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a b s t r a c t

Grain size is the critical characteristic of ultra-fine grain Magnesium (Mg), which is a

concrete representation of the whole heat deformation procedure. In this paper, a design

strategy was proposed to quantitatively investigate the composition and process condi-

tions for the preparation of ultrafine grains. Herein, a dataset of MgeMn-based wrought

alloys was constructed, and the average grain size was set as the design target. Based on

this dataset, five machine learning (ML) algorithms, including the k-nearest neighbor

(kNN), support vector machine (SVM), decision tree (DT), random forest (RF), and artificial

neural network (ANN), were integrated to conduct in-depth analysis and make predictions.

Among these models, the computational accuracy of both the DT classifier and ANN pre-

dictor is around 90%. The main factors affecting the formation of ultrafine grains were

found by ML, and the interrelationships between the features were quantitatively analyzed

as well. Then, four suggested routes with conditions were extracted from the tree models

for preparing ultrafine grain Mg alloys. And four new Mg alloys were designed through

these routes and taken as experimental validation. After testing, the actual grain sizes are

close to the predictions, and the accuracy of the experimental verification exceeds 80%.

Compared with conventional “trial and error” design methods, the grain design strategy

proposed in this paper brings new thought and good prior guidance for developing high-

performance commercial Mg alloys.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Magnesium (Mg) and its alloys, with low density, high specific

strength, high thermal conductivity, high damping, and good
.
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).
electromagnetic shielding properties, have become one of the

most promising structural materials for applications [1,2].

However, the lower strength and poor ductility are still the

main bottlenecks impeding their commercial applications
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[3,4]. Grain refinement is the most effective way to enhance

strength and plasticity simultaneously. Grain refining will

significantly increase the strength and ductility of wrought

Mg, especially when the grain size approaches several mi-

crons (ultrafine scale) [5e7]. Therefore, ultra-fine grain fabri-

cation is an important research direction for developing new

high-performance commercial Mg alloys. Some severe plas-

tic deformation technologies have been reported, such as

high-pressure torsion (HPT) [8,9], equal channel angular

pressing (ECAP) [10,11], accumulative roll bonding (ARB)

[12,13], multidirectional forging (MF) [14], which are possible

to prepare ultra-fine grain structures. Nevertheless, they are

either techniques complex, costly, or not suitable for large-

scale industrial production. Hence, the research on obtain-

ing ultra-finegrain Mg alloys by a simple deformation pro-

cedure with good properties is essential to expand their

applications.

Recently, MgeMn-based ultra-fine grain alloys have been

drawing significant attention in the development of new

commercial Mg due to their low cost, straightforward pro-

duction process, and superior performance [15e17]. Several

commercially available Mn-containing Mg alloys, such as

AZ31, AM50, AM60, ZM61, ZM91, and AMZ series alloys, have

already been widely used in structural materials, the auto-

motive industry, construction, rail transportation, and bio-

logical applications. MgeAleZn and MgeAleMn series alloys

tend to have better plasticity, with fracture elongation

reaching 15e25%, while MgeZneMn and MgeAleMneZn se-

ries alloys boast higher strength, such as a ZM61 alloy pro-

cessed through conventional extrusion with a reported yield

and ultimate tensile strength of 320 MPa and 350 MPa,

respectively [1e4,17e20]. The formation of ultrafine grain

structure in MgeMn-based alloys is achieved through the

promotion of dynamic recrystallization and the inhibition of

grain growth. The primary alloying elements, including Mn,

Al, Zn, Sn, and Ca, provide two key benefits in the preparation

of ultrafine grain structures: first, the precipitation of solid

solution elements, particularly a-Mn, generates numerous

nuclei for recrystallization during thermal deformation,

boosting the driving force of recrystallization. The precipita-

tion of delicate second phases also restrict grain boundary

migration and further refines the recrystallization grains.

Second, these alloying elements enhance the deformability of

the alloy at low and medium temperatures (typically between

200 �C and 400 �C), allowing it to be processed through con-

ventional extrusion at lower temperatures and inhibiting the

growth of recrystallized grains. Furthermore, the MgeMn-

based alloy is more economically feasible compared to Mg-

Rare earth alloys with similar mechanical properties, mak-

ing it a more attractive option for large-scale industrial pro-

duction [21e25].

