
Received: 25 February 2022 - Revised: 26 April 2022 - Accepted: 19 May 2022 - IET Biometrics
DOI: 10.1049/bme2.12082

OR I G INAL RE SEARCH

Transferability analysis of adversarial attacks on gender
classification to face recognition: Fixed and variable attack
perturbation

Zohra Rezgui1 | Amina Bassit1,2 | Raymond Veldhuis1,3

1EEMCS Faculty, Data Management & Biometrics
Group, University of Twente, Enschede, The
Netherlands

2EEMCS Faculty, Services and CyberSecurity Group,
University of Twente, Enschede, The Netherlands

3Department of Information Security and
Communication Technology, Norwegian University
of Science and Technology, Gjøvik, Norway

Correspondence

Zohra Rezgui, EEMCS Faculty, Data Management
& Biometrics Group, University of Twente,
Drienerlolaan 5, 7522 NB, Enschede, The
Netherlands.
Email: z.rezgui@utwente.nl

Funding information

H2020 Marie Skłodowska‐Curie Actions, Grant/
Award Number: 860315

Abstract
Most deep learning‐based image classification models are vulnerable to adversarial attacks
that introduce imperceptible changes to the input images for the purpose of model
misclassification. It has been demonstrated that these attacks, targeting a specific model,
are transferable among models performing the same task. However, models performing
different tasks but sharing the same input space and model architecture were never
considered in the transferability scenarios presented in the literature. In this paper, this
phenomenon was analysed in the context of VGG16‐based and ResNet50‐based bio-
metric classifiers. The authors investigate the impact of two white‐box attacks on a gender
classifier and contrast a defence method as a countermeasure. Then, using adversarial
images generated by the attacks, a pre‐trained face recognition classifier is attacked in a
black‐box fashion. Two verification comparison settings are employed, in which images
perturbed with the same and different magnitude of the perturbation are compared. The
authors’ results indicate transferability in the fixed perturbation setting for a Fast Gradient
Sign Method attack and non‐transferability in a pixel‐guided denoiser attack setting. The
interpretation of this non‐transferability can support the use of fast and train‐free
adversarial attacks targeting soft biometric classifiers as means to achieve soft bio-
metric privacy protection while maintaining facial identity as utility.
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1 | INTRODUCTION

The cutting‐edge advances in deep learning (DL) have made
computer vision problems more approachable. However,
neural networks can be unreliable on data unseen during the
training, which makes their security questionable. In fact, the
majority of DL models are vulnerable to adversarial attacks
that, based on subtle perturbations applied to the clean sam-
ples, mislead the classifier with high confidence. There has
been a number of studies investigating the vulnerabilities of
DL‐based machine learning systems to different types of
adversarial attacks on the input images. The existing attacks can
be partitioned into two categories: white‐box attacks, where an

adversary has full access to the attacked model's parameters,
and black‐box attacks, where an adversary has no access to
such information. Typically, white‐box attacks are more
powerful than black‐box attacks due to their ability to leverage
the parameters of the model against its own predictions.
In a real‐life scenario, a deployed model's parameters

would not be accessible leaving the black‐box attacks as the
only option to disrupt its predictive performance. To benefit
from the strength of white‐box attacks, Ref. [2, 3] show that it
is possible to target a model, where its parameters are known,
and transfer the resulting effects on an unknown model, as
long as the two models are trained for the same task. Partic-
ularly in the field of biometrics, the effectiveness of these
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attacks should not be overlooked, given the variety of bio-
metric applications such as forensics and border control where
wrong predictions are not tolerated.
Many biometric applications are inter‐connected, specif-

ically those related to the face modality. For instance, there is a
plethora of studies showing that different face recognition
systems can be enhanced with a soft biometric classifier such
as a gender classifier [4]. Similarly, deep face recognition fea-
tures are known to be discriminative for soft biometric clas-
sification [5] via transfer learning. This association motivates us
to investigate the potential transferability of adversarial attacks
on models that share the same input space but were trained
independently to perform different tasks. Previous studies on
the transferability of adversarial attacks, however, did not
include such a hypothesis because they were solely concerned
with same‐task transferability.
The investigation of this hypothesis could be beneficial in

terms of soft biometric privacy. There is usually a trade‐off
between privacy and utility in privacy applications. Utility
specifies how much information we want to keep in the pro-
tected data. Indeed, if we consider an adversarial attack to be a
privacy mechanism that conceals soft biometric attributes,
studying between‐task transferability allows us to assess how
such a privacy mechanism would impact utility if utility is
expressed as the performance of a face recognition classifier.
For instance, an effective adversarial attack on a gender classifier
that is not transferable to a face recognition system can be used
as a privacy protection mechanism to obfuscate gender.
This paper is an extension of work originally presented in

BIOSIG 2021 [1], where we investigate the transferability of
two adversarial attacks against a gender classifier to a face
recognition classifier where both classifiers are independently
trained and only share the same input space (facial images)
and the same model architecture. We start by providing an
overview of the hypothesis of transferability between
different tasks given the same input space. We then study the
impact of two existing gradient‐based attacks and deep
feature‐based defence on the gender classifier. Subsequently,
we use the generated adversarial images along with those
resulting from the defence against a pre‐trained face recog-
nition model to analyse the transferability of both the attacks
and the defence. In Ref. [1], there was a faint transferability
between an attack on a gender classifier using a range of
fixed perturbations. The verification comparisons were per-
formed over images perturbed with the same perturbation. In
this extension, we study the transferability using variable
perturbations from two attacks. The comparisons are between
images with different perturbations in contrast to what was
done in Ref. [1]. We also extend the experiments to a
ResNet50 architecture.
Our results, illustrated in Figure 1, support the trans-

ferability hypothesis for the fixed perturbation setting but not
for the variable perturbation setting. This finding suggests that
unlike fixed‐perturbation assaults, attacks with variable per-
turbations may be better suited as privacy protection mecha-
nisms as there is no indication that they are transferrable from
a soft biometric classifier and a face recognition classifier.

