(X ) = PΩ(I)

(15)

D. Proposed Model for Small Target Detection

Here, we introduce the proposed new infrared small target
detection model in detail. First, in the absence of noise, Equ.5
is transformed into ID = IT + IB, then the minimization
problem of the aforementioned model is converted to:

min
IT ,IB

‖ID − IB − IT ‖2F (16)

Then, combining Equ. 9 and Equ. 11, the final objective
function of the model without noise can be written as follows:

min
IT ,IB

α

3∑
i=1

ui ‖IB(i)‖ρω,sp + βW (IT )

s.t. ID = IT + IB

(17)

where α, β, and rho are constants and ui is the weight of the
i-th dimension.

However, the actual target detection cannot avoid noise
interference. Then, to combine with Equ.9 and Equ. 15, the
model under gaussian noise assumption can be written as

min
IN ,IT ,IB,G

1

2
‖IN ‖2F + α

N∑
n=1

3∑
i=1

∥∥∥M (n,i)
(i)

∥∥∥
∗

+ βW (IT )

+
λ

2
‖Y − Φ([G])‖2F

s.t. ID = IT + IB + IN
(18)

Then we introduce two Lagrangian variable into Equ. 18
with IB = Y,M (n,i)

(i) = G
(n)
(i) , n = 1, · · · , N, i = 1, 2, 3.,

where [M] := M(n,i)N,3

n=1,i=1 are the auxiliary variables of
[G]. For n = 1, · · · , N, i = 1, 2, 3, G(n),M(n,i) and Y(n,i)

are independent, so we can update them separately.

E. The Optimization of the Proposed Method with ADMM

The optimization of Equ. 18 is solved by introducing the La-
grange multipliers of ADMM algorithm. By introducing equal
constraints of auxiliary variables, the augmented Lagrangian
function of Equ. 18 in our model can be rewritten as

Algorithm 1 ADMM for Solving the Optimization of TRDSD
model

1: Step 1. Input:
ID, IZ = I ,

2: Step 2. Initialize:
IB = ID,Yi = IB, IN = 0, IT = 0.

3: Step 3. While not converge do:
1. Optimize the augmented Lagrangian function Equ.

19 by calculating Equ. 21, Equ. 23, Equ. 26, Equ. 29, Equ.
31 and Equ. 32;

2. Update the factor P(n,i) by calculating Equ. 24.
4: Step 4. Output

L(IN , IT , IB, [G], [M],Y)=
1

2
‖IN ‖2F +α

N∑
n=1

3∑
i=1

∥∥∥M (n,i)
(i)

∥∥∥
∗

+βW (IT )+
λ

2
‖Y−Φ([G])‖2F−〈IZ , IN+IB+IT −ID〉

−
3∑
i=1

〈Si, IB − Yi〉 −
N∑
n=1

3∑
i=1

〈P(n,i),M(n,i) − G(n)〉

+
a

2
‖IN + IB + IT − ID‖2F +

3∑
i=1

pi
2
‖IB − Yi‖2F

+

N∑
n=1

3∑
i=1

u

2

∥∥∥M(n,i) − G(n)
∥∥∥2

F

(19)
where IZ ,Si,P(n,i) are Lagrange factors. The entire optimiza-
tion solution process is shown in Algorithm 1.

1) Update of G(n) : Keep only the part related to G(n) in
Equ. 19 to get the augmented Lagrangian function of G(n) as

L(G(n)) =

3∑
i=1

u

2

∥∥∥∥M(n,i) − G(n) +
1

u
P(n,i)

∥∥∥∥2

F

+
λ

2
‖Y − Φ([G])‖2F + CG

(20)

where CG is a constant and denotes the other parts of the
Lagrangian function, which is irrelevant to updating G(n).
Then G(n) can be updated by

G(n) = fold2((

3∑
i=1

(uM
(n,i)
(2) + P

(n,i)
(2) ) + λY〈n〉G

(6=n)
〈2〉 )

(λG
( 6=n),T
〈2〉 G

( 6=n)
〈2〉 + 3uI)−1)

(21)

where I ∈ RR2
n×R

2
n is the identity matrix.

