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Abstract

A new stable return-mapping algorithm enables crystal-plasticity solutions by using a regularized yield surface with very
arge exponents, for which the rate-independent limit of the Schmid assumption in practice is reached. Numerical stability
s enabled by an improved initial guess for the stress solution and by applying a line search for each Newton iteration. A
ypo-elastic–plastic corotational formulation is chosen, where the tensors are contracted in a way that naturally degenerate to
he rigid plastic formulation. The consistent algorithmic tangent modulus is derived, and a fast and very stable open-source
mplicit implementation into a finite element software is explained and demonstrated for simulations of the necking of a single
rystal and for deformation of a polycrystalline representative volume element. The simulations run stable allowing large time
teps. Hence, the simulation times are significant shorter than for explicit finite element simulations. The framework enables
se of arbitrary types of slip systems. As a demonstration, the importance and interpretation of the yield surface exponent and
he asymptotic limit of very large exponent are discussed for bcc crystals with
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systems.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The detailed modeling of metal plasticity, e.g. by finite element codes, requires a crystal-plasticity framework that
an efficiently incorporate arbitrary slip systems as well as account for crystal elasticity. In practice, compromises
ust be made between model complexity and calculation time. This work will be limited to the formulation and

emonstration of a stable numerical algorithm for a rate-independent crystal plasticity, without complex latent
ardening of the slip systems [1], and without non-Schmid effects, see e.g. Soare [2]. However, the framework
s not limited to these simplifications.

The starting point for rate-independent crystal-plasticity theories is the Schmid assumption, [3]. Mathematically,
his can be expressed as a multi-surface formulation with one yield criterion for each shear stress τα , with a

corresponding critical resolved shear stress, τcα , on each slip system, α.

τα ≤ τcα (1)

With infinitely many slip systems, the criteria would correspond exactly to the isotropic Tresca yield criterion.
However, slip is restricted to certain crystallographic planes and the densely packed atom directions in the crystal.
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Hence, the yield stress of a crystal is highly anisotropic, where the inner envelope of the Schmid criteria defines a
crystal yield surface with sharp corners.

At sufficiently low temperatures in densely packed crystal structures, dislocation glide will occur on the densely
acked atom planes, due to their low Peierls barrier. However, at elevated temperatures the Peierls–Nabarro
ontribution to the critical resolved shear stress for glide on non-densely packed slip planes decreases, enabling
lip to occur also on these more narrowly spaced slip planes. However, in non-densely packed structures without
ensely packed slip planes, e.g. ferritic steel with BCC structure, several slip systems with their respective critical
esolved shear stress, will compete, even at room temperature. Employing additional slip systems results in a more
omplex crystal yield surface with more corners and facets. In hcp metals there are only three slip systems available
n the densely packed planes, hence also here slip in less densely packed planes must be included in a model [4,5].
urthermore, twinning can be incorporated as pseudo-slip systems [6,7]. To handle mathematically all mentioned
ases, critical resolved shear stresses for slip to occur on different slip planes will be distinguished and be allowed
o have individual work hardening in the model considered in this work.

The rule of normality i.e. associated flow, where the plastic rate-of-deformation is normal to the yield surface,
olds for each facet on the crystal yield surface. However, in the rate-independent limit, several solutions meet in
yield-surface corner, and the Taylor ambiguity occurs. In the rate-independent theories, a variety of ambiguity

olutions have been suggested, as discussed in the review by Mánik and Holmedal [8].
In general, the critical resolved shear stress depends on the shear rates of the slip systems, but at room temperature

he strain-rate sensitivity is low, and the metal is commonly assumed to be rate-independent, which will be assumed
n this work. However, the rate-independent models will always be simplifications of rate-sensitive models, hence
t is important to understand the simplifications being made. Firstly, it is important to distinguish the instant strain-
ate sensitivity from the strain-rate sensitivity that influences the work hardening and consequently needs a certain
mount of strain to change the critical resolved shear stress. The latter can be captured by a rate-insensitive model.

The origin of the instant strain-rate sensitivity is that the critical shear stress of a slip system depends on the
hear rate of the same slip system. The popular viscoplastic power law [9,10] in Eq. (2) is an example, for recent
PFEM applications, see e.g. [11–15].

τcα = τ 0
α

(
|γ̇α|

γ̇0

)m

(2)

n this model there is no threshold for the critical resolved shear stress, and τα = τcα is the resolved shear stress.
urthermore, τ 0

α and γ̇0 are constants (that can be strain dependent) and m is the instant strain-rate sensitivity.
or the CPFEM with the viscoplastic model, efficient implementations [16–22], comparison studies of different
lgorithms [23–25] and an extensive review [26] have been reported. Even higher numerical efficiency has been
chieved by spectral solvers utilizing the fast Fourier transform, but then limited to cyclic boundary conditions [27–
3]. However, the viscoplastic model equations are increasingly difficult to solve numerically for small values of
he strain rate sensitivity, m. So far, most of the numerical algorithms for solving the viscoplastic equations have
ot been optimized for dealing with the rate independent limit m → 0. The speed and stability of the CPFEM
nd spectral implementations worsen as m decreases. One approximation used to deal with small m, is to first
erform expensive calculations for the crystal in the crystal coordinate system, and then map these solutions by a
pectral representation, as suggested by Knezevic, Al-Harbi and Kalidindi [34] and applied in CPFEM by Zecevic,

cCabe and Knezevic [35]. Another approach to deal with arbitrarily small m, was suggested by Knezevic, Zecevic,
Beyerlein and Lebensohn [36], by first calculating solutions by a relatively large m ≈ 0.05, and then obtain solutions
for lower values of m by a scaling relation that applies to the viscoplastic law. As pointed out by Mánik and
Holmedal [37] for the case of 12 slip systems in fcc, the slip systems that are most activated, in most cases do
not change for m ≤ 0.1. Since the 56 corner solutions in fcc are quite well separated, this method works for most
combinations of a given strain path and grain orientation. However, when more slip systems are activated, e.g. in
bcc, some of the corners will disappear with lower values of m. Anyhow, even with m = 0.05, the time steps that
an be made by implicit finite element integration are limited, and the line-search and choice of the initial guess,
s proposed in the current work, will be very beneficial.

The instant strain-rate sensitivity, m, influences the crystal yield surface in two different ways. Firstly, it rounds
ff the corners of the crystal yield surface, which for rate-dependent models can be defined as the iso-surface with

onstant internal work and internal work rate. Note, that even when the strain-rate sensitivity is very low, say at
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room temperature, the round-off of the corners may still be significant. Secondly, the rate dependency causes the
crystal yield surface to expand with increasing strain rate. At room temperature this expansion is very weak for
most metals and justifies the use of a rate-independent yield surface.

However, the rounded corners must still be accounted for, as argued by Holmedal [38]. Eq. (2) can be derived
rom a potential [38,39] proportional to the internal work rate and shape invariant for different internal work rates.
s pointed out by Holmedal [38], an iso value of this potential corresponds to the regularized yield surface proposed
y Gambin and Arminjon [40–44]. Since the plastic strain rate equals the gradient of the potential, the associated
ow rule then applies. Hence, in the limit of m → 0, this model degenerates to a solution of the rate-independent

Schmid model. However, since the Schmid model suffers from the Taylor ambiguity, this rate-independent solution
is not unique. The physical interpretation of that is that different models for the strain-rate dependency gives different
ambiguity solutions.

To avoid the Taylor ambiguity and the corresponding singularities, the regularization by Gambin/Arminjon has
been applied in many rate-independent crystal-plasticity finite element model (CPFEM) implementations [45–47].
Alternatively, a regularized yield surface, based on the approach by Kreisselmeier and Steinhauser [48], has also
been commonly applied [49–54]. Note that in the limit of large yield surface exponents, this approach becomes
similar as the yield surface by Gambin and therefor degenerates to the same Taylor ambiguity solution, i.e. the one
corresponding to the viscoplastic power law in Eq. (2).

Another rate-dependent model is the viscous over-stress model.

τα = τ̂ 0
α + η−1

|γ̇α| (3)

Here τ̂ 0
α is a true athermal yield stress and η−1 is the viscosity of the metal. In the limit η → ∞ this model

degenerates to a solution of the rate-independent Schmid model. Note, that this corresponds to another ambiguity
solution than the viscoplastic power law in Eq. (2). Implementations have been made by Schmidt-Baldassari [55]
and by [55,56], in which a minimization of an augmented Lagrangian is used to approximately obtain the rate-
independent limit (η → ∞) of the viscous assumption in Eq. (3). Following the arguments by Mánik and
Holmedal [8], this ambiguity solution must correspond to the one obtained by either quadratic programming [8,57]
or by singular value decomposition. [58,59].

Not all ambiguity solutions have a physical interpretation. Many are simply efficient mathematical means to
obtain a well-posed, non-singular mathematical problem. For an overview of various approaches, the reader is
referred to recent reviews, [37,56,60].

In models for predicting texture evolution during fabrication, e.g. rolling or extrusion, rate-independent statistical
aggregate models are useful, i.e. the classical full-constraint Taylor model [61], and the more recent advanced
Taylor type models; the ALamel model [62], the ALamel3 model [8] the GIA/RGC model [63,64] and rate-
independent self-consistent models, e.g. [65–68]. In texture-prediction applications, elasticity is not important and
plastic formulations without elasticity are commonly applied. A newly proposed way of contracting tensors [69]
will be applied in this paper, where a rigid plastic formulation will follow naturally as a special case.