2 | RELATED WORK

Adversarial attacks have become an active area of research as
they expose the design vulnerabilities of DL‐based models.
Several white‐box attacks are gradient‐based such as the Fast
Gradient Sign Method (FGSM) [6], its iterative version
(IFGSM) [7], and Projected Gradient Descent [8]. Unlike the
gradient used in backpropagation to train neural networks, the
gradient used in those attacks helps determining the nearest
perturbation to the input such that the adversarial image is
misclassified. Other methods are based on network architec-
ture information, Ref. [9] finds the minimal perturbation
possible to an image that would make it misclassified, via
projecting inputs on the closest classification hyperplane. Re-
sults in Ref. [10] show that DL‐based face recognition models,
such as VGGFace, are vulnerable to such attacks and to image
processing methods that perturb the samples in a perceptible
manner. Moreover, Ref. [11] uses Generative Adversarial
Network (GAN)‐based image editing to change the direction
of the predictions of a binary gender classifier. However, the
changes in the resulting images are perceptible to the human
eye, which contradicts the purpose of adversarial attacks.
To improve the robustness of existing DL models, many

defence approaches have been proposed to withstand these
attacks. Ref. [6, 12] show that incorporating adversarial samples
with the training data increases the attacked model's robustness
but such an approach can be resource‐demanding. In practice,
the model is trained over a diverse training set, where it learns
to correctly classify the clean samples and, at the same time, it
rectifies the predictions of the adversarial samples. Ref. [13]
enhances the classifier's predictions by targeting each class and
partitioning it into several sub‐classes, assuming that only a few
of them are sensitive to adversarial attacks. Subsequently, the
different predictions of the sub‐classes are aggregated via
voting. Other approaches are based on input reconstruction
such as Ref. [14] by using a denoising auto‐encoder on the
adversarial images in order to remove the perturbations. This
method has been improved in Ref. [15] by using a U‐Net ar-
chitecture for the denoiser and defining the reconstruction loss
based on the deep features of the classifier.
While white‐box attacks are effective on known machine

learning models, it was shown in Ref. [16] that the resulting
adversarial images can be effective against unknown models.
The literature refers to such phenomenon as attack trans‐
ferability where the attacked model is called surrogate model
and the model to which the attack is transferred is called target
model. Ref. [16] shows that adversarial attacks are transferable
between the same models and between different models per-
forming the same task, whether these models are differentiable
(such as DNNs) or non‐differentiable (such as Support Vector
Machines). Ref. [2] analyses the level of complexity of the sur-
rogate model in an attempt to justify the transferability effec-
tiveness; a surrogate model that has a low variance loss function
is more transferable than a model with a high variance loss
function. In order to ameliorate transferability across different
neural networks performing the same task, Ref. [17] modifies
the IFGSM attack by randomly resizing the images at each
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iteration. Ref. [18] proposes a GAN‐based approach to generate
synthetic adversarial samples with imperceptible perturbations
against FaceNet [19] and report effective results across different
face recognition models. Similarly, Ref. [3] reports transferability
of attacks from an open‐source surrogate face recognition
model to several commercial target face recognition models.
As approaches to privacy protection, authors in Ref.

[20, 21] used GANs to edit input images by modifying their
sensitive attribute category. This is often done via integrating
pre‐trained soft biometric attribute classifiers as privacy esti-
mators and pre‐trained face recognition systems as utility es-
timators into the framework of the GAN, using them as
additional discriminator networks. This allows having realistic‐
looking images with the characteristics of the faces slightly
changed to fool the pre‐trained soft biometric attribute clas-
sifiers but not the face recognition models. While these
methods are promising, they tend to be computationally heavy,
unlike common adversarial attacks. In this regard, it is
important to investigate whether fast and train‐free adversarial
attacks are transferable from soft biometric classifiers to face
recognition systems. It turns out that when such attacks are

non‐transferable, they can be used as a privacy protection
mechanism to obfuscate a soft biometric attribute.

3 | METHODOLOGY

Let us denote XF as the space of all facial images, XC the space
of clean images, XAdv the space of adversarial images and XDen
the space of denoised adversarial images where XC ∪ XAdv ∪
XDen ⊆ XF. We denote YG = {0, 1} the space of the gender
labels and YR = {✓, ✗} the space of recognition labels. We
consider G: XF → YG a gender classifier and R: XF � XF →
YR a facial recognition classifier.

Attack An adversarial attack fAdv: XC → XAdv is consid-
ered successful if for x ∈ XF there is an adversarial sample
fAdv(x) = xAdv ∈ XAdv such that:

GðxÞ ¼ yG and G xAdvð Þ ¼ yG

Denoising Defence Let fDen: XAdv → XDen denote a
denoising function. Ideally, a denoised image xDen = fDen

F I GURE 1 Overview of the transferability hypothesis from a white‐box attack on a gender classifier to a black‐box attack on a face recognition classifier
with VGG16 architecture. We show the results from the Fast Gradient Sign Method (FGSM) fixed perturbation setting on the left and from the PGD attack
(PGD‐ATK) variable perturbation setting on the right. The black dots refer to the clean images denoted as C, the red dots refer to the adversarial images
generated by each attack denoted as A and the green dots refer to the denoised images generated by the defence method denoted as D. ErrorC , ErrorA and
ErrorD correspond to the gender classification errors on the sets BCleanTrans, BAdvTrans and BDenTrans before we use them for verification with the face recognition
model. Once we use them for verification using different pair combinations, we derive the equal error rates EERCC, EERAA, EERDD, EERCA, and EERCD. We see
that the attacks make no significant difference on EER as we compare the EER among the different combinations, in particular the variable perturbation white‐box
attack (PGD‐ATK)
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(xAdv) ∈ XDen and verifies G (xDen) = G(x) where x ∈ XC is
the clean image such that xadv = fAdv(x).

