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Abstract: Cervical cancer (CC) is the fourth most common type of gynecological malignancy affecting
females worldwide. Most CC cases are linked to infection with high-risk human papillomaviruses
(HPV). There has been a significant decrease in the incidence and death rate of CC due to effective
cervical Pap smear screening and administration of vaccines. However, this is not equally available
throughout different societies. The prognosis of patients with advanced or recurrent CC is particularly
poor, with a one-year relative survival rate of a maximum of 20%. Increasing evidence suggests
that cancer stem cells (CSCs) may play an important role in CC tumorigenesis, metastasis, relapse,
and chemo/radio-resistance, thus representing potential targets for a better therapeutic outcome.
CSCs are a small subpopulation of tumor cells with self-renewing ability, which can differentiate
into heterogeneous tumor cell types, thus creating a progeny of cells constituting the bulk of tumors.
Since cervical CSCs (CCSC) are difficult to identify, this has led to the search for different markers
(e.g., ABCG2, ITGA6 (CD49f), PROM1 (CD133), KRT17 (CK17), MSI1, POU5F1 (OCT4), and SOX2).
Promising therapeutic strategies targeting CSC-signaling pathways and the CSC niche are currently
under development. Here, we provide an overview of CC and CCSCs, describing the phenotypes of
CCSCs and the potential of targeting CCSCs in the management of CC.

Keywords: cervical cancer; cancer stem cells; drug resistance; radio-resistance; EMT; quiescence;
epigenetic; targeted therapy; delivery systems

1. Introduction

Cervical cancer (CC) is the fourth most common cancer in women worldwide. The
majority of cases of CC are linked to infection with human papillomaviruses (HPV) [1]. Al-
though most infections with HPV resolve spontaneously and are asymptomatic, persistent
infection with the high-risk types can cause CC in women. Several lifestyle factors, such as
multiple sexual partners and smoking, enhance the progression of high-risk HPV infection
to CC [2].

In the last couple of decades, there has been a significant improvement in the preven-
tion of CC thanks to effective Pap smear screening and administration of vaccines. This
has led to a lower incidence and mortality in high resource countries. For example, it
is estimated that CC in Australia will be nearly eliminated by the end of this decade [3].
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However, in low-income countries this is unlikely to be achieved even by the end of the
century. Once there is a global scale-up of similar public health measures, especially in
low-resource countries, CC may come to be considered a ‘rare’ disease in these societies in
the future [1]. However, due to poor access to preventive health care, CC is still to date, the
fourth most common type of gynecological malignancy affecting females worldwide [4].
In 2018, CC accounted for 6.6% and 7.5% of female tumor morbidity and mortality [4].
The prognosis of patients with advanced and/or recurrent CC is particularly poor, with a
one-year relative survival rate of a maximum of 20% [5].

If it is detected early and managed effectively, CC can be successfully treated us-
ing surgery and/or radiotherapy. For micro-invasive carcinomas (stage IA1) and small-
volume macroscopic disease (IB1 and IIA1), patients are advised to undergo conization and
hysterectomy [6]. More advanced CC cases are typically treated using a combination of
radiotherapy and chemotherapy. For cases in the locally advanced stage, radiation together
with cisplatin-based chemotherapy is the primary therapeutic option [7]. In addition, cell
cycle-specific drugs, including vincristine, paclitaxel, 5-fluorouracil, and gemcitabine, have
radiosensitization capabilities or synergize the cytotoxic effects of platinum drugs. How-
ever, in advanced-stage disease, systemic chemotherapy has a limited effect. Therefore,
novel agents are urgently needed for a better therapeutic result.

With the development of molecular biology and omics technology, breakthroughs
have been achieved in targeted therapy research, including immune checkpoint inhibitors,
anti-angiogenesis agents, poly (ADP-ribose) polymerase (PARP) inhibitors, and other
potential treatments for CC [8]. Targeted gene delivery therapy is another promising
approach leading to the development of multiple strategies, ranging from immune system
potentiation, altered gene restoration, oncolytic virotherapy to the use of nanotechnology
paving the way to designing improved and enhanced gene delivery systems. Multiple
targeted gene delivery systems have been developed to improve tumor targeting and
minimize toxicity in normal tissue with encouraging pre-clinical results [9]. However, the
clinical translation to humans is still lagging mainly due to the lack of efficient vectors. [9].
In addition, several novel compounds derived from microorganisms or plants have been
shown to have prominent anti-cancer activity through changes in the apoptotic balance in
CC[10].

Another crucial factor affecting the management and prognosis in patients with CC is
the presence of CC stem cells (CCSCs), which represent a small subpopulation of tumor cells
with a high potential for self-renewal, a multilineage differentiation, tumorigenicity, and a
slow-cycling capacity [11,12]. Since CCSCs are more resistant to conventional treatments,
such as different chemotherapy and radiotherapy regimens [13], studies are being carried
out to target these cells. Therapeutic targeting of CCSC has the potential to reduce the
tumor burden by preventing the generation of new CC clones, and therefore, not only
prevents resistance to conventional therapies but also limits distant metastasis and relapse.

