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A B S T R A C T

Ropes of ultra-high-molecular-weight polyethylene (UHMWPE) are replacing steel wires in many applications
and nondestructive testing to monitor their condition is of scientific and commercial interest. In this
work, wide-angle X-ray scattering (WAXS) combined with linear discriminant analysis (LDA) is proposed as
classification method to distinguish between healthy and damaged UHMWPE ropes. Healthy (as produced,
after pre-stretching) and damaged (in-field use) ropes (⌀ = 22mm) have been analyzed using synchrotron
radiation. Firstly, it is demonstrated that scans of healthy and damaged ropes can be distinguished with 100%
cross-validated test classification accuracy using LDA; this is shown both with the input data consisting of
pre-processed 1D WAXS data and with physical parameters retrieved by fitting the WAXS data. Secondly, it
is demonstrated that the classification performance is similar using the two forms of input data and that the
noise could be increased by a factor of three while maintaining 100% test classification accuracy across all
the three cross-validation folds.
. Introduction

Polyethylene (PE) is among the most widely used polymers and has
simple structure consisting of a backbone of carbon atoms each hav-

ng two attached hydrogen atoms. Ultra-high-molecular-weight
olyethylene (UHMWPE) has a number average molecular weight
etween 106–107 gmol−1. In the late 1970’s and in the beginning of
he 1980’s Smith, Leemstra and co-workers from the central labora-
ory of DSM established the production of UHMWPE filaments via
el-spinning [1–6]. This process was patented by DSM and commercial-
zed under the tradename of Dyneema® and so produced fibers have
trength and modulus of up to 4GPa and 154GPa which is comparable
o steel wires (2GPa and 184GPa).

UHMWPE ropes are emerging as a safe, strong and light-weight
lternative to steel wires in many areas such as heavy lifting, maritime
pplications, commercial fishing, aquaculture, wind, land cranes and
eep sea operations [7,8]. In these industries, the condition of ropes
nd wires are regularly monitored to ensure safe operations. For steel
ires, this is typically done using magnetic flux leakage techniques [9].
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UHMWPE ropes can also be subject to various damage mechanisms,
such as abrasion, creep, tensile fatigue and heating, which are critical to
detect. The International Organization for Standardization ISO and the
maritime classification society Det Norske Veritas DNV define standards
for off-shore fiber ropes describing current monitoring methods based
on visual inspections and counting of loading cycles [10,11]. Visual
inspection is, however, only indirectly sensitive to microscopic defects
and internal abrasion is not visible.

There is a demand for more quantitative non-destructive testing
(NDT) methods to monitor the condition of UHMWPE ropes. In 2017,
Schlanbusch et al. [12] reviewed existing literature and patents on
condition monitoring methods for synthetic fiber ropes. They describe
two distinct classification families (direct/indirect). The first family
comprises of directly measuring physical quantities of the rope includ-
ing methods like thermography, diameter measurements and acoustic
emission. The second family focusses on embedding additional materi-
als into the ropes as indicators/sensors. The embedding methods are
based on incorporating strength members that are visible by either
vailable online 7 March 2022
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X-ray imaging or magnetism. According to these authors, no single
existing measurement will be sufficient to cover all different failure
modes.

The unit cell of polyethylene and its dimensions were described
by Bunn [13] using X-ray crystallography. The unit cell was identified
as orthorhombic. Seto et al. [14] studied deformation processes of
oriented polyethylene with X-rays. They identified extra Bragg reflec-
tions of compressed polyethylene as originating from a new monoclinic
crystal structure. Russell et al. [15] studied the monoclinic modification
by battering samples with the orthorhombic structure beyond the yield
point. The monoclinic phase was identified with wide-angle X-ray scat-
tering (WAXS) and nuclear magnetic resonance (NMR) spectroscopy.
The fraction of the monoclinic phase was typically below 10%. In most
cases the authors observed only the most dominant 001 monoclinic peak
at 𝑄 = 13.7 nm−1, due to the next two monoclinic peaks overlapping
with the orthorhombic 200 peak.

Collins and Dalton [16,17] studied the crystal morphology of UHMW
samples under tensile strain by a combination of in-situ WAXS and
small-angle X-ray scattering (SAXS) allowing them to probe both the
crystalline structure and the higher level shish-kebab morphology.
SAXS data showed that the lamella thicknesses are constant at low
strain and then start to increase up to a strain of 0.2. This crystal
perfection process is also associated with a martensitic orthorhombic
to monoclinic phase transition within the crystal regions observed by
WAXS.

