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A B S T R A C T   

Many breast cancer patients are diagnosed with small, well-differentiated, hormone receptor-positive tumors. 
Risk of relapse is not easily identified in these patients, resulting in overtreatment. To identify metastasis-related 
gene expression patterns, we compared the transcriptomes of the non-metastatic 67NR and metastatic 66cl4 cell 
lines from the murine 4T1 mammary tumor model. The transcription factor nuclear factor, erythroid 2-like 2 
(NRF2, encoded by NFE2L2) was constitutively activated in the metastatic cells and tumors, and correspondingly 
a subset of established NRF2-regulated genes was also upregulated. Depletion of NRF2 increased basal levels of 
reactive oxygen species (ROS) and severely reduced ability to form primary tumors and lung metastases. 
Consistently, a set of NRF2-controlled genes was elevated in breast cancer biopsies. Sixteen of these were 
combined into a gene expression signature that significantly improves the PAM50 ROR score, and is an inde-
pendent, strong predictor of prognosis, even in hormone receptor-positive tumors.   

1. Introduction 

Metastasis is the primary limitation for breast cancer survival and 
can be detected several years after removal of the primary tumor. The 
possibilities to prevent or treat metastatic cancer are still limited, thus 
emphasizing the importance of increasing the knowledge of cancer cells’ 
ability to metastasize. For cells of epithelial origin, metastases result 
from a series of acquired changes, including the ability to leave the 
primary tumor, enter into and survive in circulation, extravasate and 

establish at a secondary site. The acquired metastatic phenotype is 
driven by genetic changes that result in altered gene expression and 
protein function. The nature of the acquired changes in gene expression 
can be analyzed in publicly available data sets, where expression of 
individual genes or set of genes can be correlated with prognosis. 
However, these analyses are complicated by inter- and intratumor het-
erogeneity, different cellular composition of the biopsies and the fact 
that tumor cells interact with non-transformed cells, including immune 
cells. 

To study the correlation between altered gene expression and 
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metastatic phenotype, animal models reflecting this complexity have 
been established. The murine 4T1 mammary tumor model is an immu-
nocompetent animal model for breast cancer; consisting of five different 
cell lines isolated from the same spontaneous BALB/c mouse tumor [1]. 
The five cell lines differ clearly in their metastatic potential, although 
they behave similarly in culture and all form primary tumors in the 
mammary fat pad of syngeneic BALB/c mice [2]. It is also known that 
cancer cells of epithelial origin during epithelial-to-mesenchymal tran-
sition become more stem cell-like and acquire the ability to invade other 
tissues [3], which is also evident in 66cl4 cells through the increased 
expression of several stem cell markers [4]. 

During metastasis, cancer cells experience high levels of oxidative 
stress, and cancer cells that are able to cope with this challenge can form 
distant metastasis [5]. Oxidative stress is counteracted by a number of 
genes regulated by the transcription factor nuclear factor, eryth-
roid-derived 2-like 2 (NRF2) encoded by the NFE2L2 gene. Somatic 
mutations causing constitutive activation of NRF2 are frequent in 
squamous-like and lung cancer subtypes [6,7]. Under normal condi-
tions, NRF2 is ubiquitinated after direct binding to the Kelch-like 
ECH-associated protein 1 (KEAP1) as a part of the cullin 3 RING ubiq-
uitin ligase complex, and rapidly degraded by the proteasome [8–11]. 
Upon oxidative stress, NRF2 dissociates from KEAP1, stabilizes, and 
translocates to the nucleus where it controls the expression of numerous 
genes encoding enzymatic and non-enzymatic antioxidants or proteins 
that relieve the damage caused by the insult [12]. The pathway is nor-
mally induced in response to raised levels of oxygen radicals, and 
elevated NRF2 can result from metabolic changes in transformed cells 
even in the absence of genetic alterations directly affecting NRF2 [13]. 
Mutual exclusive, somatic mutations in NFE2L2, KEAP1, or CUL3, which 
activate the NRF2 pathway, have been firmly established [6,7]. These 
genetic changes also include deletions of exon two of NFE2L2 [14]. 
Moreover, the level and activity of NRF2 can be increased by several 
indirect mechanisms, including SQSTM1-mediated degradation of the 
negative regulator KEAP1 [15]. Aside from that, SQSTM1 expression is 
controlled by NRF2, and its induction can set up a positive feedback loop 
of the pathway [16]. 

We hypothesized that although somatic mutations in NFE2L2, 
KEAP1, and CUL3 are rarely detected in breast cancer, activation of 
NRF2 signaling can be important also in this cancer type, as it is a 
fundamental cytoprotective mechanism and may contribute to the 
development of an aggressive phenotype. In this study, we compared the 
non-metastatic 67NR cell line to the metastatic 66cl4 cell line of the 4T1 
model. We report that NRF2 is constitutively elevated in the metastatic 
66cl4 cells, and that it results in activation of a selective set of NRF2 
controlled genes. Depletion of NRF2 abolished 66cl4’s ability to form 
primary tumors and metastases to the lungs. Consistent with a role of 
NRF2 in metastasis of human breast cancer, the expression of a discrete 
subset of NRF2 related genes was elevated in breast cancer biopsies, and 
increased expression correlated with poor prognosis. Combining a spe-
cific subset of 16 NRF2-controlled transcripts resulted in a breast cancer- 
specific gene expression signature that correlated with risk of relapse for 
breast cancer patients. 

2. Results 

2.1. Constitutive NRF2 in cultures and tumors formed by the aggressive 
66cl4 breast cancer cells 

Transcriptome sequencing was conducted on RNA isolated from 
67NR and 66cl4 cells grown in culture and as primary tumors as well as 
macroscopically visible lung metastases of 66cl4-bearing BALB/cJ mice. 
Principal component analysis (PCA) showed a clear segregation of cell 
culture versus primary tumor samples and 67NR versus 66cl4 (Fig. 1a). 
The PCA plot also indicated that 66cl4 lung metastases most closely 
resembled 66cl4 primary tumors. There was a clear correlation between 
the relative differences of the cells grown in culture and as primary tu-
mors (Fig. 1b). 

These data indicate that the two cell lines originating from the same 
primary tumor harbor stable gene expression differences, which are 
present in both culture and tumor. 

Of the 23 994 transcripts identified in the sequencing, 1270 genes 
showed a significantly elevated expression in 66cl4 compared to 67NR 
cells and primary tumors (log2(ExpVal_66cl4/ExpVal_67NR > 0.59; 
ExpVal_66cl4 ≥ 1; p-value ≤ 0.05). On the other side, 1252 genes were 
expressed higher in 67NR cells and tumors. Enrichment analysis of the 
genes upregulated in 66cl4 cells and tumors was done using Enrichr [17, 
18]. ChiP-X enrichment analysis (ChEA) suggested NRF2 (Nfe2l2) 
controlled gene expression as clearly elevated in 66cl4 (Fig. 1c). More-
over, analysis using the KEGG and Reactome databases indicated that 
cell metabolism was altered in these cells (Fig. 1d, Supplementary Fig. 
1). Since NRF2 is known to control transcription of various enzymes in 
diverse metabolic pathways [19] and hyper-activation of this tran-
scription factor has been linked to tumorigenesis and progression in 
various cancer types [20], we decided to focus on this pathway. 