2) Update ofM(n,i): According to Equ. 19, the augmented
Lagrangian function about M(n,i) is as follows:

L(M(n,i)) =
u

2

∥∥∥∥M(n,i) − G(n) +
1

u
P(n,i)

∥∥∥∥2

F

+
∥∥∥M (n,i)

(i)

∥∥∥
∗

+ CM

(22)

The closed-form solution is given by

M(n,i) = foldi(D 1
u

(
G

(n)
(i) −

α

u
P(n,i)

(i)

)
) (23)
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where D 1
u

(·) is singular value thresholding (SVT) operation.
If the singular value decomposition of matrix A is USV T ,
then D 1

u
(A) = UŜV T , Ŝ = max

{
S − 1

uI, 0
}

.
3) Update of P(n,i) : The augmented Lagrangian function

about M(n,i) is updated by

P(n,i) = P(n,i) + u(M(n,i) − G(n)) (24)

where u denotes the penalty parameter: u = max{ρu, umax}
for each iteration, and ρ is a tuning hyper parameter (1 < ρ <
1.5 ).

4) Update of IN : The update function of IN is described
below

L(IN )=
1

2
‖IN ‖2F +

a

2

∥∥∥∥IN+IB+IT −ID−
IZ
a

∥∥∥∥2

F

+CIN

(25)
then the solution of IN is given as

IN =
1

a+ 1
(IZ − a(IB + IT − ID)) (26)

5) Update of IT : The solution of IT is described below

L(IT )=βW (IT )+
a

2

∥∥∥∥IN+IB+IT −ID−
IZ
a

∥∥∥∥2

F

+CIT

(27)
According to [58], the optimal solution of Equ. 27 is

presented in the model, and the corresponding sub-gradient
can be obtained instead of the gradient because of its concave
property.

β

(
δ

δ(IT )
W (IT )

)
+a

(
IN+IB+IT −ID−

IZ
a

)
=0 (28)

Then the updating for corresponding iteration is given as

IT (n+1) = ID(n+1) +
IZ
a
− IN (n+1)

− IB(n+1) − β

a

(
δ

δ(IT )
W (IT )

)
IT (n)

(29)

6) Update of IB : The update function of IB is described
below

min
IB

{
a

2

∥∥∥∥IN + IB + IT − ID −
IZ
a

∥∥∥∥2

F

+

3∑
i=1

ρi
2

∥∥∥∥IB − Yi − Siρi
∥∥∥∥2

F

} (30)

then the solution of updating IB is given as

IB =
a(ID − IN − IT ) + IZ +

∑3
i=1(ρiYi + Si)

a+ ρ1 + ρ2 + ρ3
(31)

7) Update of Y :

L(Y) =
λ

2
‖Y − Φ([G])‖2F+

p

2

∥∥∥∥Y − (IB −
S
p

)

∥∥∥∥2

F

+CY (32)

which is equivalent to the tensor decomposition in Equ. 12.

F. Complexity and Convergence Analysis

In the target recognition task, the given picture sequence is
X ∈ RI1×I2×I3 , the size of the picture is I1 × I2. The size
in mode-3 unfolding matric of corresponding TR factors is
m×n, where n = I1×I2, m = I3. According to the previous
algorithm details, the calculation content of the algorithm is
mainly composed of the optimization of adaptive ring top-hat
and the parameter update of Tensor Ring Decomposition. For
the first part, the dilate operation is computed in O(m × n),
and therefore, the computing complexity of adaptive ring open
operation is O(p(m2 × n2)), where p denotes the number of
different structure elements. And for the updating of parame-
ters in TR decomposition, the complexity of updatinM based
on SVD is O(