This review aims to provide an update on CC and CCSCs, including a description of
CCSCs’ phenotypes and an outline of the potential of targeting CCSCs in the treatment of CC.

2. Cancer Stem Cells in Cervical Cancer

The “clonal evolution” theory of carcinogenesis suggests that CC arises due to a
mechanism of loss of control, leading to unlimited and unharnessed cellular proliferation in
cells of clonal origin with similar molecular characteristics [14]. However, there is increasing
evidence of intratumoral heterogeneity in CC.

One explanation for the heterogeneity in CC is the existence of CCSCs. These slow-
cycling CCSCs reside in the niche areas of the tumors and are capable of initiating and
maintaining neoplastic growth as well as leading to distant metastasis [15]. These distinct
tumor cell populations exhibit different molecular and phenotypic characteristics associated
with a poor response to chemo- and/or radiotherapy and increased risk of lymph node
metastasis and pelvic recurrence in CC [16]. Given that CSCs typically undergo asymmetric
division, histological examination of CC tissue exhibits a heterogeneous population of
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diversely differentiated carcinoma cells. Another contributing factor to the tumor hetero-
geneity is due to the ability of CSCs to transdifferentiate into vascular endothelial cells and
other tumor-associated stromal cells [17].

Most CCs are linked to infections caused by high-risk strains of HPVs (hrHPVs) [18].
While the post-infection microenvironment facilitating viral persistence is becoming in-
creasingly recognized for CC malignant progression, being infected with HPV during one’s
lifetime does not necessarily inevitably lead to neoplastic transformation [19]. In fact, the
majority of hrHPVs infections are cleared spontaneously, with only around 10% to 15%
persisting and eventually leading to the progression of precancerous cervical intraepithe-
lial neoplasia (CIN) to invasive CC [18]. HPV-scoring systems, weighing resultant gene
alterations, are being developed as prediction tools in predicting the prognosis of CC by
evaluating individual HPV infection status and any subsequent genetic modification [20].

Approximately 90% of CIN3 and CC arise within the squamo-columnar junction, a
transition area between the exocervix and endocervix [21]. These specific squamo-columnar
junction cells exhibit junction-specific markers which are similar to those expressed in
carcinogenic HPV-associated CINs and carcinomas. These include both squamous cell
carcinomas and adenocarcinomas, indicating that multiple cervix malignancy subtypes are
derived from the squamo-columnar junction cells [22,23]. It has been hypothesized that
the squamo-columnar junction may harbor stem-like cells, which, in the presence of the
persistent infection with carcinogenic HPV, increase the risk of developing CC [13].

Although some markers for CSCs have been identified, there is no collection of univer-
sal biomarkers for specifically identifying and isolating CSCs [24]. This is mainly due to
the heterogeneity of CSCs at both the intratumor- and intertumor-type levels. Therefore,
in order to isolate CSCs within a particular tumor site and across several tumor sites, a
variety of cell surface and functional markers need to be used [25]. This also applies to
CCSC markers where there are variations from tumor to tumor, and therefore, CC cells
expressing a single stem cell marker do not always qualify as CCSCs. However, novel
markers for CCSCs are being identified and further investigated in the hope of enabling
diverse therapeutic options to cure CC [13,15]. A brief list of studies on CCSC phenotypes
is provided in Table 1 [26-44]. However, it is still not clear whether the difference in
the stemness expression profile will translate into a clinically relevant difference in CSC
phenotype and successful outcome when implementing this therapy.

Table 1. A selection of published studies on CSCs in human cervical cancer.

CSC Marker(s) and/or CSC Characteristics
Study Sample Phenotype(s) and/or
yp Clinical Significance
Feng et al., 2009 [26] Primary tumor sphere culture CD44% /CK17* Chem01.‘es1s‘ta'nce;
tumorigenicity
Bortolomai et al., 2010 [27] 3 cell lines; ALDHMgh; Sp Sphere formation;
xenografts tumorigenicity
4 cell lines: Sphere formation;
Lopez et al., 2012 [28] ’ CD49f* radioresistance;
xenografts Lo
tumorigenicity
Zhang et al., 2012 [29] Hela cells; sp Increased 1.nva§1\.7eness;
xenografts tumorigenicity
) Colony formation;
Wang et al., 2013 [30] Hela cells; SP radio- and chemo-resistance;
xenografts

tumorigenicity
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Table 1. Cont.
CSC Marker(s) and/or CSC Characteristics
Study Sample Phenotype(s) and/or
enotypes Clinical Significance
Liu & Zheng, 2013 [31] 4 cell lines and 5 primary ALDHMigh Chem01.‘es1sfa.nce;
tumor xenografts tumorigenicity
Qi etal., 2014 [32] HeLa cells; xenografts SP Radio- and c}}emq—ljeswtance;
tumorigenicity
Colony formation;
Wang et al., 2014 [33] HelLa cells OCT4, SOX2 and ALDH sphere formation;
chemoresistance
Villanueva-Toledo et al., . Colony formation;
2014 [34] 3 cell lines SP sphere formation
Liu et al., 2014 [35] 2 cell lines; SOX2 Sphere formation;
xenografts tumorigenicity
Sphere formation;
Kumazawa et al., 2014 [36] Hela cells; xenografts CXCR4, Oct3/4, CDI133, radioresistance;
and SOX2 L
tumorigenicity
High expression of MSI1,
ALDH]1, and SOX2, and low
Hou et al., 2015 [37] 179 tissue specimens MSI1, ALDHI, SOX2 expression of CP4.9f pr'edlct
and CD49f poor prognosis inspite
ofpostoperative
chemotherapy
. . Sphere formation;
Liu et al., 2016 [38] SiHa cells; CD44* /CD24* radioresistance;
xenografts Lo
tumorigenicity