However, there are two thorny issues in developing new

MgeMn-based wrought alloys: Firstly, the design of MgeMn-

based alloys still mainly relies on the trial-and-error method,

which is unpredictable, low-yielding, and high-cost. Espe-

cially when there aremany variables of alloying elements and

extrusion process parameters, it is difficult to describe the

complex relationships between these variables accurately and

systematically. Secondly, by comparing some research works,

Mg alloys with ultrafine grain structures tend to perform
better even in the same alloy system. However, not all Mn-

containing wrought Mg alloys have ultrafine grain structures

and various factors could influence grain size. Besides the

alloying elements, the deformation temperature and rate are

also influential [26e28]. Therefore, more systematic and

quantitative studies on how to prepare ultrafine grains are still

needed.

Over the past decade, machine learning (ML) has gained

significant attention and momentum in the field of materials

science [29e32]. As a data-driven technology, ML can help

users extract information from data, build relationships, and

make judgments [33e36]. ML has also been applied to micro-

structure analysis, characterization, and design. For example,

Orme and Tong used a decision tree framework to mine in-

formation from AZ31 EBSD data and explore the correlation

between physical properties and twinning [37,38]. Doo Jung

used artificial neural network models to find a quantitative

relationship between steel structures and mechanical prop-

erties and successfully designed the high strength steels [39].

Fang used a convolutional neural network data-driven

framework to automatically extract the dominant predictive

features from simulated temperature history. Perfect pre-

dictions of material properties, especially ultimate tensile

strength, are obtained using simulated thermal history data

[40]. ML is a practical method for alloy design that enables

quantitative studies of alloy microstructures as long as suit-

able feature descriptors can be extracted. It is possible to

design alloys effectively without comprehensive experiments.

However, the microstructure of alloys often contains multiple

structural features, which makes it challenging to accurately

count a large amount of data and establish features with

consistent criteria. As a result, current structural design

methods for alloys are typically limited to designing for a

single structural feature, such as grain size, texture intensity,

or second phase morphology, etc.

In this paper, we propose a design strategy that integrates

five machine learning algorithms to better understand the

“composition-process-microstructure-property” relationship

of ultrafine grain wrought Mg alloys. The workflow of this

strategy is shown in Fig. 1. The average grain size was set as

the critical target. Four classifiers were built using kNN, DT,

SVM, and RF algorithms to predict grain types. We also ob-

tained the composition and process parameter routes for

preparing ultrafine grains using decision tree diagrams. In

addition, a backward propagation artificial neural network

(BP-ANN)model was built to predict the grain size (GS) with an

accuracy of approximately 90%. Finally, we designed four

target-possible alloys from four routes and made some

experimental validations to evaluate the model performance,

and the experimental results are in good agreement with the

calculated results.
2. Dataset and features

2.1. Dataset

There are 163 sets collected from papers and previous exper-

iments and organized into an MgeMn-based wrought alloy

dataset [2e4,15e27,41e49]. All the alloys were extruded from

https://doi.org/10.1016/j.jmrt.2023.02.091
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Fig. 1 e Schematic of the ultrafine grain design strategy for MgeMn-based wrought alloys.
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ingots into rods after a short time of preheating. Five ele-

ments, Mn, Al, Zn, Sn, and Ca were denoted as the alloying

composition features: They are the most common non-rare

earth elements reported in the literature of ultrafine grain

Mg, which are cheaper than rare earth elements and canmake

ingots easier extrude by conventional procedure. The dataset

includes binary to quinary systems, each with a certain

amount of Mn in the alloy. Extrusion temperature (ET, �C) and
extrusion speed (ES, m/min) are chosen as features of process

parameters [26e28]. Tensile yield strength (TYS), ultimate

tensile strength (UTS) and fracture elongation (FE) are key

indicators of the mechanical properties.