∑N
n=1 2InR

3 + I2
nR

2), where R1 = R2 =

· · · = RN = R. The complexity of calculating G6=n<2> is
O(NR3

∏
i=1,i6=n)NIi, where N is the iteration number. And

the complexity of updating G is O(NR3
∏N
i=1 Ii +NR6). N

is set to 3, then overall complexity of our proposed algorithm
can be written as O(3R2I1 × I2 × I3 + 3R6). Based on the
earlier analysis, the computational complexity of our model is
around O(3R2I1 × I2 × I3 + 3R6 + pI2

1 × I2
2 × I2

3 ).

Fig. 3. The convergence chain diagram of TRDSD model.

To prove the convergence of the model, we performed an
empirical test in sequence 1. We selected five sets of images
for one hundred iterations and recorded the objective function
values at each iteration.As shown in Fig. 3, the abscissa of the
line graph represents the number of iterations, and the ordinate
represents the average result value of the objective function.
After many iterations, the value of the objective function tends
to be stable, indicating that our method can finally find an
optimal solution. Moreover, the number of iterations of the
objective function approaching the optimal value is not very
large, which proves that the convergence of our model is very
good.

IV. EXPERIMENTS AND RESULTS

In this part, we first introduce in detail the evaluation
indicators of the experiment and the baseline methods for
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comparison. Then, through the parameter setting and adjust-
ment, the influence of the parameters and real image sequence
information on the detection effect of our model is discussed.
Finally, we conduct comparative experiments based on real
image sequences, and highlight the superiority of TRDSD
model by analyzing the index data of the charts and figures.
In addition, all our experiments are implemented in MATLAB
R2018a on a laptop with Intel Core i7-8550U CPU and 8-GB
RAM environment.

A. Evaluation Metrics and Baseline Methods

Evaluation Metrics: In the experiments in this paper, the
detection probability and false alarm rate are used as indicators
to measure the performance of the detection model, which are
also the most important indicators to quantify the performance
of the current small target detection method. The detection
probability represents the probability that the detected target is
a true target, and the false alarm rate represents the probability
that the detected target is a false target. Their definitions are
as follows:

Pd =
number of true targets detected

number of actual targets

Pf =
number of false detections
number of tested frames

(33)

To determine whether an object will be determined as a target
by the detection model, two requirements need to be met
Simultaneously: 1) The real target and the detection result have
overlapping pixels; 2) The distance between the actual target
center and the detection result center pixel does not exceed
five pixels.

In addition, the experimental analysis also used two com-
mon indicators of small target detection performance, namely
signal-to-noise ratio gain (SCRG) and background suppression
factor (BSF) to show the effects of small target enhancement
and background suppression in our detection model. Signal-
to-noise ratio (SCR) can be used to describe the difficulty of
small target detection. Generally speaking, the higher the SCR
of a small target, the easier it is to be detected. Therefore,
small target enhancement and background suppression can
help improve the accuracy of target detection.

Baseline Methods:
In order to prove the superior performance of the proposed

method, the TRDSD was compared with several different
methods, and the experimental data was analyzed. The specific
baseline methods are:
• Infrared Patch-Image Model (IPI) [59]: The IPI model

uses the linear correlation of the local patch structure
to transform the small target detection task into an
optimization problem of the low-rank sparse matrix that
restores the background patch image.

• The model is based on Local Intensity and Gradient
Properties (LIG) [60]: The LIG model calculates the
local intensity and gradient (LIG) map from the original
infrared image to enhance the target and suppress clutter,
so as to segment the target well.

• The method is based on non-convex rank approximation
minimization joint `2,1 norm (NRAM) [37]: NRAM

model introduces the structure `2,1 to wipe out the strong
residuals caused by the defects of the nuclear norm and
`1 norm in IPI model.

• The model is based on Partial Sum of the Tensor Nuclear
Norm (PSTNN) [61]: PSTNN can efficiently suppress the
background and preserve the target and use a local prior
map encoded with target-related and background-related
information.