Ortiz-Sanchez et al., 2016 [39]

4 cell lines;
xenografts

CK-17*, p63*, CD49f*,
ALDHbhigh

Sphere formation;
tumorigenicity

Xie et al., 2016 [40]

52 tumor samples

ALDHI1

ALDHI1 expression predicts
chemoresistance and poor
clinical outcomes in patients
with LACC receiving NAC
prior to radical hysterectomy

Wei et al., 2017 [41]

Primary cell cultures

Sp

Colony formation;
tumorigenicity

Javed et al., 2018 [42]

Primary cell cultures

CD133*

Sphere formation;
EMT and radioresistance

Lietal., 2019 [43]

6 cell lines;
xenografts;
233 tissue specimens

NUSAP1

Sphere formation;

EMT and tumorigenicity.
High expression of NUSAP1
positively correlated with
lymph node metastasis.
Patients with high NUSAP1
expression have shorter 5-year
metastasis-free survival

Yao et al, 2020 [44]

2 cell lines;
xenografts

ALDHhigh

Sphere formation;
radioresistance;
tumorigenicity

Abbreviations. SP: Side population; NAC: neoadjuvant chemotherapy; LACC: locally advanced cervical cancer;
EMT: epithelial-mesenchymal transition.
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3. Cancer Stem Cells and Therapeutic Implication

There are very limited data available that validate and support the clinical diagnostic
value of CCSC biomarkers. The current understanding of these biomarkers suggests that
most of them indicate progression of lesions that are already initiated [15]. However, these
markers may not be very sensitive to identify all initiated lesions. Several biomarkers,
especially when used in combination, have been identified for the screening of CC [13,15].

Surgery, chemotherapy (particularly cisplatin), and radiotherapy have improved the
overall survival of patients with CC. However, the presence of CCSCs that are resistant to
chemo- and radiotherapy leads to disease relapse and a reduction in overall survival [13].
CCSCs can develop resistance to standard treatments via different mechanisms (Figure 1),
which are further described in detail below. Owing to their tumorigenicity, CSCs may be
the route of cervical carcinogenesis, leading to distant metastasis. Therefore, therapeutic
management specifically targeting CSCs is a potential tool for preventing chemo/radio-
resistance and decreasing the risk of distant metastasis, tumor relapse, and the generation
of secondary tumors, thereby increasing the chances of CC patient survival [45]. The
identification of CCSC and a deeper understanding of their microenvironment will enable
their specific pharmacological targeting [13].

e Tumor-associated cancer-associated
Bt macrophages fibroblasts
Go : ! AV
hase A, 4 7
(rrs‘esti g} G, i

reprogramming

Whnt and Notch

Self-renewal b
. : | Tumor microenvironment

Quiescence
“\ \ / signaling pathways

Epigenetic mechanisms
-DNA methylation
-Histone modifications

Tumor vasculature ,,______'LessL'ﬂgmmh___/
Hypoxia
Epithelial-to-mesenchymal
i Increased expression of multi-drug transition
. 4 resistance or detoxification proteins
Resistance to DNA damage

Figure 1. Illustration summarizing various mechanisms in cervical cancer stem cell (CCSC) con-
tributing to chemoresistance. CSCs can contribute to chemoresistance through various mechanisms
including quiescence, self-renewal, tumor microenvironment reprogramming, signaling pathways,
epigenetic mechanisms, epithelial-to-mesenchymal transition (EMT), enhanced expression of multi-
drug resistance or detoxification proteins, resistance to DNA damage, and hypoxia.



Int. . Mol. Sci. 2022, 23, 5167

6 of 18

4. The Role of CSCs in Resistance to Cytotoxic Therapies: Chemo- and Radiotherapy

Cytotoxic anti-cancer therapies are mostly aimed at inducing tumor cell death. These
treatment regimens can involve both the combination of radiotherapy and chemothera-
peutic drugs, such as platinum-based drugs, antimetabolites, or anthracyclines [46]. Some
chemotherapeutics have the same mechanism of action as radiotherapies, that is by means
of direct DNA damage. Other chemotherapies, such as mitotic spindle poisons, inhibit
cell division via their toxic effects on the dynamics of microtubules. Apart from the in-
vasive off-target effects, chemo- and radiotherapies are associated with a mild, albeit not
durable, response [46] The abscopal effect of radiotherapy when used in combination with
immunotherapy is promising [47]. However, resistance to the currently used treatment
strategies has been linked to CSCs and is considered as one of the main possible causes of
poor results for CC and other malignancies [48-50]. Thus, through the understanding of
the underlying mechanisms and oncogenic drivers by which the CSCs escape the radio-
and chemotherapy, more effective treatments can be developed which could improve the
clinical outcomes of patients with CC [51]. The intrinsic and extrinsic mechanisms of
therapy resistance in CSCs have been extensively studied, and potential clinical use of CSC-
targeting agents have been investigated in various cancers [45]. A transcriptome analysis of
CCSCs from responder and non-responder groups to chemoradiotherapy identified several
differentially expressed genes, including ILF2, RBM22P2, ACO16722.1, AL360175.1, and
AC092354.1 [52].