Balzano et al. [18] proposed a multiscale model to describe the
molecular structure of Dyneema® fibers from the length scales of the
nit cell up to the filament level in static and dynamic conditions. In-

situ WAXS was performed under tensile testing. Their first observation
was that the azimuthal width of the Bragg peaks did not change with
strain. The authors analyzed equatorial intensity profiles and observed
significant evolution of the peak width and center position for the
orthorhombic 110 and 200 peak. At low strains both peaks shift towards

larger momentum transfer 𝑄 which indicates, with the onset of plastic
eformation, a compression of the orthorhombic unit cell along the 𝑎-

and 𝑏-axis. At larger strains the 200 peak position continues to increase
monotonically while the 110 peak position begins to move towards
smaller 𝑄 values, which indicates that while the contraction continues
along the 𝑎-axis the orthorhombic unit cell will begin to expand along
the 𝑏-axis.

Istrate et al. [19] studied UHMWPE ropes with wear history by
differential scanning calorimetry (DSC) and fast scanning calorimetry.
These authors have shown how melting endotherms are affected by
wear: increase in rope wear, pushes the (deconvoluted) endotherm peak
to higher temperatures. But more importantly, an increase in a low-
melting fraction was detected which has been attributed to a change in
crystal morphology, namely chain folded crystals.

It is thus apparent that there are correlations between morphology
and wear history of UHMWPE fibers. However, in previous literature
focus has been on filaments and no quantitative models linking the
crystalline morphology to the mechanical properties of entire ropes
have been provided.

In recent years the ability to capture, store and process large quanti-
ties of data has been greatly enhanced. This has lead to a rapid growth
of data driven processes and modeling in many fields including auto-
matic detection of material degradation. Machine learning algorithms
have for example surpassed visual inspection by humans for the detec-
tion of metal corrosion and cracks in concrete constructions [20,21].
These algorithms are based on analyzing pictures of the material with
models trained on libraries of previously seen and labeled data, also
known as supervised learning.

Doaei et al. [22] used thermal pulsing and IR thermography com-
bined with machine learning to classify faults for electrofusion polyethy-
lene joints used in gas pipelines. As expected, they found that the
overall test classification accuracy increased with size of the data set.
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In their study, logistic regression with elastic net regularization showed p
better test classification accuracy than random decision forests and
k-means clustering.

Hiles et al. [23] published a study where formulations of cross-
linked polyethylene pipes were classified by applying machine learning
concepts to infrared spectra. Their goal was to understand how the pipe
formulation affected performance. By applying principle component
analysis (PCA) and supervised classification methods, the authors show
that IR absorbance peaks could be used to determine the formulations
of the pipes with very high accuracy.

Falconer et al. [24], applied machine-learning algorithms to optical
and thermal image data for Dyneema fiber rope condition monitoring
during continuous bending over sheaves with very promising for re-
maining useful life prediction. Their data was based on information
obtained from the surface of the rope.

A common linear method used for classification tasks is linear
discriminant analysis (LDA). This method has been applied to attenu-
ated total reflectance Fourier transform infrared (ATR-FTIR) microspec-
troscopy data to diagnose colon cancer with an accuracy of 95.8%
between cancer and normal tissue classes on a test set [25]. The same
authors also used LDA on infrared spectrometry data of diesel samples
for quality screening purposes [26]. The trained model had an accuracy
of 95.6% between samples that passed/failed the quality control on a
test set.

Elsewhere, LDA has also been used to discriminate between nine dif-
ferently branded polyethylene films with 100% accuracy based on ATR-
FTIR spectroscopy data [27], to discriminate between flavonoids with a
sensor array of five fluorescent polymers with 100% accuracy [28] or to
discriminate between carbohydrates with supramolecular sensing [29].

In this paper, we propose a condition monitoring method for
UHMWPE ropes based on combining WAXS measurements with su-
pervised learning. WAXS is employed as NDT method which primar-
ily probes the crystalline phase of the material and such measure-
ments of UHMWPE ropes have been performed. Predictive models of
rope condition have been trained using LDA as a supervised learning
technique.

2. Experimental procedures and data pre-processing

The studied 22mm thick ropes of Dyneema® SK78 fibers were
manufactured and provided for this experiment by Dynamica Ropes
ApS: A healthy rope and a damaged rope. The healthy rope has only
been subject to pre-stretching to remove the constructional elongation.
The damaged rope has been subject to pre-stretching plus internal
and external abrasion and has been retired from commercial use by
a customer of Dynamica Ropes ApS.