Even with the computer capacity available today, CPFEM simulations are challenging. The coupling between
the elements leads to a large system of non-linear coupled equations to be numerically integrated one time-step
at a time. This can be obtained, using either explicit or implicit finite element methods. Due to the stiff nature of
the involved system of equations, explicit time stepping is restricted to very small time-steps, even with carefully
use of mass scaling. In explicit CPFEM solvers, a major part of the computer time required for the calculations is
related to calculating locally for each integration point the stress tensor and the lattice rotation for a given time step,
i.e. as prescribed in a user-defined subroutine. However, with implicit time stepping, most of the computer time
is spent solving the global finite element equations. To compete with explicit numerical integration schemes, the
implicit schemes must be sufficiently stable to allow order of magnitude larger time steps. A stable return mapping
algorithm is the key.

At room temperature, a realistic exponent for this yield surface is orders of magnitude larger than for high-
exponent yield surfaces applied in continuum plasticity. Numerical convergence of the return mapping algorithm is
more and more difficult with increasing yield surface exponents and has until now been a major numerical challenge.
However, recent progress has been reported within continuum plasticity, reporting stable return mapping algorithms,
using a line-search approach [69–73].

In the current work, these algorithms are further developed and applied for the Gambin/Arminjon regularized

crystal yield surface, enabling for the first time an implicit return mapping algorithm, allowing stable, effective
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calculations of the rate-independent limit with yield surface exponents as large as one million and strain steps
as large as unity. Physical mechanisms, modeled by various types of slip systems, such as twinning, phase
transformations, latent and reverse hardening etc., have not been included here. At the current stage, the paper
presents a proof-of-concept of a rate-independent framework that enables this, without compromising numerical
robustness.

The UMAT developed in this work can be freely downloaded from the following link:
https://gitlab.com/ntnu-physmet/crystal-plasticity

. Regularized single crystal plasticity model

Two coordinate systems will be considered for expressing vectors and tensors of the crystal plasticity model.
he global (sample) system has basis vectors ei , while the co-rotated (crystal) coordinate system has basis vectors

êi , i = 1, 2, 3, that coincides with the crystal lattice after deformation. The orthogonal transformation tensor from
the global to the crystal coordinate system is denoted Q = RT. The transformation rules read

v̂ = Q · v, T̂ = Q · T · QT (4)

where v is a vector and T is a second-order tensor. The initial orientation of the crystal coordinate system is given
by the initial transformation matrix Q0 = RT

0 , which can be calculated for a given set of Euler angles.
The imposed velocity gradient L is given in the global system, while the constitutive equations are formulated

in the co-rotated crystal system. The hypoelastic approach is employed, with additive decomposition of the rate-of-
deformation tensor. The hypoelastic–plastic models are typically used when elastic strains are small compared to the
plastic strains. Except for some cases of complex elastic-dominated closed-loop cyclic loading, the non-conserved
energy is negligible and the hypoelastic description is adequate.

In the co-rotated system D̂ = sym
(

L̂
)

is split into its elastic and plastic parts

D̂ = D̂
e
+ D̂

p
(5)

The rate of the co-rotated Cauchy stress is given by Hooke’s law

˙̂σ = Ĉ : D̂
e
= Ĉ :

(
D̂ − D̂

p)
(6)

where Ĉ is the fourth-order elastic stiffness tensor, given in the co-rotated system. The unity slip direction vector
b̂α and the unity slip plane normal vector n̂α for each considered slip system α define the Schmid tensor M̂α in
the co-rotated system.

M̂α = b̂α ⊗ n̂α (7)

The plastic rate-of-deformation tensor, D̂
p
, is related to the symmetric part of the Schmid matrix, P̂α = sym

(
M̂α

)
as

D̂
p

=

N∑
α=1

γ̇α P̂α (8)

where γ̇α is the slip rate on slip system α.
Following Holmedal [38], the strain-rate independent regularized crystal yield surface is employed here,

f
(
σ̂
)

= ϕ
(
σ̂
)
− 1 =

(
N∑
α=1

ξα

⏐⏐⏐⏐⏐ σ̂ : P̂α

τcα

⏐⏐⏐⏐⏐
n) 1

n

− 1 = 0 (9)

here ϕ
(
σ̂
)

is the yield function. The plastic rate-of-deformation tensor obeys the normality rule

D̂
p

= λ̇ϕσ̂ =
λ̇

( f + 1)n−1

N∑ ξα

τ

⏐⏐⏐⏐⏐ σ̂ : P̂α

τ

⏐⏐⏐⏐⏐
n−1

P̂α (10)

α=1 cα cα

4
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where ϕσ = ∂ϕ/∂σ is the gradient of the yield function. When the exponent n is large, the parameters ξα may be
et to unity. It follows from Eqs. (8) and (10), that on the yield surface, i.e. for f = 0,

γ̇α = λ̇
ξα

τcα

⏐⏐⏐⏐⏐ σ̂ : P̂α

τcα

⏐⏐⏐⏐⏐
n−1

sign
(
σ̂ : P̂α

)
(11)

Due to that f is a homogeneous function of the first order, it follows that

λ̇ = σ̂ : D̂
p

= Ẇ (12)

where Ẇ is the plastic work rate.
To determine the single crystal rotation, the total spin tensor Ŵ = skw

(
L̂
)

is additively decomposed into its
elastic, plastic, and lattice-rotation parts.

Ŵ = Ŵ
p
+ Ŵ

e
+ Ŵ

c
(13)

Here, Ŵ
p

is the plastic spin tensor. The elastic deformations that contribute to the elastic spin tensor Ŵ
e
, are very

small and neglected here. The constitutive lattice spin, Ŵ
c
, generates the lattice rotation.

The origin of the plastic spin is the contribution to the spin from the shape-change caused by the slip activity,
i.e.

Ŵ
p

=

N∑
α=1

γ̇αΩ̂α (14)

The skew-symmetric part of the Schmid tensor Ω̂α = skw(M̂α) and γ̇α are the slip rates. Hence, the constitutive
spin can be estimated as Ŵ

c
≈ Ŵ − Ŵ

p
. The constitutive spin tensor dictates the crystal rotation, according to

Ṙ = W c
· R = R · Ŵ

c
· RT

· R = R · Ŵ
c

(15)

The work hardening of the critical resolved shear stresses is assumed to be functions, τcα (Γ ), that depend on
he accumulated slip Γ , which is defined by the differential equation

Γ̇ =

N∑
α=1

|γ̇α| =
⏐⏐λ̇⏐⏐ N∑

α=1

ξα

τcα

⏐⏐⏐⏐⏐ σ̂ : P̂α

τcα

⏐⏐⏐⏐⏐
n−1

,Γ (0) = 0 (16)

In this paper, a simple model for the work hardening [74] is applied for demonstration

dτcα

dt
= hα (Γ ) Γ̇ =

∆τ sat
α

∆γ sat
α

exp
(

−
Γ

∆γ sat
α

)
Γ̇ , τcα (0) = τ0 (17)

where hα (Γ ) is the hardening moduli for each slip system. In this case, it can be integrated as the Voce equation

τcα = τ0 + ∆τ sat
α

(
1 − exp

(
−

Γ

∆γ sat
α

))
(18)

Note, that replacing || by ⟨⟩, where ⟨⟩ denotes the Macaulay brackets, allows for distinguishing forward and
backward slip activities as explained by Holmedal [38]. This is necessary to model Bauschinger effect on the slip
system level [75–77].

3. Rotation update

The update of the rotation tensor R is given by the differential equation (15). An analytical solution exists for
the case of a constant W and can be written using the Euler–Rodriguez formula (for details see Brannon [78]), as

R (t) =

⎛⎝I +

sin
(√

W : W t
)

√
W : W

W +

(
1 − cos

(√
W : W t

))
W : W

W · W

⎞⎠ · R0 (19)
5
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where R0 = R(0). In general, the spin W changes with time. Eq. (19) can then be applied as an approximation
uring each time increment ∆t , as

Rn+1 = ∆R · Rn =

(
I +

sin
(√

W n : W nt
)

√
W n : W n

W n +

(
1 − cos

(√
W n : W nt

))
W n : W n

W n · W n

)
· Rn (20)

where W n is kept constant during the time increment.
Another alternative, is the symmetric numerical second-order update scheme by Hughes and Winget (1980),

which is often employed (e.g. for calculating rotation increment matrix in UMAT in Abaqus/Standard), It assumes
that the spin W is known at time tn +∆t/2, and the Cayley–Hamilton theorem [79] can be applied to avoid inverting
matrices [78].

Rn+1 =

(
I −

∆t
2

W n+
1
2

)−1

·

(
I +

∆t
2

W n+
1
2

)
· Rn =

=

⎛⎝I +
∆t

1 +
∆t2

4 W n+
1
2
: W n+

1
2

(
W n+

1
2

+
∆t
2

W n+
1
2

· W n+
1
2

)⎞⎠ · Rn (21)

When using the corotated constitutive spin Ŵ
c
, the integration of Eq. (15) reads

Rn+1 = Rn ·

⎛⎜⎝I +
∆t

1 +
∆t2

4

(
Ŵ

c)
n+

1
2

:

(
Ŵ

c)
n+

1
2

((
Ŵ

c)
n+

1
2

+
∆t
2

(
Ŵ

c)
n+

1
2

·

(
Ŵ

c)
n+

1
2

)⎞⎟⎠ (22)

. Vector/matrix notation

Symmetric second-order tensors and fourth-order tensors with minor symmetry can be mapped into a vector
nd matrix representation, respectively. The most widely used vector/matrix representations are the Voigt and
andel notations. The main purpose of a vector/matrix representation is to exploit the tensor symmetries, allowing

ymmetric stress and strain tensors to be stored as vectors, and fourth-order elastic modulus or plastic anisotropy
ensors to be stored as matrices. In implementations of computational mechanics, this type of vector–matrix
epresentation significantly reduces the number of operations and the computation cost. In rigid plastic crystal
lasticity, other notations have been used (see Mánik [69] for a recent overview).

