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Abstract In this paper, we discuss three modified single-
field natural inflation models in detail, including Special gen-
eralized natural inflation model (SNI), extended natural infla-
tion model (ENI) and natural inflation inspired model (NII).
We derive the analytical expression of the tensor-to-scalar
ratio r and the spectral index ns for those models. Then the
reheating temperature Tre and reheating duration Nre are
analytically derived. Moreover, considering the CMB con-
straints, the feasible space of the SNI model in (ns, r) plane
is almost covered by that of the NII, which means the NII
is more general than the SNI. In addition, there is no over-
lapping space between the ENI and the other two models in
(ns, r) plane, which indicates that the ENI and the other two
models exclude each other, and more accurate experiments
can verify them. Furthermore, the reheating brings tighter
constraints to the inflation models, but they still work for a
different reheating universe. Considering the constraints of
ns , r , Nk and choosing Tre near the electroweak energy scale,
one can find that the decay constants of the three models have
no overlapping area and the effective equations of state ωre

should be within 1
4 � ωre � 4

5 for the three models.

1 Introduction

The inflation theory is one of the accepted solutions to the
problem of horizon and flatness in Big Bang cosmology [1–
7]. The quantum fluctuations of the inflaton field provide a
piece of fundamental knowledge for studying the anisotropy
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of the cosmic microwave background (CMB) [8–13] and the
structure of the universe [14–17]. At present, the predictions
of scale-invariant inflation, Gaussian and adiabatic density
perturbations have been confirmed by WMAP [18], COBE
[19], Planck [20] and so on.

The single scalar field inflation model that relies on the
slow-rolling is now the mainstream inflation model [21–27],
which is described by its potential V (φ). When the slope and
curvature of V (φ) are small enough to satisfy the slow-roll
conditions, the universe will continue to inflate. At the end of
inflation, the universe goes into the next period which is usu-
ally called reheating [28]. During the reheating, the energy
density in the inflaton is transformed into a thermal bath,
which fills the universe at the beginning of the era of radiation
dominance. The reheating scenarios have a complex physics,
where the duration of the reheating would be affected by the
speed and type of particles, and there is usually a so-called
preheating stage. In this stage, the inflation field decays into
massive particles through non-perturbative processes such as
parametric resonance and instantaneous preheating [29–32].
After the preheating, the frequency band with parametric res-
onance will have very high occupancy, while the rest of the
space will be in a highly non-thermal state [33].

The reheating stage can be parameterized with the reheat-
ing temperatureTre, the effective equation of state(eos)ωre of
the matter in the reheating process, and the reheating dura-
tion, i.e., number of e-foldings Nre. For the value of Tre,
it should be larger than the electroweak scale to meet the
requirement of producing weak-scale dark matter. In addi-
tion, to reach the temperature of big bang nucleosynthesis,
Tre should be greater than 10 MeV [34,35]. Furthermore,
considering the constraints of the late entropy produced by
the decay of massive particles, the Tre would be as low as
[2.5–4] MeV [34,35].

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10559-8&domain=pdf
mailto:zhouhua@cqu.edu.cn
mailto:yuq@cqu.edu.cn
mailto:panyu@cqupt.edu.cn
mailto:zhoury@cqupt.edu.cn
mailto:chengwei@cqupt.edu.cn


588 Page 2 of 13 Eur. Phys. J. C (2022) 82 :588

Reheating is an extremely complex physical process [36],
and it is difficult for us to directly detect and study. Typi-
cally, to avoid the complexity of reheating and simplify the
description, the default choice of EOS ωre is the constant in
the interval [−1/3, 1] [33,37–39], where ωre = −1/3 cor-
responds to the end of inflation, and in order to satisfy the
dominant energy condition of general relativity and main-
tain causality, ωre must be less than 1 [39–41]. However, the
EOS ωre should vary with time during the reheating stage
due to the non-equilibrium nonlinear dynamics of the field
[37,42]. Therefore, Ref. [42] discusses the time evolution
equation of EOS during this stage and obtain a time-varying
EOS equation, which alleviates the arbitrariness of defin-
ing EOS parameters during reheating. To this end, we will
take the average ωre during reheating for subsequent discus-
sion based on the analysis of the evolution equation of EOS
between the coherent oscillation and the radiation-dominated
period in Ref. [42], and give more details in Sect. 4.2.