From a theoretical perspective, the microstructure of an

alloy encompasses various elements, including grain homo-

geneity, grain size, texture intensity, the degree of recrystal-

lization, as well as the distribution, size, and quantity of

secondary phases. These microstructural characteristics ul-

timately dictate the properties of the alloys. However, in most
Table 1 e Definitions and ranges of features.

Fea

Composition Mn

Al

Zn

Sn

Ca

Extrusion parameter Extrusion t

Extrusion

Microstructure Average g

Mechanical property Tensile yiel

Ultimate tens

Fracture
MgeMn-based alloys, the microstructure after hot extrusion

consists of numerous recrystallized grains. This recrystalli-

zation results in a uniform fine grain structure and weak

texture due to the absence of elongated grains along the

extrusion direction. Furthermore, as previously mentioned in

introduction, the presence of fine and diffusely distributed

second phases can promote dynamic recrystallization and

inhibit the growth of recrystallized grains by pinning their

boundaries. The stronger the effect of the second phases, the

finer the recrystallized grains will be. In conclusion, the

average grain size of recrystallization is a key determinant of

the overall microstructure in the alloy systems covered in this

paper. It is a result of the combined effect of various factors

and provides a comprehensive representation of the micro-

structural characteristics. Thus, in this study we focused on

average grain size (AGS) as the sole feature of microstructure.

Table 1 provides definitions and the respective ranges for each

of these features.
tures Range

(wt.%) 0e3.0

(wt.%) 0e8.9

(wt.%) 0e8.0

(wt.%) 0e5.0

(wt.%) 0e0.9

emperature (�C) 175e500

speed (m/min) 0.2e60.0

rain size (mm) 0.25e85.00

d strength (MPa) 95.0e403.0

ile strength (MPa) 164.0e437.0

elongation (%) 2.9e55.0
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Fig. 2 e Relationships between mechanical properties and grains of Mg alloys.
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2.2. Relationships between features

As mentioned, the most important mechanism of strength-

ening and toughening for MgeMn-based alloys is grain

refining. All data from dataset were plotted in Fig. 2 with

tension yield strength (MPa) as the vertical coordinate and

fracture elongation (%) as the horizontal coordinate. Fig. 2(a)

depicts the relationship between the grain size of these alloys

and theirmechanical properties. The size and color of the dots

represent their average grain size, It can be observed that the

performance improves as their AGS decreases, which aligns

with the fine-grain strengthening theory. Furthermore,

smaller grains are distributed near the diagonal line from the

top left to the bottom right, while larger grains are concen-

trated at the bottom left of this line, indicating a clustering

tendency.

Based on the characteristic of poly-crystalline metallic

materials, an alloy with an AGS of 100 nme1 mm is generally

defined as the ultrafine grain alloy [50,51]. In ultrafine grain

steels [52,53], it is generally considered that obtaining ultrafine

grains is a refinement of the average grain size from the

conventional tens of microns to around 1 mm. In steel mate-

rials, ultrafine grain structure can significantly improve, or

even double its properties. ForMg, several studies have proved

that when the AGS in Mg is below 5 mm, grain boundary slip

starts to participate heavily in deformation. Meanwhile, the

twinning behavior is suppressed. When the grain size is

further reduced, the non-basal slip can be turned on to coor-

dinate the deformation [54e56]. Due to the change of defor-

mationmechanism, amore accepted term is that alloys with a

uniform structure and an AGS below 5 mm are also referred to

as ultrafine grain Mg. Therefore, combined with the general

definition, ultrafine grain Mg alloy can be defined as the Mg

with an AGS of 100 nm-5 mm [16,20,25,57,58]. In Fig. 2(b), we

plotted all the data, where blue dots represent ultrafine grains

with AGSs below 5 mmand red ones represent fine grains (AGS

� 5 mm). In this figure, the mechanical properties of the alloys

are significantly improved from the fine grain to the ultra-fine

grain region. This indicates that when designing new Mg,

there is a higher probability of obtaining an alloy with better
performance, especially the comprehensive mechanical

properties, by intentionally controlling the grains to be ultra-

fine. In other words, grain ultra-fining is the practical means

for further improving the performance of Mn-containing Mg.

