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Abstract
We investigate the effect of magnon–magnon interactions on the dispersion and polarization of
magnon modes in collinear antiferromagnetic (AF) insulators at finite temperatures. In
two-sublattice AF systems with uniaxial easy-axis and biaxial easy-plane magneto-crystalline
anisotropies, we implement a self-consistent Hartree–Fock mean-field approximation to explore
the nonlinear thermal interactions. The resulting nonlinear magnon interactions separate into
two-magnon intra- and interband scattering processes. Furthermore, we compute the temperature
dependence of the magnon bandgap and AF resonance modes due to nonlinear magnon
interactions for square and hexagonal lattices. In addition, we study the effect of magnon
interactions on the polarization of magnon modes. We find that although the noninteracting
eigenmodes in the uniaxial easy-axis case are circularly polarized, but in the presence of nonlinear
thermal interactions the U(1) symmetry of the magnon Hamiltonian is broken. The attractive
nonlinear interactions squeeze the low energy magnon modes and make them elliptical. In the
biaxial easy-plane case, on the other hand, the bare eigenmodes of low energy magnons are
elliptically polarized but thermal nonlinear interactions squeeze them further. Direct
measurements of the predicted temperature-dependent AF resonance modes and their
polarization can be used as a tool to probe the nonlinear interactions. Our findings establish a
framework for exploring the effect of thermal magnon interactions in technologically important
magnetic systems, such as magnetic stability of recently discovered two-dimensional magnetic
materials, coherent transport of magnons, Bose–Einstein condensation of magnons, and
magnonic topological insulators.

1. Introduction

Antiferromagnetic (AF) systems occupy a central position at the frontiers of modern spintronics due to
their functional potential in future energy-efficient and ultrafast information and communication
nanotechnologies [1–5]. AF ordered systems are abundant materials compared to ferromagnets and range
from collinear to noncollinear and uniaxial to multi-axis materials. Current research centers on exploiting
their most remarkable properties as the lack of parasitic stray fields, THz spin dynamics, and polarization
degree of freedom of magnons [6–11]. Of particular interest are the electrical insulator class of AF materials
[10, 12–19], where Joule-heating losses caused by itinerant electrons are absent. Magnons, the low-energy
bosonic excitations of magnetically ordered materials, can carry spin angular momentum in AF insulators
across large distances, as recently shown [3, 19, 20].
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Magnonics is an emerging field in spintronics and magnetic-based nanotechnology [12] that exhibits
various features from quantum coherent phenomena [21–24], chiral magnonic spin transport, magnonic
crystals [25–28], and ultrafast magnetization dynamics [29]. Nonlinear magnon interactions are ubiquitous
and inevitable in magnetically ordered materials. Although in classical magnets nonlinear magnon–magnon
interactions are weak at low temperatures, their effects significantly influence various phenomena. These
phenomena are relevant in spin transport [30, 31] through magnon relaxation and spin conductivity, as
well as close to magnetic phase transitions. Moreover, nonlinear magnon interactions are essential to
stabilize magnetic droplets [32] and Bose–Einstein condensation of magnons [23, 33–35]. It is also an
important ingredient in emergent magnonic topological phases [36]. A recent study demonstrated that
nonlinear magnon interactions of Dirac magnons in honeycomb ferromagnets strongly renormalize the
magnon band structure and magnon lifetimes [37]. In AF systems, nonlinear magnon interactions also have
significant effects even at low temperatures due to zero-point fluctuations [38]. Additionally, two-magnon
spectra of AF systems are strongly influenced by magnon–magnon interactions [39].

The recent discovery of two-dimensional (2D) materials establishes a new platform for the study of
nonlinear magnon interactions in different lattice structures [31, 40–43]. In low-dimensional magnetic
systems, the presence of a finite bandgap in the low-energy magnon dispersion is an essential ingredient for
the stability of long-range magnetic order at finite temperature and overcoming the bottleneck imposed by
the Mermin–Wagner–Hohenberg theorem [44, 45]. Therefore, the effect of nonlinear magnon interactions
on the magnetic resonance frequency and magnon dispersion is a key issue in the study of long-range order
stability of 2D magnetic systems.

There are already several primary works which investigate nonlinear magnon interactions in AF systems
within a mean-field approach. In references [46, 47], the effect of nonlinear interactions on magnon
dispersion of a square lattice Heisenberg antiferromagnet were studied via a Green’s function method at
zero temperature. In reference [48] effect of nonlinear thermal magnon interactions on spin-wave excitation
and sublattice magnetization in a 3D anisotropic quantum Heisenberg antiferromagnet with a tuneable
interplanar coupling has been studied via an equation of motion formalism within a mean-field approach.
For a recent review on AF systems look at reference [20].

Nonlinear magnon interactions, even in simple AF systems, are very complicated. To the best of our
knowledge, a systematic investigation of nonlinear interactions on spectrum and polarization of thermal
magnons in AF materials remains absent [49]. In AF systems, the underlying crystal lattice structure affects
the magnetic ground states and interactions, and therefore, one needs to study each case separately [50].

In this paper, we first develop a formalism to compute the nonlinear interactions of thermal magnons in
both uniaxial easy-axis and biaxial easy-plane AF insulators in arbitrary dimensions using a self-consistent
Hartree–Fock mean-field theory. Next, we investigate the effect of thermal nonlinear interactions on bare
magnon dispersion and AF resonance frequencies, which are directly accessible experimentally [51]. Later,
we investigate the effect of nonlinear interactions on the polarization of magnon modes. For numerical
calculations, we consider collinear AF materials with easy-axis and easy-plane magnetic anisotropies in
square and hexagonal lattices. We study these systems as prototypes of recently discovered 2D AF materials
to explore the stability of these systems against thermal fluctuations.

We have organized this paper as follows. In section 2, we introduce the spin Hamiltonian and review the
linear spin-wave theory. In section 3, we present a Hartree–Fock mean-field theory for thermal magnon
interactions and compute mean-field coefficients. In section 4, we compute the nonlinear spectral shift of
magnons in easy-axis and easy-plane AF systems and present numerical calculations for two specific lattice
models. In section 5, we investigate the effect of nonlinear thermal interactions on the polarization of
magnons. We conclude in section 6 with a discussion of our results. In the appendices, we present the
technical details of the calculations.