Furthermore, the number of e-folding Nk from the end of
inflation to the start of the radiation era is usually chosen to
define the duration of reheating. The value of e-foldings Nk

is affected by the potential of inflation, the universe reheating
instantaneously affects the upper limit of e-folding numbers,
and the reheating temperature under the electroweak scale
determines the lower limit. The value of Nk can be between
46 and 70 to deal with the horizon problem [44], and accord-
ing to the analysis in Refs. [45,46], Nk can even be 107 in
some extreme cases.

The natural inflation (NI) model was first proposed in Ref.
[47]. It has been a research hotspot in this field for several
years because of its simple and clear formula, and it also pro-
duced the mass of pseudo-Goldstone bosons through non-
perturbation effects. Moreover, the NI model has the shift
symmetry, which can prevent the influence of radiative cor-
rection on potential [48]. Unfortunately, due to the limitation
of the tensor-to-scalar ratio r , recent Planck + BICEP/Keck
observations have ruled out the NI model [20,49]. Since then,
a large number of modified NI models have appeared [50–
59], in this paper, we will study the three modified single-filed
NI models and consider the constraints of CMB and reheating
for three models.

The main contents of this article are as follows: in Sect.
2, we will review the method of parameterization of reheat-
ing and derive the expressions of the reheating temperature
Tre and reheating duration Nre. In Sect. 3, we derive r , ns ,
and reheating parameters for three modified single-field NI
models. In Sect. 4, we will explore the CMB and reheat-
ing constraints on those models and discuss their feasible
intervals to satisfy the experimental conditions. In Sect. 5, is
reserved for a summary.

2 Reheating

After inflation is over, the energy of the universe exists in
the scalar field. At this point, the temperature of the uni-
verse drops, and nucleosynthesis is pushed beyond the trigger
boundary. Reheating is a transitional stage after the end of the
inflation, which can release the energy in the scalar field and
heat the universe, thereby ensuring the smooth appearance
of the radiation-dominated period. As mentioned before, the
reheating phase can be parameterized as temperature Tre,
effective state equation ωre and duration e-folding number
Nre.

Next, we will give the derivations of Tre and Nre in detail
from inflation models [38,60,61]. According to the energy
density evolution equation in the inflation universe, we can
get ρ ∝ α−3(1+ω), and

ρend

ρre
=

(
aend
are

)−3(1+ωre)

, (1)

where “end” and “re” represent the end of inflation and
reheating, respectively. From Eq. 1, the e-folding number
of reheating can be expressed as

Nre = 1

3(1 + ωre)
ln

(
ρend

ρre

)
, (2)

furthermore, ωre = − 1
3 corresponds to the end of inflation,

and one can get ρend = 3
2Vend . After reheating, the universe

will enter a period of radiation dominance and the energy
density has the relationship with the reheating temperature
ρre = 1

30π2greT 4
re. Where gre is dominant for the number of

relativistic species at the end of reheating, and we use gre ≈
100 for the following discussion in this article. Therefore, the
duration Nre can be further expressed as a function of Tre

Nre = 1

3(1 + ωre)
ln

(
45Vend

π2greT 4
re

)
. (3)

Considering the variation of the number of helical states in
the radiant gas as a function of temperature [33], the rela-
tionship between the reheating temperature Tre and todays
temperature T0 is obtained as

Tre = T0

(
a0

are

) (
43

11gre

) 1
3

= T0

(
a0

aeq

)
eNRD

(
43

11gre

) 1
3

, (4)

where the subscripts “eq” and “RD” represent the matter-
dominated period and radiation-dominated epoch, respec-
tively. And eNRD = aeq

are
with the length in e-folds of radiation

dominance NRD . The time to cross the Hubble radius during
inflation is represented by pivot scale k = ak Hk including a
Hubble parameter during the inflation Hk , thus we can rewrite
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the ratio a0/aeq into

a0

aeq
= a0Hk

k
e−Nk e−Nree−NRD , (5)

where eNk = aend/ak and eNre = are/aend , and “k′′ denotes
the value of Fourier mode k when it leaves the Hubble radius
during inflation. Then Eq. 4 can be rewritten as

Tre =
(

43

11gre

) 1
3
(
a0T0

k

)
Hke

−Nk e−Nre . (6)

