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                                                       Abstract 

Regular two-level designs are useful and popular screening designs, but if they need to be run in 

blocks, their projection properties can dramatically deteriorate. Interactions may be fully 

confounded with block defining contrast(s), causing uncertainty in the identification of active 

factors. In this paper, we demonstrate alternative ways of blocking two-level regular designs 

such that their projective properties can be preserved or just weakly affected at the expense of 

just a small decrease in efficiency. Thereby, we can estimate effects we are normally interested 

in even if the design is blocked. Common regular two-level designs with 16, 32 and 64 runs are 

considered.  
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1. Introduction 
Regular fractional factorial two-level designs, usually denoted as 2k p−  designs, are among the 

most popular experimental plans used for screening. They are characterized by the property that 

any two effects can be estimated independently of each other or are fully aliased which makes 

their analysis rather straight forward. Their properties and usefulness are nicely explained in 

several textbooks like Box et al. (2005), Wu and Hamada (2009) and Montgomery (2019). 

Regular two-level designs can be constructed by allocating k-p factors to the principal 

factor columns in a full factorial with 2k p−  runs and the remaining p factor(s) to some higher 

order interaction column(s). This causes the full aliasing of effects. Resolution is an important 

concept to describe the aliasing.  By definition, a two-level design is of resolution R if no p-factor 

effect is aliased with any other effect containing less than R-p factors (Box and Hunter 1961). 

The aliasing can be derived from the defining relation which is the set of all columns that are 

equal to the identity column. For instance, if factor D is assigned to a three-factor interaction 

column, say ABC, it creates a word in the defining relation given by ABCD.  Any effect 

associated with one, two or three of these four letters will then be aliased with the effect 

associated with the remaining one(s).  In general, the defining relation has 2 1p −  words and to 
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each design a wordlength pattern can be constructed of the form ( )3 4 kW A ,A , ,A= , where 
iA  is 

the number of words of length i.  It is assumed that no main effects are aliased with each other. 

The higher the resolution, the better, but designs with the same resolution can have unequal 

numbers of fully aliased effects. For given k and p, let 1d  and 2d be two designs. If  r is the 

smallest integer for which ( ) ( )1 2r rA d A d  and ( ) ( )1 2r rA d A d , 1d  is said to have less aberration 

than 2d .  If no design has less aberration than d , it is said to have minimum aberration (Fries 

and Hunter 1980). This is a useful way to rank regular two-level designs.  

A much cited rule for experimental work is: “Block what you can and randomize what 

you can’t”. Blocking is an effective way to improve the efficiency of a design when not all the 

experimental runs can be performed under homogenous conditions. For regular two-level designs 

the general rule of blocking is to assign one or a set of higher order interaction column(s), named 

block defining contrast(s) as block factor(s), and then associate the distinct level combinations in 

the column(s) with different blocks. A good blocking scheme should have as few as possible 

lower order interactions confounded with the block effects, and an additional wordlength pattern 

( )2 3b b b kbW A ,A , A=  can be constructed, where
ibA is the number of ith order interactions 

confounded with the block effect(s).  

In order to rank blocked regular two-level designs, a combined wordlength pattern may 

be constructed. Several ways of doing this have been proposed and discussed in the literature 

(Sitter et al. 1997; Chen and Cheng 1999; Zhang and Park 2000; Mukerje and Wu 2006; Cheng 

and Tsai 2009; Xu and Mee 2010; Zhao et al. 2013). Cheng and Mukerjee (2001) proposed and 

studied a criterion for blocking based on the alias pattern of the interactions with the purposes of 

maximizing the number of two-factor interactions that are neither aliased with main effects nor 

confounded with blocks and at the same time distributing the interactions over the alias sets as 

uniformly as possible.   

Sun et al. (1997) used the two wordlength patterns in addition to two other criteria, the 

number of clear main effects and the number of clear two-factor interactions, to come up with 

good blocking schemes. A main effect was called clear if it was not aliased with any two-factor 

interaction and any block effect. Similarly, a two-factor interaction was called clear if it was not 

aliased with any main effect, any other two-factor interaction and any block effect. Based on 



3 
 

these four criteria, the concept of admissibility of blocking schemes was introduced, as a way to 

rule out bad designs. This criterion was further explored in Mukerjee and Wu (1999).  

In this paper we will mainly be concerned with using blocked regular two-level designs 

for screening purposes.  Screening is about separating out the normally few factors, from 

potentially many, that can explain most of the variation in the response. Projection properties 

concern how good a design is when restricted to a subset of factors. It is therefore important for a 

screening design to have good projection properties. Box and Tyssedal (1996) defined 

projectivity of two-level designs as follows: A n k  design with n  runs and k  factors each at 

two levels is said to be of projectivity 𝑃 if the design contains a complete 2P factorial in every 

possible subset of 𝑃 out of the 𝑘 factors, possibly with some points replicated. For regular two-

level designs the projectivity is always given by P = R-1. For more on projectivity, factor 

sparsity and screening, we refer to Box and Tyssedal (2001) and Tyssedal (2008).   

However, recommended schemes for blocking two level regular designs may cause the 

projection properties of the blocked designs to deteriorate. For instance, the two-level resolution 

V (projectivity P = 4) design for five factors in 16 runs, denoted as the 5 12V

−  design, becomes a 

projectivity P = 1 design when blocked in two blocks using the recommended scheme.   

We will in this paper present alternative ways of blocking regular designs, such that 

projection properties will be preserved either fully or to some extent. Reflected in our focus on 

screening, all the designs chosen to be blocked have good projections properties. Only blocks 

having an equal number of runs in each block will be considered. The designs to be blocked will 

have from 16 to 64 runs and will, given k and p, be minimum aberration designs taken from Wu 

and Hamada (2009), pages 253-257.  Also, whenever we write recommended way of blocking, 

we will from now on refer to the way of blocking given there on pages 260-263. With reference 

to the tables presented in Sun et al. (1997), the blocked designs found in Wu and Hamada (2009) 

are the ones that rank best according to the number of clear main effects for 16 run designs. For 

designs with more than 16 runs, the number of clear two-factor interactions is used as ranking 

criterion.  

This paper is organized as follows. In Section 2, we explain what is meant by projectivity 

of blocked regular two-level designs and introduce the criterion used to discriminate between 

different ways of blocking. A motivational example is given in Section 3. Section 4 is devoted to 
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strategies for finding good blocking schemes, and in Section 5 we present specific ways of 

blocking the designs and the projectivity that is possible to obtain in each case. Several ways of 

blocking regular two-level designs are discussed and compared in Section 6. Concluding remarks 

are given in Section 7.  

2. Projectivity Concepts and Evaluation Criterion 

If many design factors are active, one may have to give up on estimating all higher order 

interactions. Evangeleras and Koukouvinos (2004) introduced the concept of generalized 

projectivity for two level designs as: A n k  design with n  runs and k  factors each at two levels 

is said to be of generalized projectivity P  if  for any selection of P columns from the design all 

factorial effects including up to - factor interactions are estimable.  In line with that, Hussain 

and Tyssedal (2016) defined the projectivity of blocked two-level designs as: A blocked two-

level design is of projectivity P or P  if for any selection of P-columns the intercept and all 

factorial effects up to including P-factor interactions or - factor interactions are estimable, 

respectively. 

 Let the model for the expected response Y  in a blocked experiment be written as 

                                                           e e b bE = +Y X X  .                                                                        (1) 

Here Y is a vector of n  observations, eX  is a ( )1n p +  matrix containing a column for the 

intercept and the effect columns (main effects and interactions under consideration), 

0 1

t

e p, , ,   =    is the ( )1p +  dimensional vector containing the intercept and the 

regression coefficients that are half the corresponding effects, bX  is a n b  matrix containing 

the columns for the blocks and 
1

t
* *

b b, ,  =    is the corresponding vector of the coefficients 

for the b block effects. While the definition of projectivity informs what is possible to estimate, it 

does not tell how well the effects are estimated. A useful criterion in that context is the D-

optimality criterion defining a D-optimal design as the one for which 

t

Pn

X X
is maximized. Here 

 e b,X = X X  is the design matrix. tX X  denotes the determinant of t
X X  and is inversely 
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proportional to the square of the volume of the confidence region of the regression coefficients 

and thereby directly related to estimating the effects.  