2. Spin Hamiltonian and its bosonic representation

We describe a generic two-sublattice AF insulator with the local spin field SA(B) in sublattice A (B). The
effective AF spin Hamiltonian reads, [6, 20],

Hs = J
∑
〈ij〉

Si · Sj +
∑

i

Kx(Sx
i )2 −

∑
i

Kz(Sz
i )2, (1)

where 〈ij〉 represents summation over nearest-neighbor sites, i and j, and we consider the local spins have
the same length S at each sublattice |Si∈{A}| = |Si∈{B}| = S. The Hamiltonian includes the isotropic
quantum AF Heisenberg exchange interaction, J > 0, and single-ion magnetic anisotropies, characterized
by Kx > 0 and Kz > 0, which represent the hard and easy magnetic axes, respectively. In the uniaxial easy
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axis case, i.e., Kx = 0, both the spin Hamiltonian and the ground state have U(1) symmetry while in the
biaxial easy-plane case this symmetry is broken. The absence of U(1) symmetry in the ground state breaks
the degeneracy of the two AF magnon eigenmodes. We emphasize that although the spin Hamiltonian,
equation (1), has U(1) symmetry even in the easy-plane case, i.e., Kz = 0, this symmetry is spontaneously
broken in the ground state and the eigenmodes are not degenerate anymore [52].

To study spin excitations, we write the spin Hamiltonian, equation (1), in terms of so-called deviation
bosonic operators using the Holstein–Primakoff (HP) transformation [53]. We assume the ground state of
the AF spin Hamiltonian is a collinear Néel state with Si∈{A} = (0, 0, S) and Sj∈{B} = (0, 0,−S); and thus
the HP transformation in the two-sublattice AF system reads,

Sz
i = S − a†i ai, S−i = a†i

√
2S − a†i ai, (2a)

Sz
j = −S + b†j bj, S−j =

√
2S − b†j bj bj, (2b)

and S+i(j) =
(

S−i(j)

)†
, where i and j denote sites in the sublattices A and B, respectively. The deviation

operators a (b) and a† (b†) are, respectively, annihilation and creation operators at the sublattice A (B) that
follow the bosonic communication relations. The number of HP bosons at each site on sublattices A and B
is upper-limited by 2S [54]. Inserting equations (2a) and (2b) into the AF spin Hamiltonian, equation (1),
and under the assumption of small deviation number 〈a†i ai〉, 〈b†i bi〉 � 2S, with 〈·〉 the expectation value, we
do a Taylor series expansion in the powers of 1/S. This procedure leads to an effective bosonic Hamiltonian
with an arbitrary interaction order,

Hb = Ec
0 + H(2)

b + H(4)
b + · · · , (3)

where ellipsis stands for higher order interactions. The classical AF ground-state energy is given by,

Ec
0 = NS

[
− (zJ/2 + Kz)S +Kx/2

)]
, (4)

where z denotes the coordination number and N is the total number of sites. H(2)
b and H(4)

b represent the
noninteracting (quadric) and interacting (quartic) bosonic Hamiltonians, respectively.

The noninteracting Hamiltonian, consists of quadratic bosonic terms, in the momentum space, reads,

H(2)
b = S

∑
q

[
(zJ +Kx + 2Kz)(a†qaq + b†qbq) + zJγ−qaqb−q

+ zJγqb†−qa†q +
Kx

2

(
aqa−q + bqb−q + a†qa†−q + b†qb†−q

)]
, (5)

where ai =
√

2/N
∑

qeiq·ri aq and bj =
√

2/N
∑

qeiq·rj bq, with {i, j} ∈ {A,B}. The lowest order interacting
Hamiltonian, in our model, consists of quartic bosonic terms and describes the four-magnon scattering
processes H(4)

b . In section 3, we will investigate these nonlinear terms in detail. In general, in AF spin
systems, three-magnon interactions, consists of cubic bosonic terms, can be appeared in the presence of
some spin interactions, like DMI and dipole–dipole interactions, as well as magnetic frustrations. These
interactions break the conservation of total magnon numbers. However, in our model, equation (1), due to
the absence of such spin interactions, three-magnon interactions are forbidden [38].

2.1. Linear spin-wave theory
To investigate the effect of nonlinear four-magnon interactions on magnon dispersion and polarization, we
should first find the band structure and eigenstates of the noninteracting magnon modes. At a magnon
density, we can disregard nonlinear magnon interactions. The quadratic bosonic Hamiltonian H(2)

b can be
diagonalized via a standard canonical Bogolioubov transformation that maps the boson operators on two
AF sublattices {aq, bq}, into the new bosonic magnon eigenmodes {αq,βq} where q is the magnon
wavevector. In the rest of this section, we find the eigensystems of uniaxial and biaxial AF systems,
separately.

2.1.1. Uniaxial easy-axis AF system
To diagonalize the noninteracting bosonic Hamiltonian (5) in the uniaxial easy-axis limit (Kx = 0), we
perform a canonical transformation using the following 2 × 2 Bogolioubov transformation, [20, 55],(

aq

b†−q

)
=

(
ūu

q −v̄u
q

−vu
q uu

q

)(
αu

q

βu†
q

)
, (6)

3
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where |uu
q|2 − |vu

q |2 = 1. We define uu
q = cosh(θq/2) and vu

q = sinh(θq/2). Inserting equation (6) into the
Hamiltonian (5), we obtain the following Bogoliubov coefficients for the uniaxial easy-axis system,

uu
q =

√
zJS + 2KzS + εu

α,q

2εu
α,q

, (7a)

vu
q =

√
zJS + 2KzS − εu

β,q

2εu
β,q

. (7b)

The degenerate eigenenergies of the circularly polarized eigenmodes χ ∈ {α,β} of easy-axis AF system
are,

εu
χ,q = S

√
(zJ + 2Kz)2 −

(
zJ|γq|

)2
, (8)

where γq = z−1
∑z

i=1eiq·δi is the structure factor and δi denotes the nearest-neighbor vectors.

2.1.2. Biaxial easy-plane AF system
In the case of biaxial AF systems, we use the following 4 × 4 Bogolioubov transformations [20, 56],⎛

⎜⎜⎝
aq

bq

a†−q

b†−q

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

uq vq xq wq

−uq vq −xq wq

x̄q w̄q ūq v̄q

−x̄q w̄q −ūq v̄q

⎞
⎟⎟⎠
⎛
⎜⎜⎝

αq

βq

α†
−q

β†
−q

⎞
⎟⎟⎠, (9)

where the Bogoliubov coefficients are given by,

uq =
1

2

√
zJS +KxS + 2KzS + εαq

εαq
, (10a)

vq = −1

2

√
zJS +KxS + 2KzS + εβq

εβq
, (10b)

xq =
1

2

√
zJS +KxS + 2KzS − εαq

εαq
, (10c)

wq =
1

2

√
zJS +KxS + 2KzS − εβq

εβq
. (10d)

The eigenenergies of two magnon modes χ ∈ {α,β} in easy-plane AF system are,

εχq = S
√

(zJ +Kx + 2Kz)2 −
(
zJ|γq| ∓ Kx

)2
, (11)

where sign −(+) refers to α(β) magnon mode. The eignenenergies of the biaxial easy-plane case reduces to
the uniaxial easy-axis limit when Kx = 0, as it should be.