In this paper, the natural vector/matrix notation, originally suggested by Kocks, Tomé and Wenk [80] for use in
rystal elasticity, is applied. This notation was recently adapted for use in continuum plasticity in a return mapping
lgorithm by Mánik [69]. Due to its explicit representation of the deviator, this notation advantageously separates
he deviatoric plasticity from the elasticity, i.e. the plastic part is equivalent to the notation proposed by Lequeu,
ilormini, Montheillet, Bacroix and Jonas [81]. This notation enables a more concise algorithm formulation and, due

o separation of pressure dependency, it reduces dimension of equation system and makes numerical computation
ore effective. Like the Mandel- but unlike the Voigt notation, it represents both stress and strain tensors equally, see
q. (23). The brief description and the essentials of the natural notation is given in Appendix A. For an exhaustive
escription, see Mánik [69].

A =

⎛⎝ A11 A12 A13
A12 A22 A23
A13 A23 A33

⎞⎠ −→ a =

⎛⎜⎜⎜⎜⎜⎜⎝
a1
a2
a3
a4
a5
a6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

3(A11 + A22 + A33)
1/

√
6(2A33 − A11 − A22)
1/

√
2(A22 − A11)
√

2A23√
2A13√
2A12

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(23)

5. Return mapping algorithm

At time t (n), we consider the Cauchy stress σ̂
(n) and the internal variables q̂(n) expressed in the corotational

crystal coordinate system. In the backward Euler integration scheme, the total rate-of-deformation D̂
(n+1)

is required
(n+1)
at t in the corotational crystal coordinate system. However, the orientation of the crystal coordinate system at
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t (n+1) is not known, hence D̂
(n+1)

needs to be calculated. What is known in the finite element code is D(n+1/2),
which is assumed to be constant in the reference system throughout the time step. To limit the complexity of the
algorithmic modulus, D̂

(n+1)
is extrapolated within the accuracy of the numerical scheme (see Appendix B).

The basic problem to be solved by a return mapping algorithm, is to find the Cauchy stress σ̂
(n+1) and the internal

variables q̂(n+1) at time t (n+1) = t (n) + ∆t , which satisfy the Kuhn–Tucker complementarity conditions

f
(
σ̂
(n+1)

, q̂(n+1)
)

≤ 0, λ̇ ≥ 0, λ̇ f
(
σ̂
(n+1)

, q̂(n+1)
)

= 0 (24)

The fully implicit backward Euler return mapping algorithm is employed in this paper. In the literature, return-
mapping algorithms are generally formulated in their tensorial form, while numerical implementations employ either
Voigt or Mandel vector/matrix notation. In the following, the return-mapping algorithm will be expressed directly
in the natural notation [69]. For the sake of clarity, the hat ( ˆ ) designating the corotational aspect, will be omitted
in the following, for all the vectorial and tensorial quantities.

Given a total rate-of-deformation vector d⃗(n+1), time increment ∆t and Cauchy stress σ⃗ (n), the trial stress is
obtained by applying an elastic predictor.

σ⃗ tr (n+1)
= σ⃗ (n) + Cd⃗(n+1)∆t (25)

Here, in the natural notation, C is a 6 × 6 diagonal matrix representing the elastic moduli with cubic symmetry.
If ϕ

(
σ⃗ tr (n+1)

,Γ (n)
)

− 1 ≤ 0, the strain increment is elastic and σ⃗ (n+1)
= σ⃗ tr (n+1) and Γ (n+1) = Γ (n). Otherwise,

when ϕ
(
σ⃗ tr (n+1)

,Γ (n)
)

− 1 > 0, plastic deformation occurs and the return mapping algorithm will be employed to

integrate the model and to obtain σ⃗ (n+1), λ̇(n+1) and Γ (n+1) at t (n+1).
The plastic corrector part of the implicit backward-Euler return mapping algorithm finds, in an iterative manner,

the Cauchy stress σ⃗ (n+1), the plastic multiplier λ̇(n+1), and the slip Γ (n+1) at time t (n+1)
= t (n) +∆t , by solving the

following system of nonlinear equations:

r⃗ = −d⃗p
+ λ̇ϕσ⃗ = −C−1 (σ⃗ tr

− σ⃗
) 1
∆t

+ λ̇ϕσ⃗ = 0⃗ (26)

f = ϕ (σ⃗ ,Γ )− 1 = 0 (27)

q = −

(
Γ − Γ (n)

)
∆t

+ Γ̇
(
σ⃗ ,Γ , λ̇

)
= 0 (28)

nstead of using the trial stress σ⃗ tr as the initial guess, the radially returned stress onto the yield surface, σ⃗ (0), is
alculated.

σ⃗ (0)
= k

σ⃗ tr

ϕ(σ⃗ tr)
(29)

For large trial stresses, this first guess is the key to numerically stable and robust return-mapping algorithm. The
parameter k controls the distance of the initial stress guess from the yield surface, for k = 1, σ⃗ (0) lies on the yield
surface, as ϕ

(
σ⃗ (0)

)
= 1. For a given σ⃗ (0), the initial guess for the plastic multiplier, λ̇(0) is given by Eq. (12)

λ̇(0)
= d⃗pT

σ⃗ (0)
=

k
ϕ(σ⃗ tr)

(
1 −

k
ϕ
(
σ⃗ tr)

)
σ⃗ trT

C−1σ⃗ tr (30)

he return mapping is solved using a Newton–Raphson algorithm with a line search. The solution is sought in an
terative manner as

σ⃗ (k+1)
= σ⃗ (k)

+ α(k) ∆σ⃗

λ̇(k+1)
= λ̇(k)

+ α(k)∆λ̇ (31)

Γ (k+1)
= Γ (k)

+ α(k)∆Γ

here (k) is the iteration, ∆σ⃗ , ∆λ̇ and ∆Γ are the increment of the Cauchy stress, the plastic multiplier and the
(k)
ccumulated slip, respectively, and α is a constant to be determined by the line search algorithm. By linearizing

7
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a

Eqs. (26), (27) and (28), the increment ∆λ̇ is calculated as

∆λ̇ =

f (k)
− ϕ

(k)T

σ⃗
Lr⃗(k)

− Y
(
λ̇(k)ϕ

(k)T

σ⃗
Lϕ(k)

σ⃗Γ − ϕ
(k)
Γ

) (
Γ̇ (k)T

σ⃗
Lr⃗(k)

− q (k)
)

ϕ
(k)T

σ⃗
Lϕ(k)

σ⃗
+ Y

(
λ̇(k)ϕ

(k)T

σ⃗
Lϕ(k)

σ⃗Γ − ϕ
(k)
Γ

) (
Γ̇ (k)T

σ⃗
Lϕ(k)

σ⃗
− Γ̇ (k)

λ̇

) (32)

The latter is then used for calculating the increment of the accumulated slip

∆Γ = Y
(
Γ̇ (k)T

σ⃗
Lr⃗(k)

− q (k)
)

+ Y
(
Γ̇ (k)T

σ⃗
Lϕ(k)

σ⃗
− Γ̇ (k)

λ̇

)
∆λ̇ (33)

and both ∆λ̇ and ∆Γ are finally used for obtaining the increment of the Cauchy stress

∆σ⃗ = −L
(

r⃗(k)
+ ϕ

(k)
σ⃗
∆λ̇+ λ̇(k)ϕ

(k)
σ⃗Γ ∆Γ

)
(34)

In Eqs. (32), (33) and (34), the matrix L and Y are given as

L =

(
C−1

∆t
+ λ̇(k)ϕ

(k)
σ⃗ σ⃗

)−1

Y =

(
Γ̇ (k)
Γ −

1
∆t

− λ̇(k)Γ̇ (k)T

σ⃗
Lϕ(k)

σ⃗Γ

)−1
(35)

For the calculations above, the following partial derivatives need to be calculated (note that the resolved shear stress
τα = σ⃗ Tp⃗α):

∂ϕ

∂σ⃗
= ϕσ⃗ =

N∑
α=1

ξα

τcα

(
|τα|

ϕτcα

)n−1

sign (τα) p⃗α (36)

∂2ϕ

∂σ⃗ 2 = ϕσ⃗ σ⃗ =
(n − 1)
ϕ

(
N∑
α=1

ξα

τ 2
cα

(
|τα|

ϕτcα

)n−2

p⃗αp⃗T
α − ϕσ⃗ϕ

T
σ⃗

)
∂ϕ

∂Γ
= ϕΓ = −ϕ

N∑
α=1

ξα

τcα

(
|τα|

ϕτcα

)n

hα

∂2ϕ

∂σ⃗∂Γ
= ϕσ⃗Γ = (1 − n)

ϕΓ

ϕ
ϕσ⃗ − n

N∑
α=1

hαξα
τ 2

cα

(
|τα|

ϕτcα

)n−1

sign (τα) p⃗α

∂Γ̇

∂λ̇
= Γ̇λ̇ = sign

(
λ̇
) N∑
α=1

ξα

τcα

(
|τα|

ϕτcα

)n−1

∂Γ̇

∂σ⃗
= Γ̇σ⃗ =

(n − 1)
ϕ

(⏐⏐λ̇⏐⏐ N∑
α=1

ξα

τ 2
cα

(
|τα|

ϕτcα

)n−2

sign (τα) p⃗α − Γ̇ϕσ⃗

)
∂Γ̇

∂Γ
= Γ̇Γ = −n

⏐⏐λ̇⏐⏐ N∑
α=1

ξαhα
τ 2

cα

(
|τα|

ϕτcα

)n−1

+ (1 − n)
Γ̇ϕΓ

ϕ

For convergence, measures of the three residuals r⃗(k), f (k) and q (k) for iteration (k) are defined as