 When a design is blocked, it may be argued that a precise estimation of the corresponding 

block effect(s) is not as important as for the effects of the factors under investigation (Atkinson 

and Donev 1997, page 106). For  e b,X = X X  we have 

t t

t e e e b

t t

b e b b

 
 
 

X X X X
X X =

X X X X
, and the 

covariance matrix for the least square estimators for e  is proportional to the upper left 

( ) ( )1 1p p+  +  submatrix of 
1

t
−

  X X   which is equal to ( )( ) ( )
1

1
t t t t

e e e b b b b e

−
− −

  
X X X X X X X X . 

It can be shown that ( )( ) ( )
1

t

t t t t

e e e b b b b e t

b b

−

− =
X X

X X X X X X X X
X X

. A design that maximizes 

t

t

b b

X X

X X
 is said to be -optimalsD  (Atkinson and Donev 1997, page 106). The subscript s refers to 

the subset of s columns for which we are really interested in estimating the effects and equals

1p +  for the case given above. It is then natural to define -efficiency assD  

                                                     

1

t s

t

b b

s ,effD
n

 
 
  =

X X

X X
.                                                                    (2) 

where 
1

s
 takes care of the increase in the determinant that occurs by increasing s. If for a given way of 

blocking
s ,effD  = 0 for one set of P-factors where s-1 is the number of all factorial effects up to P-

factor interactions or - factor interactions, it is clear that also 
tX X  has to be zero.  Then the 

inverse of t
X X  does not exist and projectivity P or P  is not obtained, respectively. Otherwise, 

it is natural to choose a candidate from the ones with good overall values for 
s ,effD  considering 

both the minimum, maximum and average values over all projections onto P factors.   
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3. A Motivational Example, the 8 42IV

−  Design Arranged in Two Blocks 

The 8 42IV

−  design is a resolution IV design and hence of projectivity P = 3, and all its 

projections onto three dimensions contain a fully replicated 32  design. The principal fraction of 

this design is given in Table 1, denoting the four principal factor columns as A, B, C and D. The 

generators for the four additional columns, E, F, G and H, are also given, together with two 

possible block defining contrasts. One is the recommended one, 
bB , according to Wu and 

Hamada (2009). The other contrast, *

bB , represents a possible alternative.  

Table 1. The 
8 42IV

−
 design with two alternative ways of blocking 

Run A B C D E=ABC F=ABD G=ACD H=BCD    
bB      *

bB  

1 -1 -1 -1 -1  -1 -1 -1 -1  1  1 

2  1 -1 -1 -1   1  1  1 -1 -1  1 

3 -1  1 -1 -1   1  1 -1  1 -1  1 

4  1  1 -1 -1  -1 -1  1  1  1 -1 

5 -1 -1  1 -1   1 -1  1  1  1  1 

6  1 -1  1 -1  -1  1 -1  1 -1 -1 

7 -1  1  1 -1  -1  1  1 -1 -1 -1 

8  1  1  1 -1   1 -1 -1 -1  1 -1 

9 -1 -1 -1  1  -1  1  1  1  1     -1 

10  1 -1 -1  1   1 -1      -1  1 -1 -1 

11 -1  1 -1  1   1 -1  1 -1 -1 -1 

12  1  1 -1  1  -1  1 -1 -1  1  1 

13 -1 -1  1  1   1  1 -1 -1  1 -1 

14  1 -1  1  1  -1 -1  1 -1 -1  1 

15 -1  1  1  1  -1 -1 -1  1 -1  1 

16  1  1  1  1    1  1  1  1  1  1 

 

The recommended blocking scheme for arranging the design in two blocks is to let
bB = 

AB be the block defining contrast (any other two-factor interaction could have been chosen). The 

defining relation for the 8 42IV

−  design consists of 14 four letter words and one eight letter word. As 

a result, the four two-factor interactions AB, CE, DF and GH are fully confounded with the 

block defining contrast and 24 out of the 56 projections onto three dimensions are affected in the 

sense that one two-factor interaction cannot be estimated without being fully confounded with 

the block effect. Thus, when blocked the recommended way of blocking, the design becomes a P 

= 1 design. 
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Now, if we let *

bB  be the block defining contrast, we will find that for 48 projections 

onto three dimensions 
s ,effD = 0.917, and 

s ,effD = 1 for the eight others.  Here 
s ,effD  is obtained 

letting eX be a 16 8  matrix containing a column for the intercept, the effect columns for the 

three main effects and their interactions and bX = *

bB . Hence all the main effects and their 

interactions are now estimable for any three factors, and the design is of projectivity P = 3 when 

run in two blocks.  

The notation ( )n,k ,P  screen is used to describe a two-level projectivity P design with n  

runs and k factors used for screening. When run in b  blocks of equal size, we will denote it a 

( )n,k ,P,b  screen. Table 2 summarizes what happens with the projectivity of some regular two-

level designs when they are blocked the recommended way. As can be observed a rather severe 

loss in projectivity is common for many of them. 

                    Table 2.  The projectivity of some regular designs when they are blocked.  

Design Screen Screen when blocked 

the recommended way 
8 42IV

−  (16, 8, 3) (16, 8, 1, 2) 

5 12V

−  (16, 5, 4) (16, 5, 1, 2) 

6 12VI

−  (32, 6, 5)     (32, 6, 2, 2), (32, 6, 1, 4) 

7 22IV

−
 (32, 7, 3)  (32, 7, 2, 2), (32, 7, 1, 4) 

8 32IV

−
 (32, 8, 3)  (32, 8, 2, 2), (32, 8, 1, 4) 

9 42IV

−
 (32, 9, 3) (32, 9, 1, 2) 

8 22V

−
 (64, 8, 4) (64, 8, 2, 2), (64, 8, 2, 4) 

 

4. Blocking Strategies 

If a design with 2n t= runs is to be run in two blocks with an equal number of runs in 

each, this can be done in 

2

2!

t

t

 
 
 

 possible ways, and for 4t   and a multiple of two there are 
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2 2 2

2 2 2

4!

t t t / t

t / t / t /

−   
   
   

 possibilities for blocking into four blocks.  For example, a 16 run 

design can be arranged in two and four blocks in 6435 and 2627625 possible ways respectively, 

and a 32 run design can be arranged in two blocks in 300540195 possible ways. Many of these 

block alternatives will have undesirable properties, and therefore some restrictions should be 

placed on the alternatives to investigate.  We will restrict the blocking contrast(s) to be 

orthogonal to the main effect contrasts. The combinatorial explosion illustrated above also asks 

for strategies that can provide good blocking alternatives without investigating all possibilities. 

Several such strategies now follow.  

 

Strategy S1.  Allocate mirror image pair runs to the same block 

A full factorial two-level design in n runs consists of 
2

n
 mirror image pair runs. This is 

also true for some of its fractions. For example, if the factor columns in a 32  design are denoted 

A, B and C, we may add a fourth factor column D = ABC and obtain a 4 12IV

−  design. The 

generator of this fraction is then D = ABC and the defining relation is I = ABCD, a column of 

only 1’s. The defining relation here consists of one word of length four, and the design consists 

of all level combinations for which their entry-wise product is 1. For a given level combination 

in the design, it is then evident that its mirror image run is also included in the design, and that 

this must be the case when the defining relation is a word of even length.  Depending on the 

degree of fractioning and which fraction is chosen, the defining relation may consist of several 

words with a plus or a minus in front of them. The corresponding design will then consist of all 

level combinations that satisfy the defining relation. For a given level combination in the design, 

its mirror image run will also satisfy the defining relation and be included if all these words are 

of even length.  Furthermore, if all level combinations in a design are mirror image pair runs, 

there can be no word of odd length in the defining relation, since a level combination that 

satisfies this constraint will exclude its mirror image run. For designs for which it can be used, 

this way of blocking assures the blocking contrast(s) to be orthogonal to main effect and odd 

factor interaction contrasts and reduces the number of blocking alternatives. When blocked in 

two blocks the reduction is from 6435 to 35 for a 16 run design and from 300540195 to 6435 for 
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a 32 run design. Since the loss in efficiency obtained by blocking is caused by effects being 

confounded with the block defining contrast(s), the use of 
s ,effD to evaluate the alternatives 

obtained by this strategy act as a way to reduce the confounding between even factor interaction 

contrasts and the block defining contrast(s).  