In the easy-axis limit Kx = 0, and in the absence of external magnetic fields and Dzyaloshinskii–Moriya
interactions (DMIs), the two magnon eigenenergies are degenerate and the eigenmodes are circularly
polarized with opposite chiralities [7, 20]. The presence of a hard-axis anisotropy (Kx �= 0) removes the
degeneracy of magnon eigenstates and causes the two eigenmodes become elliptically polarized [7, 20]. The
latter is a consequence of the breaking of U(1) symmetry in the ground state of the spin Hamiltonian 1. In
the presence of the long-range dipolar interactions that also breaks U(1) symmetry, the magnon
eigenmodes of a uniaxial easy-axis are elliptically polarized [57]. In the present study, we ignore the effect of
dipolar interaction since they are negligible in most of AF systems.

After diagonalization, the total noninteracting AF Hamiltonian in the new eigenbasis is given by,

Hm = E0 + H(2)
m , (12)

E0 = Ec
0 + Eq

0, (13)

where E0 is the total AF ground-state energy, and the quantum correction to the classic AF ground-state
energy, Ec

0, reads,

4
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Eq
0 = S

∑
q

{
2(zJ +Kx + 2Kz)(|xq|2 + |wq|2) + 2 Re

[
zJγ−q(−uqxq + vqwq) +Kx(uqxq + vqwq)

]}
.

(14)
This quantum zero-point energy lowers the classical ground-state energy and expresses the well-known fact
that the true ground state of an AF system is not a Néel state [58]. The quadratic part of the AF
Hamiltonian that describes the dynamics of magnons is,

H(2)
m =

∑
q

[
εαqα

†
qαq + εβqβ

†
qβq

]
, (15)

where the bare eigenenergy for the magnon mode χ ∈ {α,β} is given by equation (11).

The structure factors for 2D square (z = 4) and hexagonal (z = 3) lattices are, γq = 2
(

cos(qx/qm) +

cos(qy/qm)
)
/z and γq = eiqx/qm

(
1 + 2 e−i3qx/2qm cos(

√
3qy/2qm)

)
/z, respectively, where qm = 1/a and

a is the lattice constant. In the long-wavelength limit q → 0, the structure factors of both hexagonal and
square lattices reduce to γq � 1 − q2/4q2

m; and thus the mode-dependent eigenenergies becomes to
εαq = S

√
4(Kz +Kx)(zJ +Kz) + zJq2(zJ −Kx)/2q2

m and

εβq = S
√

4Kz(zJ +Kz +Kx) + zJq2(zJ +Kx)/2q2
m. In other words, around the center of the Brillouin zone,

called Γ-point, the two low-energy AF magnon modes propagate as relativistic-like quasiparticles with
different effective rest masses and speed of light, determined by the magnetic exchange stiffness and magnetic
anisotropies. The bare magnon bandgaps of each mode are εαq=0 and εβq=0 that can be measured by in AF
resonance experiments. The presence of this gap stabilizes long-range magnetic order at finite temperature
in 2D magnetic systems and the magnetic transition temperatures in these systems are proportional to this
energy gap. We will later show how the bare magnon dispersions become renormalized in the presence of
nonlinear thermal magnon interactions.

3. Mean-field theory of magnon–magnon interactions

In this section, we use a Hartree–Fock mean-field theory to treat the nonlinear thermal magnon
interactions in a two-sublattice AF system at finite temperature. The lowest-order nonlinear terms related to
two-boson scattering are represented by four-boson interactions,

H(4)
b =

−J

4

∑
〈i,j〉

[
a†i aib

†
j bj + aib

†
j bjbj + (a ↔ b)

]
− Kx

8

∑
i

[
ΔKa†i a†i aiai + a†i aiaiai + (a ↔ b)

]
+ H.c., (16)

with ΔK = 2(1 +Kz/Kx), and H.c. is the Hermitian conjugate. Four-boson interactions in AF systems are
more complicated than the ferromagnetic one. In ferromagnets, in the absence of long-range dipolar fields,
the four-boson interactions conserve the number of quasiparticles because there are only quartic terms with
two creation and two annihilation operators. On the contrary, as it can be seen in equation (16), in AF
systems the magnon number could in general be a nonconserved quantity. It was also shown that
spontaneous three-magnon and in general all other n-magnon decays are forbidden in collinear AF systems
by energy conservation at zero temperature in the absence of an external magnetic field [38, 59].

To explore the effects of nonlinear magnon interactions on the bare spectra of magnons at finite
temperature, we implement a mean-field theory based on the self-consistent Hartree–Fock approximation
[60, 61] to reduce equation (16) into an effective noninteracting Hamiltonian in terms of quadratic magnon
operators. In the mean-field treatment, we start out by substituting ξ†i ξ

′
j = 〈ξ†i ξ′j〉th + Ξξξ′ into the

Hamiltonian (16), where ξi, ξ′i ∈ {ai, bi, a†i , b†i } and 〈·〉th is a thermal average. We expand up to the first
order in the field Ξξξ′ ≡ ξ†i ξ

′
j − 〈ξ†i ξ′j〉th, and express the operators in the basis of α- and β-magnons

through the Bogoliubov transformation. In the leading-order correction, it is assumed that mean-field
parameter Ξξξ′ characterizes slight nonequilibrium deviations from the thermal equilibrium, which is
consistent with our earlier assumption of small deviation in the boson number in the Taylor series
expansion of HP transformations. To guarantee the thermalization of each magnon mode, we assume that
nonlinear magnon scattering-times are much faster than the timescales associated with spin non-conserving
interactions such as magnon–phonon interactions [62]. In the Hartree–Fock approximation, we only keep
the diagonal terms and assume for each bosonic operator χq ∈ {αq,βq}, so that 〈χ†

qχq′ 〉th = δq,q′nχ,q[42,
43]. The thermodynamic equilibrium of the AF magnon number at each magnon mode χ ∈ {α,β} is
defined through the Bose–Einstein distribution function nχ,q = (eεχ,q/kBT − 1)−1, with the Boltzmann
constant kB, and the temperature T. The chemical potential of magnons is zero at thermal equilibrium [63].