To discriminate if activation of the oxidative stress response was due 
to direct genetic alterations, the exomes of 66cl4 and 67NR were 
sequenced. DNA isolated from BALB/cJ mouse was used as a control. 
When compared to the mm9 mouse reference genome (C57BL/6J), the 
majority of gene variants were common between BALB/cJ, 67NR and 
66cl4. Of the remaining variants, 18 were common for the two cell lines, 
whereas 640 and 834 mutations were exclusively found in 67NR and 
66cl4, respectively (Fig. 1e). No alterations were found in Nfe2l2 or 
Keap1, however, 66cl4 harbored a C to G transversion in exon 14 of Cul3 
(c.C1768G; p.H590D). CUL3 is part of the KEAP1-CUL3 E3 ligase com-
plex, which is needed to polyubiquitylate NRF2 and target it for 
degradation under basal conditions [9,11]. Sanger sequencing showed 
that 66cl4 is the only among the five cell lines of the 4T1 model that 
harbors this mutation (Fig. 1f). Consistent with a functional role of this 
mutation, NRF2 protein levels were clearly elevated whereas the tran-
script level was in fact lower in 66cl4 compared to 67NR (Fig. 2a and b, 
Supplementary Fig. 2). However, variable correlation between tran-
script and the corresponding proteins is known and underlines the fact 
that NRF2 is more complexly regulated than solely on transcriptional 
level [21]. In line with constitutive NRF2 signaling, the classical targets 
NQO1 and HMOX1 were increased at both mRNA and protein level in 
66cl4 (Fig. 2a and b, Supplementary Fig. 2). Collectively, these data 
demonstrate a constitutive activation of the NRF2 pathway in the met-
astatic 66cl4. 

2.2. Constitutive NRF2 activity reduces basal ROS levels, but abrogates 
responses to additional oxidative stress 

In order to sustain aberrant proliferation, cancer cells produce high 
amounts of ATP, which results in increased ROS and imbalanced redox 
status [13]. Consistent with activated NRF2 in 66cl4, we found that 
basal ROS levels were reduced but that these cells were also clearly less 
able to mobilize endogenous antioxidants in response to the oxidative 
stress inducing agent hydrogen peroxide and NRF2-inducing factor 
L-sulforaphane (Fig. 2c – f, and quantification and statistics in 
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ChEA ChiP-X enrichment analysis 
KEAP1 Kelch-like ECH-associated protein 
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RFS relapse-free survival 
ROR risk of recurrence 
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wTO weighted Topological Overlap.  
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Fig. 1. NRF2 is constitutively activated in 66cl4. (a) Principal components Analysis of 67NR cells and primary tumors and 66cl4 cells, primary tumors and lung 
metastases. (b) Scatter plot of in vivo versus in vitro differential expression between 66cl4 and 67NR. A positive number indicates higher expression in 66cl4, whereas 
a negative number indicates higher expression in 67NR. (c, d) Enrichment analysis of genes (1,270) upregulated in 66cl4 cells and primary tumors compared to 67NR 
cells and primary tumors (log2(ExpVal_66cl4/ExpVal_67NR > 0.59; ExpVal_66cl4 ≥ 1; p-value ≤ 0.05). Analysis was performed with Enrichr database. Entries were 
sorted by combined score. (c) ChiP-X enrichment analysis. (d) KEGG cell signaling pathway analysis. (e) Venn-diagram of exonic nonsynonymous mutations detected 
by exome sequencing in 67NR and 66cl4. (f) The Cul3 DNA sequence in exon 14 from the indicated 4T1 model cell lines determined by Sanger sequencing. 
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Fig. 2. 66cl4 displayed reduced basal ROS levels and impaired ability to adopt to additional oxidative stress. (a) RT-qPCR analysis. Fold changes are relative to Actb 
and Tbp (n = 3). Data are shown as mean ± SD (ANOVA after log transformation, Tukey’s multiple comparisons test). (b) Representative immunoblot of NRF2 (100 
μg protein loaded) and NRF2-target genes NQO1, HMOX1, FTL1, and FTH1 (50 μg protein loaded). ACTB (2 μg protein loaded) was used as a loading control (n = 3). 
(c) Flow-cytometric analysis of basal ROS levels after CM-H2DCFDA staining (n = 4). Data are shown as mean ± SD (one sample t-test after log transformation). (d) 
ROS levels after 4 h’ treatment with L-Sulforaphane (SFN) or vehicle (DMSO) (n = 3). Data are shown as mean ± SD (ANOVA after log transformation, Dunnett’s 
multiple comparisons test). (e, f) Representative immunoblots of NRF2, NQO1, and HMOX1 (50 μg protein loaded). ACTB (2 μg protein loaded) was used as a loading 
control. Cells were treated with (e) L-sulforaphane or vehicle (DMSO) for 4 h and (f) hydrogen peroxide for 30 min. Note that the exposure in (e) is lower due to the 
great induction of NRF2 expression. (g) MTT analysis of 67NR and 66cl4 cell viability after treatment with hydrogen peroxide (n = 3). Data are shown as mean ± SD 
(ANOVA after log transformation, Dunnett’s multiple comparisons test). VC, vehicle control. 

Fig. 3. A subset of NRF2 genes is elevated in the metastatic 66cl4 cells but the primary tumor growth is not different. (a) Heat-map of the expression patterns of 43 
NRF2-target genes from expression sequencing data of 67NR and 66cl4 cells and primary tumors. (b) Doubling time of 67NR and 66cl4 in culture (n = 5). Data are 
shown as mean ± SD (Student’s t-test after log transformation). (c) Soft-agar assay. Colony area was measured in pixels. Z-stack of representative image of colonies. 
Scale bar: 1 mm (n = 3). Data are shown as mean ± SEM (Student’s t-test after log transformation). (d) Growth curve of primary tumors after injection of 67NR (4 
mice) and 66cl4 (8 mice) into the fat-pad of BALB/cJ mice. 
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Supplementary Fig. 3). In line with the reduced ability to adopt to 
additional oxidative stress, hydrogen peroxide supplementation led to 
lower viability in 66cl4 cells as measured by reduced metabolic activity 
(Fig. 2g). 