• Infrared Small Target Detection via Low-Rank Tensor
Completion With Top-Hat Regularization: TCTHR [62]:
TCTHR takes both the structural prior knowledge of the
target and the self-correlation of the background into
account based on low-rank tensor completion with top-
hat regularization.

• The model is based on Variance Difference (VARDIIFF)
[63]: The method with a three-layer patch-image model
can enhance the image of targets and improve the contrast
between the target and background, so that the targets can
be detected from IR images with a minimum rate of false
alarm.

B. Parameters Setting and Data Sets

In the infrared small target detection, the parameter setting
also has a great influence on the detection effect, such as the
sharp of the structuring element and so on. In order to reflect
the effect of parameters on our model, here we mainly analyze
the detection indicators of our model in seven real image
sequences under different low-rank r of tensors, and give the
best parameter configuration. We introduced the information
of these seven real image series in detail, and compared the
3D images of different methods on each sequence.

Parameter Setting: Here, we introduce the basic parameter
settings of the experiment. In the optimization section of the
proposed method above, we set the values of λ, α, and β to 5,
1, and 0.4, respectively. For the structural elements of ring top-
hat in Fig. 2, TCTHR [62] model uses the smaller S(∆b) and
the larger S(bd) when fixing S(bo), thus set S(bd) = S(bo),
and make the values of S(bo) and S(bi) as close as possible.
This setting is also continued in our model. In addition, since
our model adds an adaptive non-linear combination on the
basis of the ring top-hat, the model is not sensitive to the
value of S(bo) of the top-hat.

We set the size of the outer ring elements S(bo), i.e.
the image patch size, to 3,5,7,9,11 and combined them non-
linearly to suit the task of detecting small targets of different
sizes. Each pixel should be manipulated by ring top-hat, i.e.
the sliding step size should be 1, in order to keep the image
size constant after the operation.

Therefore, we compared our adaptive top-hat regularization
with classic top-hat and ring top-hat regularization under the
same parameter settings. Based on the three, we take the
average of SCRG and BSF in the experimental results to
compare and analyze. The specific values are shown in Table
I. It can be seen from Table I that the BSF results based on
the adaptive ring top-hat are the best results in the 7 image
sequences, indicating that the adaptive nonlinear combination
can indeed strengthen the suppression of background clutter,
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TABLE I
Comparison through Different Top-Hat Regularization

classical top-hat ring top-hat adaptive ring top-hat

SCRG BSF SCRG BSF SCRG BSF

seq1 22.45 23.30 31.33 34.57 35.27 39.30
seq2 18.00 20.04 24.39 33.89 23.0 34.30
seq3 4.94 4.96 5.52 5.59 5.85 5.97
seq4 11.01 12.30 13.87 16.30 17.61 22.37
seq5 9.78 10.30 10.46 11.09 12.86 14.07
seq6 5.23 5.34 8.87 10.08 9.05 11.97
seq7 5.81 6.07 6.10 6.77 5.95 7.54

thereby improving the robustness of target detection. The result
of adaptive ring top-hat regularization is much better than
classic top-hat regularization. Moreover, except for seq2 and
seq7, our model based on adaptive ring top-hat also obtains
the best results of SCRG in the other 5 image sequences,
proving that the adaptive ring top-hat regularization improves
the detection performance of the ring top-hat to a great extent.