Two special cases need to be considered, e.g., ωre = 1
3 and

ωre �= 1
3 . First, assuming ωre �= 1

3 and putting Eq. 6 into Eq.
3, one can get

Nre = 4

1 − 3ωre

⎡
⎣−1

4
ln

(
45

π2gre

)
− ln

⎛
⎝V

1
4
end

Hk

⎞
⎠

−1

3
ln

(
11gre

43

)
− ln

(
k

a0T0

)
− Nk

⎤
⎦ . (7)

If we choose the Planck pivot 0.05 Mpc−1, the Eq. 7 simpli-
fies to

Nre = 4

1 − 3ωre

⎡
⎣61.6 − ln

⎛
⎝V

1
4
end

Hk

⎞
⎠ − Nk

⎤
⎦ . (8)

Likewise, Eq. 6 can also be abbreviated as

Tre =
[(

43

11gre

) 1
3 a0T0

k
Hke

−Nk

×
(

45Vend
π2gre

)− 1
3(1+ωre)

] 3(1+ωre)
3ωre−1

. (9)

In the second case, e.g., ωre = 1
3 , Eq. 3 becomes

0 = 1

4
ln

(
30

π2gre

)
+ 1

4
ln

(
3

2

)
+ ln

⎛
⎝V

1
4
end

Hk

⎞
⎠

+1

3
ln

(
11gre

43

)

+ ln

(
k

a0T0

)
+ Nk, (10)

and if one chooses gre = 100, then the above formula can
be simplified to

61.55 = ln

⎛
⎝V

1
4
end

Hk

⎞
⎠ + Nk . (11)

Since ωre = 1
3 corresponds to the start of the radiation-

dominated period, it’s impossible to obtain the expressions

for Nre and Tre, but we can obtain the constraints on ns for
a particular model.

3 Inflaton potentials

The theoretical motivation for the NI model is clear and sim-
ple in form, but it is contradicted by observational data with
more than 95% confidence, especially with the recently pub-
lished experimental data of Planck + BICEP/Keck [20,49].
Based on this, many studies on modification of the NI model
have been reported [50–59], which is expected to match
the experimental data. This paper focuses on three modified
single-field NI models, we derive the tensor-to-scalar ratio
r and spectral index ns of the models, and investigate the
reheating constraints on these models.

3.1 Special generalized natural inflation

According to the generalized natural inflation [50],

V (φ)=�4
[

cos
φ

fm
+ε cos

φ

fm
+e

1
n1! cos

(
φ
fm

+ π
n1!

)n1 ]n2

, (12)

a special generalized natural inflation (SNI) model can be
obtained with n1 = ±∞, n2 = 1 and ε = 0, where �4

represents the energy density and fm is the decay constant.
The e-folds number Nk is defined as

Nk = 1

M2
p

∫ φk

φend

V

V ′ dφ, (13)

where the subscript “end ′′ refers to the value of the inflation
field at the end of inflation. According to the definition of

slow-roll parameters ε = M2
p

2 ( V
′

V )2 and η = M2
p
V

′′
V , choos-

ing ε = 1 as the end of inflation, we can derive

φend = 1

fm
arccos

(√
M2

p

2 f 2
m + M2

p

)
. (14)

By using the spectral index ns = 1 − 6ε + 2η and r = 16ε

at φ = φk , this will lead to

ns =
f 2
m − M2

p

[
3 tan2

(
φk
fm

)
+ 2

]
f 2
m

, (15)

and

r = −8[ f 2
m(ns − 1) + 2M2

p]
3 f 2

m
. (16)

According to Hk = πMp
√

8Asε and V ≈ 3H2
k M

2
p, the

Hubble parameter Hk can be directly deduced as

Hk =
2
√

3πMp

√
−As[ f 2

m(ns − 1) + 2M2
p]

3 fm
, (17)
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and the potential of the end of the inflation Vend becomes

Vend = 4π2AsM
4
p

(
−2

M2
p

f 2
m

− ns + 1

)
cos

(
φend
fm

)

cos
(

φk
fm

) , (18)

where the expression of φk(ns) can be obtained by inversely
solving Eq. 15, the scalar amplitude As ≈ 2.196 × 10−9 and
Mp = 2.4 × 1018 GeV [62].