The effective mean-field Hamiltonian in momentum space and first order in the fluctuations Ξξξ′ ,

becomes H(4)
MF = 1

2

∑
qΨ

†
qH

(4)Ψq, with the vector operator Ψq = (αq,βq,α†
−q,β†

−q)T. The matrix

5
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Hamiltonian H
(4) is defined by,

H
(4) =

⎛
⎜⎜⎝

Cαα Dαβ 2C̄′
αα D̄′

αβ

D̄αβ Cββ D̄′
αβ 2C̄′

ββ

2C′
αα D′

αβ Cαα D̄αβ

D′
αβ 2C′

ββ Dαβ Cββ

⎞
⎟⎟⎠, (17)

where the overbar represents the complex conjugate and the explicit dependence of the
temperature-dependent mean-field coefficients on the wavevector and temperature is omitted for brevity.
The Hamiltonian H(4)

MF represents the quantum and temperature-dependent corrections to the
noninteracting magnon Hamiltonian, when the lowest-order nonlinear AF dynamics is taken into account.
The coefficients of the matrix H

(4) depend on temperature, for more details see appendix A2. This effective
Hamiltonian H(4)

MF describes scattering processes between magnons of the same band (intraband
contribution) and magnons of different bands (interband contribution). The components Cχχ and C′

χχ,
describing intraband processes of magnons at the χ-band, are given by equation (A7) in appendix A2.

Cαα,q = Δ−
q |uq|2 +Δ−

−q|xq|2 + 2 Re
[
uqxq

(
ξ − ReΓq

)]
, (18a)

Cββ,q = Δ+
q |vq|2 +Δ+

q |wq|2 + 2 Re
[
vqwq

(
ξ + ReΓq

)]
, (18b)

C′
αα,q = 2Δ−

q uqxq + Λ−
q u2

q + Λ̄−
q x2

q, (18c)

C′
ββ,q = 2Δ+

q vqwq + Λ+
q v

2
q + Λ̄+

q w
2
q , (18d)

where Δ±
q , ξ, Γq and Λ±

q are defined in equation (A8). These mean-field coefficients parameterize the
amplitude of the intra- and inter-band magnon interactions. The relevant Bogoliubov coefficients uq, vq, xq

and wq are defined by equations (10a)–(10d). Interband scattering of magnons are characterized by the
components Dαβ and D′

αβ , and read,

Dαβ,q = Γqxqvq − Γ̄quqwq +Θ−qxqwq −Θqvquq + 2 ξvq xq + 2 ξ̄ uq wq, (19a)

D′
αβ,q = Γ̄qxqwq − Γquqvq −Θ−qxqvq +Θqwquq + 2ξ′uqvq + 2 ξ̄′ xqwq, (19b)

where Γ′
q, Θq and ξ′ can be found in equation (A8). Through the interband process, α- and β-magnon

modes become coupled and thus, hybridized. The definition of Aa, A′
a, Aab,q and A′

ab,q are respectively
detailed in equations (A6b)–(A6e) in the appendix A. The mean-field coefficients Cχχ, C′

χχ, Dαβ and D′
αβ

are functions of temperature and magnon energy through the Bose–Einstein distribution nχ,q. The
evaluation of these coefficients, as well as to obtain the eigenenergies, requires a self-consistent calculation.

The analytical expressions obtained for the mean-field coefficients, equations (18) and (19) constitute
the main result of our work. To illustrate the effects of interacting thermal magnons on the AF magnon
spectrum and the polarization of magnons, we analyze both uniaxial (Kx = 0) and biaxial (Kx �= 0) AF
systems with hexagonal and square lattice structures that are two common lattice geometries.

4. Nonlinear spectral shift of magnons

In this section, we investigate the effect of nonlinear magnon interactions on magnon dispersion, magnon
bandgaps, and AF resonance modes of easy-axis and easy-plane antiferromagnetic insulators.

4.1. Uniaxial easy-axis AF systems
First, for the sake of completeness, we consider an AF system with easy-axis anisotropy along the
z-direction, modeled by the Hamiltonian in equation (1) when Kx = 0. Nonlinear magnon interactions in
uniaxial AF systems have been previously treated in detail to unveil their role in the lifetime of magnons
[31, 59], hydrodynamic regime [59] and bulk spin transport [55, 62].

As we have already mentioned, in the uniaxial AF system and in the absence of a magnetic field and
DMIs, the two AF magnon eigenmodes are degenerate and given by equation (11) with Kx = 0, and their
corresponding eigenstates are circularly polarized magnons. On the other hand, the effective interacting
Hamiltonian of magnons in the uniaxial AF case, in a basis that diagonalizes the bare part and within the
mean-field approximation, see appendix A1; is given by,

Hu(4)
MF =

∑
q

[
Cqα

u†
q αu

q + C′
qβ

u†
q βu

q +D′
qα

u
qβ

u
−q + H.c.

]
, (20)
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Figure 1. Temperature dependence of degenerate magnon eigenenergies of a uniaxial AF system with (a) 2D square and (b) 2D
hexagonal lattices as a function of dimensionless wavevector qx/qm. Dashed curve lines represent the bare magnon dispersion
given by equation (11) with Kx = 0. At the inset of panels (a) and (b), the AF resonance modes (renormalized magnon bandgap)
as a function of temperature are presented. The mean-field coefficients (in units of meV), C and D′ , are shown for different
temperatures as a function of wavevector for square and hexagonal lattices at panels (c) and (d), respectively. We use these typical
parameters: J = 1 (meV), Kz = 0.1 (meV), S = 5/2 and a = 1 (nm).

where the superscript ‘u’ refers to the uniaxial case. The mean-field coefficients Cq and C′
q renormalize two

noninteracting magnon modes, described by the linear spin-wave theory H(2)
m , equation (15). In the absence

of magnetic fields and DMIs Cq = C′
q.

The magnon nonconserving term with strength D′
q, that represents interband magnon scatterings with

opposite linear momenta, breaks the local U(1) symmetry associated with the magnon number
conservation. This process is equivalent to the excitation and annihilation of a magnon pair with zero net
linear and spin angular momenta. We later show how this term leads to the thermal squeezing of magnon
eigenmodes.

The temperature-dependent mean-field coefficients are given by,

Cq =
1

2
[A1(|uu

q|2 + |vu
q |2) − (A2,q ūu

q v̄
u
q + Ā2,q uu

qv
u
q )], (21a)

C′
q =

1

2
[A1(|uu

q|2 + |vu
q |2) − (A2,−q ūu

q v̄
u
q + Ā2,−q uu

qv
u
q )], (21b)

D′
q = −2A1ūu

qv
u
q + [Ā2,q(vu

q )2 + A2,q(ūu
q)2], (21c)

the Bogoliubov parameters of the uniaxial case, uu
q and vu

q , and temperature-dependent mean-field
coefficients A1 and A2 are presented in appendix A. Even at zero temperature, these coefficients are finite.
Therefore, we can generally say that there is always a finite nonlinear quantum correction to the bare
magnon dispersion in AF systems.