ψ (k)
r =

1
2

r⃗(k)T
r⃗(k)∆t2, ψ

(k)
f =

1
2

f (k)2
, ψ (k)

q =
1
2

q (k)2
∆t2 (37)

nd

ψ (k)
= ψ (k)

r + ψ
(k)
f + ψ (k)

q (38)

If for an iteration (k)

ψ (k)
r < εr and ψ (k)

f < ε f and ψ (k)
q < εq (39)

then the convergence is achieved. Recommended error tolerances, used throughout this work, are εr = 10−20,

ε = 10−8, ε = 10−16.
f q

8
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5.1. Line search

In each Newton–Raphson iteration, the line search is used to determine the step size α(k). For this, ψ (k) serves as
the merit function [72]. For the search direction given by the increments ∆σ⃗ , ∆λ̇ and ∆Γ , the step length α(k) needs
to be found such that 0 < α(k)

≤ 1 and for which the merit function ψ (k) is minimized. In this paper, two methods
for line search are employed and tested. A line search, calculating the minimum of the quadratic approximation
to the merit function, is adopted here, similarly as previously applied in return mapping algorithms for continuum
plasticity [69,71,72]. This is very efficient method for the exponents of the regularized yield function up to ∼100.
For large exponents up to 1 000 000, the quadratic approximation of the merit function becomes too poor, leading to
α(k)’s far from the optimal ones. More effective line search is developed in this paper, employing new minimization
algorithm which solves more efficiently crystal plasticity models with large exponents up to 1 000 000.

5.1.1. Quadratic line search
For each iteration, the Newton step is performed as the first attempt, i.e. α(k)

= 1 in Eq. (31). This step
will be accepted only if ψ (k+1) is lower than some fraction of the merit function ψ (k), achieved in the previous
Newton–Raphson iteration.

ψ (k+1) < (1 − 2β)ψ (k) (40)

The parameter β = 10−4, as recommended by Perez-Foguet and Armero [72]. If the Newton step does not meet the
condition in Eq. (40), it is instead considered as a first iteration, j = 0, for which ψ (k+1)

( j) = ψ (k+1) and α(k)
( j) = 1.

Next, an improved guess α(k)
( j+1) is calculated based on a quadratic series expansion of the function ψ (k+1)

(
α(k)

)
,

utilizing that ψ (k+1)(0) = ψ (k) and the derivative ψ (k+1)′ (0) = −2ψ (k+1)(0) = −2ψ (k).

α
(k)
( j+1) = max

⎛⎜⎝ηα(k)
( j),

(
α

(k)
( j)

)2
ψ (k)

ψ
(k+1)
( j) −

(
1 − 2α(k)

( j)

)
ψ (k)

⎞⎟⎠ (41)

The index ( j) indicates iterations within the line search. The parameter η = 0.1 limits the size of the new estimate
α

(k)
( j+1). For each line search iteration ( j), the merit function ψ (k+1)

( j) is calculated according to Eqs. (31) and (32)
using the updates of σ⃗

(k+1)
( j) , λ̇(k+1)

( j) and Γ (k+1)
( j) calculated by using the step α(k)

( j).

σ⃗
(k+1)
( j) = σ⃗ (k)

+ α
(k)
( j) ∆σ⃗

λ̇
(k+1)
( j) = λ̇(k)

+ α
(k)
( j)∆λ̇ (42)

Γ (k+1)
( j) = Γ (k)

+ α
(k)
( j)∆Γ

ithin the line search iterations, the residual ψ (k+1)
( j) has to satisfy the Goldstein’s condition [72,82]

ψ
(k+1)
( j) <

(
1 − 2βα(k)

( j)

)
ψ (k) (43)

f Eq. (43) is not satisfied, the line search iterations continue by calculating new α
(k)
( j+1) using Eq. (41). On the

other hand, if Eq. (43) is satisfied, then both the line search iteration ( j) and the Newton–Raphson iteration (k)
are terminated by setting α(k)

= α
(k)
( j), updating σ⃗ (k+1)

, λ̇(k+1) and Γ (k+1) using Eq. (31). If the convergence is not
reached, i.e. Eq. (39) is not satisfied, then the algorithm continues with the (k+1)th Newton–Raphson iteration.

5.1.2. Line search by minimization
An alternative approach for finding the step length α(k) for which ψ (k)

(
α(k)

)
< ψ (k)(0), is to find the minimum

within some tolerance ε. For this, the standard and general 1D minimization Brent’s method [83] can be applied.
The way the function ψ (k)

(
α(k)

)
is constructed by Eqs. (37) and (38) gives rise to some known properties e.g. the

derivative at α(k)
= 0, reads ψ (k)′(0) = −2ψ (k)(0). A new minimization algorithm was tailor-made to utilize the

known characteristics of ψ (k)
(
α(k)

)
making it faster than Brent’s method. See Appendix C for the detailed description
of this line search algorithm.

9



T. Mánik, H.M. Asadkandi and B. Holmedal Computer Methods in Applied Mechanics and Engineering 393 (2022) 114831

p
b
c

i

6

a
d
s
o
b
w
w
t
e
s
a
a
i
0
i

a

a

Table 1
Constitutive parameters used in the convergence study.

C11 (GPa) C12 (GPa) C44 (GPa) τc (MPa)

FCC case 106.75 60.41 28.34 10
BCC case 233.3 135.5 128.0 100

5.2. Consistent algorithmic modulus

The consistent algorithmic modulus is essential to calculate when the return mapping algorithm is employed as a
art of an outer iteration. It must be provided as part of the user subroutine in the implicit FE solver. For the implicit
ackward Euler return mapping algorithm of the regularized single crystal plasticity model described above, it is
alculated as

Calg
=

(
M −

(
Mϕσ⃗ − λ̇Y Γ̇λ̇Lϕσ⃗Γ

) (
ϕΓY Γ̇ T

σ⃗
L − ϕT

σ⃗
M
)

−ϕT
σ⃗

(
Mϕσ⃗ − λ̇Y Γ̇λ̇Lϕσ⃗Γ

)
+ ϕΓY Γ̇ T

σ⃗
Lϕσ⃗ − ϕΓY Γ̇λ̇

)
1
∆t

(44)

n which matrix M is calculated as

M =
(
λ̇Y Lϕσ⃗Γ Γ̇

T
σ⃗ + I

)
L (45)

. Convergency results

Convergency behavior of the implicit, backward-Euler return-mapping algorithm with line search is examined as
function of the yield-surface exponent n. Note that according to Eq. (25), an arbitrary strain increment occurring

uring a time increment ∆t , is uniquely prescribed by σ⃗ tr
− σ⃗ (n). Hence, to effectively cover the space of possible

train-increment directions, an evenly distributed set of 10 000 trial stresses
{
σ⃗ tr

i

}
i=1,10000 was generated from a set

f 5-dimensional vectors, approximately uniformly distributed on the 5-dimensional hypersphere, being generated
y the algorithm described in Appendix D. The stress state before the strain increment to be iterated, σ⃗ (n) can,
ithout loss of generality, be set equal to 0⃗, i.e. strain path changes are also covered by this set. Each trial stress
as chosen so that f

(
σ⃗ tr

i

)
= s, where s is a chosen constant. The magnitude of s represents the magnitude of

he trial stress, which implicitly corresponds to the magnitude of the total strain increment ∆ε⃗ = d⃗∆t , for a given
lastic modulus matrix C and a set of critical resolved shear stresses τcα . In this manner, a large set of possible
train paths can be probed, independently of what the previous stress solution was, and arbitrary strain-path changes
re included as well. To test different strain-increment magnitudes, four selected values of s = 2τC , 10τC , 100τC

nd 1000τC were included in the set of trial stresses. The largest amongst these trial stresses corresponds to a strain
ncrement of order unity and in practice provides an ultimate stability challenge for the algorithm. In total, the 40
00 tested strain increments provide a large set that effectively covers the space of realistic strain increments in an
mplicit FE simulation.

The efficiency and stability of the return-mapping algorithm will in principle depend on the chosen slip systems
nd their corresponding work hardening. A BCC structure with

{
110

}
⟨111⟩,

{
121

}
⟨111⟩ and

{
132

}
⟨111⟩ slip

systems, and an FCC structure with
{
111

}
⟨011⟩ slip systems were tested. Without loss of generality, the Euler

ngles used were (ϕ1,Φ, ϕ2) = (0, 0, 0). The elastic constants and the critical resolved shear stress applied for the
FCC and BCC case are listed in Table 1. Both a case without work hardening and a case of strong work hardening
(linear hardening with h = 1000 MPa) were tested. For each yield surface exponent, the number of Newton iterations
and the number of line-search iterations were counted for the 40 000 probed strain increments.

It turned out that the algorithm gave similar iteration statistics for all cases tested. Examples of the average
number of Newton iterations and the average number of line-search iterations required for each Newton iteration to
reach convergency, are shown in Fig. 1 for two of the cases tested. The largest system, for the BCC case with 48 slip
systems, requires only slightly more iterations to converge. The results with and without work hardening are very
similar. Note that for yield-surface exponents up to about 100, the quadratic line search is always faster, with less or
equal number of Newton iterations and significantly fewer line-search iterations each. The simpler quadratic line-
search algorithm is competitive up to a yield-surface exponent of the order of 1000, which in practice is sufficient

for a very good rate-independent approximation by the regularized yield surface.