3.2 Extended Natural Inflation model

The second model, we can call it the “Extended” natural infla-
tion (ENI) model. Where the inflaton is the pseudo-Nambo–
Goldstone boson and the shift symmetry preserves the flat-
ness of the potential, it can be written as [39]

V (φ) = 2�4

2m

(
1 + cos

φ

fe

)m

, (19)

where fe is the decay constant for the ENI model, and the
application scope of the model can be expanded by changing
the value of the parameter m. Following the method in the
previous section, the r , ns , Hk and Vend of the ENI model
can be obtained as follows:

r = −8m
f 2
e (ns − 1) + mM2

p

f 2
e (m + 1)

, (20)

ns = 1 −
mM2

p sec2
(

φk
2 fe

) [
m cos

(
φk
fe

)
− m − 2

]
2 f 2

e
, (21)

Hk = 2πMp

√
−As

m[ f 2
e (ns − 1) + mM2

p]
f 2
e (m + 1)

, (22)

and

Vend = −12π2Asm
2M4

p

[m2M2
p − f 2

e (ns − 1)]
f 2
e (m + 1)2

×[ f 2
e (ns − 1) + mM2

p]
(2 f 2

e + m2M2
p)

. (23)

3.3 Natural inflation inspired model

The third model is the natural inflation inspired (NII) model,
which is able to make the spontaneous symmetry breaking
scale less than 1 [63] and its potential can be expressed as

V (φ) = V0

[
1 − sin2

(
φ

fn

)]
, (24)

where fn is the decay parameter for the NII model and one
can do the same steps as the SNI model, it is obtained

ns = 1 − 2
M2

p

f 2
n

[
cos

(
2φk

fn

)
− 3

]
sec2

(
φk

fn

)
, (25)

r = 16ε = −2[ f 2
n (ns − 1) + 4M2

p]2

f 4
n (ns − 1)

, (26)

Hk = √
2πMp

√√√√As

(
−4M2

p

f 2
n

− ns + 1

)
, (27)

and

Vend

= −3π2AsM4
p[4M2

p − f 2
n (ns − 1)][4M2

p + f 2
n (ns − 1)]

2 f 2
n ( f 2

n + 2M2
p)

.

(28)

4 Results

4.1 CMB constraints

Figure 1 shows the relationship between ns and r under dif-
ferent Nk for SNI, ENI, and NII. For each model, we take two
different e-folding numbers, which Nk = 55 and Nk = 65
correspond to up and down lines, respectively. The Gradient
graph indicates the value of decay constant varying from 1Mp

to 30Mp. The light blue and light grey shaded broadband
stand for the latest experiments with 1σ and 2σ experiment
errors of BAO, BICEP/KECK, and Planck data, respectively
[49].

In Fig. 1, the dashed line represents the feasible parameter
space of ns and r of the SNI model and Nk ∈ [55, 65]. In the
SNI model, the r value matches the experimental data within
2σ error when Nk ≥ 55, and the value of r matches the
experimental data within 1σ error when Nk ≥ 65. Further-
more, with the constrained by CMB, the decay constants are
in the range of 8Mp–10Mp. The solid line represents the fea-
sible parameter space of the ENI model and we will choose
m = 0.1 for the following discussion. In the ENI model, the
parameter spaces of r and ns are consistent with the latest
experimental data with 1σ error when Nk varies in [55–65]
and the decay constant is constrained to be less than 2Mp.
The r and ns of the NII model dependence curves under dif-
ferent e-folds numbers are shown as dotted lines of Fig. 1.
When Nk ≥ 55, the obtained results are within the error
of the 2σ experimental data. In addition, when Nk > 60,
r can falls within the experimental boundary of 1σ Planck
data. Moreover, the CMB constrained decay constant is in
the range of 12Mp–20Mp.

Figure 1 graphically shows that the NII model is more
general than the SNI model since the feasible space of the
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Fig. 1 The relationship between r and ns for three single-field NI mod-
els under different Nk ∈ [55, 65]. The dashed line, solid and dotted lines
represent the relationship between ns − r under the SNI model, ENI
model, and NII model, respectively. Among the ENI model, we choose
m = 0.1 for subsequent discussion. The colored gradient graph corre-
sponds to the value of decay constant varying from 1Mp to 30Mp . In
addition, the light blue and light grey broadband correspond to the latest
combination 1σ and 2σ experiment errors of BAO, BICEP/KECK, and
Planck data, respectively [49]

SNI model on the (ns, r) plane is almost covered by NII
under the constraints of the CMB. In addition, there’s no
overlapping part in the space of (ns, r) between the ENI
model and the other two models, which indicates the ENI
model is excluded by the other two models, and we need
more accurate experiments to confirm it.