Based on the above, we focused on finding regulations to

prepare ultrafine grains and how to predict them without

needing any experiments.

Fig. 3 shows pair plots between elemental content, process

parameters and grain size for all data. And each subplot il-

lustrates the correlation between any two features. After

fitting, we found that the effect of each feature (alloying ele-

ments and extrusion conditions) on grain size is nonlinear,

which indicates that the formation of ultrafine structure is not

influenced by single or double factors, nor a simple linear

monotonous, but the result of the interaction of multiple

factors. Therefore, we used machine learning algorithms that

can handle high-dimensional and nonlinear problems to find

relationships between features and further investigate the

rules for preparing ultrafine microstructures.
3. Modeling and results

3.1. Binary classifiers of grains

We abstracted the ultrafine grain design as a binary super-

vised classification problem, where the input features are Mn,

Al, Zn, Sn, Ca, ET and ES, and the output labels are Ultrafine

and Fine. We wanted to verify the classification ability of the

dataset by ML-classified models and determine if it is possible

to separate ultrafine grains from fine grains in a multidi-

mensional space based on their compositions and processing

processes. If the data are separable, then we can find the

spatial hyperplane that divides them, and this can help us

identify the compositions and process routes for preparing

ultrafine grain Mg alloys, as well as providemore insights into

the formation of ultrafine structures. In that case, it is possible

to find the composition and process routes for preparing ul-

trafine grain Mg alloys and more details about the formation

of ultrafine grain structures.

https://doi.org/10.1016/j.jmrt.2023.02.091
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Fig. 3 e Pair plots between features and grain size.
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Four ML algorithms, kNN, DT, SVM, and RF, were used to

build classificationmodels. The test set size for all modelswas

0.2, and the cross-validation approach was used for training

and testing. The best parameters for the four ML models were

optimized using the ‘GridSearchCV’ command and an

enumeration circulation method. The parameters were set as

the ‘k ¼ 5’ in kNN, ‘max_depth ¼ 8’ in DT, ‘n_estimators ¼ 100,

max_depth ¼ 7’ in RF, and ‘kernel ¼ 'rbf’, C ¼ 5, gamma ¼ 0.1’

in SVM models, respectively. All the machine learning algo-

rithms in this work come from the scikit-learn library based

on Python [59].

The learning curves of the four classifiers shown in Fig. 4.

In these figures, the red curve represents the training accu-

racy, the green one represents the cross-validation test ac-

curacy, and the horizontal coordinates represent the

proportion of the data used for training and testing in the
dataset. As the data volume increase, the training accuracy

starts fromoverfitting and gradually decreases to stable, while

the testing accuracy gradually increases. All models eventu-

ally converge and are not overfitted. The test accuracy of all

models is above 0.6, indicating that the composition and

process can indeed determine the formation of ultrafine

grains and fine grains, and it is probable to make ultrafine

grains by controlling these parameters. Among them, the DT

and RF models have higher accuracy, with training accuracy

above 0.9 and testing accuracy of nearly 0.8. This suggests that

the classification tree is more effective than the kNN and the

SVM algorithms. In addition, compared to most algorithms,

the decision tree model is not a complete black box; the de-

cision tree nodes can be computed, and a tree diagram can

show the whole classified workflow. Because of this advan-

tage, the decision treemodel is often used to find classification

https://doi.org/10.1016/j.jmrt.2023.02.091
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Fig. 4 e Learning curves of four classification models.
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criteria and routes [37,38,60]. Therefore, we visualized the

decision treemodel in the next part to further explore paths to

prepare ultrafine grains.

In order to investigate the influence of features on the

target and improve the performance of the classification tree,

we conducted feature screening and main feature analysis.