10
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Fig. 1. Average number of Newton iterations for FCC in (a) and BCC in (c). Average number of line-search iterations for each Newton
iteration for FCC in (b) and BCC in (d). Cases with and without hardening are compared for iterations by quadratic or full minimization
during the line search.

It is a remarkable result, that both line-search algorithms converge for all cases tested, up to an exponent of one
million, keeping in mind that the largest strain steps included in the test set is of order unity. For these extremely
high exponents, the full minimization requires significantly fewer iterations than the quadratic algorithm.

For low exponents, most cases converge within a few iterations. For larger exponents, some of the tested strain
steps converge fast, while other require more iterations. In Fig. 2, examples of iteration statistics for the case of
the quadratic line-search algorithm are shown, for cases where n = 10, 100 and 106. The FCC crystal without
hardening and the BCC crystal with 48 slip systems and hardening show very similar distributions. The average
number of Newton iterations, as well as the spread of the distribution, increase with increasing exponent. For the
cases of n = 10 and 100, the peak is at zero line-search iteration, i.e. a full Newton step, while for n = 106 several
repeated quadratic line-search iterations are required for most cases.

Fig. 3 shows iteration statistics for examples where the full minimization is applied during the line search. Again,
cases of n = 10 and 100 are compared for an FCC crystal without hardening and a BCC crystal with 48 slip systems
and hardening. Unlike the cases with quadratic line search, the mean value and spread of the number of Newton
iterations saturate at large exponents and the curves are similar for n = 100 and 106. However, the number of
line search iterations per Newton iteration slowly increases with increasing n, showing a broad peak at the largest
number of iterations, as well as a narrow peak, for which convergency is accepted by one Newton step.

7. Application to CPFEM

The return-mapping algorithm was implemented into the user-material subroutine (UMAT) in the FE software

Abaqus/Standard and tested for two cases covering simulation of single and polycrystal behavior of an FCC material

11
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r

Fig. 2. Line search with quadratic approximation. Distributions of Newton and line-search iterations for the test case of an FCC crystal
without hardening (a), (b) and a BCC crystal with hardening (c), (d).

Fig. 3. Line search with new minimizing algorithm. Distributions of Newton and line-search iterations for the test case of an FCC crystal
without hardening (a), (b) and a BCC crystal with hardening (c), (d).

with
{
111

}
⟨011⟩ slip systems. Elastic constants for aluminum were used as given in Table 1. The initial critical

esolved shear stress was 10 MPa. The hardening law by Eq. (17) was applied. The exponent n = 100 of the yield
function was used. The tolerances ε , ε and ε in Eq. (39), for the return-mapping algorithm convergence, were
r f q
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Fig. 4. Uniaxial tension of a notched single crystal in a Goss orientation, shown half of the sample.

10−20, 10−8 and 10−16, respectively. The CPFEM calculations were run on a Windows 10 system, using 6 of the 8
threads of the Intel Core i7-7700 processor with 3.6 GHz CPU. The user-subroutine was applied in Abaqus/Standard
2020, ran using the direct solver. Note that rotations in the user-material subroutine (UMAT) in the FE software
Abaqus/Standard are by default calculated by the Jaumann spin. Details how to instead impose the constitutional
lattice spin are given in Appendix B.

7.1. A Goss-oriented single crystal

Uniaxial tension of a notched single crystal specimen with an initial Goss orientation was simulated, i.e. with the
crystal cube rotated 45◦ around the tensile axis. The diameter of the specimen was 10 mm, the diameter inside the
notch was 6.4 mm and the notch radius was 3.6 mm. Note, that due to the single crystal’s material model symmetries,
only the one-eighth of the specimen was computed. The FE mesh is shown in Fig. 4a. The smooth specimen was
meshed with ∼18 000 linear three-dimensional eight-nodes elements with selective reduced integration (C3D8). A
smaller element size was used close to the mid-section of the specimen to ensure an accurate description of the
necking. Kinematic boundary conditions were imposed to the nodes located at the end of the specimen by prescribing
an axial displacement of 0.8 mm. The average time increment used was ∼0.01 s. On average 7 iterations were needed
for the return-mapping algorithm to converge. Hardening constants used for this case, were Rsat

α = 20 MPa and
∆γ sat

α = 0.15 for all α.
The Goss orientation of a crystal is defined by the Euler angles (ϕ1,Φ, ϕ2) in Bunge’s notation as (0◦, 45◦, 0). Its

trong plastic anisotropy gives rise to a pronounced approximately square-shaped neck, as observed experimentally
n strongly textured aluminum alloys [84,85].

.2. A polycrystalline representative volume element (RVE)

The second case simulated by the CPFEM, was uniaxial tension of a RVE for a polycrystalline material. The RVE
3
as modeled as a 1mm cube consisting of 30 grains and was generated in the open source software DREAM.3D,
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Fig. 5. Kinematic boundary conditions defining uniaxial tension for the RVE.

Fig. 6. Uniaxial tension of a polycrystalline RVE consisting of 30 grains meshed with 50 × 50 × 50 C3D8R elements.

see Groeber and Jackson [86]. It was discretized by 50 × 50 × 50 reduced-integration elements (C3D8R). The
deformed FE model of the RVE with grain morphology is shown in Fig. 6a. Periodic boundary conditions were
applied to the nodes on the exterior boundaries to ensure periodicity [15,87]. The uniaxial tensile mode for the RVE
is defined by prescribing boundary conditions to the nodes A, B, C and D (Fig. 5). The nominal strain reached at the
end of the simulation was 40%. The von Mises stress in the RVE at the end of the simulation is shown in Fig. 6b.
The average time increment used was ∼0.004 s. On average 10 Newton iterations and 7 line-search iterations for
each Newton iteration were needed for the return-mapping algorithm to converge. Hardening constants used for this
case were Rsat

α = 63 MPa and ∆γ sat
α = 0.1 for all α. The simulation took 24 h.

7.3. Comparison of computing times with explicit and implicit FE solvers

The computational efficiency of the implicit CPFEM calculations with the new algorithms presented here, is
assessed by comparing to an explicit rate-dependent CPFEM implementation, which is efficient due the use of mass
scaling in combination with an adaptive sub-stepping integration scheme using the modified Euler method [22]. This
explicit integration scheme is extremely robust and efficient, allowing using an instantaneous strain rate sensitivity m
as low as 10−5 to explore the very nearly rate-independent stress–strain response. The case chosen for the comparison
is a simulation of uniaxial tension up to 1% strain, using an RVE consisting of 60 × 60 × 60 linear elements with

full integration. The details of the explicit CPFEM simulation are given in [15]. Note, that the explicit CPFEM is
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Table 2
Comparison of computing times with explicit and implicit CPFEM solvers for
near-faceted (Schmid) crystal plasticity.

n or 1/m Explicit New implicit

100 16 h 6 h
1 000 120 h 12 h

1 000 000 – 13 h

a rate-dependent formulation, and the FE solver used for this one was LS-DYNA. The purpose here is a coarse
comparison of the total computational time. When m ≪ 1, the rate sensitivity, m, corresponds to the exponent
n ≈ 1/m. In both cases, the simulations were run on the same PC using all 8 cores (see Section 7). The timing
results are shown in Table 2.

8. Discussion

8.1. Natural notation

Numerical implementations of return-mapping algorithms involve fourth-order tensors for the elastic stiffness
and for the consistent modulus. However, the implementations and numerical schemes at the end of the day must
be expressed in terms of matrices and vectors. To make the tensor contractions as simple as possible to handle,
the natural vector/matrix notation is applied to represent the tensors involved in the considered crystal-plasticity
model. This notation has an orthonormal basis, providing all the convenient properties of the Mandel notation and
overcoming the cumbersome distinguishing of stress- and strain-like tensors, as opposed to the Voigt notation.
Moreover, it allows more concise algorithm formulations with higher computational efficiency [69]. In this matrix
representation notation, the elastic stiffness tensor for crystals with cubic symmetry has a diagonal form. Hence the
double contraction in the tensorial version of Hooke’s law is reduced to a simple scalar multiplication. Furthermore,
it results in an explicit split of the deviatoric and volumetric parts of symmetric second-order tensors, which is
advantageous when applied to classical pressure-independent crystal plasticity. Consequently, only the deviatoric
part of the constitutive equations enters the plastic corrector of the return mapping algorithm, which reduces by one
the system of equations to be solved by the Newton–Raphson iterative method. For the volumetric part, only the
elastic predictor, and no plastic corrector, is needed. The natural notation thus enables use of the same algorithm
and numerical set-up for cases with only rigid plasticity (e.g. texture calculations), as for cases requiring full
elasto-plastic calculations (e.g. CPFEM).

8.2. Line-search algorithms

Similar as for continuum plasticity, [71], a limited convergence of the pure Newton–Raphson method is observed
with the regularized crystal yield surface, even with low exponents. For the relatively large strain increments,
relevant for implicit FEM as tested in Section 6, the algorithm diverged for ∼ 10% of the strain paths with an
xponent n = 5, without line-search. For a given exponent n, a certain maximum strain increment, |∆ε|max exists,

allowing convergence for all strain paths. Applying the parameters of the two materials in Table 1, it was found that
n ∝ 1/ |∆ε|max, both for the fcc aluminum and the bcc iron. To obtain convergence for n = 100, |∆ε|max ≈ 2.5·10−5

nd 10−4 for fcc aluminum and bcc iron, respectively. When running implicit FEM simulations, the strain increments
equired for the desired accuracy, would be considerable larger than that. The overall efficiency of an implicit FEM
mplementation relies on that the strain increments can be sufficiently large, being controlled by global accuracy
ather than the stability of the local iterations in the user subroutine, since most of the computer time is spent
etween the user subroutine calls.