We briefly report the main mechanisms by which CSCs contribute to resistance to
anti-cancer therapies and the potential approaches to overcome this resistance (Table 2).
This is followed by a description of the novel therapeutic strategies targeting CCSCs.

Table 2. Main cellular mechanisms of resistance of CSCs to therapies and potential therapeutic
approaches.

Cellular Mechanism

Example of Therapeutic

Therapeutic Approach Approach to CC

Cancer Therapeutic Resistance

High DNA repair capacity and
activation of
anti-apoptotic pathways

Inhibition of the DNA damage
checkpoints CHK1 and CHK?2;
targeting self-renewal and
survival-related pathways (e.g.
WNT/ 3-catenin, Hedgehog,
Notch and
PI3K/AKT/mTOR pathways);
anti-apoptotic Bcl-2 family
proteins; PARP family of enzymes
[11,45,46,53-56]

PARP inhibitors (e.g. veliparib,
olaparib, niraparib and rucaparib)
are currently being studied [57]

Chemo- and radioresistance

Cell quiescence

Chemo- and radioresistance

Allowing cells to remain dormant
indefinitely; reactivating dormant
cells; eradicating
dormant cells [58]

Inhibition of cytosolic
phospholipase A2 alpha (cPLA2«)
with efipladib improves
chemosensitivity [59]

EMT

Chemo- and radioresistance

Targeting factors (e.g. cytokines,
proteins, miRNAs, transcription
factors, miRNA) and signaling
pathways involved in EMT [60,61]

Plant products (e.g. anthocyanins,
morusin and curcumin) inhibit
EMT [62]

Tumor environment

Chemo- and radioresistance

Targeting the components of the
tumor microenvironment (e.g.
CAFs or TAMs) [61,63]

The upregulation of miR-125a
sensitized to paclitaxel and
cisplatin [64]

Hypoxia

Chemo- and radioresistance

Tumor oxygenation and oxygen
therapeutics [65-67]

Hyperbaric oxygen and
radiotherapy [68-70]

Multidrug resistance (MDR)

Chemoresistance

Inhibiting ABC transporters
[71-73]

Stemofoline increases
chemosensitivity by inhibiting
P-glycoprotein [74]
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Table 2. Cont.

Cellular Mechanism

Example of Therapeutic

Cancer Therapeutic Resistance Approach to CC

Therapeutic Approach

ALDH-associated resistance

Disulfiram-loaded vaginal ring
potentially used for the localised
treatment of CC [83]

Chemo- and radioresistance Inhibiting ALDHs [75-82]

Epigenetic Programming
(e.g. epigenetic mechanisms,
abnormal expression of miRNAs)

SGI-1027, a DNMT1 inhibitor,
impairs CC cell propagation [85].
HDAC inhibitors (e.g. vorinostat,

valproic acid, oxamflatin,
2-Oxo-1,3-thiazolidine, etc) may
add to the efficiency of CSC
therapy [86,87].

The miR-302-367 cluster [91],
miR-23b [92] and miR-145 may
serve as potential therapeutic
reagents [93]

Inhibiting DNMTs and HDACs;

Chemo- and radioresistance manipulating miRNAs [84-90]

5. Resistance to DNA Damage-Induced Cell Death

Genotoxic agents and radiation treatment trigger the DNA damage response in which
sensitive cancer cells fall into cell cycle blockade followed by induction of apoptosis. DNA
damage sensor proteins, such as ataxia telangiectasia mutated-RAD3-related (ATR) kinases
and ataxia telangiectasia mutated (ATM), are involved in these pathways [94-97]. Upon
DNA damage, ATR and ATM kinases form complexes with breast cancer 1 (BRCA1) and
poly ADP-ribose polymerase (PARP-1) to phosphorylate checkpoint kinase 1 (CHK1) and
CHK2. These in turn activate targeted proteins and induce DNA repair [45]. CSCs can
be resistant to DNA damage-induced cell death by promoting DNA repair capability
through ATM and CHK1/CHK2 phosphorylation or by activating anti-apoptotic signaling
pathways, such as WNT/ 3-catenin, PI3K/Akt, and Notch signaling pathways [45,46]. The
c-MYC-CHK1/CHK?2 axis regulates the DNA damage-checkpoint response, resulting in
radiotherapy resistance in CSCs [98], while pharmacological inhibition of the CHK1 and
CHK?2 has been shown to sensitize CSCs to chemotherapy and/or radiotherapy [53,54]. In
CC, aldehyde dehydrogenase (ALDH)-1 positive cells lead to radio-resistance by increasing
DNA repair capacity and through preferential activation of the DNA damage checkpoint
response [44]. As described further on, ALDH is a cytosolic enzyme responsible for the
oxidation of intracellular aldehydes protecting cells from the potentially toxic effects of
elevated levels of reactive oxygen species (ROS). However, the development of treatments
that prevent DNA repair in cancer cells is more difficult than expected.