We constructed and optimized a classification tree with a

training accuracy of 0.94 and a test accuracy of 0.88. Themean

decrease in impurity method was used to evaluate the
Fig. 5 e Feature importa
importance of features influencing grain size. The results are

shown in Fig. 5, in which the blue bars are the feature

importance of the tree, along with their inter-tree variability

represented by the error bars. Whenwe classify all samples in

fine and ultrafine grains, the feature importance of Al, ET, Mn,

Zn, Sn, Ca, and ES is 0.32, 0.28, 0.21, 0.16, 0.03, 0, and 0,

respectively. As can be seen from the feature weights, the

most significant factors affecting the grain size are Al and ET,

followed by Mn and Zn. In contrast, the effects of Sn, Ca, and
nce of decision tree.

https://doi.org/10.1016/j.jmrt.2023.02.091
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Fig. 6 e The classification tree for separating ultrafine and fine grains.
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ES on the grain type are negligible. Therefore, in the subse-

quent visualization of the classification tree, only Al, ET, Mn

and Zn features were kept, which helped to improve the

model performance and reduced the interference branches.

After conducting feature screening and modeling optimi-

zation, the final treemodel was built with input features of Al,

Mn, Zn, ET, Fine and Ultrafine were set as labels. The depth of

the decision tree is 7, the test size is 0.2, and the algorithm

kernel is CART, whose training accuracy and testing accuracy

are further improved to 0.95 and 0.91, respectively. Thismodel

can predict the grain type for any combination of the input

features. Visualizing the decision tree allows us to find clas-

sified features and criteria values. Then, we used all the data

as samples to generate the final classification tree, as shown

in Fig. 6. The Gini index is a measure of classification accuracy

that ranges from 0 to 1, with a lower value indicating a more

accurate classification. In the decision tree, the node colors of

yellow and blue represent ultrafine and fine grains, respec-

tively. The node colors of yellow and blue families are used to

represent ultrafine and fine grains respectively, and the darker

the color indicates the smaller the gini coefficient, i.e., the

more obvious the classification effect. The root node in the

tree contains 163 samples, 91 of which are ultrafine grains and

72 are fine grains. There were 10 samples of alloy composition

with Al content higher than 6.95 wt%, and all were fine grains.
This indicates that the primary condition for obtaining ultra-

fine microstructure is to keep the Al content below 6.95 wt%.

In the internal node of extrusion temperature, the critical

value is 372.5. However, unlike the root node, it is still possible

to prepare ultrafine grains by controlling other variables at the

extrusion temperatures above or below 372.5 �C, as seen in the

third-stage branches of the tree. In this way, there are 24 leaf

nodes stemming from the root node, with each of them rep-

resents a route for producing ultrafine or fine grains. These

leaf nodes have different sample sizes and labels. While a

small-size leaf node may improve the classification perfor-

mance, it is prone to overfitting and should be discarded.

Finally, after screening and branch cutting, only four leaf

nodes with ultrafine labels and a sample size greater than 10

were retained, indicating four routes for ultrafine grain

preparation.

As shown in Fig. 6, each branch represents one route to

design ultrafine or fine grain alloys. After pruning, we ob-

tained four routes for preparing ultrafine grain Mg, as shown

in Fig. 7. The condition values mainly come from the classi-

fication tree. However, the left and right boundaries are un-

clear for some conditions, and the extremums in the data

were set as the critical values. The figure shows that in the

MgeMneAleZn system, the content of Al below 6.95% is the

basic guideline for the preparation of ultrafine grain. There are

https://doi.org/10.1016/j.jmrt.2023.02.091
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Fig. 7 e Routes for designing ultrafine grain from decision trees.
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three extrusion temperature intervals can be chosen: the

lower extrusion temperature ranges from 175 �C to 290 �C, the
mediumextrusion temperature ranges from 290 �C to 372.5 �C,
and the higher extrusion temperature ranges above 372.5 �C.
For route 1, the content of Zn needs to be controlled by no

more than 0.935wt% from the classification tree. Additionally,

it was found that for all samples meeting other conditions of

route 1, the content of Zn is 0, based on data from the dataset.

This suggests that the alloys prepared by route 1 are the

MgeMneAl system. For route 2, similar to route 1, the content

of Al is 0, which indicates that the alloys prepared using route

2 are the MgeMneZn system. For routes 3 and 4, there is no

strict limitation to the number of alloy elements, and they can

be ternary or quaternary, either. From these routes, there are

some rules for the preparation of ultrafine grains of Mg alloys.