Our model uses tensor decomposition to recover the back-
ground low-rank tensor, which is more robust. However, the
selection of TR-rank has a considerable influence on the model
detection effect. Therefore, we have selected different TR-
ranks for experiments respectively, where r = 2, 4, 6, 8, 10, 12,
and the results of the experiment are shown in Table II, and
the best results are marked in red. In seq1, the values of
SCRG and BSF are the highest at r = 2, and the detection
results become worse as the value of r increases. However, in
several other sequences, the value of SCRG and BSF changes
in a parabolic shape with the increase of r. The optimal
results are concentrated under the conditions of r = 6 and
r = 8. And four sequences obtain the optimal value at r = 8.
Therefore, TR-rank is set to r = 8 in subsequent experiments.
The experimental results show that such a setting can get a
sufficiently good detection effect, and the calculation amount
of the model does not increase much. Therefore, imposing a
low-rank assumption on the TR factor can bring robustness to
the rank selection and alleviate the model selection problem
in the experiment to a large extent.

Data Sets: In order to visualize the test data, we randomly
select a frame of images from the seven real image sequences,
and give the corresponding 3D gray distributions, as shown in
Fig. 4. In order to improve the applicability of the model, we
use seven real image sequences to simulate as much as possible
the diversity of targets and the complexity of the background
in the real environment. Specifically, in seq1 of Fig. 4(a), the
target is a slow-moving airplane with a sky covered by a large
number of clouds in the background. In seq2, the target is far
away, it is a ship on the far sea level, and the background
is connected by sea and sky. In seq3, the target is a fast-
moving airplane, the shape of the airplane is irregular, and
the background sky contains thin clouds which are easy to
change. In seq4, the image also shows a moving irregular ship
in the background of the sea and sky. Unlike the images of
seq2, the shooting angle of the camera in seq4 is not parallel
to the horizontal plane. And in seq5, the target is a moving,
regular-shaped helicopter in a heavily colored sky. Compared

with seq2 and seq4, the target in seq6 and seq7 is closer to
the camera. But the background of Seq6 has a background
with red and blurred sea and sky. In seq7, the shape of the
target is irregular, and the background is a sea surface with
water waves. The background of all images includes the sea
surface, and the ripples on the sea surface will affect the target
detection of the model. In addition, we also give the detection
results of our model for the seven original images, as shown
in the third row of Fig. 4. Comparing the target position of
sub-images in the first row and the detection position of sub-
images in the third row in Fig. 4, It can be seen that our model
accurately detects the target in the images.

In order to better evaluate our proposed method, we com-
pared the 3D maps of different models to the 7 real sequences
in Fig. 4. The specific results are shown in Fig. 5. As shown
in Fig. 5, each row from top to bottom represents the results
of IPI [59], LIG [60], NRAM [37], PSTNN [61], TCTHR
[62], VARDIFF [63] and our TRSDS, respectively. It can
be seen from the last row of Fig. 5 that in the 3D maps
of the target obtained by our proposed method, the target
area is very prominent, and the background near the target
is well suppressed. In the first row of Fig. 5, IPI can show the
location of the target, however there are other crests that affect
the detection, which will increase the false alarm rate of the
detection model. In the second row of Fig. 5, the target area
in the 3D maps obtained by the LIG method is not significant,
and there are many clutters, which makes it difficult to
distinguish the target position, so that the performance of LIG
method is not ideal.

C. Results on Real Images

To evaluate the superiority of TRDSD method, extensive
experiments are implemented in this section. We mainly com-
pared and analyzed the indicators(SCRG and BSF) of different
models. Then, the Pd and Pf obtained by TRDSD in each
image sequence are compared, and ROC plot and AUC plot
on different sequences are given.

For consecutive frames of images randomly selected from
seven real infrared image sequences, Table III lists the average
values of BSF and SCRG of all models, and the best results are
marked in red. It can be seen from Table III that our method
does not show obvious advantages in SCRG. Like NRAM
and TCTHR, TRDSD only achieved the best results of SCRG
indicators in two image sequences. Then for the BSF indicator
which reflects background suppression, TRDSD achieved the
best results in all image sequences except seq5. And even on
seq5, our BSF value is very close to that of the first LIG
model. In general, our method can significantly highlight the
target, and suppress the background better, which can improve
the accuracy of small target detection. Therefore, our method
has better detection performance than other baseline methods.