Chemo- and radiotherapy can induce expression of these DNA damage-checkpoint
response pathways in non-CSCs and consequently activate cellular stress response and
enhance stemness characteristics. Therefore, non-CSCs are more able to survive selectively.
Thus, chemo- and radiotherapy can lead to an accumulation of a CSC subpopulation
with higher innate resistance to these same therapies [11]. Many different approaches
targeting CSC pathways and anti-apoptotic Bcl-2 family proteins are currently under
clinical evaluation [11,45,46,55,56]. Most data about the role of PARP inhibitors (PARPi) in
gynecologic malignancies specifically involve ovarian cancer. However, the role of PARPi
in the treatment of CC is also currently being studied [57].

6. CSCs’ Quiescence

In addjition to a robust DNA damage response, CSCs also undergo a persistent quies-
cence state which may contribute to therapy resistance. This is because some of the cytotoxic
agents only target cancer cells that are highly proliferating [99-102]. Once treatment stops,
these quiescent CSCs can re-enter the cell cycle and activate cell growth and proliferative
signaling pathways, thus accelerating tumor regeneration [101]. The patterns of recurrence
and acquired resistance that are observed in post-therapy cancer patients can be explained
by the quiescence of CSCs. A deeper understanding of the mechanisms involved, whether
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activated or silenced, could prove useful for employing combinatorial therapeutic strategies
to manipulate and sensitize CSCs to chemotherapy [101]. Activated TGF-f signaling, which
is involved in triggering cytostatic signals, can lead to cisplatin resistance by driving the
dormancy of CSCs in mouse squamous cell carcinoma [103]. Likewise, a subpopulation of
CSCs undergoing epithelial-mesenchymal transition (EMT) has a slow rate of proliferation,
thus conferring resistance to anti-proliferative drugs in breast and skin cancer models [104].
To overcome this resistance, three distinct approaches to therapeutic interventions have
been put forward. These are allowing cells to remain dormant indefinitely, reactivating dor-
mant cells, and increasing their sensitivity to anti-proliferative drugs, and/or eradicating
dormant cells [58]. Relevant molecular mechanisms involving either the maintenance of
quiescence indefinitely or eliminating this cancer cell subpopulation have been investigated
with the aim of developing pharmacological interventions [58]. For instance, ablation of
cytosolic phospholipase A2alpha (cPLA2«x), which is a key mediator of pathophysiology of
cancer and inflammation, has been shown to markedly improve chemosensitivity in CC
via suppressing [3-catenin signaling [59].

7. Epithelial-Mesenchymal Transition (EMT)

EMT and stem cell markers are co-expressed in circulating tumor cells from patients
with metastatic lesions [105]. EMT induction or activation of EMT transcription factors,
such as SLUG, SNAIL, SLUG, TWIST, and ZEB1/2, can confer stem-like features in can-
cer cells [106]. In addition, EMT activation is associated with therapeutic resistance by
inducing cancer cells to exhibit stem cell-like characteristics, which promote invasion of
surrounding tissues and the underlying drug resistance [60,61]. However, in most cases, the
molecular mechanisms responsible for EMT and the resulting resistance are not clear. Cells
undergoing EMT may stop dividing and enter a state of quiescence [60,61] and therefore,
circumvent most conventional treatments which target actively dividing cells [107]. For
instance, in oral cancer, cells with a SNAIL-mediated EMT phenotype exhibit quiescence
and are highly resistant to chemotherapy [108]. The onset of EMT in CC increases the CSC
subpopulation, increasing the metastatic potential of CC and leading to chemoresistance
and radio-resistance. Hence, inhibiting EMT in CC cells sensitizes them to drugs and
radiation [62]. Several molecular mechanisms responsible for maintaining the constitutive
activation of the EMT pathway are being investigated [62]. These may prove clinically
useful for developing new prognostic biomarkers and therapeutic targets for CC invasion
and metastasis.

8. Tumor Microenvironment

The tumor microenvironment (TME) consists of tumor cells, tumor stromal cells
(including stromal fibroblasts), endothelial cells, immune cells (such as macrophages,
microglia, and lymphocytes), as well as the non-cellular components of extracellular
matrix [109]. The concept of TME originated from studies showing that tumorigenesis
preferentially specializes in niches within healthy tissue and in premetastatic niches [110].
TME is created by the influence of both the secreted factors from the primary cancer and
from the host cells. This enhances the dissemination and survival of CSCs. The TME plays a
crucial role in the establishment of a CSC niche via the provision of a quiescence promoting
niche and by enhancing tissue invasion. In the primary tumor, a CSC niche is established
in an anatomical location which provides more nutrients and signaling gradients, as it
is usually residing close to a highly vascularized bed [110]. In some highly angiogenetic
cancers, including advanced cervical cancer, CSCs can also cross lineage-differentiation
boundaries to form different types of vascular cells [111-113]. CSCs can differentiate into
functional endothelial cells to form blood vessels (vascular mimicry) [114].