(1). The extrusion temperature must be increased with the

increase of Zn content within the alloy system. When

Zn ¼ 0, as in the case of the MgeMneAl-system alloy

provided by route 1, extrusion at a lower temperature is

necessary to obtain ultrafine grains. In subsequent ex-

periments, the authors attempted to extrude the alloys

of routes 2 to 4 at 280 �C, but were unable to do so.

Therefore, it is crucial to match the extrusion temper-

ature with the Zn content in the alloy when setting the

extrusion temperature.

(2). Although the ultimate solid solution of elemental Al in

the magnesium matrix is 12.7% (437 �C), the Al content

is limited in all routes, particularly in route 2 and route

4. According to some previous studies [20,22,41,49], Al is
more present in MgeAl and MneAl fine second phases

rather than in solid solution, which suggests that the

main reason for the formation of the ultrafine structure

is the action of the tiny second phases in the system.

(3). The relationship between Mn content and extrusion

temperature shows an opposite trend to that of Zn. The

lower the Mn content, the wider the extrusion temper-

ature interval can be chosen. However, to obtain an

ultra-fine structure, the Mn content should be at most

3 wt %.

Next, the data that satisfy each of the four process routes

were plotted by their properties. As shown in Fig. 8, the alloy

obtained by route 1 has a relatively higher fracture elongation,

indicating that alloys with higher plasticity potential can be

obtained through similar process routes. Similarly, the alloys

obtained through routes 2 and 4 have higher strength poten-

tial, while the alloys obtained through route 3 may have more

balancedmechanical properties. This information provides us

with an effective guide for designing new Mg alloys. For

example, when we want to obtain a wrought Mg alloy with

ultimate tensile strength and fracture elongation over 200MPa

and 40%, our desired properties are within the range of route

1, and by choosing a lower extrusion temperature, 175e290 �C,
and controlling the composition to be 0.05 < Al < 4.5,

0.3 � Mn < 3.0 and Zn ¼ 0, there is a great probability of an

ultrafine grain Mg alloy that meets the target properties.

Finally, an Mg alloy microstructure design strategy with a fine

grain strengthening theoretical basis and classification ma-

chine learning algorithms has been implemented.

https://doi.org/10.1016/j.jmrt.2023.02.091
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Fig. 8 e The performance of alloys through four routes.
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3.2. The grain size predictor

In the previous sections, a classifier was used to predict the

grain type and identify routes for preparing ultrafine grains,

providing a priori guidance for developing new high-

performance Mg alloys. In this part, a predictor was built to

predict more precisely about grain size. From Figs. 2 and 3, it

can be seen that the relationships between all parameters are

nonlinear and multivariate. Artificial neural network (ANN) is

the most popular and commonly used algorithm in modern

ML, and are able to simulate complex nonlinear problems by

combining linear transformation and nonlinear activation

functions like human brains [61,62].
Fig. 9 e The structure of
Here, we present a fully connected back propagation ANN

(BP-ANN) that reflect the relationship between alloy compo-

sitions, extrusion process parameters and grain size. The BP-

ANN, shown in Fig. 9, has seven neurons in the input layer,

representing Mn, Al, Zn, Sn, Ca, ET, and ES. The single output

layer has one neuron, which represents the grain size. The

number of neurons in the hidden layer is determined using a

loop-iteration method, where we substitute values from 5 to

20 in the model to find the convergent one with the lowest

error. The approximate value range can be computed using

empirical formulas. Furthermore, the optimal number of

neurons in the hidden layer of the grain size prediction

models is 13. The best optimization parameters were
the BP-ANN model.

https://doi.org/10.1016/j.jmrt.2023.02.091
https://doi.org/10.1016/j.jmrt.2023.02.091


Fig. 10 e The regression results of the predictive BP-ANN model.
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determined following multiple attempts. Selected “tansig” as

an activation function, and the model was trained using

normalization and the Bayesian regularization optimization,

which can reduce the difficulty of optimizing the network and

improve generalization. We set the proportion of the test data

to 10% and used 10-fold cross-validation to optimize the di-

vision of the dataset. The maximum training epochs and the

training accuracy were set to 1000 and 0.001, respectively.