2.3. Constitutive NRF2 activation coincides with metabolic 
reprogramming 

The transcriptome analysis revealed that a subset of well-known 
NRF2 target genes was upregulated in 66cl4 (Fig. 3a). We then asked 
if constitutive NRF2 activation correlated with growth rate in culture, 
the ability to form colonies in soft agar or growth rate of the primary 
tumor. Compared to 67NR cells, the 66cl4 cells multiplied marginally 
faster in culture and formed larger colonies in soft agar (Fig. 3b and c). 
However, there was no significant difference in the growth of the pri-
mary tumors formed by the two cell lines. In fact, tumors formed by 
67NR cells displayed a tendency to grow faster than 66cl4 tumors 
(Fig. 3d). NRF2 regulates genes involved in glucose and glutamine 
metabolism [19] and pathway enrichment analysis revealed alterations 
in cell metabolism in 66cl4 (Fig. 1d and Supplementary Fig. 1). In 
addition, GO cellular component analysis showed that mitochondrial 
components were upregulated in 66cl4 (Supplementary Fig. 4a). Anal-
ysis of cellular bioenergetics using a Seahorse XF Analyzer demonstrated 
that 66cl4 had a higher glycolytic flux (Supplementary Figs. 4b–e). The 
glycolytic capacity did not differ, and the glycolytic reserve was largest 
in 67NR. Moreover, the basal mitochondrial respiration and ATP pro-
duction were similar. The maximum respiration was highest in 67NR 
and accordingly, the spare respiratory capacity was significantly higher 
in these cells. Together, these results indicate that upregulation of 
mitochondrial components in 66cl4 is a compensatory mechanism that 
does not result in increased mitochondrial activity. 

2.4. NRF2 depletion impairs primary tumor growth and metastasis 

To evaluate the role of NRF2 in the metastasis model, the protein was 
depleted by shRNA-mediated knockdown in 66cl4. Knockdown effi-
ciency was assessed both at transcript and protein level and was 
significantly reduced by approximately 90% in two independent clones 
(Fig. 4a and b). Depletion of NRF2 coincided with up to 90% reduction 
in mRNA levels of Nqo1, Hmox1 and Gclc, and protein levels of NQO1 
and HMOX1. However, mRNA and protein expression of FTH1, FTL1 
and SQSTM1 were not changed by NRF2 downregulation. As NRF2 in-
dependent controls, mRNA expression of Cul3 and Lc3b were unaffected. 
As expected, NRF2 depletion led to a clear increase in basal ROS and loss 
of NRF2, NQO1, and HMOX1 induction in response to oxidative stress 
(Fig. 4c–e). We also observed a slightly reduced growth rate and 
reduction in the ability to form colonies in soft agar (Fig. 4f and g). 
Moreover, NRF2 depleted clones displayed reduced efficiency of 
glycolysis and significantly increased mitochondrial respiration (Sup-
plementary Fig. 5). Together, these data indicate that interfering with 
the constitutive NRF2 expression restored energy production via 
oxidative phosphorylation. To evaluate the role of constitutive NRF2 for 
the tumor formation, both control cells and NRF2 depleted cells were 
injected into the fat pad of female BALB/c mice. Strikingly, down 
regulation of NRF2 resulted in a clear loss in the ability to form primary 
tumors (Fig. 5a and b, and Supplementary Fig. 6). The clear difference in 
ability to form primary tumors precluded a direct comparison of meta-
static ability. Instead, control cells and NRF2 depleted cells were injec-
ted into the tail vein of female BALB/c mice and lung metastasis 
measured as total lung weight after 19 days (Fig. 5c). Injection of the 
control cells resulted in swollen lungs with numerous metastatic foci. In 
contrast, the lungs from the mice injected with the NRF2 depleted cells 
had normal size and appearance. Together, these results suggest that 
constitutively active NRF2 is functionally important for an aggressive 
phenotype of breast cancer cells. 

2.5. The NRF2 target gene signature shows prognostic value in ER 
negative breast tumors 

Somatic mutations in NFE2L2, KEAP1, and CUL3, resulting in acti-
vation of NRF2 signaling, have been described in various cancer types, 
particularly in squamous-like cancers [6,7]. Searching the TCGA Pan-
Cancer Atlas in the online tool cBioPortal [22,23] for gene alterations in 
NFE2L2, KEAP1 and CUL3, we saw that alterations in these three genes 
were found in 33% of samples from lung squamous cell carcinoma pa-
tients, 17% of samples from head and neck squamous cell carcinoma and 
only 4% of samples from breast invasive carcinoma patients (Fig. 6a). 
Although these specific genetic alterations are rare in breast cancer, the 
pathway may also be activated by several indirect mechanisms, 
including competitive binding of SQSTM1, DPP3, PALB2, or AMER1 to 
KEAP1 or direct binding of CDKN1A, which all lead to stabilization of 
the NRF2 protein [15,24–27]. Since metastases are the major cause of 
breast cancer-related deaths, we hypothesized that if any particular gene 
controlled by NRF2 should be important for the ability to metastasize, its 
mRNA expression level should predict poor prognosis in breast cancer 
patients. We selected 46 established NRF2-target genes (Supplementary 
Table 1) and analyzed whether high mRNA expression of any of these 
correlates with poor prognosis in breast cancer patients using KM plotter 
[28,29] and BreastMark [30]. These analyses revealed that high mRNA 
expression of 10 out of the 46 NRF2 target genes, correlated with 
reduced relapse free survival (RFS) in both databases (Supplementary 
Table 2). Furthermore, by using the Ualcan cohort database [31] we 
found that 17 NRF2-target genes were higher expressed in breast tumor 
tissue than normal tissue (Supplementary Fig. 7). Accordingly, of the 46 
NRF2-target genes, only six correlated with poor prognosis and were 
also upregulated only in tumor compared to normal tissue (NQO1, 
SERPINE1, SRXN1, TALDO1, TXN, and TXNRD1) (Supplementary Fig. 8a 
– f)). By combining these six genes into a gene signature, the prognostic 
value increased substantially compared to each transcript alone 
(Fig. 6b). Since NRF2 levels can also be elevated by other proteins, we 
hypothesized that mRNA expression of such proteins may improve the 
prognostic value of this NRF2 gene signature. Indeed, including the 
transcripts for SQSTM1, PALB2, and AMER1 to the NRF2 gene signature 
resulted in a nine-gene signature with slightly increased hazard ratio, 
and reduced p-value (Fig. 6c). Of note, the same NRF2 gene expression 
signature displayed no prognostic value in gastric or lung cancer pa-
tients (Supplementary Figs. 8g and h). Together, these findings 
demonstrate that NRF2-gene signatures are predictive in a cancer type 
specific manner and that the importance of individual NRF2 target genes 
for breast cancer aggressiveness differ from important to neutral. 