Vasculature and blood-vessel-derived angiocrine factors are key components of TME.
CSCs express angiogenic factors to promote vascular growth and enhance tumor growth.
Simultaneously, endothelial cells create vascular niches through angiocrine-signaling to
regulate CSC behavior, thus providing a chemoprotective microenvironment for CSCs
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and metastatic tumor cells. In addition, alterations in the vascular microenvironment can
reactivate the dormant disseminated tumor cells, leading to relapse. In conjunction with
traditional chemotherapy, there is evidence that treatments that disrupt angiocrine crosstalk
can chemosensitize otherwise chemoresistant CSCs and improve treatment efficacy [115].

The TME and its CSC niche are very likely to be different in each tumor type [116].
In the cervix, the squamocolumnar junction, also known as the transformation zone, is
considered a baseline lymphangiogenic niche in the cervical tumorigenesis [117].

Stimuli from the CSC niche may be another route for treatment resistance. The
CSC microenvironment could create an imbalance between CSC differentiation and self-
renewal [118] by stimulating signaling pathways, such as Notch and Wnt. These in turn
may facilitate evasion of CSCs metastasis and anoikis, thus altering divisional dynamics,
and facilitating repopulation through symmetric division [61,63]. For instance, specialized
microenvironments of bone marrow endothelial cells are important for homing and en-
graftment of both normal HSCs and leukemic cells [119]. In AML, extracellular matrix
components and signaling molecules in the HSC microenvironment promote cell survival,
providing resistance to chemotherapy. In the case of glioma, it has been shown that intrinsic
properties of glioma stem cells are very tightly regulated by specific signals derived from
the niches, which help to maintain their undifferentiated state as well as their number [119].
Moreover, relationships between CSCs and their niches can be bi-directional. Apart from
exploiting pre-existing microenvironments, glioma stem cells are also actively involved
in shaping and generating their niches via intricate crosstalk with diverse components of
both surrounding and distant tissues [119]. It has been shown that components of CSC
niches may be significantly related to the metastatic potential of CSCs. For example, VEGF
Receptor 1 (VEGFR1) signaling from distant primary tumors induces MMP?9 in clusters of
pre-metastatic lung endothelial cells [119]. In addition, integrins and adhesion molecules
may be associated with migration of CSCs [117].

With increasing evidence supporting the important role of the TME in enhancing
CSC-mediated tumor propagation, indirect targeting of CSCs may occur via components of
the TME, such as cancer-associated fibroblasts (CAFs) or tumor-associated macrophages
(TAMSs), that secrete factors that induce EMT [61,63]. Similar to what happens in hepa-
tocellular carcinoma, in CC, miRNA125 delivered via TAM exosomes may significantly
suppress the CSC phenotype, thus limiting drug resistance [64,120].

9. Hypoxia

Pre-clinical investigations clearly demonstrate that hypoxic microenvironments in solid
tumors significantly impair tumor response to anti-cancer therapies (radio-, chemo-, and
immunotherapy), increase cancer aggression, and promote progression and metastasis [65].
Indeed, hypoxia is considered as an independent predictor of disease progression, treatment
failures, and higher metastatic potential in many cancers, including CC, sarcoma, breast, and
prostate cancer [66].

Hypoxia activates several signaling pathways by inducing hypoxia-inducible factors
lx and 2« (HIF1e, HIF2x) or phosphatidylinositol 3-kinase (PI3K/AKT), which bind
to promoters containing the hypoxia-response element (HRE). This in turn, promotes
tumor survival via the upregulation of the expression of multiple genes associated with
angiogenesis, apoptosis, metabolic regulation, and pH balance. Activation of the PI3K/ATK
pathway promotes CSCs by activating HIF1x and HIF2« as a feedback loop, and this
cascade leads to the induction of stemness and self-renewal [121]. In ovarian cancer cells,
HIF induces stem cell properties, promoting ovarian CSCs adaptive stress response and
resistance to therapy [67]. Hypoxia enhances the radioresistant phenotype of ALDH-1-
positive CSC-like cells from the CC lines, HeLa and SiHa, by improving post-radiation
DNA repair and preferentially activating the DNA damage checkpoint response [44].
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Low-oxygen conditions maintain CSCs in a quiescent state with a low proliferation
rate, thus enhancing chemo- and radio-resistance [67]. A higher local concentration of
oxygen improves the efficacy of radiotherapy [122]. Thus, oxygen therapeutics by tumor
oxygenation has been utilized as radiosensitizers with encouraging results in improving
patients’ responses to radiotherapy [65,66]. In CC, treatment with radiotherapy and hy-
perbaric oxygen showed significant improvement both in local cancer control and patient
survival [68]. In later studies involving CC patients who were treated with radiotherapy
or surgery, all patients with tumor pO2 values less than10 mm Hg had a lower overall
and disease-free survival than patients whose lesions were better oxygenated [69,70]. This
supports a role for hypoxia in radio-resistance and increased tumor aggressiveness.