Gender‐Recognition Attack Transferability We say
that an attack fadv is transferrable from the gender classifier
G to a face recognition model R for (x1, x2) ∈ XC � XC
if we have

R x1; x2ð Þ ≠ R x1; fAdv x2ð Þð Þ

Gender‐Recognition Defence Transferability We say
that a defence fDen is transferrable from the gender classifier G
to a face recognition model R for (x1, x2) ∈ XC � XC if we
have

R x1; x2ð Þ ¼ R x1; fDen ◦ fAdv x2ð Þð Þ

Metrics we use the classification accuracy, that is, the
number of correct predictions divided by the total number of
predictions, to measure the performance of the gender classi-
fier, and we derive different performance metrics for the face
recognition classifier based on a similarity measure: the equal
error rate (EER), the false non‐match rate (FNMR) at a fixed
false match rate (FMR) of 0.1% (FNMR at 0.1%FMR) as well
as area under the detection error trade‐off curve (AUC‐DET).
(See Figure 2).
Based on the above‐mentioned definitions, we adopt the

following procedure:

1. Train the gender classifier and measure its classification
accuracy.

2. Attack the gender classifier to generate a set of adversarial
samples.

3. Train a denoising defence on a subset of adversarial samples
and their corresponding clean versions and evaluate it on a
separate subset by comparing the classification accuracy of
the gender classifier on the adversarial images and their
denoised versions.

4. Run a face recognition model on a clean set, its adversarial,
its denoised versions, and their combinations to assess the
transferability of the attack and the defence methods in
terms of the sensitivity of the recognition performance
across the diverse sets of images as shown in Figure 2.

4 | BACKGROUND

4.1 | Fast Gradient Sign Method Attack

We use J (θ, x, yG) to denote the loss function of the gender
classifier G with respect to an input image x ∈ XC and its
ground truth gender label yG ∈ YG. The FGSM attack maxi-
mises the loss with respect to the input image [6] by adding to
the image a step ϵ in the direction of the loss gradient. An
FGSM adversarial attack fAdv: XC → XAdv, with perturbation
magnitude ϵ ∈ R, results in adversarial images xAdv ∈ XAdv
such that: xAdv = x + ϵ ⋅ sign (∇J (θ, x, yG)).

4.2 | Projected Gradient Descent Attack

PGD (Projected Gradient Descent) attack (PGD‐ATK) [8] is an
iterative attack where each iteration is an FGSM attack while it
restricts the perturbation level inside an ℓ∞ ball. This iterative
process increases the chance of obtaining samples that would lie
outside of the decision boundary of the correct class. Given S the
set of possible perturbations, a projected gradient descent attack
(PGD‐ATK) fAdvPGD: XC → XAdv, with mini‐step α ∈ R, re-
sults at step t + 1 in adversarial images xAdv ∈ XAdv such that:
xt+1 = ∏x + S (xt + α sign (∇xJ (θ, x, yG))) where the operator
∏x + S designates the projection on x + S.

4.3 | High‐level representation and pixel
guided denoisers

In this paper, we consider two types of denoisers: a pixel‐guided
denoiser (PGD) and high‐level representation guided denoiser
(HGD). A PGD learns to reconstruct a clean image x by
reducing the loss defined as, L PGD ¼ kx − xAdvk1, the pixel
level difference between a clean image x and its adversarial
version xAdv. Whereas, a HGD [15] reduces the loss defined as,
L HGD ¼ k f

i
embðxÞ − f iemb xAdvð Þk1, the difference between the

deep features of a clean image x and the deep features of its
adversarial version xAdv where f

i
emb : XC → Rn denotes the

function describing the attacked model until its ith layer outputs
a feature vector of size n.

5 | EXPERIMENT AND EVALUATION

5.1 | Architectures

We used the VGG16 architecture as the gender classification
network and restricted its last layer to two classes to suit our
classification goal. The same architecture is used for the face
recognition model VGGFace pre‐trained on the VGGFace
dataset [22]. VGG16 has a straightforward architecture that
comprises 13 convolution layers and three fully connected layers.
Additionally, we repeat the experiments using a ResNet50 ar-
chitecture as the gender classification network, transforming its
last layer to output two class probabilities corresponding to the
gender categories. ResNet50 comprises a total of 48 convolution
layers and two layers of max‐pooling and average pooling,
respectively, before its last fully connected layer for classification.
We also use the same architecture for the face recognition
network to which we transfer the attacks on the ResNet50
gender classifier. In this case, the face recognition network is pre‐
trained [23] with an arc loss on the MS1MV dataset.1

For the denoiser, similarly as Ref. [15], we use a U‐Net
based Denoising Convolution Neural Network,2 a denoising
model, which we will refer to in this work as UDnCNN. The

1
http://trillionpairs.deepglint.com/overview
2
https://github.com/lychengr3x/Image‐Denoising‐with‐Deep‐CNNs
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structure of the UDnCNN denoiser has an encoding part,
sharing skip connections with a decoding part. The skip con-
nections allow the transfer of fine‐grained information that
could be lost in a regular auto‐encoder, as shown in Figure 3.