Using a network systems biology approach, we identified genes with 
expression patterns most strongly correlated with the six initial NRF2 
target genes of the first gene expression signature in breast cancer tissue 
from TCGA, by using the weighted Topological Overlap (wTO) approach 
[32]. Considering the ego-centric networks of each target gene with the 
25 strongest associated links, we found that 32 genes were connected to 
more than one target gene (Table 1). Comparing the ranking of these 
genes to the corresponding ego-centric network for the controls, we 
found that all except two of these genes were specific to patients with 
breast cancer (Supplementary Table 3). Subsequently, these 30 specific 
transcripts were individually tested for association between elevated 
level and poor prognosis using both the KM plotter and BreastMark web 
tools. Based on this analysis, we identified seven transcripts that directly 
correlated with the NRF2 signature (Supplementary Fig. 9). Interest-
ingly, these seven transcripts connect to the same three target genes, 
TXN, TXNRD1 and TALDO1 (Table 1). Elevated levels of the transcripts 
correlated with poor prognosis and adding them to the existing 
nine-gene signature resulted in a 16-transcript signature with even 
stronger prognostic value (Fig. 6d). 
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2.6. The 16-transcript, NRF2 related gene expression signature is a strong 
and independent predictor of risk of recurrence compared to the PAM50 
gene expression signature 

For breast cancer patients with hormone receptor-positive, HER2 
negative tumors, it is currently challenging to separate those that are 
unlikely to relapse from those with a higher probability for advanced 
disease and that will benefit from chemotherapy. Several expression 
signatures have been developed the last years, to help in the stratifica-
tion of patients [33–35]. The FDA approved PAM50 is a classifier based 
on the expression of 50 genes that divides breast cancer into five sub-
groups; luminal A, luminal B, HER2-enriched, basal-like and normal-like 
[35]. Together with the PAM50 classifier, a risk of recurrence (ROR) 
score was developed based on the correlation to the different subtypes. 
Together, the PAM50 subtypes and ROR scores have an impact on the 
assessment of late recurrence and is clinically approved to aid in clinical 
decision-making. As the 16-gene NRF2 signature was identified totally 
independently of the transcripts included in the PAM50 gene set, and 
since only one gene is in common (MELK), we asked if the NRF2 
signature identified here could increase the prediction of outcomes 
based on the ROR score. First, we assessed the signature score in tumor 
biopsies of the METABRIC cohort (n = 1904) [36]. Considering the 
PAM50 molecular subtypes we found that the signature level was 
significantly different between the subtypes (Fig. 7a) (ANOVA p-value <
0.01). Furthermore, the signature was overall higher in ER negative 

compared to ER positive tumors as well as in HER2 positive compared to 
HER2 negative, although there was a diverse spectrum within each 
group (Fig. 7b and c). We then used univariate Cox regression to assess 
the prognostic value of the signature alone using death from breast 
cancer as endpoint. We found that the signature was significantly 
prognostic alone (Table 2). Importantly, this was also true only within 
the hormone receptor-positive, HER2 negative tumors (Table 2). From 
this, we concluded that the NRF2 related signature represents an inde-
pendent prognostic predictor of breast cancer. Finally, to investigate any 
added prognostic value of using the signature together with ROR we 
used ANOVA testing to perform a deviance analysis to compare 
regression models of PAM50 ROR alone or PAM50 ROR together with 
the signature. These comparisons revealed that the NRF2 related 
signature significantly improved the prognostic performance of PAM50 
ROR (p < 2e-06). Importantly, this held true also for the hormone 
receptor-positive, HER2 negative tumors, suggesting an improved 
prognostication of this clinically challenging subgroup of patients. 

3. Discussion 

Transcriptome analyses revealed a constitutive activation of NRF2 in 
the metastatic 66cl4 cell line both in culture and in established tumors. 
Somatic mutations in NFE2L2, KEAP1, or CUL3 causing activation of 
NRF2, have frequently been described in lung- and other squamous-like 
cancers [6,7,14]. In breast cancer, however, such alterations are less 

Fig. 4. NRF2 depletion in 66cl4 slows proliferation and limit anchorage-independent growth. (a) RT-qPCR analysis. Fold changes are relative to Actb and Tbp (n =
3). Data are shown as mean ± SD (ANOVA after log transformation, Dunnett’s multiple comparisons test). (b) Representative immunoblot of NRF2 (100 μg protein 
loaded), NQO1, HMOX1, FTL1, FTH1 and SQSTM1 (50 μg protein loaded). ACTB was used as a loading control (2 μg protein loaded). (c) Flow-cytometric analysis of 
basal ROS levels after CM-H2DCFDA staining (n = 3). Data are shown as mean ± SD (ANOVA after log transformation, Dunnett’s multiple comparisons test). (d, e) 
Representative immunoblots of NRF2, NQO1, and HMOX1 (50 μg protein loaded). ACTB (2 μg protein loaded) was used as a loading control. Cells were treated with 
(d) L-sulforaphane (SFN) (20 μM – 50 μM) for 4 h or vehicle (DMSO) and (e) hydrogen peroxide (H2O2) (100 μM – 500 μM) for 30 min. (f) Doubling time of 66cl4 sh- 
NT control and sh-Nrf2 knockdowns in culture (n = 5). Data are shown as mean ± SD (ANOVA after log transformation, Dunnett’s multiple comparisons test). (g) 
Soft-agar assay. Colony area was measured in pixels. Z-stack of representative image of colonies. Scale bar: 1 mm (n = 5), Data are shown as mean ± SEM (ANOVA 
after log transformation, Dunnett’s multiple comparisons test). VC, vehicle control. 

Fig. 5. NRF2 depletion abolishes primary and secondary tumor growth. (a) Growth curve of primary tumors after injection of 66cl4 sh-NT (15 mice), sh-Nrf2_1 (10 
mice) and sh-Nrf2_2 (10 mice). (b) Tumor weight recorded at end point (n = 10–15). Data are shown as a scatter dot plot with a line at mean value (ANOVA after log 
transformation, Dunnett’s multiple comparisons test). (c) Lung weight recorded at end point (n = 10–15). Data are shown as scatter dot plot with a line at mean value 
(ANOVA after log transformation, Dunnett’s comparisons test). 
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frequent. Exome sequencing uncovered a missense mutation in Cul3 (c. 
C1768G) in 66cl4 that results in the substitution of histidine with 
aspartic acid. Sanger sequencing showed that 66cl4 is the only of the five 
cell lines of the 4T1 model that carries this mutation. In this conserved 
region of Cul3, somatic missense mutations leading to the exchange of a 
positively charged amino acid with an uncharged or negatively charged 
amino acid have also been found in human cancers [37]. We therefore 
speculate that these mutations encode loss of function or 
dominant-negative CUL3 variants, which cause the upregulation of 
NRF2 protein levels in these breast cancer cells. 

The constitutively raised NRF2 level in 66cl4 coincided with reduced 
basal ROS levels, which was reverted by depletion of NRF2. Down-
regulation of NRF2 protein levels severely reduced 66cl4’s ability to 

form primary tumors and lung metastases. Interestingly, 66cl4 showed a 
lower capacity to cope with additional oxidative stress than 67NR. As a 
consequence of the constant upregulation of redox adaption mecha-
nisms, cancer cells are more sensitive to further exogenous ROS insults 
than normal cells and this difference in sensitivity might provide a 
therapeutic window in certain types of cancers such as ovarian, lung, 
breast, liver, and esophageal cancer [13,38–41]. 