WAXS measurements were carried out at the High Energy Materials
Science Beamline (HEMS) at PETRA III, DESY, Hamburg. The wave-
length used was 0.014 05 nm. A CdTe Pilatus 2M detector was used
and placed at a distance of 2.243m allowing us to probe the 𝑄-range
bove 12.5 nm−1. The size of the X-ray beam was 100 μm × 100 μm. The
omplete ropes were placed on a motorized stage and, aiming for the
enter, they were scanned in a linear fashion along the rope direction
n steps of 300 μm with an exposure time of 10 s per scan. In total 70
cans were performed for each rope. Each observation was corrected
or differences in transmission. The transmission signal was recorded
ia a semi transparent beamstop directly on the Pilatus detector.

The data was masked and azimuthally integrated to 500 linearly
paced points in the 𝑄-range from 12.5 to 22.5 nm−1 with the pyFAI
ibrary [30]. Furthermore, the data was normalized to sum to 1 to
ccount for differences in scattering volume effects.

Fig. 1 plots the mean WAXS curves calculated from all scans for
he healthy and damaged ropes on a logarithmic scale in green and
ed, respectively. Standard deviations are indicated by shaded areas.
he monoclinic and orthorhombic peaks are indicated with cyan and

urple background, respectively.
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Fig. 1. Mean WAXS curves calculated from 70 scans of a healthy (green) and 70 scans
of a damaged rope (red). Standard deviations are indicated by shaded areas. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 2. Fit of a representative azimuthally integrated WAXS scan of the damaged rope
to deconvolute the pattern into individual peaks.

The WAXS curves have also been processed in terms of fitting with
the aim of deconvoluting each measurement to fewer and less corre-
lated variables. This was done using the lmfit library [31]. For each of
the 140 observations each Bragg feature was fitted by a Pseudo-Voigt
function and the amorphous background was fitted by a combination
of a Pseudo-Voigt and a linear function.

Fig. 2 shows the fit/deconvolution for a single representative WAXS
curve obtained from the damaged rope. The overall experimental curve
is captured accurately by the full fit. The 𝜒2-residuals are below 10−5

for all 140 observations and thus all fits are deemed acceptable for
further analysis.

The fitted amplitudes were used to calculate the fraction of material
in monoclinic and orthorhombic crystalline phase and the overall crys-
tallinity. The fractions of material in crystalline phase 𝐶 was estimated
by the integrated intensity of the WAXS curve from the crystalline peaks
𝐼𝐶 divided by the total intensity 𝐼 integrated:

𝑋𝐶 [%] =
∫ 𝑄max
𝑄min

𝐼𝐶 d𝑄

∫ 𝑄max
𝑄min

𝐼 d𝑄
× 100. (1)

Analogously, the monoclinic or orthorhombic crystal fraction/content
can be caluclated by substituting 𝐼𝐶 for 𝐼mono

𝐶 or for 𝐼ortho
𝐶 in the above

equation.
Overall crystallinity, monoclinic content, orthorhombic content and

lastly the fraction between orthorhombic and monoclinic content were
chosen as input variables for the LDA analysis. Box plots of estimated
values for each of the 70 scans for each of the two ropes are shown in
Fig. 3. The bottom and top of each box represents the 25th and 75th
3

Fig. 3. Box plots of fitted values for crystalline fractions of scans from the healthy
(green) and damaged rope (red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Box plots of fitted values for unit cell parameters of scans from the healthy
(green) and damaged rope (red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

percentile while the yellow line indicates the median (50th percentile).
The length of the whiskers on the boxes are calculated by multiplying
the interquartile range, i.e. from the 25th to the 75th percentile, by 1.5.
However if the maximum/ minimum value is within this range then the
whisker is set at the maximum/minimum. If observations fall outside
the whiskers they are marked as potential outliers with open circles.
Scans containing potential outliers were investigated individually but
none were deemed unfit for purpose and all were included in the
dataset presented below.