To ensure stable convergence of the return-mapping algorithm presented here, the line-search algorithm plays
crucial role. Its purpose is to find a scaling α of the increment, ∆x, suggested by the Newton algorithm,

.e. x(n+1) = x(n) + α∆x. It makes sure that the scalar merit function, ψ , is always reduced compared to the
revious step, i.e. ψ

(
x(n+1)

)
< ψ

(
x(n)

)
. In continuum plasticity, line search has been used in several works, see
.g. [69–73]. In this work, two different line-search algorithms were employed and tested: the quadratic line search
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and line search by a minimization algorithm. The quadratic one returns the α that minimizes a quadratic polynomial,
interpolating ψ(α), so that ψ(0), ψ (1) and ψ ′(0) are exactly matched. As this approximation becomes less and
ess precise for large values of exponent n, the number of Newton iteration is increased (see Figs. 1 and 2).

The line search by minimization returns, within the prescribed numerical accuracy, the value of α that minimizes
ψ . This new minimization algorithm is a tailor-made version of Brent’s algorithm, (see Appendix C). The relative
and absolute tolerance, ϵ and ϵa , control the precision of finding the minimum of ψ . In general, tight tolerances
require a larger number of line-search iterations but lead to a lower number of Newton iterations. This strongly
depends on the exponent n. For large n, i.e. n > 10000, the number of Newton iterations is greatly reduced, when
mall tolerances are prescribed. For n < 100, the number of Newton iterations is less sensitive to how precisely the
inimum of ψ is estimated, and coarser tolerances are more beneficial, reducing the number of line-search iterations

o be performed. The relationships ϵ = min (0.3, 1/n) and ϵa = 10−2ϵ are found to work optimally. Using this, the
number of Newton iterations remains almost constant for all n > 100, while the number of line-search iterations
still increases gradually (see Fig. 1 and Fig. 2).

A Newton iteration involves computing the Jacobian and solving a 6 × 6 linear system and is therefore about
4 times more computationally expensive as a line-search iteration. Hence, the monotonically increasing number of
Newton iterations as a function of n makes the quadratic algorithm less competitive. The overall timing reveals that
the quadratic line search converges faster than the line search by minimization for n up to about 500.

8.3. Approaching the limit of a rate-independent solution

Solutions of the rate-independent crystal plasticity, obeying Schmid’s law, suffers from non-uniqueness, i.e. the
Taylor ambiguity. Several attempts have been made to obtain a unique solution [37]. As discussed by Holmedal [38]
an equivalence exist between the rate-sensitive unique solution, using the viscoplastic law (Eq. (2)) with strain rate
sensitivity m, and the unique solution provided by the regularized yield surface defined by Eq. (9) with exponent
n, i.e.

n = 1 +
1
m

(46)

he proposed return-mapping algorithm enables, for the first time, calculations of extreme solutions a yield surface
ith exponent n up to a million, corresponding to a strain-rate sensitivity m = 10−6. Slip solutions for 10 000
ifferent crystals with a uniformly distribution if their orientations (same as in Section 6) were calculated for each
xponent n. For each crystal and each exponent, the relative error of the solutions compared to a limit solution γ̇ lim

α

can be quantified by

rel. error =

√∑
α

(
γ̇α − γ̇ lim

α

)2∑
α

(
γ̇ lim
α

)2 (47)

The limit γ̇ lim
α was calculated using n = 1000 000, which in practice is equivalent to the ambiguity limit within the

numerical precision. This was done for an FCC structure with
{
111

}
⟨011⟩ slip systems (Fig. 7a), a BCC structure

with
{
110

}
⟨111⟩ slip systems (Fig. 7b), to which

{
121

}
⟨111⟩ slips (Fig. 7c) and

{
132

}
⟨111⟩ slips (Fig. 7d) were

added. The color map in Fig. 7 shows the distribution of the relative errors for all crystals for each exponent n.
ig. 7 demonstrates the existence of a smallest exponent, for which the solutions still practically are equal to the
ate-independent Taylor ambiguity limit, i.e. the same set of slip systems is activated. This is in line with previous
ndings [37], who showed for an FCC polycrystal, that the texture change is not sensitive to the strain rate sensitivity,
, up to a value less than ∼0.1 (or correspondingly n larger than ∼10).
The results for BCC crystals (Fig. 7b, c and d) show that the smallest exponent giving this limit solution, increases

ith the number of slip systems. For crystals with 48 slip systems it may be as high as ∼400. This may influence
exture calculations. As an example, solutions for n = 50 and 400 were calculated by the Taylor model for a rolling
eduction of 90%. The ϕ2 = 45◦ section of the ODF is shown in Fig. 7e. As expected from Fig. 7d, the texture for the
imit case, i.e. with n = 1000 000, was identical to the case of n = 400. However, the texture intensity distribution
n this section with n = 50 is significantly different. According to Larour, Baumer, Dahmen and Bleck [88], the
train-rate sensitivities for various steel grades at room temperature may vary from m = 0.001 to 0.02 corresponding

o n between 50 and 1000. If a rate-independent simulation of steel is desired, the exponent n should be chosen
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Fig. 7. Density distribution of the relative error (Eq. (47)) of the slip solutions for 10 000 single crystals calculated for (a) FCC structure with
111

}
⟨011⟩ slip systems, (b) BCC structure with

{
110

}
⟨111⟩ slip systems, (c) BCC structure with

{
110

}
⟨111⟩ +

{
121

}
⟨111⟩ slip systems,

nd (d) and BCC structure with
{
110

}
⟨111⟩+

{
121

}
⟨111⟩+

{
132

}
⟨111⟩ slip systems. Rolling textures for a polycrystal with uniform initial

exture (1000 orientations) with 48 slip systems same as in figure (d) simulated by the Taylor model for 90% rolling reduction, using (e)
= 400 and (f) n = 50 Sections for ϕ2 = 45◦ are shown.

arger than ∼400 (m less than ∼0.0025) when accounting for the 48 slip systems. However, in many cases it is
etter to account for a realistic strain-rate sensitivity by choosing an appropriate exponent n in the range below 400

(m above 0.0025). Note that the scaling technique to speed up the viscoplastic calculations [36,89,90], would for
bcc miss the correct corner solutions in these cases. This illustrates the need for line-search in the more general
cases, to obtain an exact solution.

8.4. Comparison of computing times with explicit and implicit FE solvers

The model implemented in CPFEM, either as part of an implicit or an explicit solver for handling the stress
balance and compatibility between the finite elements, is solved incrementally. For each increment, in the implicit
approach, iterations are made to find a solution of the set of non-linear finite element equations. In the explicit
approach, the dynamic inertial forces applied to the finite elements allow explicit time discretization without
iterations at each time increment. Regardless of the choice of an explicit or implicit FE framework, the crystal-
plasticity equations are solved for each node, one time-step ahead, as prescribed inside the user subroutine (UMAT).
In there, the equations may be solved without iterations in an explicit form, in a fully implicit form or by some
type of semi-implicit scheme, in which only some of the variables are solved implicitly. The implicit solution is
considerably more expensive, which amounts to the major part of the computational time by explicit FE solvers,
whereas for implicit FE solvers the major part of the calculations is related to iterations on the balance between
17
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the elements. To compete, the implicit solvers must make significantly larger time steps. For the rate-dependent
CPFEM, a thorough comparison of merits of both explicit and implicit CPFEM solvers were reported by Harewood
and McHugh [24]. They concluded that when the material deformation is the main part of the simulation, the
implicit solver is several times faster. However, in problems with complex contact and sliding conditions, the implicit
solver becomes significantly slower. Furthermore, they concluded that their implicit solver struggled to converge
and required decreasing time steps with lower strain-rate sensitivities. The latter would not be an issue with similar
line-search algorithms as reported here.

The limited conditional stability of the explicit time integration forces the explicit FE solver to use very short
ime increments, leading to large number of increments to be calculated. For quasi-static problems, a careful,
roper mass scaling can help increasing the time step. Then the instability locally related to the integration of the
quations for each node in the UMAT subroutine, becomes the bottle neck for reducing the time step. Stability can
fficiently be gained by sub-stepping in the UMAT, as reported by Zhang, Hopperstad, Holmedal and Dumoulin [22].
owever, with decreasingly small strain-rate sensitivity, increasingly many sub-steps will be required. Hence, it will
e beneficial at some small strain-rate sensitivity, to replace the sub-stepping approach by an implicit scheme with
ine-search, like the one suggested here for the rate-insensitive case. Further investigations are required but are
eyond the scope of this work.

When using an implicit solver, the extra computing time required for the return mapping algorithm to solve the
aterial model constitutive equations, is small compared to the time spent by the FE solver to solve the global finite

lement equations. The stability of the implicit scheme suggested here allows almost arbitrary large time steps and
akes this the fastest alternative for e.g. the calculation of the RVE. The time increment is usually controlled by

n automatic incrementation routine in the FE software and is limited by the desired accuracy rather than stability
equirements. However, in some cases, contact or sliding conditions might limit the allowed time steps significantly.

In non-linear crystal plasticity analysis, Abaqus/Standard uses some variant of Newton’s iterative solution
ethod. For each iteration, it is necessary to solve a set of linear equations, which for 3D problems corresponds

o a matrix with dimensions proportional to the number of nodes in the power of two. The direct matrix solver in
baqus/Standard uses a sparse Gauss elimination method for each solution of these linear matrix problems involved.
his is the most time-consuming part of the implicit analysis, especially for large models. Unlike the explicit solver,

he storage of this matrix during each iteration requires a lot of computer memory, which is the limiting factor for
arge models with current computers. However, the available computer memory has increased rapidly during the
ast decades, providing increasing amounts of internal RAM memory and fast serial buffer memory on solid-state
isks, even on regular PCs.