NRF2 driven oxidative stress responses and autophagy are closely 
intertwined. In autophagy defective livers (Atg5 − /− ), there is a 
persistent liver inflammation ultimately leading to liver cancer [42]. In 
these livers, the autophagy receptor SQSTM1 (also known as p62) ac-
cumulates to high levels due to lack of lysosomal degradation [42]. The 
high levels of SQSTM1 sequester KEAP1 and cause accumulation of 

Fig. 6. Breast cancer specific NRF2-gene signature predicts relapse-free survival. (a) Gene expression and mutation status of NFE2L2, KEAP1 and CUL3 in biopsies 
from lung squamous cell carcinoma (n = 466), head and neck squamous cell carcinoma (n = 496) and breast invasive carcinoma (n = 944) from the TCGA PanCancer 
Atlas analyzed using the cBioPortal database. Each line represents all patients in the cohort and the lines are aligned to illustrate genetic alterations in each individual 
patient. (b–d) Analysis of relationships between gene expression and relapse-free survival (RFS) in breast cancer patients using the online tool KM plotter. High and 
low expression were defined as above and below median. (b) Relationship between mean expression of the six NRF2-target genes. (c) Relationship between mean 
expression of the 9-gene expression signature and RFS. (d) Relationship between mean expression of the 16-gene expression signature and RFS. HR, hazard ratio. 
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NRF2 [15,43]. In this setting, NRF2 also induce the expression of 
SQSTM1 to form a positive feedback loop [16]. Despite constitutive 
activation of NRF2 in 66cl4, SQSTM1 mRNA and proteins levels were 
similar in 66cl4 and 67NR. We also found no consistent downregulation 
of SQSTM1 protein levels in NRF2 depleted cells, even though NQO1 
and HMOX1 were clearly reduced. These results demonstrate that there 
are cell specific differences in the NRF2 controlled gene regulation and 
that other regulators of SQSTM1 could be more important in these cells. 
Reciprocally, the ability of SQSTM1 to regulate NRF2 through 

sequestering KEAP1 is context dependent and change by 
post-translational modifications and alternative splicing (in mice) of 
SQSTM1 [44,45]. However, elevated expression of SQSTM1 might still 
be important for aggressive breast cancer development since there is a 
correlation between elevated SQSTM1 transcript levels in tumor bi-
opsies and poor prognosis using KM plotter (HR = 1.35, p = 8.7 logrank 
P = 8.7e-08, n = 3951). 

The clinical relevance of our findings is highlighted by the observed 
correlation between elevated score of the 16-transcript signature in RNA 

Table 1 
Top 25 gene transcripts with the highest wTO-score that correlates the best with the expression of each of the 
initial 6 NRF2 controlled genes in breast cancer biopsies. The colored cells are transcripts that predict poor 
prognosis when expressed above median using BreastMark and KM plotter. Transcripts in bold indicate gene products 
that appear more than one time in the table. 
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from tumor biopsies and unfavorable prognosis of breast cancer pa-
tients. A striking observation was that the signature was prognostic 
irrespective of subtype. The majority of breast cancer patients are 
diagnosed with a small, low-grade, hormone receptor-positive tumor. 
This patient group is challenging to treat since only few will relapse after 
surgery and radiotherapy. Subsequent to this treatment, the question is 
whether these patients should proceed with long-term chemotherapy. 
Such additional treatment further reduces the low risk of relapse but also 
give side effects reducing quality of life for many of these patients. A risk 
of recurrence score based on a combination of the FDA approved PAM50 
gene expression signature and clinical features of the tumor is already in 

use to aid in the stratification of breast cancer patients. We found 16 
transcripts that report on NRF2 activity and that when elevated correlate 
with reduced RFS in breast cancer patients. Combined, these 16 tran-
scripts have a greater prognostic value than the level of either transcript 
alone. The prognostic value was evident even for patients with low- 
grade, hormone receptor-positive breast tumors. Thus, the NRF2-gene 
signature could potentially be used to identify patients that will most 
likely not experience metastatic relapse. The 16-transcript signature was 
also an independent prognostic predictor compared to PAM50 ROR, and 
that significantly improved PAM50 ROR when combined. We hope that 
such a diagnostic approach may contribute to reduce the number of 

Fig. 7. The 16-transcript, NRF2 related gene expression signature is a strong predictor of risk of recurrence compared to the PAM50 gene expression signature. (a) 
16-gene expression signature level considering the PAM50 molecular subtypes in tumor biopsies of the METABRIC cohort (n = 1904, p < 1E-273). (b) The 16-gene 
expression signature level in ER positive versus ER negative tumors (p < 6E-83). (c) The 16-gene expression signature level in HER2 positive versus HER2 negative 
tumors (p < 6E-37). (d) Correlation between PAM50 ROR and the 16-gene expression signature (correlation score = 0.76). 

Table 2 
Prognostic value of the 16-gene expression signature and PAM50 ROR with death from breast cancer as endpoint. The univariate Cox regression analysis was per-
formed using gene expression of breast cancer biopsies from METABRIC (all samples n = 1904, hormone receptor-positive, HER2 negative samples n = 944) SE; 
standard error, HR; hazard ratio.   

All samples (n = 1904) Hormone receptor-positive, HER2 negative samples (n = 944) 

Coefficient SE HR p-value Coefficient SE HR p-value 

NRF2 signature 0.2592555 0.02444357 1.295965 7.97E-26 0.3236054 0.03801978 1.382102 9.70E-17 
PAM50 ROR 0.1823023 0.01918524 1.199977 1.46E-22 0.210953 0.0292933 1.234854 4.07E-13  
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patients that develop short-term and long-term adverse effects of anti- 
cancer therapies. 

4. Materials and methods 

4.1. Cell culture and generation of stable cell lines 

67NR and 66cl4 cells were obtained from Barbara Ann Karmanos 
Cancer Institute. 168FARN, 4TO7 and 4T1 were kindly provided by Dr. 
Fred Miller (Wayne State University, Detroit, MI). All cell lines were 
cultured in DMEM (Lonza, BioWhittaker, BE12- 604F) supplemented 
with 10% fetal calf serum (FCS, Thermo Fischer Scientific, #10270- 
106), 2 mM L-Glutamine (Lonza Group, De-17-605E) and 50 U/ml 
penicillin-streptomycin (Thermo Fischer Scientific, Gibco, #15070- 
063). Cells were incubated at 37 ◦C with 5% CO2. 

ShRNA-NRF2 knockdowns and respective controls were generated 
by viral transduction (Sigma Aldrich: TRCN0000054658, SHC216V-1 
EA). 6 h after seeding, 66cl4 cells were infected with lentiviral particles 
(MOI 0.1) in medium containing hexadimethrine bromide (8 μg/ml). 
After 24 h, cells were split 1:17. Starting 48 h after infection, cells were 
selected with puromycin (3.25 μg/ml) for 1 week. The selection medium 
was replaced every 2 – 3 days. Single cell colonies were picked using 
cloning cylinders and tested for NRF2 expression levels. 

4.2. Orthotopic mouse tumors and in vivo lung colonization assay 

Experiments were approved by the National Animal Research Au-
thorities and carried out according to the European Convention for the 
Protection of Vertebrates used for Scientific Purposes (FOTS ID 4536 and 
FOTS 10049). For all experiments, female BALB/cJRj mice (8–11 weeks 
old, Janvier Labs, France) were used. 