When the values of Hk = πMp
√

8Asε, Nk and Vend for
the three models are brought into

ln

⎛
⎝V

1
4
end

Hk

⎞
⎠ + Nk − 61.55, (29)

then we can get the (ns, r) for ωre = 1
3 and constraints of

the amplitude of scalar fluctuations As , as shown in the Fig.
2. Where the dashed line, solid and dotted lines represent
the relationship between ns − r under the SNI model, ENI
model, and NII model, respectively. Likewise, the colored
gradient graph indicates the decay constant varies from 1Mp

to 30Mp. The above conditions impose strong constraints on
the parameter space. For the SNI model, only when the decay
constant 8Mp < fm < 10Mp, ns and r would be within the
2σ experiment boundary.

It can be seen from Fig. 2 that for any chosen value of
fe under the ENI model, the r can satisfy the constraints
given by the latest experiments, however, ns is very sensitive
to the change of parameter fe. Under the constraints of the
amplitude of scalar fluctuations, ns of the ENI model would
be within experimental error when fe → 2Mp and varies in
a small range [49]. In addition, when fe > 4Mp, the r and
ns of the ENI model tend to be stable and change in a small
range.

Fig. 2 The relationship between r and ns for three single-field NI mod-
els under the special case ωre = 1

3 and the constraints of the amplitude
of scalar fluctuations. The dashed line, solid and dotted lines represent
the relationship between ns − r under the SNI model, ENI model, and
NII model, respectively. The colored gradient graph corresponds to the
value of decay constant varying from 1Mp to 30Mp . In addition, the
light blue and light grey broadband correspond to the latest combination
1σ and 2σ experiment errors of BAO, BICEP/KECK, and Planck data,
respectively [49]

Under the constraint of amplitude of scalar fluctuations,
the variation of r and ns with fn is shown in Fig. 2. Where
the the dotted line represents the change curve of the NII
model. As Fig. 2 shows, those above conditions impose
strong constraints on the parameter space. Only when fn ∈
[14Mp, 20Mp], ns and r can be within the range of the latest
2σ Planck experiment [49], far from the experimental range
of 1σ .

4.2 Reheating constraints

The value of EOS can be fixed by the inflation model parame-
ter p when the scalar field oscillates near the minimum poten-
tial at the end of inflation, i.e. the EOS of a homogeneous con-
densate oscillating in potential with a minimum of the form
V (φ) ∝ φ p can be parameterized as ω = (p − 2)/(p + 2),
and this allows us to naturally derive the value of EOS at this
stage [37,40,42,43,64]. However, at the end of the coherent
oscillation phase, fragmentation leads to inhomogeneities,
which in turn alter the EOS during the phase of backreaction
[42,65–69]. The effects of fragmentation on the evolution
equation of EOS at this stage can usually be obtained through
lattice simulation, see [43,67,69,70] for more details. Fur-
thermore, the Ref. [42] studies the EOS in the reheating phase
after coherent oscillation in detail, and gives a more precise
EOS for this stage.

Based on this, as an attempt, we also analyze the minimum
potential behavior of the three models listed in this paper.
However, we found that there is a constant correction term
in the expanded form of the three models, and the effect of
this correction may require lattice calculations to estimate,
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Fig. 3 Tre and Nre as a function of ns for different fm and ωre in the
SNI model. The red solid, the gree dashed, the blue dotted and the black
dotted and dashed line corresponds to ωre = − 1

3 , ωre = 0, ωre = 1
5 and

ωre = 1, respectively. The blue region corresponds to the 1σ boundary

of Planck ns and the red area corresponds to the 1σ boundary of the fur-
ther CMB experiment with sensitivity ±10−3 [72,73]. The khaki area
corresponds to temperatures of 10 MeV from BBN, and Light khaki
areas correspond to electroweak scales below 100 GeV

which is very challenging work. Fortunately, the value of
EOS has a manageable impact on subsequent research in
this paper. Therefore, assuming that the constant coefficient
correction is small enough and we can infer the V (φ) ∝ φ2

near the minimum potential for the three models. Then, the
EOS at different stages can be obtained naturally based on

Ref. [42], i.e. ωre = − 1
3 , ωre = 0, ωre = 1

5 and ωre = 1,
where ωre = 0 stands for the coherent oscillation stage and
ωre = 1/5 for the reheating stage.