5.2 | Dataset division

We use the CelebA dataset that comprises 202, 599 samples of
10, 177 different individuals. We divide this dataset into three
sets: A (162, 770 samples), B (19, 962 samples), and C (19, 867
samples) with respect to the train‐test‐validation partition
provided by the authors in Ref. [24] where identities do not
overlap. For each adversarial attack against the gender classifier
and the defence experiment, we use sets A and B to train and
test the gender classifier and set C to generate adversarial
images against the gender classifier. The resulting adversarial
images and their corresponding clean versions are partitioned
into four subsets: CAdvTrain and CCleanTrain of equal size as

well as CAdvTest and CCleanTest. The subsets CCleanTrain and
CAdvTrain are used for the training of the denoisers while
CCleanTest and CAdvTest are used to evaluate them.
For the transferability experiments, we use set B to get the

clean images from which we generate the adversarial images
and their corresponding denoised images. Since not all the
clean images from B are vulnerable to either of the attacks, we
collect, for each adversarial image, the clean image it was
derived from and its denoised image. As a result of each attack
experiment, we have a set of clean images BCleanTrans, a set of
adversarial images BAdvTrans, and another set of denoised
images BDenTrans of the same size. Those three sets are used to
analyse the transferability of the attacks on the face recogni-
tion classifier. We summarise in Tables 1 and 2 the number of
samples in each of the sets for each of the attacks for the
VGG16 and the ResNet50 architectures, respectively. We note
that for the attacks with variable perturbations, there is a
considerably smaller amount of adversarial images generated
compared to the fixed‐perturbation attack. That is explained

F I GURE 2 Methodology overview for analysing the transferability attack from a gender classifier (surrogate model) to a face recognition classifier (target
model). A mated comparison is a comparison where two images are of the same subject. A non‐mated comparison is a comparison where two images are of
different subjects. The graph on the right is an illustration of the expected behaviour of a target model versus any target model where the attack is not
transferable. For a target model that is not affected by the attack, we expect that the performance of such a model would only deteriorate due to higher distortion
ϵ in the images (Target model 2). For a model to which an attack is transferable, its optimal interval where the error peaks would be similar to that of the
surrogate model (Target model 1). Illustration from Ref. [1]

F I GURE 3 Training of UDnCNN denoiser when considering the pixel‐guided denoiser (PGD) defence, the feature‐guided denoiser (FGD) defence, and
the logits guided denoiser (LGD) defence (k = 3) [15] and when considering the second fully connected layer‐guided denoiser (FC2GD) defence (k = 2). Figure
from Ref. [1]
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by the fact that the projected gradient descent attack (PGD‐
ATK) iteratively performs a projected gradient descent until
reaching one adversarial sample. When it comes to FGSM‐
variable, we select from the images generated by the FGSM‐
fixed, either randomly one perturbed version per image or
the smallest perturbation per image; therefore, we do not keep
various adversarial versions of an image.

5.3 | Performance metrics

To assess the gender classifier performance, either before the
attack and the defence or after, we calculate the classification
accuracy. To reason in terms of errors in the two models, we
use the classification error rate (1−accuracy) for the gender
classifier in Figure 1. For the face recognition performance, we
use the cosine similarity formula in 5.3 to measure the simi-
larity in terms of the cosine of the angle made between pairs of
feature vectors: The more similar two features vectors are, the
smaller the angle between them and thus the higher the cosine.
The cosine similarity between vectors~a and ~b is given by:

cosðθÞ ¼
~a ⋅~b

k~ak � k~bk

This is further used to measure the FNMR at a fixed FMR
of 0.1% as well as the AUC‐DET and finally, the EER.

5.4 | Evaluation of the attacks and defence
methods

5.4.1 | VGG16 architecture

Training the gender classifier on CelebA We trained our
gender classifier from scratch for 20 epochs using batch

normalisation after convolution layers to speed up the training
of the baseline VGG16, achieving a validation accuracy of
98.62%.

Fast Gradient Sign Method Attack We run the FGSM
attack on the VGG16 gender classifier using various values for
the perturbation ϵ ∈ [0.005, 0.55]. Figure 4 shows how the
VGG16 classifier behaves for different values of ϵ. We observe
that the accuracy decreases for ϵ between 0.01 and 0.035, and it
starts to increase from 0.04.
Such behaviour is likely caused by a circular or crescent

decision boundary where clean images belonging to an initial
class get perturbed with a certain epsilon that pushes them into
the opposite class, but with an epsilon too large, they are
pushed back into their correct initial class.
As our goal is to study the effect of perturbations that are

imperceptible to the human, we consider the following range
of epsilons ϵ ∈ {0.01, 0.015, 0.02, 0.025, 0.03, 0.035} as it is
where the VGG16 classifier is most vulnerable.

Projected Gradient Descent Attack We run the PGD
attack (PGD‐ATK) on the gender classifier using an ℓ∞ ball of
0.035. This choice is based on the previous FGSM experiment
showing that after that value the perturbations become
increasingly less effective. The mini‐step α of 0.001 is with 10
iterations. The accuracy of the gender classifier over the
adversarial samples was 9.1%.

Denoising losses In addition to a PGD, we use three
types of HGDs illustrated in Figure 3: FGD based on the last
convolutional layer of the gender classifier, FC2GD based on
the second fully connected layer and logits guided denoiser
(LGD) based on the logits layer.