For orthotopic tumors, mice were anaesthetized and injected with 5 
× 105 viable cells into the fourth mammary fat pad. When palpable, 
tumor size was measured twice weekly using electronic calipers. Tumor 
volume was calculated: VT = (length x width2)/2. All mice belonging to 
the same experiment were sacrificed on the same day, unless otherwise 
stated. Mice were sacrificed after three to four weeks as indicated in the 
results. Weight of primary tumors and lungs was recorded. For the in 
vivo lung colonization assay female mice were anaesthetized and 
injected with 5 × 105 cells/100 μl PBS in the lateral tail vein. Mice were 
monitored daily and sacrificed two to three weeks after injections as 
indicated in the results. Entire lungs were weighed. 

4.3. Transcriptome analysis 

As described previously, RNA was isolated from three passages of 
67NR and 66cl4 in culture, four and seven primary tumors of 67NR and 
66cl4, respectively. Detailed information about sample preparation and 
data analysis can be found in Ref. [4]. The transcriptome data obtained 
by sequencing mRNA isolated from cells and primary breast tumors of 
67NR and 66cl4 is accessible from NCBI (SUB6422687). 

4.4. Genomic DNA isolation 

DNA from 67NR, 66cl4, and blood of BALB/c mice intended for exon 
sequencing was isolated using the QIAGEN Blood & Cell Culture DNA Kit 
(Qiagen, #13323). Everything was done according to the QIAGEN 
Genomic DNA Handbook. 

DNA used for Sanger sequencing was isolated according to the 
following protocol. Parts of primary tumors and entire lungs from in 
vivo experiments with 66cl4 NRF2 knockdowns were homogenized in 
lysis buffer (w/o SDS and digestion enzymes) using 1,4 mm ceramic 
beads from Precellys (2 × 40 s homogenization and 2 min break in be-
tween cycles). Homogenized tissue samples and cell pellets from tumor 
cell lines were digested overnight at 55 ◦C in lysis buffer (50 mM Tris, 
HCl pH 8.0; 100 mM NaCl; 100 mM EDTA, pH 8.0; 0,5% SDS; 100 μg/ml 

proteinase K [Roche, #03 115 828 001); 100 μg/ml RNaseA [Qiagen, 
#19101]). Genomic DNA (gDNA) was isolated using super saturated salt 
solution NaCl and ethanol precipitation. The DNA pellet was dissolved 
in T1/10E buffer. Purity and quantity were measured by a Nanodrop 
microvolume spectrophotometer. 

4.5. Exome sequencing 

Exome sequencing libraries were prepared from 1 μg gDNA using 
SureSelectXT target enrichment system for Illumina paired-end 
sequencing libraries (Agilent Technologies, Santa Clara, CA, USA), ac-
cording to the manufacturer’s instructions. Briefly, the DNA was frag-
mented using the Covaris M220 system (Covaris, Woburn, MA, USA). 
The DNA fragments (app 200 bp) were end-repaired using T4 DNA po-
lymerase, Klenow DNA polymerase and T4 polynucleotide kinase (PNK), 
followed by purification using AMPure XP beads (Beckman Coulter, 
Brea, CA, USA). An A-base was ligated to the blunt ends of the DNA 
fragments using the Klenow DNA polymerase and the sample was pu-
rified using AMPure XP beads. Indexing specific adapters for sequencing 
were ligated to the DNA fragments, followed by purification using 
AMPure XP beads. The adapter-ligated libraries were amplified for six 
PCR cycles, followed by a second purification using AMPure XP beads. 
The quality of the enriched libraries was evaluated using the 2100 
Bioanalyzer and a DNA 1000 kit (Agilent, Santa Clara, CA, USA) and 
qPCR. Exon capture was performed from 1000 ng of each sequencing 
library using the SureSelectXT SureSelect Mouse All Exon Kit (Agilent 
Technologies, Santa Clara, CA, USA). Briefly, the fragments in the li-
brary were hybridized to capture probes (20 h at 65C), unhybridized 
material was washed away and the captured fragments were amplified 
for ten PCR cycles, followed by purification using AMPure XP beads. The 
quality of the enriched libraries was evaluated using the 2100 Bio-
analyzer and a High-Sensitivity DNA-kit (Agilent Technologies, Santa 
Clara, CA, USA). The adapter-ligated fragments were quantified by qPCR 
using the KAPA SYBR FAST library quantification kit for Illumina 
Genome Analyzer (KAPA Biosystems, Woburn, MA, USA). A 20 pM so-
lution of the sequencing libraries was subjected to cluster generation on 
a HiSeq2500 rapid ruin mode flowcell by the cBot instrument (Illumina, 
Inc., San Diego, CA, USA). Paired-end sequencing was performed for 2 ×
100 cycles on a HiSeq2500 instrument (Illumina, Inc. San Diego, CA, 
USA). Everything was done according to the manufacturer’s in-
structions. Base calling was done on the HiSeq instrument by RTA 
1.17.21.3. FASTQ sequence files were generated using CASAVA 1.8.2 
(Illumina, Inc. San Diego, CA, USA). Raw FASTQ files from three repli-
cates were combined and aligned to the mm9 genome reference by BWA 
(http://bio-bwa.sourceforge.net/), version 0.6.2, for each of 66c14, 
67NR, and blood, respectively. Sequence Alignment Map (SAM) files 
were converted to Binary Alignment Map (BAM) files by Picard (htt 
ps://broadinstitute.github.io/picard/), version 1.102 and sorted by 
Samtools (http://samtools.sourceforge.net/), version 0.1.18. The BAM 
files were subsequently preprocessed by the GATK pipeline. Single 
nucleotide variants were called by Mutect (https://www.nature.co 
m/articles/nbt.2514), version 1.1.7, and short insertions and deletions 
(indels) were called by Strelka (https://www.ncbi.nlm.nih.gov/pubmed 
/22581179), version 1.0.14. SNVs and indels were annotated by 
Annovar (http://annovar.openbioinformatics.org/en/latest/), version 
2013May09, and exonic, nonsynonymous mutations were kept for 
further analysis. 

4.6. Sanger sequencing 

PCR was performed with KOD Xtreme Hot Start DNA polymerase 
(Novagen, 71975-3). The 50 μl reactions contained 25 μl 2x Xtreme 
Buffer, 10 μL 2 mM dNTPs, 1.5 μl 10 μM forward primer (ACTGTG-
TAGGGAAATGGGGAC) and 1.5 μl 10 μM reverse primer (CCTACTGG-
TATTCAAATGGCATCTC) and 100 ng gDNA. The cycling conditions of 
the touchdown PCR were 94 ◦C for 120 s, 16 cycles of 98 ◦C for 10 s, 62 
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◦C (minus 0.5 ◦C/cycle) for 15 s, 68 ◦C for 20 s, 24 cycles of 98 ◦C for 10 
s, 55 ◦C for 15 s, 68 ◦C for 20 s and 68 ◦C for 120 s. The size and purity of 
the PCR product was examined on a 2% agarose gel. 