The peak positions 𝐐ℎ𝑘𝑙 were used to estimate unit cell parameters.
This was done using the following relations between peak position,
Miller indices and unit cell parameters:

For the orthorhombic unit cell the relation reads:
2𝜋

|

|

|

𝐐ortho
ℎ𝑘𝑙

|

|

|

= 1
√

ℎ2

|

|

𝐚ortho||
2
+ 𝑘2

|

|

𝐛ortho||
2
+ 𝑙2

|

|

𝐜ortho||
2

. (2)

The relation for the monoclinic unit cell is:
2𝜋

|

|

|

𝐐mono
ℎ𝑘𝑙

|

|

|

=
sin 𝛽

√

ℎ2

|𝐚mono|
2 + 𝑘2 sin2 𝛽

|𝐛mono|
2 + 𝑙2

|𝐜mono|
2 − 2ℎ𝑙 cos 𝛽

|𝐚mono||𝐜mono|

, (3)

with 𝛽 = 107.9◦ for polyethylene. Input variables, both 𝑎ortho and 𝑏ortho,
were estimated from the orthorhombic 200 and 110 peaks, respectively.
Furthermore 𝑎mono and 𝑐mono were estimated from the monoclinic 200
and 001 peaks, respectively. Box plots of estimated values for each of
the 70 scans for each of the two ropes are shown in Fig. 4.

The full width at half maximum (FWHM) of the peaks were used to
estimate mean sizes of crystalline domains 𝜏ℎ𝑘𝑙 perpendicular to a set
of ℎ𝑘𝑙 planes. These mean sizes are estimated by the Scherrer equation:
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Fig. 5. Box plots of fitted values for mean sizes of crystalline domains from the healthy
and damaged rope.

𝜏ℎ𝑘𝑙 =
2𝐾𝜋
𝛥𝑄ℎ𝑘𝑙

, (4)

where 𝐾 is the shape factor which in this work is set to 0.9 corre-
sponding to a symmetric crystallite and 𝛥𝑄ℎ𝑘𝑙 is the FWHM of the ℎ𝑘𝑙
reflection.

The most significant Bragg features 𝜏𝑜110 , 𝜏𝑜200 and 𝜏𝑚001
were chosen

as input variables. Box plots of estimated values for each of the 70 scans
for each of the two ropes are shown in Fig. 5.

3. Linear discriminant analysis

LDA is a commonly used method to determine linear combinations
of features which separate classes of data both for the purpose of
visualization and for classification [32]. LDA projects the data 𝐗 onto
a 𝐶-1 dimensional sub-space, where 𝐶 is the number of classes, while
maximizing the ratio of between-class variance and within-class vari-
ance. With two classes this sub-space will thus be spanned by a single
linear discriminant 𝐰 which is determined in the following way.

When data of two classes (class 0 and 1) with means 𝜇0, 𝜇1 and
covariance matrices ∑

0,
∑

0 are projected onto a vector 𝐰 this will
result in new class means 𝐰 ⋅ 𝜇0, 𝐰 ⋅ 𝜇1 and variances 𝐰𝑇∑

0𝐰, 𝐰𝑇∑
1𝐰.

Fisher [33] defined the ratio between-class variance and within-class
variance by:

𝜎2between

𝜎2within
=

(

𝐰 ⋅ 𝜇0 − 𝐰 ⋅ 𝜇1
)2

𝐰𝑇∑
0𝐰 + 𝐰𝑇∑

1𝐰
. (5)

This ratio is maximized when 𝑤 is proportional to:

𝐰 ∝
(

∑

0
+
∑

1

)−1
(

𝜇1 − 𝜇0
)

. (6)

LDA makes the assumption that the covariances for the two classes are
equal (∑ =

∑

0 =
∑

1).
Typically these means and covariances are not known and have to

be estimated with a training set using maximum likelihood estimators.
However when the number of training observations is small compared
to the number of features the maximum likelihood estimator of the
covariance matrix is unstable. To stabilize the estimator, one usually
introduces a shrinkage parameter 𝛾 ∈ [0, 1] which shrinks the estimate
of the covariance matrix towards diagonal matrix of variances:
̂∑ (𝛾) = (1 − 𝛾) ̂∑ + 𝛾�̂�2𝐈. (7)

Typically one uses a larger shrinkage parameter when less training
data is available compared to the number of predictors. The value of
the shrinkage parameter is often determined by the lemma introduced
by Ledoit and Wolf [34].

After projection the data is discriminated by a threshold 𝑐, typically
set at the center between the two class means:

𝑐 = 𝐰 ⋅
(

𝜇 + 𝜇
)

. (8)
4

0 1
Fig. 6. Linear discriminant from first cross-validation fold between scans from healthy
and damaged rope with 1D WAXS input data.