The resulting total magnon Hamiltonian of a uniaxial AF system in the mean-field approximation is
Hu = Hu(2)

m + Hu(4)
MF . Due to the presence of interband processes, D′, α and β modes are coupled and the

7
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Figure 2. Temperature dependence of magnon eigenenergies of a biaxial AF system in a 2D square lattice. In panel (a), the
eigenenergies for both μ and ν modes as a function of the wavevector are plotted. Dashed lines represent the noninteracting
eigenenergies, εαq and εβq , see equation (11). The AF resonance modes, εμ0 and εν0 , are shown in their respective panels, as a
function of temperature and different hard-axis anisotropy strengths. In panel (b), the mean-field coefficients (in meV units)
Cαα, C′

αα, Cββ and C′
ββ , are plotted for various temperatures as a function of wavevector. The parameters employed are J = 1

(meV), Kx = 2Kz = 0.2 (meV), S = 2.5 and a = 1 (nm).

Hamiltonian Hu is no longer diagonal in the {α,β} basis. To diagonalize Hu, we should introduce a new
diagonal basis of operators, μ̂q and ν̂q, and the Hamiltonian in this new basis reads
Hu =

∑
q

(
εμq μ̂

†
qμ̂q + ενq ν̂

†
qν̂q

)
. In the absence of magnetic fields and DMIs, the effective eigenmodes of an

interacting uniaxial AF system remains degenerate, εμq = ενq ≡ εq, where

εq =

√(
εu

q + Cq

)2 − |D′
q|2, (22)

with εu
q = zJS

√(
1 + 2Kz/zJ

)2 − |γq|2 denotes the dispersion relation of noninteracting magnons in the
uniaxial case, i.e., equation (11) with Kx = 0.

The dispersion in equation (22) is valid for two-sublattice AF systems with arbitrary dimensions and
lattice structures at finite temperature. Here, we consider two distinct geometries of spin systems which are
quite common, i.e., square and hexagonal lattices. The evaluation of mean-field coefficients,
equations (21a)–(21c), and the eigenenergy εq, is done self-consistently and involves the calculation of A1

and A2 for various temperatures.
In figure 1, we display the magnon eigenenergies and mean-field parameters as a function of the

wavevector for different temperatures and for two lattice structures. As we have already discussed, the
eigenenergies do not reduce to the eigenenergy of noninteracting magnons εu

q at zero temperature (dashed
line at figures 1(a) and (b)), thanks to the existence of nonlinear quantum corrections. At finite
temperature, we observe that magnon interactions lower the energy of long wavelength magnons. In
particular, from the inset of panels (a) and (b), we see that AF resonance modes are decreased by increasing
the temperature. This figure shows that nonlinear magnon interactions are more pronounced in AF systems
with hexagonal lattice than their square lattice counterparts.

The mean-field parameters Cq and D′
q, plotted at figures 1(c) and (d) for each lattice, are both peaked at

the zero wavevector. The intraband coefficient Cq may change the sign by varying the temperature and
wavevector while the interband coefficient D′

q is always positive in our formalism.

8
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Figure 3. Temperature dependence of magnon eigenenergies of a biaxial AF system in a 2D hexagonal lattice. In panels (a) and
(b), the energies ε̃μq and ε̃νq are plotted as a function of the wavevector. Dashed lines represent the respective noninteracting
energies, see equation (11). The mean-field coefficients (in meV units) Cαα, C′

αα, Cββ , C′
ββ ,Dαβ and D′

αβ , are shown as a function
of the wavevector in panels (c) and (d) with kBT = 40(meV) and Kx = 0.2(meV). Note that the real parts of coefficients Dαβ and
D′

αβ are zero, and thus only imaginary parts are displayed. The parameters employed are the same as in figure 2.

4.2. Biaxial easy-plane AF systems
In this subsection, we focus on the AF systems with biaxial anisotropy. Previously, we have shown that the
degeneracy of two noninteracting magnon modes is lifted in this case, see equation (11), and the
corresponding eigenstates are elliptically polarized magnons [20]. The total interacting magnon
Hamiltonian within the mean-field approximation is H = H(2)

m + H(4)
MF. The mean-field Hamiltonian (17)

can be partitioned into the intra- and interband contribution as H(4)
MF = H(4)

intra + H(4)
inter, with

H(4)
intra =

∑
q

[
Cαα,qα

†
qαq + Cββ,qβ

†
qβq + C′

αα,qαqα−q + C′
ββ,qβqβ−q + H.c.

]
, (23a)

H(4)
inter =

∑
q

[
Dαβ,qα

†
qβq +D′

αβ,qαqβ−q + H.c.
]
. (23b)

The intraband contribution of nonlinear magnon scattering consists of diagonal elements, in the α and
β operators representation, with coefficients Cχχ and the off-diagonal elements with coefficients C′

χχ.
Cχχ=αα(ββ) renormalizes noninteracting magnon dispersions, obtained within the linear spin-wave theory
H(2)

m , equation (15), while C′
χχ=αα(ββ) characterize magnon scatterings between states with opposite

momenta, q and −q, inside a particular magnon band. The later is equivalent to the annihilation and
excitation of an (a) α(β)−magnon pair with zero net linear momentum and spin angular momentum
+2�(−2�). The interband nonlinear magnon scatterings are parameterized by off-diagonal terms, Dαβ and
D′

αβ , corresponding to scattering processes of magnons between α and β bands. The total interacting
Hamiltonian, H, is no longer diagonalized in the basis of α and β operators. Thus, we do another canonical
transformation and find the diagonal basis in terms of new bosonic operators, say μ and ν. The expressions

9
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for mean-field parameters are presented in the appendix A2, see equations (A4a)–(A4d). In the biaxial case,
similar to the uniaxial one, the temperature-dependent mean-field coefficients are finite even at T = 0. This
nonlinear quantum corrections to magnon dispersion scales as 1/N, see the appendix A2, and therefore are
negligible for large systems. The nonlinear quantum corrections, in addition to linear quantum spin
fluctuations, could play a relevant role in the quantum spin-transfer torques and spin shot noise
phenomena [64]. The importance of this correction is, however, conditioned to small systems, which is a
size limit where our mean-field approach might breakdown.

We find that in square lattices Dαβ = D′
αβ = 0, hence, the interband scattering processes are absent. The

eigenenergies for the two magnon bands in a square lattice are given by,

εμq =
√

(εαq + Cαα,q)2 − |C′
αα,q|2, (24a)

ενq =
√

(εβq + Cββ,q)2 − |C′
ββ,q|2. (24b)

In figure 2(a), we show the magnon eigenenergy of a 2D square lattice as a function of the wavevector
for different temperatures. The situation is similar in 3D AF systems, see the appendix A3. The
noninteracting eigenenergies, εαq and εβq , in the upper- and lower-panel are respectively represented by
dashed lines. The effect of nonlinear interactions is in particular evidenced by the temperature dependence
of the AF resonance modes, εμ0 and εν0 , shown in the respective insets of panel (a). These figures show that
the energy of one magnon band εν0 , decreases with temperature, while another band εμ0 has a weak
temperature dependence for different strengths of the hard-axis anisotropy.