ExoSAP-IT (Thermo Fisher Scientific, 78200.200.UL) was used for 
PCR cleanup. Sanger sequencing was done with the Cul3 reverse primer 
by GATC Biotech AG, Germany. 

4.7. Quantitative real-time PCR 

Total RNA from cells in culture was extracted using RNeasy Mini Kit 
(Qiagen, 74104). RNA concentration and quality were measured by 
Nanodrop. cDNA was synthesized from 500 ng total RNA by QuantiTect 
Reverse Transcription Kit (Qiagen, 205310). cDNA was diluted 1:5. 
Quantitative real-time PCR was performed in parallel 25 μl reactions 
containing 12.5 μl 2X QuantiTect SYBR Green PCR master mix (Qiagen, 
204141) and 2.5 μl 10X QuantiTect Primer Assay. Qiagen QuantiTect 
Primer Assays used in this study: Mm_Nfe2l2_1_SG (QT00095270), 
Mm_Nqo1_1_SG (QT00094367), Mm_Hmox1_1_SG (QT00159915), 
Mm_Ftl1_2_SG (QT02526006), Mm_Gclc_1_SG (QT00130543), 
Mm_Sqstm1_1_SG (QT00127855), Mm_Cul3_1_SG (QT00108010), 
Mm_Map1lc3b_2_SG (QT01750322), Mm_Actb_2_SG (QT01136772), 
Mm_Tbp_1_SG (QT00198443). RT-PCR was performed on the StepOne 
plus system (Applied Biosystems, Foster City, CA, USA) using the 
following cycling conditions: 95 ◦C for 15 min, 40 cycles of 94 ◦C for 15 
s, 55 ◦C for 30 s and 72 ◦C for 30 s. Relative gene expression levels were 
calculated with the 2∧(− delta delta CT) method. Transcripts were normal-
ized to Actb and Tbp. 

4.8. Immunoblotting 

Cells were harvested in urea lysis buffer containing 8 M urea (Merck 
Millipore, 1084870500), 0.5% (v/v) Triton X-100 (Sigma, T8787), 100 
mM DTT (Sigma, 646563), Complete® protease inhibitor (Roche, 
1187350001) and phosphatase inhibitor cocktail II (Sigma, P5726) and 
III (Sigma, P0044). When indicated the cells were pretreated for 4 h with 
L-Sulforaphane dissolved in DMSO (20 μM – 50 μM, Sigma Aldrich, 
S6317) or for 30 min with hydrogen peroxide (100 μM – 500 μM, Sigma 
Aldrich, H1009). Protein concentration was measured using BioRad 
protein assay (Bio-Rad, 500-0006). Equal amounts of proteins were run 
on Invitrogen NuPAGE Bis-Tris protein gels (10%, 12% or 3–12%), 
transferred onto nitrocellulose membranes and probed with antibodies 
against NRF2 (Cell signaling, 12721, 1:1000), NQO1 (Abcam, ab34173, 
1:1000), HMOX1 (Enzo, ADI-OSA-110, 1:1000), FTL1 (ThermoFisher 
Scientific PA5-27357, 1:1000), FTH1 (Abcam, ab65080, 1:1000), 
SQSTM1/p62 (Progen, GP62-C, 1:1000) or ACTB (Abcam, ab6276, 1:10 
000). Proteins of interest were detected with near-infrared fluorescent 
(IRDye) secondary antibodies (Li-Cor Biosciences, 926–32211, 
926–32411, 926–68070, 1:10 000) and imaged with the Odyssey Near 
Infrared scanner (Li-Cor Biosciences, Lincoln, Nebraska, USA). Images 
were analyzed using Image Studio v3.1. 

4.9. Detection of reactive oxygen species 

ROS levels determined by flow cytometric measurement of CM- 
H2DCFDA (ThermoFisher Scientific, C6827). When indicated the cells 
were pretreated for 4 h with L-Sulforaphane dissolved in DMSO (20 μM – 
50 μM, Sigma Aldrich, S6317) or vehicle (DMSO). The cells were incu-
bated at 37 ◦C and 5% CO2 with 5 μM CM-H2DCFDA for 30 min before 
intracellular ROS was determined. The experiments were performed in 
triplicates and the data represent mean intensity of 10 000 cells per well 
± SD. 

4.10. MTT 

67NR and 66cl4 were seeded in 96 well plates (6000 cells/well) one 
day prior stimulation. The cells were stimulated with H2O2 (100 μM – 

600 μM, Sigma Aldrich, H1009) for 30 min and the medium was 
replaced by new growth medium (200 μl). After 16 h incubation at 37 ◦C 
and 5% CO2, 20 μl MTT (5 mg/ml) were added to the each well and 
incubated at 37 ◦C, 5% CO2 for 4 h. Next, 150 μl of supernatant were 
discarded, 100 μl acidic isopropanol (40 mM HCl) added and the plate 
incubated for 1 h while shaking. To dissolve the MTT formazan crystals, 
samples were thoroughly pipetted up and down. Absorbance was 
measured at 570 nm with a Biorad iMark Microplate™ reader. Per 
condition 6 parallels were measured. 

4.11. Cell proliferation assay 

12 000 cells were seeded in 24 well plates and counted at around 24 
h, 36 h, 48 h, 60 h and 72 h. Measurements were done in triplicates and a 
single plate was prepared for each time point. Each of the triplicates was 
counted three times with the Beckman Coulter Z2 Coulter Particle Count 
and Size analyzer. An average cell number per well was calculated for 
each cell line and time point (cellsavg). The natural logarithm (ln(X)) of 
each cellsavg was calculated and plotted against time (hours). Growth 
rate (μ max [h-1]) was determined and doubling time (tD [h]) calcu-
lated: ln(2)/μ max. 

4.12. XF96 Seahorse measurements of key parameters of glycolytic and 
mitochondrial function 

67NR (13 000 cells/well), 66cl4 (20 000 c/w) and 66cl4 clones (sh- 
NT and sh-NRF2 knockdowns) (20 000 c/w) were seeded in XF96 
polystyrene cell culture microplates that had been pre-treated with 
0.01% poly-L-lysine. The cells were incubated overnight, reaching 
around 95% confluency the following day. At least 1 h prior to mea-
surements, the cells were washed and incubated at 37 ◦C in a CO2-free 
incubator in serum-free XF Assay Medium Modified DMEM (Seahorse 
Biosciences, Part #102352-000) supplemented with either 6 mM 
glutamine (glycolysis stress test) or a combination of 10 mM glucose, 10 
mM pyruvate and 6 mM glutamine (mito stress test). 

Glycolysis stress test: Basal extracellular acidification rate (ECAR) 
was measured in an XF96 Extracellular Flux Analyzer (Seahorse 
Bioscience, North Billerica, MA) and then the ECAR was followed after 
injections of a saturating concentration of glucose (10 mM), oligomycin 
(1 μM) and finally 2-deoxy-glucose (50 mM). 