10. Multidrug Resistance (MDR) and ALDH-Associated Resistance

Side population cells exhibiting a cancer stem cell-like phenotype have been detected
in a variety of different solid tumors, including CC [61,123]. These side population cells
show increased expression of drug-transporter proteins, including MDR1 (ABCB1), ABCC1
(MRP1), and ABCG2. The overexpression of ABC protein is one of the main protective
mechanisms for CSCs in response to chemotherapeutic agents [124]. This facilitates the ex-
pulsion of Hoechst dye and, more importantly, cytotoxic drugs, leading to higher resistance
to chemotherapeutic agents and disease relapse [125-127]. In ovarian cancer, CSCs are sen-
sitive to drugs, such as fumitremorgin C and verapamil, that block ABC transporters [71].
The use of ABC transporter inhibitors in combination with chemotherapy is currently
undergoing pre-clinical investigation in CC and other cancers [72-74].

As previously mentioned, ALDH protects cells from the potentially toxic effects of
raised ROS levels. High ALDH levels are present in both normal and CSCs and have been
shown to be involved in chemo-and radiotherapy resistance [128-130]. ALDH activity has
been shown to be a potential selective marker for CSCs in CC and other different types of
gynecological cancer [75-81]. Several general and isoform-specific ALDH inhibitors have
been shown to be effective in pre-clinical models of gynecologic malignancies, supporting
further clinical testing [82]. ALDH inhibitors, such as CM307 and. 673A, synergize with
chemotherapy to reduce tumor growth. Thus, ALDH-targeted therapies hold promise for
improving patient outcomes in CC and other gynecologic malignancies [82,83].

11. Epigenetic Programming

Epigenetic programming, involving DNA methylation, histone acetylation, microRNA
(miRNA) expression, and chromatin remodeling, is implicated in causing cancer cells to
regain stem CSC-specific features [131,132]. Dysregulation of epigenetic mechanisms can
contribute to the progression of CSCs due to abnormal epigenetic memory. Consequently,
agents targeting epigenetic programming may be potential anti-CSC therapies [133,134].
DNA methyltransferase (DNMT) inhibitors are a class of anti-CSC compounds, which are
already being used as part of the management of different types of malignancies, including
CC [84,85]. Histone deacetylases (HDACs) are chromatin-remodeling enzymes involved in
histone acetylation, which can modulate chemotherapeutic resistance in CC and various
other cancers [86,87].

miRNAs are important regulators of gene expression by inducing mRNA degradation
and/or translational repression via interaction with the 3’ untranslated region (3’-UTR) of
target mRNAs. miRNA influence gene translation in both canonical and non-canonical
ways [135]. In some cases, miRNAs have been shown to interact with different regions
on genes, including promoters, and are involved in the activation and regulation of gene
transcription [136]. It has been revealed that miRNAs have an essential function in the
biology of CSCs via the regulation of signaling pathways of stemness, EMT, differentiation,
and carcinogenesis in the cells [137]. Abnormal miRNA expression can lead to tumor
suppression or act as an oncogene in various cancers [138]. The miR-302-367 cluster was
identified in the tumor-initiating glioma cells, and it has been shown to suppress the growth
of CCSCs via the negative regulation of the cyclin D1 and the AKT1 pathway. This suggests
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that the miR-302-367 cluster may serve as a potential therapeutic reagent even in CC [91]. In
addition, in the CC cell lines, Hela, Siha, CaSki, and C33A, miR-23b suppresses stem marker
expression, decreases the size and amount of the tumorsphere and decreases cell resistance
to cisplatin via inhibition of the expression of aldehyde dehydrogenase 1 family member
Al (ALDHAL1) [92]. In addition, in CC patients miR-145 induces CSC differentiation and
reduces cell invasion and colony formation, as well as displaying a positive correlation to
survival. Indeed, when nude mice were injected with adenovirus carrying miR-145, there
was a significant reduction in tumor growth, leading to increased survival [93].

To date, there is evidence to support the testing of novel combinatorial therapeutic
strategies based on administering drugs commonly used in clinical practice and epige-
netic regulators (such as DNMT inhibitors, HDAC inhibitors, or miRNAs) to improve
therapeutic efficacy in solid cancer patients and overcome the limitations of chemotherapy
alone [85,88-90]. Since epigenetic mechanisms are key regulators of CSCs, standard drug
combinations together with new epigenetic-type agents that target and kill CSCs in CC,
without adversely affecting normal stem cells and consequent adverse toxicity in cancer
patients, hold great promise in oncology.

12. Anti-CCSC Therapeutic Strategies

The selective targeting of CSCs is a promising therapeutic strategy aimed at eliminating
the cancer development and minimizing recurrence [139]. Many therapeutic agents have
emerged against CSCs and have been evaluated in pre-clinical cancer models and in
clinical trials [140]. The success of suppressing chemotherapy resistance of CSCs by anti-
CSC agents relies on the identification of molecular pathways, miRNAs, and niches that
selectively regulate CSC function [141]. However, to date, although certain chemicals, such
as molecular iodine, apigenin, doxycycline, morusin, phenethyl isothiocyanate, zolendronic
acid, and A1E (which is derived from 11 oriental medicinal plants) have been effective in
treating CCSCs [9], there is very limited development of specific drugs and/or molecules
targeting CCSCs [142].