Quite contrary, we find that in hexagonal lattices, the interband mean-field coefficients Dαβ and D′
αβ are

nonzero. The eigenenergies for the magnonic μ- and ν-eigenmodes, denoted by ε̃μq and ε̃νq , respectively are
shown in figure 3. Their analytical expressions are displayed in equation (A9) at appendix A3.

Generally, in biaxial cases, the degeneracy of two magnon bands are broken and one band (the ν band)
has lower energy than other one (the μ band). Therefore, increasing temperature leads to an increase in the
population of the lowest magnon band, the ν band, and consequently these thermally excited magnons
renormalize the ν band more strongly than the μ band. This can be readily seen in figures 2 and 3.

5. Thermal squeezed magnons

In this section, we study the effect of nonlinear thermal magnons on the polarization of magnon
eigenmodes based on the calculation in appendix A4. In general, magnon polarization is an essential
ingredient in magnonic-based information technology [7, 65, 66]. Therefore, it is important to understand
the effect of interactions on the polarization of magnon eigenmodes. As we have mentioned earlier,
two-sublattice AF systems have two magnon eigenmodes. At long-wavelength limit, i.e., close to the
magnetic Brillouin zone center, the polarization of magnons is determined by magnetic anisotropy, while at
short-wavelength, i.e., close to the magnetic Brillouin zone boundaries, the polarization of the modes are
governed by the Heisenberg exchange interactions. Therefore, in our spin model with isotropic Heisenberg
exchange interaction in the presence of either uniaxial or biaxial magnetic anisotropies, high energy
magnon eigenmodes close to the BZ magnetic boundaries are circularly polarized with an ellipticity
e = 〈Sx

i 〉max/〈Sy
i 〉max = 1, see the inset of figure 4 and right panel of figure 5. On the other hand, in the

previous section, we have shown that nonlinear thermal interactions mostly modify the low-energy magnon
excitations. Therefore, we expect interactions mainly affect on the polarization of the anisotropy-dominated
low-energy magnons.

It has been shown, both theoretically and experimentally, that in quantum AF systems with negligible
magnetic anisotropy and at low temperature, there are magnon self-squeezing states because of AF
quantum fluctuations and interaction between two AF sublattices [67–71]. Magnon squeezed states and
quantum spin entanglement are related, and thus they are interesting for applications in quantum
computing. In the presence of anisotropy and finite temperature, quantum magnon squeezing is reduced,
but here we show that thermal squeezing becomes dominant at finite temperature [72]. This thermal
squeezing in uniaxial AF systems, arising from an effective attractive magnon interaction and breaking of
the local U(1) symmetry, see equation (20) and discussions below it.

The resulting temperature-dependent magnonic modes exhibit anisotropic spatial oscillations. This
property is evidenced by the ellipticity, which is determined [20] from the Bogolioubov transformation,
(equations (6) and (9)), and diagonalization matrix of the Hamiltonian H = H(2)

m + H(4)
MF, that in turn

relates the spin components and diagonal basis, μ̂ and ν̂ , of operators, see appendix A4 for more details.
The result is obtained for the uniaxial (euni) and biaxial (ebi) AF square-lattice systems, and presented at
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Figure 4. Temperature-dependent ellipticity of AF resonant modes of a uniaxial AF square lattice for different easy-axis
anisotropy (Kz). The two AF modes are degenerate with the same ellipticity euni. The inset shows ellepticity vs dimensionless
wavenumber for different temperatures, kBT = {0.1, 10, 20, 30} (meV).

Figure 5. Ellipticity of two AF resonance modes as a function of temperature (left panel) and dimensionless wavenumber (right
panel) in a biaxial AF square lattice. The temperature-dependent ellipticity of each AF resonance mode, eμbi and eνbi, are
represented at left panels by blue and red curves, respectively. The result is shown for various hard-axis anisotropies, Kx, with a
fixed easy axis anisotropy Kz = 0.1. Right panels show the wavenumber dependence of eμbi and eνbi for different temperatures,
kBT = {0, 0.1, 10, 20, 30} (meV) around the center of the first BZ. Black dashed line represents the ellipticity of noninteracting
magnons. The inset in the right panel shows the behaviour of ellipticity in the whole BZ, where two magnon modes become
circularly polarized close to the first BZ boundaries.

figures 4 and 5 as a function of temperature for different magnetic anisotropy strengths. Similar results is
also obtained in hexagonal lattices (data not shown).

In figure 4, we plot the ellipticity euni for the degenerate magnon modes in uniaxial AF systems. The
result is identical for each magnon mode, which is shown for various easy-axis anisotropy values.
Interestingly, the eigenmode oscillations become squeezed along y-axis when temperature increases. This
effect is a direct consequence of U(1) symmetry breaking arising from nonlinear thermal interactions, see
equation (20), and thus is termed thermal squeezed magnons [72], unlike its quantum counterpart defined at
T = 0 [67–70]. In the biaxial AF system the ellipticity, ebi, of μ- and ν-magnonic eigenmode, are plotted at
figure 5 as a function of temperature and momentum. In this case, the eigenmodes are nondegenerate and
they are elliptical even at zero temperature along different directions. The ellipticities, eμbi and eνbi, at q = 0
are represented (left panels) by blue and red curves, respectively. The magnonic μ(ν)-mode becomes more
(less) elliptical, being eμbi > 1 and eνbi < 1, when temperature increases but in an anisotropic way. Similarly,
the dependence with momentum is displayed at right panels. As temperature is increased, both eμbi and eνbi,
slightly deviate from the ellipticity for noninteracting magnons (i.e., at T = 0 and depicted by a black
dashed line). Different rate in the change of ellipticity of the two modes vs temperature is related to the fact
that the ν mode has lower energy and this band becomes more populated than the μ mode; therefore the
nonlinear effects are stronger in this lower band, see figure 2.
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6. Summary and conclusion