Strategy S2. Construct blocking schemes by doubling a blocked design 

Hadamard matrices are n n  orthogonal matrices consisting of 1’s and -1’s. They exist 

for n = 1 and 2 and otherwise apparently for n a multiple of 4. Without loss of generality we may 

let the first column consist of 1’s. The remaining columns will then have equally many 1’s and -

1’s.  

Several resolution IV designs can be constructed from Hadamard matrices. Let 1 1=S  

and let 

                                                 
2 2

2 2

  2 4 8
n n

n

n n

, n , , ,
 

= = 
− 

S S
S

S S
.                                         (3) 

These matrices are called Sylvester type Hadamard matrices and will provide us with all 

saturated regular designs, with an intercept column included.  For 22  =1,2,3, tn , t+= the 

designs 
2

2

n

n

n

 
=  

− 

S
D

S
 are resolution IV designs in n  runs and 2n  factors. Clearly, for every 

level combination its mirror image run will also be included. For a given regular design nD  with 

n  runs and k factors, 1 2 1k , , ,n= − , a regular two-level design with 2n  runs and 2k   

( 2 1k +  if an intercept column is included in nD ) factors can be constructed by doubling as  

                                                  2

n n

n

n n

 
=  

− 

D D
D

D D
.                                                                    (4)                           

If nD  is a resolution IV design, 2nD  is also a resolution IV design. 
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Now suppose a regular design nD  with k factors has been blocked in two blocks of equal 

size 1 2  andB B such that 
1

2

n

 
=  
 

B
D

B
. The design constructed by doubling is then  

                                                      

1 1

2 2
2

1 1

2 2

n -

-

 
 
 =
 
 
 

B B

B B
D

B B

B B

                                                                (5) 

and has 2k factors. As it is written, it may look like it gives a way to block 2nD  in two blocks, 

but two-factor interactions will be fully confounded with the block defining contrast no matter 

what the resolution is, and hence it will become a P = 1 design when blocked. However, both the 

configurations 

                                                      

1 1

1 1
2

2 2

2 2

*

n

-

 
 
 =
 
 
 

B B

B -B
D

B B

B B

                                                                    (6) 

and                                 

                                                          

1 1

2 2
2

1 1

2 2

**

n

 
 
 =
 
 
 

B B

B -B
D

B -B

B B

                                                                     (7) 

represent valid ways of blocking a design with 2k factors in 2n runs into two blocks without 

having two-factor interactions fully confounded with the block effect.  

The idea can be directly extended to four blocks and beyond. Suppose the regular design 

nD  is arranged into four blocks such that 

1

2

3

4

n

 
 
 =
 
 
 

B

B
D

B

B

. Then a possible blocking arrangement in 

four blocks for a design with 2n runs and 2k factors is: 
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1 1

4 4

3 3

2 2
2

3 3

4 4

2 2

1 1

n

 
 
 
 
 
 =
 
 
 
 
  

B B

B -B

B -B

B B
D

B B

B B

B -B

B -B

 .                                             (8) 

 

There are 

8 6 4

2 2 2
105

4!

   
   
    =  ways to arrange the eight submatrices in four blocks. Nine of these, 

the ones obtained from creating two blocks from  , =1,2, 3, 4i iB B i  and two blocks from 

 , =1,2, 3, 4i iB B i− , will have two-factor interactions fully confounded with block effects. 

The 96 remaining all represent ways of arranging a design in four blocks without having two-

factor interactions fully confounded with block effects. This may be a very effective way to 

obtain good blocking alternatives. If nD  has been blocked by allocating mirror image pair runs to 

the same block, the blocks in 2nD will also consist of mirror image pair runs and the number of 

blocks will be a subset of all blocks obtained by using strategy S1. For in that case, arranging 

2nD  in two blocks using the blocking of nD , it follows from (2) that the minimum value of 
s ,effD  

for 2nD will be the same as for nD  considering projections onto the same dimension. Therefore, 

the blocks used for blocking 2nD  should be the best ones obtained from blocking nD . The 

folding technique used in the blocking schemes is similar to the one suggested in Tyssedal and 

Samset (2010) for constructing supersaturated designs with good projection properties.  For 

some subsets of factors this technique will reduce the partial confounding between effects and 

the block defining factor(s), and the average
s ,effD  for 2nD is expected to be higher than the one 

for nD . This is also observed for the cases where this method has been used.  
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Strategy S3:  Use of Hadamard matrices 

Given that our design columns are included in a Hadamard matrix, the additional 

columns are all potential columns for arranging the design in blocks. There are for instance five 

different Hadamard matrices for n = 16 giving rise to five different 16 run designs. Four of those 

contain the 8 42IV

−  design and three contain the 5 12V

−  design (Tyssedal and Box 2001). The use of 

Hadamard matrices for arranging designs in blocks is particularly useful for blocking non-regular 

designs, and in our case when there are words of odd length in the defining relation. The method 

may be very effective as will be demonstrated. However, a combinatorial explosion of the 

number of Hadamard matrices up to equivalence occurs for n = 32 (Kharagani and Tayfeh-

Rezaie 2012). The number is then 13710027. For n > 32, the number of Hadamard matrices is to 

our knowledge not known. Hence checking all blocking possibilities becomes infeasible when n 

grows.  

 

Strategy S4: Arranging blocks in new blocks  

For some designs already blocked in two blocks, one may arrange each block in two new 

blocks to obtain a blocking scheme for four blocks. This may particularly be useful if the design 

has been obtained by doubling. For instance, the 128 run 64 572IV

−  design can be constructed from 

the 32 262IV

− design by doubling and arranged in two blocks using strategy S2. If each of these 

blocks can be arranged in two blocks, we have a way to block the 64 572IV

−  design in four blocks.  

The importance of the different strategies given here will change as the number of runs 

increases.  If all words in the defining relation are of even length, strategy S1 may be the 

preferred choice for the number of runs equal to 16 and 32. For designs with more runs, S2 and 

S4 become more important, if they can be applied, providing us with a more feasible number of 

candidate-blocks to investigate.  S2 may also be used when not all words in the defining relation 

are of even length, depending on how the design is constructed. Otherwise, in that case, S3 is our 

suggested strategy. Even though there is a combinatorial explosion in the number of possible 

Hadamard designs when n = 32, it is our experience that not that many Hadamard matrices need 

to be examined to obtain blocking alternatives that function well.   
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 5. Blocking Regular Two-level Designs with 16, 32 and 64 Runs 

5.1.  16 Run Designs 

The 8 42IV

−  design in Table 1 is a P = 3 design and out of the 6435 possible ways to block it 

in two blocks, 6028 will preserve the projectivity while 407 will not. However, its defining 

relation has only words of length four and eight and thus it consists of eight mirror image pair 

runs, making strategy S1 suitable for blocking, leaving us with only 35 possible alternatives to 

check. As commented in Section 3, the recommended strategy is to use a two-factor interaction 

column, which will also place mirror image pair runs in the same block. Now, all two-factor 

interactions are aliased in strings of four, such that all the 28 two-factor interactions can be 

arranged in 7 sets where all two-factor interactions within one set are fully aliased. Thereby, 

seven of the 35 possibilities have as a result that three other two-factor interactions are fully 

aliased with the block effect. All the other 28 alternatives give the same minimum, maximum 

and average values for 
s ,effD , as given in Table 5, when estimating all main effects and 

interactions for any three factors and thus provide us with (16,8,3,2) screens. It turns out that 

these are also the 28 with the highest minimum and average 
s ,effD among all the 6435 

possibilities. For all of them, 48 out of the 56 projections onto three factors will have a 
s ,effD = 

0.917 and eight will have a 
s ,effD =1 when divided into two blocks. The alternative block defining 

contrast in Table 1 is generated as  
1

AD+BD+CD-DE
2

*

bB = .  Hence there is only partial 

confounding with two-factor interactions. Using 
*

bB  as block generator, the 8 projections with a 

s ,effD =1 are {ABC}, {ABE}, {ACE}, {BCE}, {DFG}, {DFH}, {DGH} and {FGH}.  