Currently, several research groups are attempting to identify new target genes, proteins,
and signaling pathways that are involved in the stemness of CC cells. CSC-specific markers,
such as CD133 and CD49f, and signaling pathways, including Hedgehog, PI3K/Akt/mTOR,
Wnt, or Notch, have been largely used as therapeutic targets [25]. A dual-targeting strat-
egy, consisting of outer layers and inner parts, has been proposed to target CSCs [143].
Anti-tumor therapeutic agents are loaded on the outer layer targeting cancer cells, whereas
antibody-drug conjugates (ADCs) targeting CSC are encapsulated in the inner parts. This
system can accumulate and become concentrated in tumor tissue through enhanced perme-
ability and retention. The drugs on the outer layer are meant to kill the cancer cells, and
then ADCs release gradually from the inner part at the tumor site targeting CSCs and thus,
help to eliminate cancer cells. In this way, the CSCs may be killed using these therapeutic
drug combinations, and the beneficial effect of chemotherapy in cancer treatments could
improve [143]. However, no studies have yet reported on the use of dual targeting to treat
CCSCs. Therefore, more studies on dual targeting are needed specifically in CC.

CSC targeting with nanoparticles (NPs) is another potentially effective therapeutic
approach [13]. NP-enabled therapies have been designed to target stem cell-specific sig-
naling pathways and thus, inhibit stem cell-related functions. In particular, NP-mediated
photothermal therapy has been shown to be effective for both breast CSCs and cancer
cells [144]. CCSC-targeted salinomycin NPs provide a potential selective target that can
efficiently eradicate CCSCs [145]. However, there is poor bioavailability and serious side ef-
fects, limiting their clinical application. To overcome these limitations, Sal-Docetaxel-loaded
gelatinase-stimuli nanoparticles could be a promising strategy to enhance anti-tumor effi-
cacy and reduce side effects by simultaneously suppressing CCSCs and non-CCSCs [146].
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However, NP-enabled therapies are still far from an ideal CSC-specific targeting
therapy, especially because specific, sensitive markers or an equal combination of different
markers, and distinctive CSC-signaling pathways have not yet been characterized for each
CC type. Promising therapeutic strategies based on CSC targeting have been described,
such as the targeting of CSC-signaling pathways, CSC niche, and CSC mitochondria, with
advances being made in CSC-targeted drug delivery systems (DDSs) [147].

Despite more studies having been carried out using CSC-targeting therapies, there
are still several limitations which are not easy to overcome. CSCs are typically present in
very low numbers in tumors, accounting for approximately 0.1-10% of tumor cells [148].
Furthermore, CSC-targeted therapy may damage normal stem/progenitor cells and block
the regeneration of normal tissues, leading to tissue and /or organ dysfunction [13].

13. Conclusions and Future Perspectives

Numerous studies have been carried out to help in further understanding the molecu-
lar pathogenesis of CC and the progression of viral infections leading to this tumor. While
most investigations have attempted to prove that the cause of CC is HPV infection, recent
studies have aimed to determine the underlying factors and changes happening at the
molecular level which are involved in the development and stemness of CC. There is
now mounting evidence that CCSCs play a fundamental and strategic key role in cancer
development and regression, including resistance to therapy.

The current conventional chemo- and radiotherapies target the differentiated cancer
cells; and thus, CSCs are not harmed due to resistance to therapy. The main mechanisms
whereby CSCs contribute to the resistance to anti-cancer therapies, together with the
approaches to overcome this resistance, have been outlined in this review. Innovative
treatment approaches for the elimination of CSCs in CC have been reported. The targeting
of various stem-cell-related markers and signaling pathways has the potential to be a
novel strategy for CSC-targeted therapy, such as through dual targeting and NP-enabled
therapies. However, challenges for CSC-targeted therapy remain to be overcome, including
potential damage to normal stem/progenitor cells. Therefore, further in-depth knowledge
of the biology, function, and clinical implications of CSCs in CC therapy is crucial to develop
more effective therapeutic modalities for patients with CC.
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Abbreviations

ADCs

antibody-drug conjugates

ALDH aldehyde dehydrogenase

ATM ataxia telangiectasia mutated
ATR ataxia telangiectasia and Rad3-related
BRCA1 breast cancer 1

CAFs cancer-associated fibroblasts

CcC cervical cancer

CCSsC cervical cancer stem cell
CHKland2  checkpoint kinase 1 and 2
cPLA2«x cytosolic phospholipase A2alpha
CSC cancer stem cell

DDR DNA damage response

DNMTs DNA methyltransferases

EMT epithelial-mesenchymal transition
HBO hyperbaric oxygen

HDAC:s histone deacetylases

HPV human papillomavirus

MDR multidrug resistance
miRNA/miR  micro-RNA

MSI1 musashi RNA binding protein 1
NPs nanoparticles

PARP poly (ADP-ribose) polymerase
SP Side population

TAMs tumor-associated macrophages
TME tumor microenvironment
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