The behaviors of Nre and Tre as a function of ns under the
SNI model as shown in Fig. 3, the blue region corresponds to
the 1σ boundary on Planck’s ns and the red one corresponds
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Fig. 4 The Nk vs ns and r vs ns under the SNI model, where fm < 30Mp . The green area corresponds to ωre ≤ 0, the yellow area corresponds
to 0 ≤ ωre ≤ 1

5 , the blue area represents the range of 1
5 ≤ ωre ≤ 1, and ωre ≥ 1 corresponds to the dark pink range

Table 1 The values of ns , Nk
and r under the SNI model
corresponds to different values
of fm and ωre, where Tre = 100
GeV

fm(Mp) ωre ns Nk r

8 [− 1
3 , 0] [0.9300, 0.9543] [25.12, 46.04] [0.1033, 0.0385]

[0, 1
5 ] [0.9543, 0.9578] [46.04, 52.93] [0.0385, 0.0293]

[ 1
5 , 1

3 ] [0.9578, 0.9591] [52.93, 56.37] [0.0293, 0.0257]
[ 1

3 , 1] [0.9591, 0.9621] [56.37, 66.62] [0.0257, 0.0176]
10 [− 1

3 , 0] [0.9347, 0.9604] [25.16, 46.13] [0.1208, 0.0524]
[0, 1

5 ] [0.9604, 0.9642] [46.13, 53.04] [0.0524, 0.0420]
[ 1

5 , 1
3 ] [0.9642, 0.9658] [53.04, 56.49] [0.0420, 0.0379]

[ 1
3 , 1] [0.9658, 0.9694] [56.49, 66.80] [0.0379, 0.0283]

20 [− 1
3 , 0] [0.9397, 0.9663] [25.20, 46.24] [0.1474, 0.0764]

[0, 1
5 ] [0.9663, 0.9705] [46.24, 53.19] [0.0764, 0.0653]

[ 1
5 , 1

3 ] [0.9705, 0.9722] [53.19, 56.66] [0.0653, 0.0608]
[ 1

3 , 1] [0.9722, 0.9762] [56.66, 67.03] [0.0608, 0.0500]
30 [− 1

3 , 0] [0.9397, 0.9672] [25.21, 46.26] [0.1548, 0.0816]
[0, 1

5 ] [0.9672, 0.9714] [46.26, 53.22] [0.0816, 0.0705]
[ 1

5 , 1
3 ] [0.9714, 0.9731] [53.22, 56.69] [0.0705, 0.0659]

[ 1
3 , 1] [0.9731, 0.9771] [56.69, 67.07] [0.0659, 0.0551]

to the further experiment precision of 10−3. According to
the constraints of CMB on the model parameter space, we
choose four typical values of fm for subsequent discussion,
i.e., fm = 8Mp, fm = 10Mp, fm = 20Mp and fm = 30Mp.
The Tre converges around 1015 GeV, which may be required
by the GUT-scale regeneration model [71]. The point where
the four lines come together (Nre = 0) is what be called the
instantaneous reheating point [44].

The relationship between Nk − ns and r − ns is obvious
in Fig. 4. The green area corresponds to ωre ≤ 0, the yellow
area corresponds to 0 ≤ ωre ≤ 1

5 , the blue area represents the
range of 1

5 ≤ ωre ≤ 1, and ωre ≥ 1 corresponds to the dark
pink range. Since the value of fm is proportional to ns , the
lower bound of the Nk −ns corresponds to larger fm-values,
conversely, the upper bound of the r − ns corresponds to
larger fm . One can also find that, both r and ns are within the

Planck-2018 constraint when ωre > 0. If one sets Tre = 100
GeV, thus the bounds of ns , Nk and r all can be obtained from
the constraints with different fm and ωre. From Table 1 one
can get that ωre is proportional to ns and Nk , and inversely
proportional to r . Furthermore, under such restriction of Tre,
the corresponding ωre can be found only when fm < 10Mp,
one can find the solution that both ns and r are within the
latest Planck-2018 data [49].