The 5 12V

−  design with defining relation I = ABCDE is a P = 4 screen, but it is also a 

25P =  screen. Obviously, none of these properties are possible to preserve when it is blocked. 

The recommended way of arranging the design in two blocks is to use a two-factor interaction 

column as block generator. Thereby the blocked design becomes a projectivity P=1 design, a 

rather dramatic loss in projection properties. The resolution of this design is five and thus it is not 

built up from mirror image pairs. All the 6435 possible ways to run the 5 12V

−  design in two blocks 

were checked out. It turned out that for 60 of those the block generator is only partially 
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confounded with two-factor interactions. For projections onto three factors, all of these block 

generators perform equally well, providing us with (16,5,3,2) screens. Their 
s ,effD values are 

given in Table 5.  The design is given in Table 3 with a recommended and a suggested block 

generator denoted 
bB  and *

bB  respectively.  

                         Table 3. The 
5 12V

−  design with two alternative ways of blocking. 

Run A B C D E 
bB  *

bB  

1 -1 -1 -1 -1   1  1 -1 

2  1 -1 -1 -1 -1 -1 -1 

3 -1  1 -1 -1 -1 -1   1 

4  1  1 -1 -1  1  1 -1 

5 -1 -1  1 -1 -1  1  1 

6  1 -1  1 -1  1 -1  1 

7 -1  1  1 -1   1 -1  1 

8  1  1  1 -1 -1  1 -1 

9 -1 -1 -1  1 -1  1  1 

10  1 -1 -1  1  1 -1  1 

11 -1  1 -1  1  1 -1 -1 

12  1  1 -1  1 -1  1  1 

13 -1 -1  1  1  1  1 -1 

14  1 -1  1  1 -1 -1 -1 

15 -1  1  1  1 -1 -1 -1 

16  1  1  1  1   1  1  1 

 

The recommended block generator is bB = AB and the suggested one is  

*

bB =  
1

AD+AE+CE-CD
2

.  When projected onto four factors, it is possible to estimate all main 

effects and two-factor interactions with a
s ,effD = 0.939 for four out of five projections, using 

*

bB  

as the block defining contrast. With 
bB  as block generator this is possible for only two of the 

five projections.  For the fifth projection, the one that consists of the factors A, C, D, and E, one 

is only guaranteed to estimate three two-factor interactions. However, excluding one of the four 

two-factor interactions AD, AE, CD and CE from the model, one may estimate five of the six 

two-factor interactions for this projection with a 
s ,effD = 0.871. In Table 5 this design is denoted a 

( )1 316 5 4 2, , ,+  screen for projections onto four factors.  

 



15 
 

5.2. 32 Run Designs 

In Table 4 the 16 112IV

−  design is given, with generators for the 11 factor columns F-Q. 

                                          Table 4. The  16 112IV

−  design with generators. 

 ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCDE 

A B C D E F G H  J K L M N O P Q 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 1 -1 -1 -1 -1  1  1  1  1  1  1 -1 -1 -1 -1  1 

-1  1 -1 -1 -1  1  1  1 -1 -1 -1  1  1  1 -1  1 

 1  1 -1 -1 -1 -1 -1 -1  1  1  1  1  1  1 -1 -1 

-1 -1  1 -1 -1  1 -1 -1  1  1 -1  1  1 -1  1  1 

 1 -1  1 -1 -1 -1  1  1 -1 -1  1  1  1 -1  1 -1 

-1  1  1 -1 -1 -1  1  1  1  1 -1 -1 -1  1  1 -1 

 1  1  1 -1 -1  1 -1 -1 -1 -1  1 -1 -1  1  1  1 

-1 -1 -1  1 -1 -1 -1 -1  1 -1  1  1 -1  1  1  1 

 1 -1 -1  1 -1  1  1  1 -1  1 -1  1 -1  1  1 -1 

-1  1 -1  1 -1  1  1   1  1 -1  1 -1  1 -1  1 -1 

 1  1 -1  1 -1  -1 -1 -1 -1  1 -1 -1  1 -1  1  1 

-1 -1  1  1 -1  1 -1 -1 -1  1 -1 -1  1  1 -1 -1 

 1 -1  1  1 -1 -1  1  1  1 -1  1 -1  1  1 -1  1 

-1  1  1  1 -1 -1  1  1 -1  1 -1  1 -1 -1 -1  1 

 1  1  1  1 -1  1 -1 -1  1 -1  1  1 -1 -1 -1 -1 

-1 -1 -1 -1  1 -1  1  1 -1  1  1 -1  1  1  1  1 

 1 -1 -1 -1  1  1 -1 -1  1 -1 -1 -1  1  1  1 -1 

-1  1 -1 -1  1  1 -1 -1 -1  1  1  1 -1 -1  1 -1 

 1  1 -1 -1  1 -1  1  1  1 -1 -1  1 -1 -1  1  1 

-1 -1  1 -1  1  1  1  1  1 -1  1  1 -1  1 -1 -1 

 1 -1  1 -1  1 -1 -1 -1 -1  1 -1  1 -1  1 -1  1 

-1  1  1 -1  1 -1 -1 -1  1 -1  1 -1  1 -1 -1  1 

 1  1  1 -1  1  1  1  1 -1  1 -1 -1  1 -1 -1 -1 

-1 -1 -1  1  1 -1  1  1  1  1 -1  1  1 -1 -1 -1 

 1 -1 -1  1  1  1 -1 -1 -1 -1  1  1  1 -1 -1  1 

-1  1 -1  1  1  1 -1 -1  1  1 -1 -1 -1  1 -1  1 

 1  1 -1  1  1 -1  1  1 -1 -1  1 -1 -1  1 -1 -1 

-1 -1  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1 

 1 -1  1  1  1 -1 -1 -1  1  1  1 -1 -1 -1  1 -1 

-1  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1  1  1 -1 

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

 

It has only words of even length in its defining relation and hence allow the use of 

strategy S1. But it can also be constructed by doubling the 8 42IV

−  design, and thereby strategy S2 

can also be applied for arranging in two blocks. Using strategy S1, there are 6435 possible blocks 
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to consider, but leaving out those that correspond to using a two-factor interaction or a four-

factor interaction as block generator, there are only 6420 left. All of these make the blocked 

design a (32, 16, 3, 2) design, but 1380 of these have a minimum 
s ,effD = 0.88. The remaining 

5040 blocks all gave the same distribution of 
s ,effD , with minimum, maximum and average 

values given in Table 5. One of these blocking alternatives is given by 2

*B  in Table A.1 in 

Appendix A.  It can be generated as follows:  

   2 = 0.25AC-0.25AD+0.25AE-0.25BC+0.5CE+0.5DE-0.25ACDE-0.25BCDE*B . 

Based on the 28 equally good ways of arranging the 8 42IV

−  design in two blocks, it is 

possible to exploit strategy S2 to block the 16 112IV

−  design. Using both 
2

*

nD  and the 
2

**

nD , there are 

only 56 blocks to check, and they are all equally good according to 
s ,effD . Their minimum, 

maximum and average values for 
s ,effD  are also given in Table 5. We notice that the average 

s ,effD  is only slightly smaller, despite that the number of investigated alternatives being less than 

1% of those with strategy S1. 

There are 2627625 possible ways to block a design with 32 runs in four blocks using 

strategy S1 and 2098336 of these will give us a (32, 16, 3, 4) screen. Among these, 715680 have 

the highest minimum 
s ,effD = 0.834 and about equal average.  The one given in Table A.1 in 

Appendix A is one out of 50400 of these that also has a maximum 
s ,effD = 1. The two block 

defining contrasts are given by: 

41= -0.5BD-0.5CD-0.5DE+0.5BCDE*B  and  

42 = -0.25AD-0.5AE+0.25BD-0.5BE-0.25CD-0.25DE+0.25ABCD+0.25ABDE+0.25ACDE-0.25BCDE*B  

Due to their reasonably good projection properties and since there exists recommended 

blocking schemes for these designs, the  6 12VI

− , 7 22IV

− , 8 32IV

−  and the 9 42IV

−  designs have also been 

explored for blocking alternatives that may preserve  projections properties. Using recommended 

blocking schemes, not even the 6 12VI

−  design gives a P = 3 screen when arranged in two blocks.  