In this work, LDA has been performed with the scikit-learn li-
brary [35]. Stratified three-fold cross-validation has been performed,
which ensures that both the training and test sets have equal fractions
of observations from the healthy and damaged class. 2/3 of the data
is stochastically selected for training (i.e. calculating 𝐰 and 𝑐). The
remaining 1/3 of the data is then used for independent testing, by
applying the LDA classification process to these observations. The
model is then evaluated by the test classification accuracy which is
given by the percentage of correctly classified observations in the test
set:

Accuracy [%] =
𝑁test −

∑𝑁test
𝑖=1

|

|

|

𝑦𝑖 − 𝑦est
𝑖
|

|

|

𝑁test
× 100, (9)

where 𝑁test is the number of observations in the test set, 𝑦𝑖 is the true
condition of observation 𝑖 and 𝑦est

𝑖 is the estimated condition by the
model (0 if damaged and 1 if healthy).

3.1. LDA with 1D WAXS input data

Firstly, LDA was performed using the 1D WAXS data as input after
normalization and centering by subtracting mean values for each 𝑄-
position. The shrinkage parameter was set to 𝛾 = 0.5, which is relatively
large due to the large number of predictors with respect to the number
of training observations.

The linear discriminant 𝐰 is calculated using the training obser-
vations and Eq. (7). Fig. 6 shows the linear discriminant coefficients
from the first cross-validation fold. The areas corresponding to mon-
oclinic and orthorhombic peaks are indicated with cyan and purple
background, respectively. The higher the absolute value of a coefficient
the higher the importance of the scattering signal at that 𝑄-value in
terms of distinguishing between healthy and damaged ropes. These
coefficients are very similar across all three cross-validation folds.

Fig. 7 shows projections of training and test data onto the linear
discriminant 𝐰. Each point represents a WAXS curve. The decision
boundary is calculated using Eq. (8) and is illustrated by the back-
ground color indicating the class predicted of observations in each of
the regions. LDA is able to classify all observations in the training set
correctly. Furthermore, the classifier is shown to generalize well to data
which has not been used for building the model, since all observations
in the test set are classified correctly. The test classification accuracies
across all three cross-validation folds were 100%.

3.2. LDA with fitted input data

Secondly, LDA was performed on fitted parameters obtained from
deconvoluting the 1D scattering. The data was standardized by sub-
tracting the mean and dividing by the standard deviation for each
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Fig. 7. Projections of training and test 1D WAXS data onto the linear discriminant
shown in Fig. 6.

Fig. 8. Linear discriminant from first cross-validation fold between scans from healthy
and damaged rope with fitted input data.

input parameter. The shrinkage parameter was set to 𝛾 = 0.1, which
is significantly smaller than with the 1D WAXS input data due to the
smaller number of predictors after the fitting procedure.

The linear discriminant is calculated using the training observations
and Eq. (7). Fig. 8 shows the linear discriminant 𝐰 from the first cross-
validation fold. The linear discriminants from the two other folds are
very similar.

Fig. 9 shows projections onto the linear discriminant of both train-
ing and test data. The decision boundary is again calculated using
Eq. (8) and is illustrated by the background color indicating the class
predicted of observations in each of the regions. LDA is able to classify
all observations in both the training set and the test set correctly. The
test classification accuracies across all three cross-validation folds were
100% which demonstrates that this predictive method based on fitted
input parameters also generalizes to independent data.

4. Classification with simulated noise

From a practical point of view it is interesting to explore how this
classification method responds to increased noise levels since it is likely
that data will have a lower signal-to-noise ratio than the data presented
in this work in a practical NDT setting. Therefore we have studied how
the test classification accuracy is influenced when Gaussian noise is
artificially added to the data set.

The level of noise is defined by the within-class standard deviations
at each 𝑄-position as shown by the shaded areas in Fig. 1. Noise
has been added by simulating random Gaussian numbers with stan-
dard deviations of integer values (1–9) times the within-class standard
deviations.
5

Fig. 9. Projections of fitted training and test data onto the linear discriminant shown
in Fig. 8.

Fig. 10. Test classification accuracy of LDA for 1D WAXS and fitted input data against
noise level in the data (defined by the in-class standard deviations).

For each of the 10 new data sets with varying amounts of noise,
including the original data set, three-fold cross-validation has been
performed using LDA as a classifier with various signal-to-noise ratios.