. Conclusion

A numerically stable and efficient fully implicit return-mapping algorithm for rate-independent crystal plasticity
as obtained by including a line-search algorithm as part of the Newton iterations and utilizing an improved first
uess for the iterations. Fast convergence of the algorithm was proved for any realistic strain step and for very high
xponents of the regularized yield surface. Full stability was maintained for an exponent of one million, allowing
he Schmid limit to be approached.

It was found that with 12 slip systems, either in BCC or FCC, the set of active slip systems corresponding
o the ambiguity solution is obtained whenever the yield surface exponent is larger than ∼10. However, for BCC
ith 48 slip systems, an exponent larger than 1000 will be required. The choice of the exponent is equivalent to
rescribing an instant strain-rate sensitivity. To choose the correct exponent for the simulations, or alternatively to
un a rate-dependent implementation with the correct strain-rate sensitivity, can therefore be an important issue in
CC texture simulations with 48 slip systems.

A co-rotational hypo-elastic–plastic implementation was made into the user material subroutine of
baqus/Standard (made available as open source). Efficient computations were demonstrated for uniaxial tension
f a polycrystalline representative volume element deformed up to large strains. It is concluded, based on timing
f crystal plasticity finite element simulations, that such simulations are significantly faster with the new algorithm
n an implicit FE solver than with a state-of-the-art explicit formulation in an explicit FE solver.
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ppendix A. Natural vector/matrix notation

The six independent components of a symmetric 2nd order stress or strain tensor can be represented by a
× 1 vector. Correspondingly, a 4th order symmetric tensor can be expressed as a 3 × 3 matrix. The Voigt

stress vector contains a one-to-one list of the stress components, σ⃗ V
= (σ11, σ22, σ33, σ23, σ13, σ12)

T . However, in
the corresponding Voigt strain tensor, ε⃗V

= (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)
T , the shear strains must be multiplied by

a factor two to preserve the inner product of stress and strain. Since the Voigt notation is frequently used in the
literature, the natural notation as defined by Eq. (23), will be related to the Voigt notation. However, the natural
notation has an orthonormal basis, which makes the notation the same for both strain and stress tensors, like the
Mandel notation but unlike the Voigt notation. Furthermore, the natural notation has the advantage that it decouples
the hydrostatic pressure, and it diagonalizes the stiffness matrix for cubic crystals, as shown below.

The transformations matrices Tσ and Tε, transform the stress vector σ⃗ V and the strain vector ε⃗V from the Voigt
notation to the vectors σ⃗ = (σ1, σ2, σ3, σ4, σ5, σ6)

T and ε⃗ = (ε1, ε2, ε3, ε4, ε5, ε6)
T in the natural notation, as

σ⃗ = Tσ σ⃗ V and ε⃗ = Tεε⃗V
, (48)

where σ⃗ and ε⃗ are vector representations of stress and strain in the natural notation, respectively. These transfor-
mations are related, as Tσ = T−T

ε . The transformation matrices Tσ and Tε read

Tσ =
1

√
6

⎛⎜⎜⎜⎜⎜⎜⎝

√
2

√
2

√
2 0 0 0

−1 −1 2 0 0 0
−

√
3

√
3 0 0 0 0

0 0 0 2
√

3 0 0
0 0 0 0 2

√
3 0

0 0 0 0 0 2
√

3

⎞⎟⎟⎟⎟⎟⎟⎠ ,Tε =
1

√
6

⎛⎜⎜⎜⎜⎜⎜⎝

√
2

√
2

√
2 0 0 0

−1 −1 2 0 0 0
−

√
3

√
3 0 0 0 0

0 0 0
√

3 0 0
0 0 0 0

√
3 0

0 0 0 0 0
√

3

⎞⎟⎟⎟⎟⎟⎟⎠
(49)

Fourth order elasticity stiffness tensors are linear mappings of a second order strain tensor to a second order stress
tensor, which in the contracted notations is a 6 × 6 elastic stiffness matrix, relating the strain vector to the stress
ector. From the Voigt notation, they transform into the natural notation as

C = TσCV T−1
ε . (50)

he elastic stiffness matrix, for both isotropic and cubic symmetry, are given in the Voigt notation as

CV
iso =

⎛⎜⎜⎜⎜⎜⎜⎝
2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

⎞⎟⎟⎟⎟⎟⎟⎠ ,CV
cub =

⎛⎜⎜⎜⎜⎜⎜⎝
C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞⎟⎟⎟⎟⎟⎟⎠ (51)

where λ is the Lamé’s first parameter, µ the shear modulus and C11,C12,C22 are cubic elastic constants. In the
natural notation, both transform into a diagonal matrix

Ciso =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3K 0 0 0 0 0
0 2µ 0 0 0 0
0 0 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Ccub =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

C11 + 2C12 0 0 0 0 0
0 C11 − C12 0 0 0 0
0 0 C11 − C12 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(52)

where K = λ+
2
3µ is the bulk modulus. This is convenient for numerical computation, e.g. computing of the matrix

nversion and for a matrix storage.
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Assume an orthonormal transformation tensor R in the cartesian orthonormal basis as R = Ri j ei ⊗ e j . The
oefficients Ri j can be arranged in a 3 × 3 matrix R as

R =

⎛⎝ R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞⎠ (53)

2nd- and 4th order tensor, A and A, respectively, transform as

Âkl = Rik R jl Ai j

(
or in tensorial form Â = RT

· A · R
)

and

Âmnop = Rim R jn Rko RlpAi jkl

(54)

For expressing 2nd order tensors A and Â and 4th order tensors A and Â in the natural notation as a⃗ and ⃗̂a (6 × 1
vectors) and A and Â (6 × 6 matrix), respectively, there exist a 6 × 6 matrix R so that

⃗̂a = RTa⃗ and

Â = RTAR
(55)

The matrix R and its transpose RT read

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0

(
3R2

33 − 1
)
/2

√
3
(
R2

32 − R2
31

)
/2

√
3R32 R33

√
3R31 R33

√
3R31 R32

0
√

3
(
R2

23 − R2
13

)
/2 (R2

11 + R2
22 − R2

12 − R2
21)/2 R22 R23 − R12 R13 R23 R21 − R13 R11 R21 R22 − R11 R12

0
√

3R23 R33 R22 R32 − R21 R31 R22 R33 + R23 R32 R21 R33 + R23 R31 R22 R31 + R21 R32

0
√

3R13 R33 R32 R12 − R31 R11 R12 R33 + R13 R32 R11 R33 + R13 R31 R12 R31 + R11 R32

0
√

3R13 R23 R12 R22 − R11 R21 R12 R23 + R13 R22 R11 R23 + R13 R21 R11 R22 + R12 R21

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(56)

ppendix B. Co-rotational systems in UMAT in Abaqus/Standard

At the beginning of the time increment spanned between the times tn and tn+1, the key variables supplied by
baqus/Standard needed for the crystal plasticity model in UMAT are: the Cauchy stress tensor σ n stored as a
× 1 vector σ⃗ V

n in Voigt notation (STRESS), the incremental rotation tensor ∆Rn+
1
2

(DROT) stored as a 3 × 3
matrix, and the deformation gradient tensor with respect to the initial configuration computed both at the beginning
and at the end of the increment, Fn (DFGRD0) and Fn+1 (DFGRD1), respectively, both stored as 3 × 3 matrices.
At the end of this increment, i.e. at tn+1, the Cauchy stress vector σ⃗ V

n+1 (STRESS) needs to be updated and the
Jacobian matrix of the constitutive model, i.e. the algorithmic modulus

(
∂∆σ
∂∆ε

)
n+1 (DDSDDE) needs to be computed

as a 6 × 6 matrix in Voigt notation.
When a user defined material model is used for continuum elements Abaqus/Standard employs Jaumann stress

rate (note that Green–Naghdi stress rate is employed for structural elements in Abaqus/Standard and for any type
of elements in VUMAT in Abaqus/Explicit). A local orientation is not applied (*ORIENTATION keyword is not
used), hence the components of all tensors are given in the reference (global) coordinate system. Note, that with
use of a local orientation, Abaqus/Standard provides the components of all tensors in the local corotated coordinate
system at time tn+1 rotated from tn to tn+1 by ∆Rn+

1
2
.

The rotation ∆Rn+
1
2

is calculated based on the Jaumann spin W n+
1
2

at time tn+
1
2

= tn +
1
2∆t and is passed into

the UMAT as DROT. ∆Rn+
1
2

is calculated by the second-order update scheme by Hughes and Winget [91] as

∆RT
n+

1
2

=

(
I −

∆t
2

W n+
1
2

)−1

·

(
I +

∆t
2

W n+
1
2

)
(57)

here W n+
1
2

is the skew-symmetric part of the velocity gradient Ln+
1
2

at time tn+
1
2
. To account for the rigid body

rotations, Abaqus/Standard applies the rotation ∆Rn+
1
2

of the Cauchy stress before passed to the UMAT as σ n for
he next time increment.

However, the crystal constitutive equations and the stress update are calculated in the corotated crystal lattice
oordinate system. Hence, the Jaumann rotation of the Cauchy stress by ∆Rn+

1
2

done by Abaqus must be undone,
followed by a rotation Rn into the crystal lattice system at time tn as

σ̂ n = RT
· ∆RT

1 · σ n · ∆R 1 · Rn (58)
n n+ 2
n+ 2
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Here σ̂ n is the Cauchy stress tensor in the corotated crystal lattice coordinate system, Rn is the rotation defining
rystal lattice orientation in the reference system at time tn . Moreover, the vector σ⃗ V

n needs to be transformed from
oigt notation into the natural notation, σ⃗ n , by transformation matrix Tσ given in Eq. (49).