The 6 12VI

−  design with generator F = ABCDE is a P = 5 design, which is clearly not 

obtainable when it is blocked. It can be constructed from the 16 112IV

−
 design by removing all factors 
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assigned to three-factor interaction columns. Blocked the recommended way in two blocks, it 

becomes a P = 2 design and even a P = 1 design when arranged in four. The word in its defining 

relation is of even length, and strategy S1 can be used. The 5040 blocking alternatives found to 

have the lowest confounding with two-factor interactions for the 16 112IV

−  design provided us with 

both (32,6,3,2), (32,6,4,2) and ( )332 6 5 2, , ,  screens, and as (32,6,4,2) screens they are all equally 

good. Some preferences of blocking can be made for the ( )332 6 5 2, , , screen if also four factor 

interactions are of concern. Details can be found in Hamre (2018). Strategy S1 was also used for 

arranging the 6 12VI

−  design in four blocks. Considering projections onto three, four and five factors 

separately, one may choose different block defining contrasts in each case. Out of the many 

alternatives (Hamre 2018), we have chosen to present two block defining contrasts with 

reasonably good performance for five active factors or less. The block defining contrasts for 

arranging the design in two and four blocks are given in Table A.1 in Appendix A, and they may 

be obtained as follows: 

2 = 0.25AB+0.25AC+0.25BD+0.25BE+0.25CD+0.25CE+0.5DE-0.25ABDE-0.25ACDE-0.5BCDE*B  

41= -0.5AC-0.25AE-0.5BD-0.25BE-0.25CE-0.25DE+0.25ABCE+0.25ABDE+0.25ACDE+0.25BCDE*B  

42 = 0.25AB+0.25AC+0.25AE-0.25BD-0.25CD-0.5CE-0.25DE-0.25ABCE-0.5ACDE+0.25BCDE*B  

The corresponding 
s ,effD values are given in Table 5.   

The projection properties of the minimum aberration 7 22IV

− , 8 32IV

−  and 9 42IV

−  designs when 

arranged in two and four blocks the recommended ways, are given in Table 2. When blocked in 

two blocks, the projectivity is two for the 7 22IV

− and the 8 32IV

−  designs, and it is further reduced to 

one when arranged in four. The 9 42IV

−  design is even a (32, 8, 1, 2) screen. None of the designs 

have a defining relation consisting of only even words. Strategy S3 is therefore a possible 

alternative trying to obtain good blocking schemes.  We have used two 32 run Hadamard 

matrices, had.32.t1 and had.32.t3, from the web page ”A library of Hadamard matrices” (Sloane 

2018), hereafter referred to as 
1M  and 

2M , respectively.  For both matrices all rows with a -1 in 

the first column of 
1M  and 

2M were multiplied with -1, and thereafter the rows were rearranged 

such that the principle factor columns A,B,C,D and E could be identified among the 32 columns. 

The additional factor columns were generated by their generators: 
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         F = ABC and G = ABDE for the 
7 22IV

−
 design 

         F = ABC, G = ABD and H = ACDE for the 8 32IV

− design 

         F = ABC, G =ABD, H =ACD and J = BCDE for the 9 42IV

−  design. 

The remaining 26 columns in the rearranged Hadamard matrices were then tested as 

potential block generators. For all three designs,
1M  yielded good results for arranging in two 

blocks, while
2M provided good results for arranging in four. Block generators orthogonal to all 

main effects contrasts were found, and projection properties were preserved. Several equally 

good alternatives exist, Hamre (2018). One for each design and each blocking scheme is given in 

Table A.2 in Appendix A.  
s ,effD values are given in Table 5.  

5.3. 64 Run Designs 

The 32 262IV

−  design can be constructed by doubling the 16 112IV

−  design given in Table 3. 

Hence arranging the  32 262IV

−  design in two and four blocks can be done using strategy S2, 

exploiting the preferred ways of blocking the 16 112IV

−  design.  All the 5040 blocks that turned out 

equally good using strategy S1 for the 16 112IV

−  design, were tested for both configurations 
2

*

nD  and 

2

**

nD .  With the same configuration, all the tested blocks gave the same distributions of 
s ,effD with 

1 1

2 2
2

1 1

2 2

**

n

 
 
 =
 
 
 

B B

B -B
D

B -B

B B

 being slightly better. Two possible alternatives for 
1B  and 

2B  are given in 

Table A.1 in Appendix A.  
s ,effD values are given in Table 5. 

For arranging the 16 112IV

−  design in four blocks there are 40320 equally good alternatives as 

measured by -efficiencysD . All of these could then be tested for all the 96 possible 

configurations and for all 4960 possible projections onto three dimensions. We chose to only use 

10 of these blocks.  

For all these only the configuration mattered and four were better than the others. One of 

these is given below with blocks 
1B , 

2B , 
3B  and 

4B  taken from Table A.1. 
s ,effD -values are given 

in Table 5. 



19 
 

 

                                                                             

1 1

4 4

4 4

3 3

3 3

2 2

2 2

1 1

 
 
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 
 
 
 
 
 
 
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B B

B B

B -B

B B

B -B

B -B

B B

B -B

. 

The 8 22V

−  design with generators G = ABCD and H = ABEF is of odd resolution. Strategy 

S3 was used to block the design in 2, 4 and 8 blocks. The 64 run Hadamard matrices used to 

obtain orthogonal main effects blocking were the ones obtained by doubling the 32 run 

Hadamard matrices M1, M2 and had32.t3 (Sloane 2018) after rearranging. All of them contained 

the 6 principal factor columns A, B, C, D, E and F.  The 57 remaining columns were all tested as 

block alternatives, assuring that main effects were orthogonal to the blocks.  Several possibilities 

turned out to perform equally well, see Hamre (2018).  Table A.3 in Appendix A provide ways to 

block the design in 2, 4 and 8 blocks.  The 
s ,effD values are given in Table 5. 

Table 5 summarizes the projection properties and the minimum, maximum and average 

value of the 
s ,effD criterion for the designs that are investigated. We observe that in many cases 

the projection properties are preserved when these designs are blocked. In others the projection 

properties obtained are much better than when the recommended way of blocking is used. The 

price one has to pay is a slight decrease in
s ,effD . 

 

Table 5. Projection properties and values of 
s ,effD for the design blocked  

Design Strategy Screen Min 
s ,effD  Max

s ,effD  Mean 
s ,effD  

8 42IV

−
 S1 + all possibilities (16,8,3,2) 0.917 1 0.929 

5 12V

−
 S3 + all possibilities (16,5,3,2) 0.917 1 0.934 

5 12V

−
 S3 + all possibilities ( )1 316 5 4 2, , ,+  0.814 1 0.952 

16 112IV

−
 S1 (32,16,3,2) 0.917 1 0.970 

16 112IV

−
 S2 (32,16,3,2) 0.917 1 0.967 

16 112IV

−
 S1 (32,16,3,4) 0.834 1 0.908 

6 12VI

−
 S1 (32,6,3,2) 0.943 0.983 0.971 
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6 12VI

−
 S1 (32,6,4,2) 0.917 0.982 0.959 

6 12VI

−
 S1 ( )332 6 5 2, , ,  0.948 0.963 0.958 

6 12VI

−
 S1 ( )3 232 6 5 2, , ,+  0.906 0.966 0.939 

6 12VI

−  S1 + S4 (32,6,3,4) 0.865 0.949 0.911 

6 12VI

−
 S1 ( )332 6 4 4, , ,  0.863 0.919 0.893 

6 12VI

−
 S1 ( )332 6 5 4, , ,  0.866 0.866 0.866 

7 22IV

−
 S3 (32,7,3,2) 0.917 1 0.982 

7 22IV

−
 S3 (32,7,3,4) 0.917 1 0.939 

8 32IV

−
 S3 (32,8,3,2) 0.917 1 0.981 

8 32IV

−
 S3 (32,8,3,4) 0.853 1 0.929 

9 42IV

−
 S3 (32,9,3,2) 0.917 1 0.982 

9 42IV

−
 S3 (32,9,3,4) 0.853 1 0.925 

32 262IV

−
 S2 (64,32,3,2) 0.917 1 0.987 

32 262IV

−
 S2 (64,32,3,4) 0.913 1 0.987 

8 22V

−
 S3 (64,8,3,2) 0.965 1 0.992 

8 22V

−
 S3 (64,8,4,2) 0.958 1 0.986 

8 22V

−
 S3 (64,8,3,4) 0.931 1 0.982 

8 22V

−
 S3 (64,8,4,4) 0.917 1 0.966 

8 22V

−  S3 (64,8,3,8) 0.834 1 0.918 

8 22V

−  S3 (64,8,4,8) 0.808 0.917 0.887 

 