As part of the pre-processing of the data a Savitzky–Golay filter of
1st order using 9 points was applied to smoothen the data [36]. This
filter is applied before the fitting procedure.

The resulting mean test classification accuracies using either the 1D
WAXS data or fitted parameters with various amounts of noise can be
seen in Fig. 10. The shrinkage parameter is chosen by the Ledoit–Wolf
lemma. The standard deviations are indicated by shaded areas and are
estimated by the standard deviations of the test classification accuracies
over the three cross-validation folds.

5. Discussion

Here, we monitored new and damaged 22mm thick UHMWPE
ropes using WAXS. For each rope 70 scans were measured and the
pre-processed data analyzed using LDA. By use of three-fold cross-
validation we demonstrate that LDA can separate the two classes
of scans with 100% test accuracy; both when the input data was
1D WAXS or when physical parameters estimated obtained by peak
deconvolution were used. Thus we show that wear induced changes
in crystalline morphology of macroscopic UHMWPE ropes can be
measured ex situ with WAXS and that this can be used as a probe
for condition monitoring of UHMWPE ropes. From the presented and
additional measurements (not shown), we know that the wear induced
damage is not always homogeneously distributed across the cross-
section of the rope. Nevertheless, this seems to be not an issue as far
as binary classification is concerned.
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We also illustrate how the trained models distinguish between
WAXS scans of the healthy and damaged rope using 1D WAXS data and
fitted parameters respectively in Figs. 6 and 8. The linear discriminant
in Fig. 6 has positive values for all 𝑄-values corresponding to mono-
clinic peaks. Projections onto this discriminant gives positive values for
the damaged scans and negative values for the healthy scans. As easily
understood, the transformation of orthorhombic to monoclinic phase is
correlates with a damaged rope. Since the orthorhombic peaks are still
dominant even in damaged ropes, in these cases the shifts of the peaks
are more important. The linear discriminant shows either a minimum
or the transition from peak to valley at the original location of the peak.
For the 200 peak any shift towards higher 𝑄 (up until about 17.5 nm−1)
is associated with damage. This is consistent with existing literature on
single UHMWPE filaments reporting an increase of monoclinic content
with strain [16] and a contraction of the orthorhombic unit along the
𝑎-axis [18]. The linear discriminant is even easier to interpret once
the scattering patterns are deconvoluted through fitting as shown in
Fig. 8. This linear discriminant mainly discriminates between healthy
and damaged observations by the monoclinic fraction, the length of the
orthorhombic 𝑎 unit cell parameter and less so by peak broadening,
although, the latter is to some degree correlated to the strain in unit-
cell. Peak broadening seems, therefore, not to be dominated by unit-cell
strain.

To investigate the robustness of this classification method against
noisier data the signal-to-noise ratio was lowered by simulating and
adding Gaussian noise. It was demonstrated that the noise could be
increased by a factor of three while still maintaining a test classification
accuracy of 100% using either 1D WAXS data or fitted parameters
as input. The mean test classification accuracies of both methods are
above 75% even when the noise is increased by a factor of 10.

The work presented in this paper demonstrates that WAXS and LDA
can be used to distinguish between the binary classes of healthy and
damaged UHMWPE ropes with very high accuracy. For practical usage
it would be even more valuable to estimate the remaining life time of
ropes. Therefore, further work should analyze a population of ropes
from a more diverse set of conditions than healthy/damaged. Although
the herein described method in principle can be helpful for defining a
discard criteria, no attempt was made to do so here, for the damaged
rope is a subjective attribute (no mechanical tests were performed) and
no statistical evaluation over many ropes has been performed. We have
preliminary data recorded on a SAXSLAB Ganesha on disassembled
rope strands of approx. 7mm (data not shown) which underpins the
generality of the approach presented here.

We suggest to average over multiple scans of a rope in proximity to
each other since the information from a single scan is very localized and
thus might not be representative for the overall section of the rope. We
also suggest that WAXS could be used in combination with other probes
to more accurately estimate the remaining life time by combining
information from different length scales of the rope morphology. Future
studies should also include parameters as the strain rate and effects like
crystal aging as shown for UHMWPE applications elsewhere [37]. With
regard to the fundamental understanding of the structural manifesta-
tion of the damage, SAXS could be further incorporated in the study
design, although we believe that WAXS is more suitable to develop
into a in-situ classification tool, because it is easier to acquire data (less
space and time needed).
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