TABLE 1 Number of images in the different sets per attack for the
VGG16 architecture. BTrans (#ids) refers to the number of images and
identities, respectively, present in each of the clean, adversarial and denoised
sets used to assess the transferability of the attacks

Attack FGSM‐fixed PGD‐ATK FGSM‐variable

CAdvTrain/CCleanTrain 73,779 14,224 ‐

CAdvTest/CCleanTest 18,449 3,557 ‐

BTrans (#ids) 94,965 (995) 17,473 (997) 19,703 (995)

TABLE 2 Number of images in the different sets per attack for the
ResNet50 architecture. BTrans (#ids) refers to the number of images and
identities, respectively, present in each of the clean, adversarial and denoised
sets used to assess the transferability of the attacks

Attack FGSM‐fixed PGD‐ATK FGSM‐variable

CAdvTrain/CCleanTrain 93,786 15,593 ‐

CAdvTest/CCleanTest 23,448 3,899 ‐

BTrans (#ids) 117,025 (999) 19,470 (999) 19,506 (999)

F I GURE 4 Sensitivity of the classification accuracy of the VGG16
gender classifier upon the choice of perturbation (epsilon) used in the Fast
Gradient Sign Method (FGSM) attack. The green dashed lines represent the
bounds of the range of epsilons selected for the transferability experiments.
Figure from Ref. [1]
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Comparison between the defence methods on clean
and adversarial images with FGSM‐fixed perturbation
Figure 5 shows the performance of the defence methods over
increasing values of epsilon. FC2GD seems to be the most
robust against adversarial examples generated with values of
epsilon outside of its training range, followed by LGD and
FGD. Pixel‐guided denoiser, on the other hand, is the most
vulnerable to high epsilons. Nevertheless, we notice that the
performance inevitably drops at a certain range for all three
HGD methods before slowly increasing again.
Tables 3 and 4 compare the performance of the attacked

VGG16 gender classifier when applying the different defence
methods (columns 2–5) and without (first column), over clean
images (row 2) and adversarial images (row 3). For PGD and
FC2GD, both help considerably in defending the classifier
against adversarial attacks as the accuracy reaches 84.34% on
the adversarial test images with PGD denoising and 93.14%
with FC2GD denoising. We also observe that there is a dete-
rioration of the performance of the classifier on clean images
after they are fed into the denoiser. This effect is particularly
noticeable for the FC2GD. The latter seems to infer adversarial
noise more effectively than PGD but with the expense of
reduced discriminative power in clean images. For the HGD
methods, we observe the higher the representation (i.e. the
deeper the target layer) the better the defence method per-
forms on clean images and that LGD seems to be the most
convenient method for defence so far. Following this result
from Ref. [1], we used LGD as a defence method for the
remainder of the experiments.

5.4.2 | ResNet50 architecture

Training the gender classifier on CelebA We trained our
baseline ResNet50 gender classifier from scratch for 20 epochs
and achieved a validation accuracy of 98.13% at epoch 7.

Fast Gradient Sign Method Attack We run the FGSM
attack on the ResNet50 gender classifier using the same
perturbation values as an initial attack against VGG16 with
ϵ ∈ [0.005, 0.55]. Figure 6 shows that ResNet50 seems to be
most sensitive to higher values of epsilons. We pick the most
optimal range of epsilons as ϵ ∈ {0.11, 0.115, 0.12, 0.125, 0.13,
0.135} where the classifier makes the wrong prediction for all
the perturbed samples. Given that the attack is effective on the
totality of the attack generation set, the selection of the images
for the FGSM in the variable setting was based on a random
choice of perturbation for each image rather than choosing the
smallest perturbation in order to avoid having only images
perturbed with ϵ = 0.11.

Projected Gradient Descent Attack We run the PGD
attack (PGD‐ATK) on the gender classifier using an ℓ∞ ball of
0.135. This choice is based on the previous FGSM experiment
showing that after that value the perturbations become
increasingly less effective. The mini‐step α of 0.001 is with 10
iterations. The accuracy of the gender classifier over the
adversarial samples was 0.2%, making the PGD almost
completely effective on the set of images.

Denoising lossesWe maintain using a LGD for ResNet50
as well to allow for comparisons with results of the VGG16
architecture [1]. Similarly as the VGG16 architecture, we train
the LGD denoiser such that the features that are input to the
logits layer of the clean and the denoised images become
progressively similar with regards to the L1 norm as shown in
Figure 3.

5.5 | Transferability of fixed and variable
perturbation settings of adversarial attacks for
the VGG16 architecture

Instead of pushing each sample exactly on the decision
boundary, these attacks are designed to push it to the opposite
side of the decision boundary. In terms of privacy protection,
the former would have been preferable, but for the sake of this
study, we will evaluate the transferability of these attacks as
done in the literature.
We study the transferability of the attack from the gender

classifier (surrogate) to the face recognition model (target) by
performing five comparison combinations of mated and non‐
mated comparisons depending on the type of the input images,
either clean, adversarial or denoised. The totality of these
combinations are illustrated in Figure 1 and an overview of the
methodology is illustrated in Figure 2. We perform a verifi-
cation entirely on the clean set (CC) to obtain a baseline per-
formance of VGGFace before running the attacks. We then
perform clean/adversarial (CA) and clean/denoised (CD)
verifications to evaluate the transferability of both the attack