The decrease in 
s ,effD is related to an increase in the standard deviations of the effect 

estimators. For a given projection onto P factors, the covariance matrix for all coefficient 

estimators (block effect(s) included) is given by 
1

2 T
−

  X X .  If i̂  is  the effect coefficient 

estimator with the largest variance given by ( )
1

2 T

ii


−

X X and j̂ the one with the smallest variance 

given by ( )
1

2 T

jj


−

X X , the ratio of their standard deviations is 
( )

( )

1

1
-

T

ii
e

T

jj

SD ratio

−

−
=

X X

X X
. Similarly, if 

b̂ is the block defining contrast with the largest variance, one may define 
( )

( )

1

1
-

T

bb
b

T

jj

SD ratio

−

−
=

X X

X X
.  
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In Table 6 these ratios are computed for each design and for two projections, one giving the 

smallest 
s ,effD  and one giving the largest. Since main effects columns are orthogonal to the block 

defining contrasts, their corresponding estimators always attain the smallest variance. These 

ratios therefore give the increase in standard deviations due to some interactions being partially 

confounded with the block defining contrast(s). As observed, this increase is normally larger for 

projections having the smallest 
s ,effD  and then often in the range 20-40%.  As intended, the 

increase in standard deviations is smaller for the factor effects than for the block effects in most 

cases.  

     

Table 6. Standard deviation ratios for projections with smallest and largest 
s ,effD  

Design Screen Min 

s ,effD  
-min

eSD ratio  -min

bSD ratio  Max

s ,effD  
-max

eSD ratio  -max

bSD ratio  

8 42IV

−
 (16,8,3,2) 0.917 1.2247 1.4142 1 1 1 

5 12V

−
 (16,5,3,2) 0.917 1.2247 1.4142 1 1 1 

5 12V

−
 ( )1 316 5 4 2, , ,+  0.814 1.4142 2 1 1 1 

16 112IV

−
 (32,16,3,2) 0.917 1.2247 1.4142 1 1 1 

16 112IV

−
 (32,16,3,2) 0.917 1.2247 1.4142 1 1 1 

16 112IV

−
 (32,16,3,4) 0.834 1.3904 1.5275 1 1 1 

6 12VI

−
 (32,6,3,2) 0.943 1.128 1.206 0.983 1.035 1.069 

6 12VI

−
 (32,6,4,2) 0.917 1.4142 2 0.982 1.0408 1.1547 

6 12VI

−
 ( )332 6 5 2, , ,  0.948 1.4142 2 0.963 1.2910 1.6330 

6 12VI

−
 ( )3 232 6 5 2, , ,+  0.906 2.2361 4 0.966 1.2910 1.6330 

6 12VI

−  (32,6,3,4) 0.865 1.318 1.318 0.949 1.0742 1.0742 

6 12VI

−
 ( )332 6 4 4, , ,  0.863 1.512 1.604 0.919 1.291 1.4142 

6 12VI

−
 ( )332 6 5 4, , ,  0.866 1.8257 2.4495 0.866 1.8257 2.4495 

7 22IV

−
 (32,7,3,2) 0.917 1.2247 1,4142 1 1 1 

7 22IV

−
 (32,7,3,4) 0.917 1.2247 1,4142 1 1 1 

8 32IV

−
 (32,8,3,2) 0.917 1.2247 1,4142 1 1 1 

8 32IV

−
 (32,8,3,4) 0.853 1.2247 1,4142 1 1 1 

9 42IV

−
 (32,9,3,2) 0.917 1,2247 1,4142 1 1 1 

9 42IV

−
 (32,9,3,4) 0.853 1.2247 1,4142 1 1 1 

32 262IV

−
 (64,32,3,2) 0.917 1.2247 1,4142 1 1 1 
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32 262IV

−
 (64,32,3,4) 0.913 1.1704 1.2163 1 1 1 

8 22V

−
 (64,8,3,2) 0.965 1.1547 1.1547 1 1 1 

8 22V

−
 (64,8,4,2) 0.958 1.2247 1.4142 1 1 1 

8 22V

−
 (64,8,3,4) 0.931 1.1547 1.1547 1 1 1 

8 22V

−
 (64,8,4,4) 0.917 1.2247 1.4142 1 1 1 

8 22V

−  (64,8,3,8) 0.834 1.5492 1.5492 1 1 1 

8 22V

−  (64,8,4,8) 0.808 1.5492 1.5492 0.917 1,2247 1.4142 

         

6.  Discussion and Comparison of Various Ways of Evaluating Blocked Regular Designs 

Most traditional blocking schemes for regular design are evaluated and ranked from the 

two wordlength patterns W and 
bW . Common for all the blocking schemes is that the designs are 

at least of resolution III, and that main effects are unconfounded with block effects. Assuming 

that three-factor and higher order interactions are negligible, a rather common assumption when 

blocking schemes are evaluated, the relevant terms to consider are 
3 4,A A and

2 .bA   

Aliased effects can be partitioned into alias sets. For instance, from the word ABC three 

alias sets can be constructed, A and BC, B and AC and C and AB. Let 
mbn be the number of two-

factor interactions that are either aliased with main effects or confounded with blocks and let 

1, , fM M  be the alias sets that do not contain such effects. With k main effects the number of 

two-factor interactions in these alias sets sums to 
2

mb

k
n

 
− 

 
. Distributing these two-factor 

interactions as uniformly as possible over 1, , fM M  is related to minimizing
4A (Cheng et al. 

1999). A small
4A is also necessary in order to have many clear two-factor interactions. 

Minimization of 
3 23 bA A+  amounts to minimizing

mbn .  

Sequentially minimizing the sequence 
3 4 23 , , bA A A  (Cheng and Wu 2002) might then 

support what we have denoted the recommended way of blocking, emphasizing many clear two-

factor interactions, while the same sequential operation on 
3 2 43 ,bA A A+ fits well into the way of 

blocking two-level designs proposed in Cheng and Mukerjee (2001), and mentioned in the 

introduction. It is interesting to note that these sequential operations lead to two different 

blocking schemes for a 5 12 −  design arranged in two blocks. The recommended one, which is a 
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5 12V

−  design with defining relation I=ABCDE and the two-factor interaction AB used as block 

factor, and one which is a 5 12IV

−  design with defining relation I=ABCE with ABD used as block 

factor. The first scheme has 9 clear two-factor interactions and projectivity 1P = . The second 

scheme has only 4 clear two-factor interactions but projectivity 
23P = .  

  It is not obvious how blocking schemes with only partial confounding can be fairly 

evaluated with criteria constructed from W and 
bW . Cheng and Mukerjee (2001) pointed out that 

their criterion could be tied to maximum estimation capacity, see also Chen and Cheng (1999) 

and Cheng et al. (1999). For a blocked two-level design d with k  factors, let ( )uE d  be the 

number of models with k main effects and u two-factor interactions that can be estimated by d . 

Then an estimation capacity sequence ( ) ( )( )1 2, ,E d E d  can be constructed and used for 

comparison of blocked designs. For two designs 
1d  and 

2d , if ( ) ( )1 2u uE d E d  for all u with 

strict inequality for some, then 
1d dominates 

2d . Let the two blocking schemes for the 5 12 −  

designs be denoted  5 1,2 AB

V

−  and 5 1,2 ABD

IV

−  respectively.  A comparison of the estimation capacity 

sequence for these two schemes and our blocking scheme, denoted 
*5 1,

2 bB

V

−
 is given in Table 7. 

Table 7. Estimation capacity sequence for three blocking schemes for 5 12 −  designs. 