Figure 5 shows Nre and Tre as a function of ns under the
ENI model. By varying the decay constants fe in the feasible
interval, e.g., 2Mp, 4Mp, 10Mp and 30Mp, one can find that
the ENI model is sensitive to the choice of parameter when
fe < 4Mp, i.e., fe > 2Mp, the central value is rapidly away
from the experimental error range and tends to be stable after
fe > 4Mp. Under four different fe, the value of ns , r and Nk

for different ωre can be found in Table 2. when fe ≥ 4Mp
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Fig. 5 The duration of reheating Nre and the temperature Tre as a function of ns are plotted for different parameters fe and ωre of the ENI model.
The legend of the shadow area refer to Fig. 3

and 0 ≤ ωre ≤ 1, ns is totally excluded by the Planck-2018.
While, the value of r satisfy the experimental constraints [49]
for any chosen of fe < 30Mp and ωre ∈ [−1/3, 1]. Figure 6
shows the relationship between the predictions of Nk−ns and
r − ns for different ωre, and one can find that when ωre > 0,
the value of r can within the experimental error.

The change of the temperature Tre and the duration of
reheating Nre with ns under the NII model is shown in
Fig. 7. Four typical fn have been chosen, i.e., fn = 10Mp,

fn = 15Mp, fn = 20Mp,and fn = 30Mp, and one can find
when fn > 20Mp, the predictions of Nre and Tre tend to be
stable. Table 3. further show the variation of ns vs r and Nk

vs r under different effective equation of state ωre. It can be
seen that when fn = 10Mp, the value of r can fall within the
experimentally allowable boundaries when 0 < ωre < 1.
However, even if a larger ωre is chosen, the value of ns is
still smaller than the experimental value. Fortunately, when
15Mp ≤ fn ≤ 20Mp, both ns and r can within Planck-
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Table 2 The values of ns , Nk
and r under the ENI model
corresponding to different fe
and ωre, where Tre = 100 GeV

fe(Mp) ωre ns Nk r

2 [− 1
3 , 0] [0.9466, 0.9628] [27.05, 47.14] [0.0206, 0.0089]

[0, 1
5 ] [0.9628, 0.9653] [47.14, 53.74] [0.0089, 0.0070]

[ 1
5 , 1

3 ] [0.9653, 0.9663] [53.74, 57.03] [0.0070, 0.0063]
[ 1

3 , 1] [0.9663, 0.9686] [57.03, 66.86] [0.0063, 0.0046]
4 [− 1

3 , 0] [0.9567, 0.9738] [27.17, 47.35] [0.0270, 0.0145]
[0, 1

5 ] [0.9738, 0.9766] [47.35, 53.99] [0.0145, 0.0124]
[ 1

5 , 1
3 ] [0.9766, 0.9778] [53.99, 57.30] [0.0124, 0.0116]

[ 1
3 , 1] [0.9778, 0.9806] [57.30, 67.19] [0.0116, 0.0096]

10 [− 1
3 , 0] [0.9592, 0.9764] [27.20, 47.41] [0.0290, 0.0165]

[0, 1
5 ] [0.9764, 0.9792] [47.41, 54.06] [0.0165, 0.0144]

[ 1
5 , 1

3 ] [0.9792, 0.9804] [54.06, 57.37] [0.0144, 0.0135]
[ 1

3 , 1] [0.9804, 0.9832] [57.37, 67.28] [0.0135, 0.0115]
30 [− 1

3 , 0] [0.9596, 0.9768] [27.21, 47.42] [0.0293, 0.0168]
[0, 1

5 ] [0.9768, 0.9796] [47.42, 54.07] [0.0168, 0.0147]
[ 1

5 , 1
3 ] [0.9796, 0.9808] [54.07, 57.39] [0.0147, 0.0139]

[ 1
3 , 1] [0.9808, 0.9836] [57.39, 67.29] [0.0139, 0.0118]

Fig. 6 Nk vs ns and r vs ns under the ENI model, where fe < 30Mp . The legend of the shadow area refer to Fig. 4

2018 error range under the constraints of 1
5 ≤ ωre ≤ 1 [49].

When fn > 30Mp, the values of r is outside the experi-
mental error range under any choice of ωre. In Fig. 8, it is
graphically shows the changes of Nk vs ns and r vs ns under
the constraints of ωre, especially when 0 ≤ ωre ≤ 1

5 , one
can find the ns and r lie within the contour constrained by
Planck-2018.