After considerable training and testing, the fitting results of

the ANN model are presented in Fig. 10. The regression values
Fig. 11 e The error histogram
(R) of the training and test sets are 0.97, and 0.89, respectively,

and the model is not over-fitted. The scattered points in these

figures are concentrated and evenly distributed to the straight-

line “Y ¼ T”, showing that the ANN model has a high degree of

fitting and excellent generalization capability. The error histo-

grams ofmodels are shown in Fig. 11, which demonstrates that

the error distributions are close to the normal distribution and

the model errors mainly concentrate in the range of ±1.5 mm.

This predictor can be used to predict the grain size of alloys

with any inputs of compositions and extrusion processes.
s of the BP-ANN model.
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Table 2 e The compositions and processes of designing
alloys.

No. Composition and extrusion process

Alloy Mn/wt.% Al/wt.% Zn/wt.% ET/�C

#1 1.0 0.3 0 280

#2 1.2 0 2.0 355

#3 1.1 3.0 0.9 310

#4 0.8 0.2 4.0 380
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4. Experimental validation and model
evaluation

As described above, the ultrafine grain Mg alloys can be

designed using the four routes shown in Fig. 7. The properties

of alloys prepared by these routes are also different. There-

fore, we combined the classification tree and the ANN model

to design several Mg alloys through each route, and then

fabricated the alloys and performed some experimental tests.

We randomly selected one component and one process

parameter from each route as a sampling validation. The

compositions and extrusion processes of four Mg alloys are

shown in Table 2, denoted as #1, #2, #3 and #4, respectively.
Fig. 12 e Themicrostructures of four designed alloys obtained by

AGS of #2 alloy is 2.87 mm; (c) The AGS of #3 alloy is 1.97 mm; (d
Four alloys were produced according to the alloy design

scheme given in Table 2. The ingots were prepared from high-

purity Mg (>99.98wt %), pure Al (>99.8 wt %), pure Zn (>99.9 wt

%), and Mge3Mn (wt. %) master alloys. The alloying compo-

nents were completely melted in a steel crucible under the

mixture gas of CO2 (99.99 vol %) and SF6 (1 vol %) at approxi-

mately 720 �C, and then water-cooled to form ingots. After

cutting the surface defects and stains, ingots #1, #2, #3, and #4

were machined to obtain 80 mm diameter heights for extru-

sion without any pre-heat treatment. The ingots were hot

extruded at 280 �C, 355 �C, 310 �C, and 380 �C using an XJ-500

horizontal extruder. As previously concluded, the effect of

extrusion speed on grain size is very small for the alloy sys-

tems covered in this paper, so the extrusion speed of all

designed alloys was set to 2.0 m/min (the median of the data).

This resulted in the production of four rods with 16 mm di-

ameters. After fabricating the alloys, some characterization

experiments were performed. The grain structure was char-

acterized using electron backscatter diffraction (EBSD) on the

a JEOL JSM-7800F instrument with a scan step size of 0.4 mm.

The microstructure of all as-extruded samples was observed

parallel to the extrusion direction (ED), and analyzed using

HKL Channel 5 software.
EBSD (IPF results). (a) The AGS of #1 alloy is 0.78 mm; (b) The

) The AGS of #4 alloy is 4.35 mm.
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Table 3 e The results of predictions and experiments.

No. #1 #2 #3 #4

Predictions of DT Ultrafine Ultrafine Ultrafine Ultrafine

Predictions of ANN 1.02 mm 3.37 mm 2.19 mm 5.53 mm

Experimental results 0.78 mm Ultrafine 2.87 mm

Ultrafine

1.97 mm

Ultrafine

4.35 mm

Ultrafine

Fig. 13 e Tension engineering stress-strain curves of four alloys.
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Fig. 12 shows the microstructures of four designed alloys

taken at 500�. Herein, our study adopted the low-angle

boundary of 2�e15� and the high-angle boundary of greater

than 15� to obtain the IPF results. The white boundaries

represent the grain boundaries of uncrystallized grains, while

the black boundaries indicate the grain boundaries of recrys-

tallized grains. As shown in Fig. 12, it can be observed that

there are very few white boundaries, which implies that the

alloys are almost fully recrystallized. After measurement and

statistics, the average grain sizes of alloys #1 to #4 were found

to be 0.78 mm, 2.87 mm, 1.97 mm, and 4.35 mm, respectively.