Design ( )1E d  ( )2E d  ( )3E d  ( )4E d  ( )5E d  ( )6E d  ( )7E d  ( )8E d  ( )9E d  

5 1,2 ABD

IV

−  10 42 96 129 102 44 8 0 0 

5 1,2 AB

V

−  9 36 84 126 126 84 36 9 1 

*5 1,
2 bB

V

−
 10 45 120 209 246 195 100 30 4 

 

The 5 1,2 ABD

IV

−  dominates the 5 1,2 AB

V

−  with respect to estimation capacity for 4u  , but for 

5u  , it is opposite. However, both these schemes are clearly dominated by the 
*5 1,

2 bB

V

−
.  The 

reason why is easily explainable. Let us just compare the 
5 1,2 AB

V

−  and the 
*5 1,

2 bB

V

−
. There are enough 

degrees of freedom for estimating nine two-factor interactions together with five main effects, 

the intercept and the block effect.  For the 
5 1,2 AB

V

−  we then get ( )
9

,  1 9uE d u
u

 
=   
 

.  *

bB  is 
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constructed from four two-factor interaction columns and partially confounded with the 

corresponding effects, which means that only three of them can be estimated at the same time.  

Leaving out one, say AD, we have a set of nine two-factor interactions to freely choose from. For 

given 1 9u   this gives 
9

u

 
 
 

 different models that can be estimated. In addition, we also need 

to count the ones where AD is forced to be in the model.  

Words of length four in the defining relation give alias sets consisting of more than one 

two-factor interaction. Let us assume there are a such alias sets and let
cA  be the collection of 

these. Further let c be the number of clear two-factor interactions. When possible and needed, the 

recommended way of blocking uses one or more two-factor interaction column(s) corresponding 

to effects in 
cA as block defining contrast(s) to have as many clear two-factor interactions as 

possible. To get a better understanding of how this affects the estimation capacity sequence, let 

us look at the 7 22IV

−  design run in four blocks.  The design has a  = 3 with two members in each 

and c = 15. Blocked the recommended way, ACD and BCD are used as block factors. These are 

chosen such that their interaction effect is a two-factor interaction in one of the alias sets in
cA , 

leaving only 1a − =2 alias sets to consider for estimation capacity. For a given u , let ( ),u y z
n  be 

the number of  models that can be estimated using y alias sets in
cA  and z of the clear two-factor 

interactions.  Further define ( )0 ,
1n

 
= . Then to obtain ( )2,15u

n we may count the ones when one of 

the clear two-factor interactions is taken out, and then add the ones we get when this interaction 

is forced to be in the model. Hence, we have ( ) ( ) ( )2,15 2,14 12,14u u u
n n n

−
= + . If instead the two block 

factors had been chosen such that their interaction effect was one of the 15 clear two-factor 

interactions as in Xu and Lau (2006), the number of models that can be estimated had become 

( ) ( ) ( ) ( )3,14 2,14 12,14 2,15
2

u u u u
n n n n

−
= +  . Hence the recommended way of blocking, giving priority to 

having as many clear two-factor interactions as possible, does not necessarily give a blocking 

scheme with the best estimation capacity.  

Blocking the 
7 22IV

−
 design in four blocks the way we propose, one of the block factors is 

constructed from four clear two-factor interaction columns. The two others can be expressed as a 
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linear combination of two-factor interaction and higher order interaction columns, a situation not 

uncommon when strategy S3 is used. Leaving out one clear two-factor interaction, say AD, we 

get that the number of estimated models for a given u  equals 
( )3,14u

n  + the ones we get when AD 

is forced to be in the models. Hence it dominates both the schemes given above.  

We have checked all our proposed blocking schemes. The one for the 6 12VI

− design stands 

out as an exception. Blocking this design in two and four blocks the recommended way make use 

of three-factor interaction columns.  Arranged in four blocks one of the two-factor interactions 

will be fully confounded with a block effect. We have used strategy S1 which for this design, as 

explained in Section 4, will cause block factor effects to be partially confounded with two-factor 

interaction, and for our scheme 10 such for each block factor. As a result, the recommended way 

of blocking dominates our schemes with respect to estimation capacity for 10u   when the 

design is run in two blocks. Arranged in four blocks, our way of blocking will as a maximum 

allow the estimation of 12 two-factor interactions together with 6 main effects, while the 

recommended way will allow up to 14. Another strategy, for instance S3, might have given 

blocking schemes with better estimation capacities. In all other cases our schemes were equally 

good or better than the recommended ones, even though estimation capacity was not a criterion 

for choosing scheme and strategy.  

From what we have seen, different criteria may lead to different blocking schemes with 

different projection properties. Maximizing the number of clear two-factor interactions may 

come in conflict with maximizing the estimation capacity. Our blocking schemes were 

constructed with the purpose of being able to estimate as many effects as possible for a subset of 

factors up to a certain size, which differs from the motivation behind the recommended way of 

blocking and the method suggested by Cheng and Mukerjee (2001). It is therefore encouraging 

that our schemes in most cases seem to do that well with respect to estimation capacity and are 

comparable with the recommended way of blocking when it comes to the number of two-factor 

interactions that can be estimated in a model.   

The partial confounding exploited in our blocking schemes impacts the efficiency with 

which the effects can be estimated for some models. When blocked in two blocks the 

recommended way, the 6 12VI

− design is a 
26P = design, and the 7 22IV

−  and 8 32IV

−  designs both have 
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projectivity 
23P = . The 8 22V

−  design is a 
28P =  design when blocked in two and four blocks. 

Hence, if the respective number of main effects and two-factor interactions are considered 

adequate for modelling the response, the recommended way of blocking represents a good 

alternative in these cases, having a 
s ,effD = 1 for the effects of interest. However, if factor sparsity 

is a reasonable assumption, research shows that the better projection properties a design has, the 

more robust the screening will be with respect to assumptions about the model, amount of noise 

and distortion of effects too small to be detected (Tyssedal and Chaudhry 2017, Chaudhry and 

Tyssedal 2019 and Chaudhry 2019).  

 

7. Concluding Remarks 

We have demonstrated that many regular two-level designs with 16, 32 and 64 runs can 

be blocked such that their projection properties are preserved or only weakly affected. Different 

strategies have been used depending on how the designs are constructed. These include letting 

mirror image pair runs be in the same block, exploiting that blocking of a n run design can be 

utilized to block a design in 2n runs and taking advantage of the rich selection of different 

Hadamard matrices that exists. We have restricted our blocking to cases with an equal number of 

runs in the same block and kept the block defining contrast(s) orthogonal to main effect 

contrasts. Blocking alternatives have been assessed using the 
s ,effD criterion. Following these 

strategies has made it possible to obtain blocking schemes with better projection properties than 

can be achieved using higher order interactions columns from regular designs. Unintended, our 

blocking schemes also seem to have good estimation capacity, sometimes better than other 

schemes, and are comparable with the blocking schemes given in Wu and Hamada (2009) when 

it comes to how many two-factor interactions that can be estimated in a model.  

When the number of runs increases there are enormously many possible blocking 

alternatives and investigating all of them becomes almost infeasible in time. For the two 16 run 

designs we were able to examine all possible blocking arrangements. It was encouraging that 

strategy S1 led us directly to the best ones for the 8 42IV

−  design, according to our criteria, by only 

considering less than 1% of the alternatives. The best way of blocking may also depend on how 

well one wants to estimate the effects when the design is projected onto different dimensions. 
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Each choice of dimension may prefer different block defining contrast(s). It is our experience, 

however, that searching strategies, such as S2, that only consider a rather small subset of all 

blocking candidates, come up with almost equally good blocking alternatives as when 

investigating more numerous ways of blocking. We believe that the reason why S1 and S2 

perform that well is because alias reduction is inherent in both.  

The use of Hadamard matrices, strategy S3, represent an alternative way of blocking that 

has a potential to be successful in preserving projection properties when blocking all regular 

designs, and particularly for those that does not fit into the design structures for using S1 and S2.  

An exhaustive search is also here close to infeasible when n increases, due to the combinatorial 

explosion of Hadamard matrices that occurs for n = 32. Fortunately, it seems like high values for 

minimum and average 
s ,effD  can be obtained by only searching through a few Hadamard 

matrices.  