F I GURE 5 Classification accuracy of VGG16 gender classifier during
Fast Gradient Sign Method (FGSM) attack and after applying the defence
methods over various attack intensities. Effect of the defence methods on
the classification accuracy of the VGG16 gender classifier over increasing
values of ϵ. Figure from Ref. [1]
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and the defence method. We also report the combinations,
adversarial/adversarial (AA) and denoised/denoised (DD). To
realise the comparisons, we select e15 different images per
subject where each image should be vulnerable to at least three
values of ϵ out of 6. Table 5 summarises the resulting numbers
of mated and non‐mated comparisons per epsilon and in total
(combining all the comparisons per epsilon). We provide in
Table 6 the evaluation of the VGG16 gender classifier on the
transferability sets before attacking the face recognition model.
We notice in the Figures, 7 and 8 that the presence of non‐

clean images (denoised and adversarial) regardless of the attack
intensity decreases the recognition performance. The differ-
ence between the variation of the performance in the combi-
nations CC, CD and DD, where there is 0% of adversarial
samples, and the variation in combinations CA and AA, where
there is 50% and 100% respectively, show that VGGFace is
prone to degradation as more adversarial images are included
in the comparisons. In case of the three comparison combi-
nations CC, CD and CA, we observe that the recognition
performance degrades from CC to CA and that the error

difference is larger than the error difference between CC and
CD. This suggests that the defence partly compensates the
performance degradation. Tables 7 and 8 show that for each
combination involving adversarial or denoised images, the er-
rors are the highest for the smallest perturbation 0.01; then, for
the subsequent increasing perturbations, the errors decrease
until perturbation 0.025 before they start to increase again.
This implies a low transferability of the attack in the selected
epsilon range. It is possible that if a more optimal range of
epsilon values exists, that would result in a high transferability
of the attack as shown in the illustrative graph in Figure 2.
When it comes to the attacks with a variable perturbation
setting, we design in the same manner as before for both
FGSM and the PGD‐ATK; the following are comparison
combinations: CC, CA, CD, AA and DD. We also select 15
distinct images per subject to perform these comparisons. We
give in Table 9 the number of mated and non‐mated com-
parisons for each of the attacks. We observe from the Figure 7
that the PGD‐ATK even though seems to have the same
pattern in terms of EER as the FGSM in the fixed perturbation
setting, the differences across the various combinations are not
substantial. For the FGSM with variable perturbation, the EER
is almost constant at around 7.9%. From Figure 8, we see that
both attacks with a variable perturbation setting maintain a
similar FNMR@0.1%FMR across combinations in contrast to
the fixed perturbation setting. We also notice that for both
EER and FNMR@0.1%FMR, the values are higher in most
cases for the attacks with variable perturbation than with the
FGSM with fixed perturbation. However, this is expected as in
the fixed perturbation setting we compare images that are
perturbed similarly. We understand from these observations
that the transferability shown in the fixed perturbation setting
does not apply in the variable perturbation setting.

5.6 | Transferability of fixed and variable
perturbation settings of adversarial attacks for
the ResNet50 architecture

We generate the transferability sets in a similar manner as we
did for VGG16. We provide in Table 10 the evaluation of the
ResNet50 gender classifier on the transferability sets before
attacking the face recognition model and in Tables 11 and 12
the number of mated and non‐mated comparisons for the
fixed and variable settings, respectively. We observe in the

TABLE 3 Performance summary of the
gender classifier attacked with FGSM‐fixed
perturbation in terms of accuracy with and
without the defence methods. Table from Ref.
[1]

Without denoising PGD FGD FC2GD LGD

BClean 98.19% 95.61% 57.50% 63.48% 83.05%

CAdvTest ϵ ∈ [0.01, 0.035] 0% 84.34% 91.82% 93.14% 92.02%

TABLE 4 Performance summary of the
gender classifier attacked with FGSM‐fixed
perturbation in terms of F1 score with and
without the defence methods

Without denoising PGD FGD FC2GD LGD

BClean 97.61% 94.58% 45.01% 66.76% 80.88%

CAdvTest ϵ ∈ [0.01, 0.035] 0% 77.57% 87.47% 89.52% 87.84%

F I GURE 6 Sensitivity of the classification accuracy of the ResNet50
gender classifier upon the choice of perturbation (epsilon) used in the Fast
Gradient Sign Method (FGSM) attack. The green dashed lines represent the
bounds of the range of epsilons selected for the transferability experiments
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Figures 9 and 10 that unlike in the VGG16 case, the errors are
the highest for the CD and DD combinations when it comes
to the FGSM in fixed and variable settings. Additionally, we
notice that these errors are substantially higher than in the
VGG16 case, including for the CA and AA combinations that

reach an EER of 19.3% and 21.5%, respectively. When it
comes to the variable setting attacks, we notice that while PGD
follows a similar behaviour as in the VGG16 case, the variable
FGSM is overlapping with the fixed FGSM. Table 13 and
Table 14 show that for all combinations other than CC which

TABLE 5 Number of mated (M) and non‐mated (U) comparisons in a fixed perturbation setting with adversarial images generated with a Fast Gradient
Sign Method (FGSM) attack for the VGG16 architecture. Table from Ref. [1]