In addition, in order to better compare the detection effect of
the model, we calculated the values of Pd and Pf of detection
obtained from early image. The specific results are listed in
Table IV. Similarly, the optimal values of Pd and Pf are
marked in red. It is obvious from Table IV that our model
performs much better than other baseline methods. Except for
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TABLE II
Values of SCRG and BSF based on different values of TR-rank

r = 2 r = 4 r = 6 r = 8 r = 10 r = 12

SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF

seq1 40.35 46.03 38.87 42.65 35.57 39.85 35.27 39.30 29.63 32.7 26.52 28.92
seq2 19.86 26.54 21.74 31.08 22.75 33.25 23.04 34.30 20.37 28.90 16.06 19.07
seq3 5.60 5.71 5.73 5.84 5.87 5.99 5.85 5.97 5.78 5.90 5.55 5.67
seq4 8.01 8.52 12.62 14.47 15.86 19.23 17.61 22.37 17.32 22.33 16.28 20.06
seq5 11.98 12.96 12.76 13.95 13.02 14.27 12.86 14.07 12.03 13.02 1.55 12.40
seq6 8.01 9.83 9.02 11.95 9.05 11.96 9.05 11.97 8.76 11.34 8.46 10.72
seq7 5.71 7.09 5.78 7.23 5.87 7.37 5.95 7.54 5.52 6.76 5.41 6.61

(a)seq1 (c)seq3 (d)seq4 (f)seq6 (g)seq7(b)seq2 (e)seq5

Fig. 4. 7 real infrared image sequences. The sub-images in the first row represent the original images randomly selected from these seven sequences, the
second row represents the corresponding 3D gary distribution, and the third row represents the detection results of these seven real images by the TRDSD
model.

TABLE III
Values of SCRG and BSF of different methods

NRAM [37] IPI [59] LIG [60] PSTNN [61] VARDIFF [63] TCTHR [62] TRDSD (ours)

SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF

seq1 40.75 32.60 13.88 13.54 6.78 7.60 39.01 31.34 17.22 15.13 19.91 20.5 35.27 39.30
seq2 19.68 17.34 8.57 8.29 5.89 9.53 9.29 9.01 14.17 12.77 28.90 29.35 23.04 34.30
seq3 4.48 4.08 3.75 3.73 4.15 5.63 4.63 4.14 4.32 4.10 5.03 5.10 5.85 5.97
seq4 26.52 18.99 6.57 6.48 5.08 6.82 5.26 5.02 9.31 8.52 13.67 14.83 17.61 22.37
seq5 10.28 9.96 8.63 8.46 9.47 14.24 9.48 9.18 10.04 9.41 12.45 12.97 12.86 14.07
seq6 9.70 8.36 3.74 3.61 3.42 6.24 6.14 5.88 6.60 5.95 10.35 10.42 9.05 11.97
seq7 4.80 4.09 3.16 3.07 3.17 6.67 6.02 5.64 4.16 3.86 3.85 5.51 5.95 7.54

TABLE IV
Values of Pd and Pf of different methods

NRAM [37] IPI [59] LIG [60] PSTNN [61] VARDIFF [63] TCTHR [62] TRDSD (ours)

Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf

seq1 0.676 0.312 0.645 0.339 0.757 0.248 0.676 0.290 0.879 0.134 0.890 0.108 0,945 0.036
seq2 0.922 0.074 0.735 0.268 0.731 0.235 0.560 0.406 0.864 0.121 0.902 0.070 0.951 0.042
seq3 0.888 0.113 0.897 0.106 0.724 0.237 0.881 0.108 0.969 0.025 0.956 0.033 0.973 0.035
seq4 0.867 0.147 0.791 0.196 0.842 0.159 0.670 0.311 0.761 0.226 0.959 0.043 0.951 0.041
seq5 0.911 0.088 0.857 0.122 0.875 0.105 0.839 0.161 0.923 0.068 0.966 0.026 0.974 0.018
seq6 0.768 .235 0.867 0.111 0.885 0.087 0.895 0.077 0.853 0.119 0.924 0.073 0.969 0.030
seq7 0.699 0.269 0.841 0.131 0.788 0.185 0.867 0.115 0.717 0.246 0.937 0.046 0.956 0.038
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(a)seq1 (b)seq2 (c)seq3 (d)seq4 (e)seq5 (f)seq6 (g)seq7