Preserving projection properties when blocking has a price. Some effects will be 

estimated with less efficiency due to partial confounding of interactions with block generators. 

We think that for a factor-based screening this drawback is well compensated for by the 

possibility to separate estimates of interactions and block effects.  We also believe that the 

methods presented here can be useful for experimental work with other restrictions on 

randomization than blocking, such as split-plot experimentation. Especially full confounding 

between subplot interactions and whole plot interactions can be avoided assigning whole plot 

factors to columns here used as block defining contrasts.  
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Appendix A 

Table A.1. Possible ways to arrange the 
16 112IV

−
 and the 

6 12VI

−  designs in two and four blocks in order to 

have good projection properties. 

http://neilsloane.com/hadamard/
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16 112IV

−  6 12VI

−  

*

2B  Blocks 
41

*B  42

*B  Blocks *

2B  41

*B  42

*B  

 1 
1B  -1 -1 

4B   1 -1 -1 

 1 
1B  -1 -1 

4B   1 -1 -1 

 1 
1B  -1 -1 

4B   1 -1 -1 

 1 
1B  -1  1 

3B   1  1 -1 

 1 
1B  -1 -1 

4B   1 -1  1 

 1 
1B  -1  1 

3B   1 -1 -1 

-1 
2B   1 -1 

2B  -1  1  1 

-1 
2B   1  1 

1B  -1  1  1 

 1 
1B   1 -1 

2B   1 -1  1 

-1 
2B   1  1 

1B  -1  1 -1 

 1 
1B   1  1 

1B  -1 -1  1 

-1 
2B   1  1 

1B  -1  1 -1 

-1 
2B   1 -1 

2B  -1  1  1 

-1 
2B   1 -1 

2B  -1  1  1 

-1 
2B       -1  1 

3B  -1  1 -1 

-1 
2B       -1  1 

3B    1 -1  1 

-1 
2B      -1  1 

3B   1 -1  1 

-1 
2B      -1  1 

3B  -1  1 -1 

-1 
2B  1 -1 

2B  -1  1  1 

-1 
2B  1 -1 

2B  -1  1  1 

-1 
2B  1  1 

1B  -1  1 -1 

 1 
1B  1  1 

1B  -1 -1  1 

-1 
2B  1  1 

1B  -1  1 -1 

 1 
1B  1 -1 

2B   1 -1  1 

-1 
2B  1  1 

1B  -1  1  1 

-1 
2B  1 -1 

2B  -1 1  1 

 1 
1B      -1  1 

3B   1 -1 -1 

 1 
1B      -1 -1 

4B   1 -1  1 

 1 
1B      -1  1 

3B   1  1 -1 

 1 
1B      -1 -1 

4B   1 -1 -1 

 1 
1B      -1 -1 

4B   1 -1 -1 

 1 
1B      -1 -1 

4B    1 -1 -1 

 

 

Table A.2. Possible ways to run the 7 22IV

− , 8 32IV

−  and the 9 42IV

−  designs in two and four blocks such 

that projection properties are preserved. 
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7 22IV

−
 

8 32IV

−
 

9 42IV

−
 

*

2B  41

*B  42

*B  
*

2B  41

*B  42

*B  
*

2B  41

*B  42

*B  

 -1 -1  1  1  1  1 -1 -1  1 

 -1  1 -1  1 -1 -1  1  1 -1 

 |1  1  1  1  1 -1 -1 -1  1 

 1  1 -1 -1  1  1 -1  1  1 

 1  1  1 -1  1 -1  1 -1 -1 

 1 -1 -1 -1 -1  1  1  1 -1 

    -1 -1  1  1  1  1 -1 -1 -1 

    -1 -1 -1 -1  1 -1  1  1  1 

 1  1  1  1 -1  1  1 1  1 

 1 -1  1  1 -1  1  1 -1 -1 

    -1 -1 -1  1  1  1  1  1  1 

    -1 -1 -1 -1 -1  1 -1 -1  1 

    -1 -1  1 -1 -1 -1  1  1 -1 

-1  1  1 -1 -1 -1 -1 -1 -1 

 1  1 -1  1  1 -1 -1  1 -1 

 1  1 -1 -1 -1 -1 -1 -1  1 

 1     -1 -1 -1 -1 -1  1  1  1 

 1  1  1 -1  1  1 -1 -1 -1 

 1  1 -1 -1 -1  1  1 -1 -1 

 1  1  1  1 -1 -1  1  1 -1 

-1  1 -1  1 -1  1 -1 -1  1 

-1 -1  1  1  1 -1 -1  1  1 

-1 -1 -1 -1 -1 -1  1  1 -1 

-1 -1  1  1 -1  1 -1 -1  1 

-1  1 -1 -1  1 -1 -1 -1  1 

-1 -1 -1 -1  1 -1 -1  1 -1 

-1 -1  1 -1 -1 -1 -1  1 -1 

-1 -1  1  1  1 -1  1 -1 -1 

 1 -1 -1  1  1  1 -1  1  1 

 1  1 -1  1  1  1  1 -1  1 

 1  1  1 -1 -1  1  1 -1 -1 

 1  1  1  1  1  1  1  1  1 

 

 

 

 

 

 

 

Table A.3. Possible blocking generators for blocking the 
8 22V

−  design in two, four and eight blocks 
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Row *

2B   
41

*B  42

*B   
81

*B  82

*B  83

*B  

1/33 -1 -1  -1  1 -1 -1  -1 -1  -1  1 -1  1 

2/34 -1  1   1  1 -1  1   1 -1   1  1  1  1 

3/35 -1 -1  -1 -1 -1  1  -1 -1  -1  1  1 -1 

4/36  1 -1   1 -1  1  1   1 -1  -1 -1  1  1 

5/37  1  1  -1  1  1  1   1  1  1 -1 -1  1 

6/38  1 -1   1  1  1  -1   1 -1 -1 -1 -1 -1 

7/39  1  1  -1 -1  1 1   1  1  1 -1  1 -1 

8/40 -1  1   1 -1 -1 1   1 -1  1 -1 -1 -1 

9/41  1  1   1 -1 -1 1   1 -1 -1  1  1  1 

10/42  1 -1  -1 -1  1 1   1  1 -1  1 -1     1 

11/43  1  1   1  1  1 -1   1 -1  1  1  1  1 

12/44 -1  1  -1  1  1  1   1  1 -1  1  1 -1 

13/45 -1 -1   1 -1  1 -1   1 -1  1 -1 -1 -1 

14/46 -1  1  -1 -1 -1 -1  -1 -1  1 -1 -1  1 

15/47 -1 -1   1  1 -1  1   1 -1 -1 -1 -1 -1 

16/48  1 -1  -1  1 -1 -1  -1 -1  1 -1  1 -1 

17/49 -1  1   1  1  1  1  -1  1 -1 -1 -1 -1 

18/50  1  1   1 -1  1 -1   1  1  1 -1  1 -1 

19/51  1 -1  -1  1  1  1  -1  1  1  1 -1 -1 

20/52  1  1  -1 -1 -1  1   1  1  1 -1 -1  1 

21/53  1 -1   1  1 -1 -1  -1  1  1  1  1  1 

22/54 -1 -1   1 -1 -1  1  -1  -1 -1  1  1 -1 

23/55 -1  1  -1  1 -1 -1  -1  1 -1 -1  1  1 

24/56 -1 -1  -1 -1  1 -1  -1 -1 -1  1 -1  1 

25/57  1 -1  -1 -1  1 -1  -1 -1  1 -1  1 -1 

26/58 -1 -1  -1  1 -1 -1  -1  1  1  1 -1 -1 

27/59 -1  1   1 -1 -1  1  -1 -1  1 -1 -1  1 

28/60 -1 -1   1  1 -1 -1  -1  1 -1 -1 -1 -1 

29/61 -1 1  -1 -1 -1  1   1  1 -1  1  1 -1 

30/62  1 1  -1  1  1  1  -1  1 -1 -1  1  1 

31/63  1 -1   1 -1  1 -1   1  1 -1  1 -1  1 

32/64  1 1   1  1  1  1  -1  1  1  1  1  1 

 

 

 

 

 

 

 

 