We have developed a self-consistent Hartree–Fock mean-field formalism to compute nonlinear magnon
interactions in two-sublattice biaxial AF systems at finite temperature. We have shown that thermal
interactions, on the one hand, reduce magnon bandgaps and thus AF resonance modes. Magnon bandgap
plays an important role in the stability of long-range magnetic order in 2D systems. On the other hand, we
have investigated the effect of nonlinear thermal magnon interactions on the polarization of low-energy
magnons. We have shown that in the uniaxial AF case, magnon modes become squeezed because of the
attractive nature of nonlinear magnon interactions and the breaking of local U(1) symmetry. In the present
paper, we have used the truncated HP bosonization transformation scheme to compute nonlinear magnons.
The Dyson–Maleev transformation [73, 74] also leads to the same effective renormalized Hamiltonian
within the Hartree–Fock approximation [42, 49]. We have shown that long-wavelength magnons interact
more strongly than high-energy magnons. Even at zero temperature, there is a finite nonlinear quantum
correction to the bare magnon dispersion. The power of this method is that it not only simplifies the
interaction terms in the magnon Hamiltonian but also does not impose a new constraint on the results. The
HP bosonization method is applied to find magnon interactions, and the Hartree–Fock method, applied to
find mean-field thermal magnon interactions, is more accurate at low magnon numbers and large spin
limits. Within this formalism, it is easy to investigate the effect of nonlinear magnons in various magnonic
phenomena such as ultrafast magnon excitation and transport, two-magnon dynamics, and magnon
condensation.
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Appendix A. Mean-field coefficients

In this appendix, we present the treatment of the magnon–magnon Hamiltonian H(4)
b within the mean-field

approximation. We define the following mean-field parameters [60],

m =
2

NS

∑
q

〈a†qaq〉 =
2

NS

∑
q

〈b†qbq〉, (A1a)

m′ =
2

NS

∑
q

γ−q〈aqb†q〉, (A1b)

p =
2

NS

∑
q

〈aqa−q〉 =
2

NS

∑
q

〈bqb−q〉, (A1c)

p′ =
2

NS

∑
q

γ−q〈aqb−q〉, (A1d)

where 〈. . .〉 is for the thermal average. The mean-field parameter m denotes the number of bosonic
excitations on each sublattice A and B, while m′, p and p′ denote the interaction between them. In the
following, we evaluate these mean-field parameters for both uniaxial and biaxial cases, separately.

A1. Uniaxial easy-axis AF system
In the uniaxial AF case, where the magnon basis reads as equation (6), the mean-field parameters become,
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m =
2

NS

∑
q

(
|uu

q|2 + |vu
q |2

)
nq + |vu

q |2, (A2a)

m′ = p = 0, (A2b)

p′ = − 2

NS

∑
q

γ−quu
qv

u
q (2nq + 1). (A2c)

The mean-field coefficients, introduced in the Hamiltonian (20) obey,

Cq =
1

2
[A1(|uu

q|2 + |vu
q |2) − (A2,q ūu

qv̄
u
q + Ā2,q uu

qv
u
q )], (A3a)

C′
q =

1

2
[A1(|uu

q|2 + |vu
q |2) − (A2,−q ūu

qv̄
u
q + Ā2,−q uu

qv
u
q )], (A3b)

D′
q = −2A1ūu

qv
u
q + (Ā2,q(vu

q )2 + A2,q(ūu
q)2), (A3c)

where A1 = −(zJ + 4Kz)Sm − zJS(p′ + p̄′)/2 and A2 = −zJS(p̄′ + m) γ−q, and nq = (nα,q + nβ,q)/2. In the
uniaxial case and in the absence of magnetic fields and DMIs nα,q = nβ,q.

A2. Biaxial easy-plane AF system
In this case Kx �= 0, where the magnon basis reads as equation (9), the mean-field parameters become,

m =
2

NS

∑
q

[(
|uq|2 + |xq|2

)
nα,q +

(
|vq|2 + |wq|2

)
nβ,q + |xq|2 + |wq|2

]
, (A4a)

p =
2

NS

∑
q

[
uqxq

(
2nα,q + 1

)
+ vqwq

(
2nβ,q + 1

)]
, (A4b)

m′ =
2

NS

∑
q

γ−q

[
−
(
|uq|2 + |xq|2

)
nα,q +

(
|vq|2 + |wq|2

)
nβ,q − |uq|2 + |vq|2

]
, (A4c)

p′ =
2

NS

∑
q

γ−q

[
−uqxq

(
2nα,q + 1

)
+ vqwq

(
2nβ,q + 1

)]
, (A4d)

which depend on the Bose–Einstein distribution function of magnons at each mode, nα,q and nβ,q, and the
Bogoliubov coefficients. In particular, note that the mean-field parameters are finite even at zero
temperature. In this regime, the magnon distributions nχ,q → 0, and thus m = 2

∑
q(|xq|2 + |wq|2)/NS,

p = 2
∑

q(uqxq + vqwq)/NS, m′ = 2
∑

q γ−q(−|uq|2 + |vq|2)/NS and p′ = 2
∑

q γ−q(−uqxq + vqwq)/NS.
This results emphasize that magnon–magnon scattering introduces finite corrections in the magnon
dispersion even at zero temperature.

The mean-field coefficients, introduced in the Hamiltonian (17) obey,

Cαα,q =
1

2

[
2Aa(|uq|2 + |xq|2) − (A′

ab,q + Ā′
ab,q) |uq|2 − (A′

ab,−q + Ā′
ab,−q) |xq|2

+ (2A′
a + 2A′

b − Aab,q − Aab,−q) uqxq + (2Ā′
a + 2Ā′

b − Āab,q − Āab,−q) ūqx̄q

]
, (A5a)

Cββ,q =
1

2

[
2Aa(|vq|2 + |wq|2) + (A′

ab,q + Ā′
ab,q) |vq|2 + (A′

ab,−q + Ā′
ab,−q) |wq|2

+ (2A′
a + 2A′

b + Aab,q + Aab,−q) vqwq + (2Ā′
a + 2Ā′

b + Āab,q + Āab,−q) v̄qw̄q

]
, (A5b)

C′
αα,q = (2Aa − A′

ab,q − Ā′
ab,q)uqx̄q + (A′

a + A′
b − Aab,q)u2

q + (Ā′
a + Ā′

b − Āab,q)x̄2
q, (A5c)

C′
ββ,q = (2Aa + A′

ab,q + Ā′
ab,q)vqw̄q + (A′

a + A′
b + Aab,q)v2

q + (Ā′
a + Ā′

b + Āab,q)w̄2
q, (A5d)

Dαβ,q = (Aab,−q − Aab,q)xqvq − (Āab,−q − Āab,q)ūqw̄q +
(
A′

ab,−q − Ā′
ab,−q

)
xqw̄q −

(
A′

ab,q − Ā′
ab,q

)
vqūq

+ 2(A′
a − A′

b)vqxq + 2(Ā′
a − Ā′

b)ūqw̄q, (A5e)

D′
αβ,q = (Āab,−q − Āab,q)x̄qw̄q + (Aab,q − Aab,−q)uqvq +

(
Ā′

ab,−q − A′
ab,−q

)
x̄qvq +

(
A′

ab,q − Ā′
ab,q

)
uqw̄q

+ 2(A′
a − A′

b)uqvq + 2(Ā′
a − Ā′

b)x̄qw̄q, (A5f)
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where the following definitions have been introduced