σ⃗ n = Tσ σ⃗ V
n

⃗̂σ n = RT
nR

T
n+

1
2
σ⃗ n

(59)

here Rn and Rn+
1
2

are 6 × 6 matrices in the natural notation build from Rn and ∆Rn+
1
2

according to Eq. (56).
As the velocity gradient Ln+

1
2

is not made available by Abaqus/Standard in the UMAT, it can be calculated in
the reference system at tn+

1
2

as

Ln+
1
2

=
1
2
(Ln + Ln+1) =

1
2∆t

(Fn+1 − Fn) ·
(
F−1

n+1 + F−1
n

)
(60)

he assumption that the velocity gradient is constant between tn and tn+1 in the reference system makes it rotating
n the crystal lattice system. Being consistent with the backward Euler numerical scheme, L̂n+1 is required in the
rystal lattice system at time tn+1. As the crystal lattice rotation, Rn+1, is not known at the beginning of the time
tep, it must be found in an iterative manner. A simpler alternative is to assume that the velocity gradient is constant
n the crystal lattice system rotating by the Jaumann spin. This will properly account for any rigid body rotation
f the crystal which then will not contribute to the inaccuracy of this estimate. The error made is due to difference
etween the Jaumann and crystal rotation, which is limited by the slip activity during the time increment and is of
he order of ∆t .

Hence, Ln+
1
2

is rotated into the crystal lattice system by Rest
n+1 = ∆Rn+

1
2

· Rn as

L̂n+1 ≈
(

Rest
n+1

)T
· Ln+

1
2

· Rest
n+1 (61)

orrespondingly, the rate-of-deformation tensor in the crystal coordinate system is D̂n+1 = sym
(

L̂n+1

)
, which is

onverted to a vector in the natural notation by Eq. (23).
After integration at tn+1, the crystal lattice system has rotated by Rn+1 calculated by Eq. (22). Both the Cauchy

tress σ̂ n+1 and the algorithmic modulus Ĉalg
n+1 must be rotated from the crystal lattice system back to the reference

oordinate system as

σ n+1 = Rn+1 · σ̂ n+1 · RT
n+1(

Calg
n+1

)
i jkl

=

(
Ĉalg

n+1

)
mnop

(Rn+1)im (Rn+1) jn (Rn+1)ko (Rn+1)lp
(62)

inally, the transformation from the natural to Voigt notation is done. The fourth order algorithmic modulus tensor
ransforms from the natural into Voigt notation by using Eq. (50).

σ⃗ n+1 = Rn+1
⃗̂σ n+1

σ⃗ V
n+1 = T−1

σ σ⃗ n+1 (63)

Calg
n+1 = Rn+1Ĉalg

n+1R
T
n+1(

Calg
n+1

)V
= T−1

σ Calg
n+1Tε (64)

ppendix C. Minimization algorithm

The problem is to find iteratively αmin that minimizes ψ (α). Note that the index k for the Newton iterations is
ropped from here on out, i.e. ψ = ψ (k+1). The converged value from the previous Newton iteration step corresponds
o α(0) = 0, and will be counted as iteration j = 0 i.e. ψ(0) = ψ(0) = ψ (k). The first new point to be calculated
ill be a full Newton step with α(1) = 1 and ψ(1) = ψ (1). This step will be accepted as the converged line-search

olution, if the residual decreases compared to ψ (k), i.e. the algorithm returns αmin = ψ(1) if
ψ(1) < 0.99ψ(0) (65)
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However, if the condition in Eq. (65) is not satisfied, an improved guess is made, based on a quadratic series
expansion of the function ψ around α(0) = 0. However, to avoid a very small correction, this guess for α is not
allowed to be smaller than 0.1.

α(2) = max
(

0.1,
ψ(0)

ψ(1) + ψ(0)

)
(66)

hese two first points are used as the starting point for further iterations to estimate the minimum value of ψ (α).
The algorithm book-keeps the trust region and the iterations. The trust borders are initialized as (αL , ψL ) = (0, ψ(0))
and (αR, ψR) =

(
1, ψ(1)

)
. If ψ(2) < min(ψ(0), ψ(1)), it is not a border point and is bookkept as a current middle-point,

(αM , ψM ) = (α(2), ψ(2)). Furthermore, two temporary variables are stored:

αold = α(1);αnew = α(2)

The main algorithm starts at iteration number j = 3, and for each proceeding iteration, the following steps are
performed:

1. The numbering of the previously calculated points is updated:

αoldest = αold

αold = αnew

2. Check if trust boundaries can be adjusted.
If ψ( j) > ψL then (αR, ψR) = (α( j), ψ( j)). Proceed directly to point 3
If ψ( j) > ψR then (αL , ψL) = (α( j), ψ( j)).

3. From this point it always holds, that ψM ≤ min(ψL , ψR). Hence, the trust borders are updated as follows:
If α( j) < αM then

If ψ( j) < ψM then (αR, ψR) = (α( j), ψ( j))
Else (αL , yL) = (αM , ψM) ; (αM , ψM) = (α( j), ψ( j))

If α( j) > αM then
If ψ( j) > ψM then (αL , yL) = (α( j), ψ( j))
Else (αR, ψR) = (αM , ψM) ; (αM , ψM) = (α( j), ψ( j))

4. The minimum point of a second order polynomial that passes exactly through the three latest points, is
calculated

αnew =
1
2

( (
ψ( j−2) − ψ( j)

) (
α( j−1) − α( j−2)

) (
α( j−1) − α( j)

)(
ψ( j−2) − ψ( j)

) (
α( j−1) − α( j)

)
−
(
ψ( j−1) − ψ( j)

) (
α( j−2) − α( j)

) + α( j−2) + α( j)

)
5. If αnew cannot be calculated due to dividing by zero, the golden section method will be used instead by

jumping to point 8.
6. If this new estimate αnew will make the algorithm converge slower than the golden section method, that

method will be chosen instead. The criterion to estimate this is:
If |αnew − αold| /|αold − αolder| > g, go to point 8.

7. At this point the estimate by the quadratic polynomial is accepted. The next α( j+1) is chosen so that αnew
will be located between α( j+1) and α( j), i.e.

α( j+1) = α( j) + 1.5
(
αnew − α( j)

)
However, the new point cannot be outside the trust region

If
(
α( j+1) < αL

)
or
(
α( j+1) > αR

)
then α( j+1) = αnew

Go to point 10.

8. Reaching this point, the golden-section method must be applied:
If αR − αM > αM − αL then αnew = gαM + (1 − g) αR , g =

√
5−1
2

Else αnew = gαM + (1 − g) αL

9. The golden-section estimate is applied also as the next value to be evaluated.
α = α
( j+1) new
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10. Check for convergence. The relative tolerance , ϵ, and the absolute tolerance, ϵa , are preset.
If |αnew − αold| < ϵ |αnew| + ϵa then
the algorithm returns αmin = αnew as the converges solution.

11. Calculate the function value of the latest guess. ψ( j+1) = ψ
(
α( j+1)

)
.

12. Continue from Point 1 with the new guess treated as guess number j .

Appendix D. Algorithm for generating approximately evenly distributed points on a hypersphere

A simple, iterative algorithm generates approximately uniformly distributed points on a hypersphere by improving
successively the latest guess. The starting point is a random distribution of the points (directions). The following
steps are performed:

(1) Pick N points, r⃗i , i = 1, . . . , N , of random directions, located on the Nd dimensional hypersphere:

a. To generate each direction, Ns = 100 points with random directions are firstly drawn, by that each
vector component is assigned a random value between −0.5 and 0.5. It follows from the central limit
theorem that a large number of Ns points of such random directions, will obey a normal distribution.
The normal distribution in higher dimensions is rotational invariant. Hence the mean value of the Ns

points will be a random direction vector in the Nd dimensional space.
b. N such random direction points are drawn and projected onto the Nd dimensional hypersphere by a

normalization so that they all have unity length in terms of the L2 norm.

(2) Search through the N directions, calculate the angle between any two direction vectors

θi j = arccos(r⃗i · r⃗ j )

For each direction, one closest neighbor defines

θ closest
i = min

j
θi j

Calculate also the mean angle between any point and its closest neighbor θmean = θ closest
i and find the two

directions with the smallest angle between θmin = min(θ closest
i ). If θmin < 0.95θmean, try, if possible, to replace

one of these two directions by a randomly assigned direction. Keep on trying new random directions until
the new directions does not have any neighbor closer than the average closest neighbor. A maximum number
of N · 10Nd attempts are made.

(3) If the one of the two directions corresponding to θmin cannot be successfully replaced by another direction,
try for all points, to move them into a randomly assigned direction that are closer than 0.5 θmean away from
their original direction. The proposed new direction is approved only when the minimum angle to the closest
neighbor of the new direction is larger than the current θmin. Ten attempts are made for each of the N
directions in the list. The idea here is that by this, is to “shake” the distribution, enabling replacement of the
succeeding θmin direction.

(4) The algorithm is repeated from Point 2 by a desired number of iterations, which will each time improve the
solution.

The quality of the solution can be measured in several ways. The average or the smallest angle between neighbor
irections θmean, should be as large as possible, while θmin and θmax = max(θ closest

i ) should be as close to θmean as
possible. The number of close neighbors should be similar for all points. For point i , this can be measured as the
number of directions r⃗ j that makes an angle θi j < (1 + α) θmean with r⃗i , where the number of neighbors will increase
with increasing α. For a specified α, the number of neighbors should be similar for all points i = 1, . . . , N . The
minimum and max number of neighbors for any direction and the average number of neighbors for all directions
can be plotted as a function of α. Then these three curves should be as close as possible.
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