Fig. 5. 3D maps of enhanced results obtained through different baseline methods. Each row from top to bottom represents the results of IPI, LIG, NRAM,
PSTNN, TCTHR, VARDIFF and our TRSDS, respectively
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Fig. 6. ROC curves of TRDSD model and the baseline methods on seven real image sequences.
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TABLE V
Values of AUC of different methods

LIG IPI NRAM PSTNN VARDIFF TCTHR TRDSD

seq1 0.63895 0.83431 0.51005 0.83493 0.85645 0.99472 0.99660
seq2 0.95126 0.97174 0.87110 0.97563 0.98917 0.99161 0.99996
seq3 0.98846 0.84257 0.58045 0.66402 0.82207 0.96864 0.97040
seq4 0.95890 0.80049 0.59523 0.94011 0.96601 0.96544 0.99329
seq5 0.98997 0.78381 0.55540 0.78369 076018 0.96268 0.96589
seq6 0.74839 0.86212 0.66129 0.85684 0.89353 0.99022 0.98180
seq7 0.87016 0.92972 0.57228 0.96310 0.92175 0.97984 0.99782

Seq4, TRDSD has the highest value of Pd and is much higher
than that of the model on the second place. For example, in
seq1, Pd of TRDSD is 6.18% higher than that of TCTHR
on the second place. In seq2, TRDSD’s Pd is also 3.15%
higher than LIG’s Pd. Although in seq4, TCTHR model ranks
first, our TRDSD is only 0.83% lower than TCTHR, ranking
second. Similarly, the false alarm rate of our model has good
results. Except for seq3, the false alarm rate of TRDSD is
below 0.05, which is much lower than that of other baseline
models, and some are even less than half of the Pf of TCTHR,
such as in seq1 and seq6. The results prove that the adaptive
ring top-hat can strengthen the suppression of background and
improve the accuracy of target detection.

In order to understand the superiority of the detection
separator of our model, we take the detection probability Pd as
the ordinate and false alarm rate Pf as the abscissa to draw the
ROC curves of all models on seven image sequences, as shown
in Fig. 6. The ROC curve of our TRDSD model is closer to
the upper left corner than other models, especially on seq1
and seq2. Therefore, It is believable that the performance of
the TRDSD model is better. Table V proves the above point
with more specific data. The value of AUC represents the
area covered by the ROC curve. The larger the AUC value,
the better the classification effect of the classifier, that is, the
better the detection model. It can be seen from the table V
that our model has obtained the largest AUC values on all
four sequences, and the AUC values of our model on seq1,
seq2 and seq7 all exceed 0.995, indicating that the detection
performance is excellent. In the seq5 and seq6 sequences,
our model also ranked second palce, maintaining a fairly
good level. Overall, the detection performance of TRDSD is
superior to that of TCTHR model.

V. CONCLUSION

This paper proposes an improved infrared small target
detection method. The model uses a tensor model constructed
with high-dimensional structural features to convert the small
target detection problem into a tensor low-rank restoration
of the background image. By combining the tensor ring and
the adaptive ring top-hat regularization term, our model can
suppress the influence of background and noise to achieve
better detection results. A large number of experimental results
also prove that the detection performance of our model has
been improved.

Although tensor ring decomposition based on latent space
is not computationally intensive, multiple Ring top-hat oper-
ations on each element increase the runtime significantly. In

the future, a fast version of the method will be sought to avoid
multiple operations on each element.
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