Mito stress test: Basal oxygen consumption rate (OCR) was 
measured, and then the OCR was followed after injections of oligomycin 
(1 μM), carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP; 
1.5 μM) and the combination of antimycin A (AA; 1 μM) and rotenone (1 
μM). 

After the analysis, most of the medium in the wells was removed (ca. 
40 μl left), and 16% paraformaldehyde (PFA) was added to a final 
concentration of 4%. The cells were fixed at RT for ca. 15 min. For 
normalization, cell nuclei were stained with Draq5 (Cell Signalling 
Technology, 4084 L) by carefully removing the PFA and then adding 50 
μl Draq5 (diluted 1:1000 in PBS) and incubating in the dark at RT for 0.5 
h. The wells were scanned at 680 nm using an Odyssey NIR scanner (Li- 
Cor Biosciences). 

All experiments were performed 3 times, each time using 14–20 
wells per cell line. All chemicals used in the glycolysis and mito stress 
tests were from Sigma-Aldrich. 

4.13. Soft-agar assay 

2x DMEM growth medium was prepared by dissolving 10 g DMEM 
low glucose (Sigma Aldrich, D2902), 3.7 g sodium bicarbonate, 
(NaHCO3), and 3.5 g glucose in Milli-Q water. After sterile filtration 20% 
fetal calf serum (FCS, Thermo Fischer Scientific, #10270-106), 4 mM L- 
Glutamine (Lonza Group, De-17-605E) and 100 U/ml penicillin- 
streptomycin (ThermoFischer Scientific, Gibco, #15070-063) were 
added. PH of the final 2x DMEM was 7.4. A bottom layer of a 1:1 mix of 
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0.75% SeaKem® LE Agarose (LONZA, 50004) and 2x DMEM was pre-
pared and added to each well in 6 well plates. The top layer containing a 
1:1 mix of 0.36% SeaKem® LE Agarose and 2x DMEM with 10 000 cells 
was added to the solid bottom layer. The cells were fed twice a week 
with 1x DMEM and incubated at 37 ◦C and 5% CO2 for 12 days. Plates 
were stained with 0.04% crystal violet in 2% ethanol/PBS for 1 h and 
washed 6 × 60 min with 1x PBS while rocking. Z-stack images consisting 
of nine images were taken with the EVOS FL Auto Cell Imaging System 
(Invitrogen, Carlsbad, California, USA). For each cell line, 5 to 6 wells, 
containing 25 beacons each, were analyzed. Z-stacks were merged and 
analyzed with CellProfiler 2.2.0. 

4.14. Survival, enrichment and gene expression analysis 

KM plotter and Breastmark – BreastMark (glados.ucd.ie/BreastMark) 
[30] and KM plotter (http://kmplot.com/analysis/) (database version: 
2014) [28,29] are online custom tools for examining prognostic markers 
in BC subtypes, which utilize data from multiple cDNA microarray ex-
periments. Analysis of disease-free/relapse-free survival (DFS/RFS) of 
46 NRF2-target genes was analyzed in breast cancer as a whole and 
intrinsic subtypes (lymph node positive/negative, Luminal A, Luminal 
B, Her2 positive, basal, and estrogen receptor [ER] positive/negative). 

Enrichr - Enrichment analysis, including Chip-X enrichment analysis 
(ChEA), KEGG cell signaling pathway analysis, Reactome pathway 
analysis and GO cellular component analysis, were done with the online 
tool Enrichr (http://amp.pharm.mssm.edu/Enrichr/) [17,18]. 

Ualcan - mRNA expression levels of 61 NRF2-target genes were 
determined in breast invasive carcinoma tissue and normal tissue (TCGA 
dataset) using Ualcan (http://ualcan.path.uab.edu/index.html), which 
is interactive web resource for analyzing cancer transcriptome data 
[31]. 

cBioPortal - cBioPortal (http://www.cbioportal.org/) is an open ac-
cess database that allows visualization and analysis of large-scale cancer 
genomics data sets [22,23]. Our analyses utilize the OncoPrints visual-
ization to identify genomic alterations, including somatic mutations, 
mRNA expression and amplifications across a set of cases. This visuali-
zation shows the genes as rows, while individual cases are shown as 
columns. For this analysis we used the TCGA Provisional data set for 
invasive breast carcinoma, and selected mutations, putative 
copy-number alterations and mRNA expression as genomic profiles. 

4.15. Statistical analysis of the signature 

The signature score was assessed in the Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) cohort [36] using 
microarray measurements of tumor mRNA expression and clinical in-
formation downloaded from the cBioPortal on December 1st, 2017, 
http://www.cbioportal.org/study?id=brca_metabric#clinical [22,23]. 
Statistical analyses were performed using R [46]. For comparisons of 
two groups, the Student’s t-test was used and for comparison of more 
than two groups (PAM50) an Analysis of Variance Model (ANOVA) was 
used. A p-value < 0.05 was considered statistically significant. 

To assess the prognostic value of the signature univariate Cox 
regression from the survival library in R was used with death from breast 
cancer as endpoint. 

To investigate any added prognostic value of using the signature 
together with ROR we used ANOVA testing to compare regression 
models of PAM50 ROR alone or PAM50 ROR together with the 
signature. 

4.16. Weighted topological overlap network analysis 

The network analysis was performed on RNA-sequenced data on 17 
214 genes from 421 cases and 51 controls, downloaded from The Cancer 
Genome Atlas (TCGA; The Cancer Genome Atlas research network: 
http://cancergenome.nih.gov. The data was already normalized within 

samples to the median gene expression, and genes with missing values 
were removed prior to the analysis, resulting in 421 cases and 61 con-
trols with 16 750 gene expressions. 

Applying the standard procedure of Weighted Gene Co-Expression 
Network Analysis (WGCNA) [47], we generated correlation-based net-
works for both cases and controls, where nodes correspond to genes and 
a link between a pair of genes represents the interaction between the 
genes. Briefly, the WGCNA approach starts by creating correlation ad-
jacency matrices for the gene expressions. Using a power function, 
strong correlations accentuate, while weak correlations are reduced [47, 
48]. These transformed correlations are used to calculate the weighted 
Topological Overlap (wTO), 

ωij =
aij +

∑
u∕=i,jaiuauj

min
{∑

uaiu,
∑

uaju
}
+ 1 − aij

,

where aij =
⃒
⃒
⃒corij|

β is the absolute Pearson correlation between gene i 
and j raised to a power β = 5. Accounting also for the correlation of the 
surrounding nodes, the wTO has been shown to be a robust and bio-
logical meaningful measurement [32,47–49]. Letting the wTO-values 
represent links in the network, we focused on the target genes by 
creating ego-centric networks for the target genes, selecting only the 25 
strongest links for each target gene. 

4.17. Statistics 

Statistical analyses were performed in GraphPad Prism 7 and 9. 
Values are expressed as mean ± standard deviation (SD) or standard 
error of the mean (SEM) if not otherwise stated. Details about statistical 
analyses are specified in the figure legends. P value < 0.05 was 
considered statistically significant and is labeled with *), p < 0.01 is 
labeled with **) and p < 0.001 is labeled with ***). 
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