ϵ 0.01 0.015 0.02 0.025 0.03 0.035 All

CC M = 4.7 � 103 M = 8.4 � 103 M = 1.1 � 104 M = 1.4 � 104 M = 1.4 � 104 M = 1.4 � 104 M = 6.7 � 104

U = 1.2 � 106 U = 2.6 � 103 U = 3.8 � 106 U = 4.7 � 106 U = 4.7 � 106 U = 4.7 � 106 U = 2.1 � 107

DD M = 4.7 � 103 M = 8.4 � 103 M = 1.1 � 104 M = 1.4 � 104 M = 1.4 � 104 M = 1.4 � 104 M = 6.7 � 104

U = 1.2 � 106 U = 2.6 � 106 U = 3.8 � 106 U = 4.7 � 106 U = 4.7 � 106 U = 4.7 � 106 U = 2.1 � 107

AA M = 4.7 � 103 M = 8.4 � 103 M = 1.1 � 104 M = 1.4 � 104 M = 1.4 � 104 M = 1.4 � 104 M = 6.7 � 104

U = 1.2 � 106 U = 2.6 � 106 U = 3.8 � 106 U = 4.7 � 106 U = 4.7 � 106 U = 4.7 � 106 U = 2.1 � 107

CD M = 9.4 � 103 M = 1.6 � 104 M = 2.3 � 104 M = 2.8 � 104 M = 2.8 � 104 M = 2.8 � 104 M = 1.3 � 105

U = 2.4 � 106 U = 5.3 � 106 U = 7.7 � 106 U = 9.4 � 106 U = 9.4 � 106 U = 9.4 � 106 U = 4.3 � 107

CA M = 9.4 � 103 M = 1.6 � 104 M = 2.3 � 104 M = 2.8 � 104 M = 2.8 � 104 M = 2.8 � 104 M = 1.3 � 105

U = 2.4 � 106 U = 5.3 � 106 U = 7.7 � 106 U = 9.4 � 106 U = 9.4 � 106 U = 9.4 � 106 U = 4.3 � 107

TABLE 6 Evaluation of VGG16 gender classifier on the transferability sets

Attack FGSM‐fixed PGD‐ATK FGSM‐variable

BCleanTrans accuracy = 100% F1 − score = 100% accuracy = 100% F1 − score = 100% accuracy = 100% F1 − score = 100%

BAdvTrans accuracy = 0% F1 − score = 0% accuracy = 0% F1 − score = 0% accuracy = 0% F1 − score = 0%

BDenTrans accuracy = 98.49% F1 − score = 97.82% accuracy = 99.15% F1 − score = 99.02% accuracy = 98.81% F1 − score = 98.34%

CC DD AA CD CA
Combination
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F I GURE 7 Performance in terms of equal error rate (EER) across the
different comparison combinations on the VGG16 architecture: C
designates Clean, A designates Adversarial and D refers to denoised
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F I GURE 8 Performance in terms of FNMR@0.1%FMR across the
different comparison combinations on the VGG16 architecture: C
designates Clean, A designates Adversarial and D refers to denoised
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serves as a reference, the errors increase with the level of the
perturbation.
To ensure that the high transferability error levels in

combinations AA and CA are not simply due to the deterio-
ration of the image quality, we performed an attack that we will
refer to as random attack that adopts the same fixed pertur-
bation levels as the fixed‐FGSM setting but does not rely on

the gender classifier's gradient sign. To obtain the sign for each
pixel of every image, we constructed a matrix S of the same
size of the image with each element sampled from a Bernoulli
distribution of probability p = 0.5. Then, zero elements were
changed to −1. Results in Table 15 show the errors obtained
are lower than those reported in the fixed‐FGSM with the
same levels of perturbation. This confirms that the sign of the
gradient plays a role in the transferability of FGSM from the
gender classifier to the face recognition classifier.
In the case of the ResNet50 experiments, we notice that

the defence method further deteriorates verification results in
the case of the FGSM attacks, both in the fixed and variable
perturbation settings. This could be explained by two elements:
the high magnitude of the perturbations and the nature of the
defence, as it relies on the features extracted from the gender
classifier and the depth of the architecture. In fact, given that
the architecture is extensively deeper than VGG16 for instance,
the feature space for the last layer of the gender classifier is
likely to be more tailored for the gender classification task than
it was the case for the VGG16 gender classifier. In this case,
correcting images based on the distance of their gender fea-
tures to those of the clean images would not necessarily mean
that their recognition features would be pushed closer to each
other as well and could be actually further pushed apart. We
also notice that this behaviour does not occur for the PGD‐
ATK scenario, the defence does not correct the adversarial
images for the recognition task and although it deteriorates
them, the difference between CA and CD errors is not sub-
stantial. This could have to do with the fact that even though
we set the ℓ∞ ball to be bounded by 0.135, the PGD‐ATK
could be finding adversarial samples with substantially lower
epsilon values and thus follows the behaviour we see in the
experiment with the VGG16 architecture. Altogether, we can
see that the FGSM attack, particularly in the fixed setting, can
be highly transferable if we find the optimal perturbation levels.
On the other hand, this comes at the expense of the trans-
ferability of the gender feature‐guided denoising methods that
can further deteriorate the adversarial images for the face
recognition task.

6 | CONCLUSION

In this paper, we studied the effect of two white‐box attacks,
the FGSM and PGD‐ATK attacks, on gender classifiers with
VGG16 and ResNet50 architectures, respectively and then
assessed their robustness to defence methods by applying a

TABLE 7 Comparison performance of different combinations per
epsilon in terms of FNMR@0.1%FMR in percentage (%) for the VGG16
architecture where the first row serves as a reference with only clean images

ϵ 0.01 0.015 0.02 0.025 0.03 0.035

CC 46.96 44.14 42.05 41.41 41.41 41.39

DD 47.70 45.66 43.62 43.08 43.12 43.30

AA 47.28 45.16 43.96 43.38 44.78 44.76

CD 47.39 45.08 42.95 42.33 42.42 42.52

CA 47.18 44.86 43.41 42.78 43.70 43.68

TABLE 8 Comparison performance of different combinations per
epsilon in terms of area under the DET curve (area under the detection
error trade‐off curve (AUC‐DET)) in percentage (%) for the VGG16
architecture. The first row serves as a reference with only clean images.
Table from Ref. [1]