Aa = −S

[
zJ

(
m +

p′ + p̄′

2

)
+ 4m

(
Kz +

Kx

2

)
− 3

4

(
p + p̄

)
Kx

]
(A6a)

A′
a = −S

[
zJm̄′ + p̄

(
Kz +

Kx

2

)
− 3

4
mKx

]
, (A6b)

A′
b = −S

[
zJm′ + p̄

(
Kz +

Kx

2

)
− 3

4
mKx

]
, (A6c)

Aab,q = −zJS γ−q

(
p̄′ + m

)
(A6d)

A′
ab,q = −zJS γ−q

(
m̄′ +

p + p̄

4

)
. (A6e)

In the cases evaluated in the main text, i.e., in the absence of magnetic field and DMIs, the Bogoliubov
coefficients uq, vq,wq and xq can be defined as real functions, thus the previous relations for the mean-field
coefficients are simplified in the following form,

Cαα,q = Δ−
q |uq|2 +Δ−

−q|xq|2 + 2 Re
[
uqxq

(
ξ − ReΓq

)]
, (A7a)

Cββ,q = Δ+
q |vq|2 +Δ+

q |wq|2 + 2 Re
[
vqwq

(
ξ + ReΓq

)]
, (A7b)

C′
αα,q = 2Δ−

q uqxq + Λ−
q u2

q + Λ̄−
q x2

q, (A7c)

C′
ββ,q = 2Δ+

q vqwq + Λ+
q v

2
q + Λ̄+

q w
2
q , (A7d)

Dαβ,q = Γqxqvq − Γ̄quqwq +Θ−qxqwq −Θqvquq + 2 ξvq xq + 2 ξ̄ uq wq, (A7e)

D′
αβ,q = Γ̄qxqwq − Γquqvq −Θ−qxqvq +Θqwquq + 2ξ′uqvq + 2 ξ̄′ xqwq, (A7f)

where we define,

Δ±
q = Aa ± Re

[
A′

ab,q

]
, (A8a)

ξ = A′
a + A′

b, ξ′ = A′
a − A′

b, (A8b)

Γq = (Aab,−q − Aab,q), Γ′
q = (Aab,−q + Aab,q), (A8c)

Λ±
q = ξ ± Aab,q, (A8d)

Θq = (A′
ab,q − Ā′

ab,q). (A8e)

A3. Eigenenergies of a biaxial easy-plane AF system
The eigenenergy of a biaxial AF Hamiltonian in the presence of nonlinear interaction corrections, modeled
by an effective mean-field Hamiltonian H = H(2)

m + H(4)
MF, where H = H(2)

m is given by equation (15) and
H(4)

MF is given by equation (17); are given by,

2ε̃2
μ,ν = X ±

[
X 2 −

(
D′2

αβ

(
0.25D̄′2

αβ − C̄′
ααC̄′

ββ

)
+ 4(εα + 0.5Cαα)2

((
εβ + 0.5Cββ

)2 − C′
ββ C̄′

ββ

))
+ C′

αα

(
4
(
εβ + 0.5Cββ

)2C̄′
αα + D̄′2

αβC′
ββ − 4C̄′

αα|C′
ββ |2 − 2

(
εβ + 0.5Cββ

)
D̄′

αβDαβ + C̄′
ββD2

αβ

)
− 2D′

αβD̄αβ

((
εβ + 0.5Cββ

)
C̄′
αα − 0.25D̄′

αβDαβ

)
−
(
−C̄′

ααC′
ββ + 0.25D2

αβ

)
D̄2

αβ

− 2(εα + 0.5Cαα)
(
D′

αβ C̄′
ββDαβ + D̄′

αβC′
ββD̄αβ −

(
εβ + 0.5Cββ

)(
|D′

αβ |2 + |Dαβ|2
))] 1

2
, (A9)

with X = (εα + 0.5Cαα)2 +
(
εβ + 0.5Cββ

)2
+ 0.5

(
|Dαβ |2 −

∣∣D′
αβ

∣∣2
)
− |C′

αα|
2 −

∣∣C′
ββ

∣∣2
. In square lattices,

as we have already discussed in the main text, the interband scattering processes are absent Dαβ = D′
αβ = 0,

and thus equation (A9) reduces to equation (24) in the main text. The result of equation (A9), is computed
for cubic lattices and presented at figure 6 for different temperatures.
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Figure 6. Dispersion relation along the high-symmetry lines for temperature-dependent magnonic eigenmodes of a 3D cubic
biaxial AF insulator. The eigenenergies for each mode, εμ (left panel) and εν (right panel), are presented for various temperatures,
using equation (A9).

A4. Ellipticity
The ellipticity is defined as e = 〈Sx

i 〉max/〈Sy
i 〉max. In the uniaxial easy-axis AF case, the elipticity of each AF

eigenmode is given by,

eμuni =

√
A + εq +

√
A − εq√

A + εq −
√

A − εq
, (A10a)

eνuni =

√
A′ + εq +

√
A′ − εq√

A′ + εq −
√

A′ − εq
, (A10b)

where A = εu
q + 0.5Cq and A′ = εu

q + 0.5C′
q. Since Cq = C′

q, two modes have the same ellipticity.
In the biaxial easy-plane AF system, we find the following relations for ellipticity of each eigenmode,

eμbi =
P11 + P13

P11 − P13
, (A11a)

eνbi =
P14 + P12

P14 − P12
, (A11b)

where we have defined the following parameters,

P11 = uqQ11 + vqQ21 + xqQ13 + wqQ23, (A12a)

P13 = uqQ13 + vqQ23 + xqQ11 + wqQ21, (A12b)

P14 = uqQ12 + vqQ22 + xqQ14 + wqQ24, (A12c)

P12 = uqQ14 + vqQ24 + xqQ12 + wqQ22. (A12d)

The matrix Q is the transformation matrix that diagonalizes the total interacting Hamiltonian
H = H(2)

m + H(4)
MF, where H(4)

MF = H(4)
intra + H(4)

inter is the mean-field interaction, see equations (23a) and (23b)
in the main text. In the diagonal basis, the Hamiltonian is written as

H =
1

2

∑
q

(Υ)†Ω (Υ), (A13)

where (Υ) = Q(Ψ) is the new basis in which the Hamiltonian is diagonal (Υ) =
(
μq, νq,μ†

−q, ν†−q

)T
, while

the old basis is (Ψ) =
(
αq,βq,α†

−q,β†
−q

)T
, and Ω is a 4 × 4 diagonal matrix, with elements equivalent to

the eigenenergies of the problem and

Q =

(
Q1 Q2

Q̄2 Q̄1

)
, Q1 =

(
Q11 Q12

Q21 Q22

)
, Q2 =

(
Q13 Q14

Q23 Q24

)
(A14)

being the transformation matrix [20].
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