These are ultrafine grain alloys, indicating that the four routes

proposed for designing ultrafine grain are feasible.

Table 3 presents the predictive results from DT and ANN

models, along with experimental results representing the

actual values. After inputting the composition and extrusion

process parameters into the decision tree model, the pre-

dicted results were obtained for all ultrafine. Additionally, the

ANNmodel predicted grain sizes of 1.02 mm, 3.37 mm, 2.19 mm,

and 5.53 mm when provided with the same parameters. The

calculated model accuracy for the ultrafine grain classifier is

100%, which is slightly higher than the model calculation ac-

curacy of 91%. The validationmodel accuracy of the grain size

predictor is 83%, slightly lower than the model calculation

accuracy of 89%. Themodels demonstrate good generalization

and predictive performance.
Some mechanical tensile tests were also performed to

evaluate the properties of designing alloys. The samples had

25mmgage lengths and 6mm� 3mm cross-sections, and the

tensile tests were conducted using a CMT6305-300 KN elec-

tronic universal testing machine at a strain rate of

1 � 10�3 s�1 at room temperature. Tensile engineering stress-

strain curves of the extruded alloys are shown in Fig. 13. The

mechanical properties of these four alloys are very similar to

those shown in Fig. 8. Alloy #1 has a higher fracture elongation

when prepared using route 1; alloy #4 has a higher ultimate

strength prepared using route 4. Alloys #2 and #3 have good

comprehensive mechanical properties when prepared using

routes 2 and 3, respectively.
5. Conclusions

In this work, we have proposed a new design strategy for ul-

trafine grain Mg alloys based on machine learning. We found

the main factors affecting grain size, designed ultrafine grain

preparation routes, and built models to predict grain size

using machine learning and data analysis as the primary ap-

proaches. Our main findings are summarized as follows.

(1) Four classification models were built by kNN, SVM, RF,

and DT algorithms. Their test accuracy is 0.66, 0.78, 0.78,

https://doi.org/10.1016/j.jmrt.2023.02.091
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and 0.79, respectively. Using theDTmodel, we developed

a grain classifier to predict the grain types of new alloys.

The training and testing accuracy of the optimizedmodel

is 95% and 91%, and the accuracy of the experimental

verification is 100%.We also built a predictor of grain size

using the ANN algorithm. The training and testing ac-

curacy of the optimized model is 97% and 89%, and the

accuracy of the experimental verification exceeds 80%.

(2) For the MgeMn-(AleZneSneCa) wrought alloys, we

found that the content of Al and extrusion temperature

are the two most significant factors influencing the

grain size, followed by the content of Mn and Zn.

However, the content of Sn, Ca, and extrusion speed

have little effect on grain size.

(3) Four routes to prepare ultrafine grain Mg alloys have

been obtained by visualizing the decision tree. We also

discovered several general rules for preparing ultrafine

grains, such as the need to carefully control the extru-

sion temperature in relation to the content of Zn and

Mn, and the need to keep the Al content below 6.95 wt%

and the Mn content at most 3.0 wt%.

(4) Four new wrought Mg alloys were developed through

the MLmodels. The experimental results of these alloys

were used to validate the accuracy of theMLmodels and

evaluate the feasibility of our design strategy. The re-

sults show that the four alloys we designed have ul-

trafine grains and the expected mechanical properties.

In summary, the ultrafine grain design strategy proposed

in this paper has more than 80% accuracy after experimental

verification. The conclusions obtained by ML models match

with some underlying theories and do more detailed quanti-

tative studies, which gives us new means and good a priori

guidance in designing new MgeMn-based alloys. It also pro-

vides help for large-scale industrial applications ofmore high-

performance and low-cost Mg alloys.
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