ϵ 0.01 0.015 0.02 0.025 0.03 0.035

CC 2.98 2.68 2.51 2.41 2.41 2.41

DD 3.08 2.78 2.61 2.50 2.52 2.55

AA 3.08 2.87 2.83 2.70 2.86 2.86

CD 3.04 2.73 2.57 2.46 2.46 2.48

CA 3.04 2.79 2.70 2.58 2.69 2.69

TABLE 9 Number of mated (M) and non‐mated (U) comparisons in
a variable perturbation setting with adversarial images generated with a
PGD attack (PGD‐ATK) and a Fast Gradient Sign Method (FGSM) attack
for the VGG16 architecture

Attack PGD‐ATK FGSM

CC M = 8.0 � 104; U = 7.8 � 107 M = 8.2 � 104; U = 7.9 � 107

DD M = 8.0 � 104; U = 7.8 � 107 M = 8.2 � 104; U = 7.9 � 107

AA M = 8.0 � 104; U = 7.8 � 107 M = 8.2 � 104; U = 7.9 � 107

CD M = 1.6 � 105; U = 1.6 � 108 M = 1.6 � 105; U = 1.6 � 108

CA M = 1.6 � 105; U = 1.6 � 108 M = 1.6 � 105; U = 1.6 � 108

TABLE 10 Evaluation of ResNet50 gender classifier on the transferability sets

Attack FGSM‐fixed PGD‐ATK FGSM‐variable

BCleanTrans accuracy = 100%F1 − score = 100% accuracy = 100% F1 − score = 100% accuracy = 100% F1 − score = 100%

BAdvTrans accuracy = 0% F1 − score = 0% accuracy = 0% F1 − score = 0% accuracy = 0% F1 − score = 0%

BDenTrans accuracy = 87.83% F1 − score = 86.25% accuracy = 97.58%F1 − score = 96.88% accuracy = 87.89% F1 − score = 86.33%
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TABLE 11 Number of mated (M) and non‐mated (U) comparisons in a fixed perturbation setting with adversarial images generated with a Fast Gradient
Sign Method (FGSM) attack for the ResNet50 architecture

ϵ 0.11 0.115 0.12 0.125 0.13 0.135 All

CC M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 5 � 105

U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 4.1 � 108

DD M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 5 � 105

U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 4.1 � 108

AA M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 8.4 � 104 M = 5 � 105

U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 8.2 � 107 U = 4.1 � 108

CD M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 8.5 � 105

U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 8 � 108

CA M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 1.7 � 105 M = 8.5 � 105

U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 1.6 � 108 U = 8 � 108

TABLE 12 Number of mated (M) and non‐mated (U) comparisons in
a variable perturbation setting with adversarial images generated with a
PGD attack (PGD‐ATK) and a Fast Gradient Sign Method (FGSM) attack
for the ResNet50 architecture

Attack PGD‐ATK FGSM

CC M = 8.1 � 104; U = 7.9 � 107 M = 8.2 � 104; U = 7.9 � 107

DD M = 8.1 � 104; U = 7.9 � 107 M = 8.2 � 104; U = 7.9 � 107

AA M = 8.1 � 104; U = 7.9 � 107 M = 8.2 � 104; U = 7.9 � 107

CD M = 1.7 � 105; U = 1.6 � 108 M = 1.7 � 105; U = 1.6 � 108

CA M = 1.7 � 105; U = 1.6 � 108 M = 1.7 � 105; U = 1.6 � 108

CC DD AA CD CA
Combination
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F I GURE 9 Performance in terms of equal error rate (EER) across the
different comparison combinations on the ResNet50 architecture: C
designates Clean, A designates Adversarial and D refers to denoised.
FGSM‐Fixed and FGSM‐Variable perturbation line plots are overlapping
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F I GURE 1 0 Performance in terms of FNMR@0.1%FMR across the
different comparison combinations on the ResNet50 architecture: C
designates Clean, A designates Adversarial and D refers to denoised.
FGSM‐Fixed and FGSM‐Variable perturbation line plots are overlapping

TABLE 13 Comparison performance of different combinations per
epsilon in terms of area under the DET curve (area under the detection
error trade‐off curve (AUC‐DET)) in percentage (%) for the ResNet50
architecture. The first row serves as a reference with only clean images

ϵ 0.11 0.115 0.12 0.125 0.13 0.135

CC 1.24 1.24 1.24 1.24 1.24 1.24

DD 34.80 34.95 35.06 35.19 35.35 35.50

AA 9.98 10.89 12.81 13.80 14.80 15.80

CD 37.24 37.55 37.84 38.19 38.57 38.93

CA 8.51 9.25 10.87 11.74 12.65 13.61
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feature‐guided denoising method. Once the effectiveness of
these attacks was established in fooling the gender classifier, we
tested their transferability from the gender classification task to
the facial recognition task with similar architectures in a black‐
box manner. To assess the performance of the target facial
recognition classifier, we used two different settings for the
verification comparisons: a fixed perturbation setting, in which
we only compare images perturbed with the same level of
perturbation, and a variable perturbation setting, in which we
compare images perturbed with different perturbations. Alto-
gether, we can see that the FGSM attack, particularly in the
fixed setting, can be highly transferable if we find the optimal
perturbation levels. On the other hand, this comes at the
expense of the transferability of the gender feature‐guided
denoising methods that can further deteriorate the adversa-
rial images for the face recognition task. Further work should
be done to assess the transferability of variable perturbation
settings such as the PGD‐ATK. The non‐transferability of
such an attack targeting a soft biometric classifier (e.g. a gender
classifier) to a face recognition classifier makes this attack a
privacy protection mechanism that prevents an accurate
inference of the targeted soft biometric attribute while pre-
serving information relevant to identity in facial images.
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