Combining the constraints of CMB and reheating, Fig. 9
shows the value of the effective state equations ωre of reheat-
ing for SNI, ENI, and NII models at different values of decay
constants. Where the red solid line, the blue dashed line, and
the black dotted line correspond to the SNI, ENI, and NII
models, respectively. One can find that the decay constants
of the three models are mutually exclusive. Furthermore, for
the SNI model, the ns , r and Nk all satisfy the constraints of
the Planck-2018 when the eos 0.27 < ωre < 0.86. For the
ENI and NII models, in order to satisfy the constraints of the

ns , r and Nk , ωre should be within 0.24 < ωre < 0.84 and
0.36 < ωre < 0.80, respectively.

5 Summary

Reheating is an important period of inflation theory, which
can release the energy stored in the scalar field at the end
of inflation and increase the temperature of the universe. In
this work, we study the evolution of the reheating after the
end of inflation and investigate the constraints of the CMB
and reheating for different single-filed natural inflation mod-
els. The variation trends of reheating temperature Nre and
duration Tre with ωre and ns were explored.

The CMB constraints show that the ns and r feasible space
obtained by the SNI model is almost covered by the NII
model, which means that the NII model is more general than
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Fig. 7 Tre and Nre as a function of ns for different fn and ωre in the NII model. The legend of the shadow area refer to Fig. 3

the SNI model. Furthermore, the ENI model has no overlap-
ping area with the other two models, which indicates that the
ENI model and the other two models exclude each other, and
more accurate experiments can separate them.

Considering the constraint of reheating, we find that the
reheating equation of state ωre can effectively narrow the
feasible parameter space of the model, and greatly increase
the accuracy of the model. Moreover, we restrict ωre to the
range − 1

3 ≤ ωre ≤ 1, resulting in tighter constraints on the

parameters of the inflation model than from the usual
procedure. To this end, we explore the constraints of CMB
and reheating for three modified single-filed natural inflation
models and the results show that the decay constants are dif-
ferent for the three models, moreover, the effective equations
of state ωre should fall in the interval 1

4 � ωre � 4
5 for three

models.
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Table 3 The values of ns , Nk
and r under different fn and ωre
of the NII model, where
Tre = 100 GeV

fn(Mp) ωre ns Nk r

10 [− 1
3 , 0] [0.9171, 0.9457] [25.81, 46.60] [0.0444, 0.0076]

[0, 1
5 ] [0.9457, 0.9495] [46.60, 53.42] [0.0076, 0.0043]

[ 1
5 , 1

3 ] [0.9495, 0.9510] [53.42, 56.82] [0.0043, 0.0033]
[ 1

3 , 1] [0.9510, 0.9542] [56.82, 66.96] [0.0033, 0.0015]
15 [− 1

3 , 0] [0.9230, 0.9553] [25.94, 46.84] [0.0912, 0.0325]
[0, 1

5 ] [0.9553, 0.9603] [46.84, 53.71] [0.0325, 0.0242]
[ 1

5 , 1
3 ] [0.9603, 0.9623] [53.71, 57.13] [0.0242, 0.0210]

[ 1
3 , 1] [0.9623, 0.9670] [57.13, 67.37] [0.0210, 0.0140]

20 [− 1
3 , 0] [0.9240, 0.9570] [25.98, 46.92] [0.1146, 0.0506]

[0, 1
5 ] [0.9570, 0.9623] [46.92, 53.81] [0.0506, 0.0408]

[ 1
5 , 1

3 ] [0.9623, 0.9644] [53.81, 57.24] [0.0408, 0.0368]
[ 1

3 , 1] [0.9644, 0.9695] [57.24, 67.51] [0.0368, 0.0276]
30 [− 1

3 , 0] [0.9245, 0.9577] [26.02, 46.99] [0.1338, 0.0677]
[0, 1

5 ] [0.9577, 0.9630] [46.99, 53.89] [0.0677, 0.0572]
[ 1

5 , 1
3 ] [0.9630, 0.9652] [53.89, 57.32] [0.0572, 0.0529]

[ 1
3 , 1] [0.9652, 0.9704] [57.32, 67.60] [0.0529, 0.0427]

Fig. 8 Nk vs ns and r vs ns under NII model, where fn < 30Mp . The legend of the shadow area refer to Fig. 4
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Fig. 9 Feasible parameter space comparison of SNI, ENI, and NII
models under CMB and reheating constraints
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