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a b s t r a c t

Wind farms are often located at high latitudes, which entails a high risk of icing for wind turbine blades.
Traditional anti-icing methods rely primarily on manual observation, the use of special materials, or
external sensors/tools, but these methods are limited by human experience, additional costs, and un-
derstanding of the mechanical mechanism. Model-based approaches rely heavily on prior knowledge
and are subject to misinterpretation. Data-driven approaches can deliver promising solutions but require
large datasets for training, which might face significant challenges with respect to data management,
e.g., privacy protection and ownership. To address these issues, this paper proposes a federated learning
(FL) based model for blade icing detection. The proposed approach first creates a prototype-based model
for each client and then aggregates all client models into a globally weighted model. The clients use a
prototype-based modeling method to address the data imbalance problem, while using the FL-based
learning method to ensure data security and safety. The proposed model is comprehensively evalu-
ated using data from two wind farms, with 70 wind turbines. The results validate the effectiveness of the
proposed prototype-based client model for feature extraction, and the superiority over the five baselines
in terms of icing detection accuracy. In addition, the experiment demonstrates the promising result of
online blade icing detection, with almost 100% accuracy.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Wind energy has developed rapidly in recent years as a result of
the energy crisis, andmore importantly, the inexhaustible nature of
wind energy and the mature technology of wind turbines [1]. Wind
turbines are generally installed at high altitudes to better exploit
the wind source [2]. The performance of wind turbines can be
affected by many factors, including the physical design of the
blades, the technical parameters of the turbine, the location and
climatic factors [3]. Among them, blade icing is a critical factor that
limits wind turbine performance, as turbines are usually installed
in high-altitude areas to make full use of wind energy. In severe
cases, almost 30% of annual power generation is lost due to blade
icing [4]. More seriously, blade icing can, to some extent, cause
casualties and production losses. Therefore, detection of blade icing
is of the utmost importance.

Traditionally, human observation, passive methods and active
ng@ntnu.no (L. Huang).
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methods are the main solutions for wind turbine blade icing
detection. Human observation is too subjective, and observations
are highly dependent on the experience of the observers. Passive
methods use special materials such as black paint and coating to
prevent icing [5,6]. Although passive methods are inexpensive,
coating alone does not produce the best results and is difficult to
maintain. The active method proposed in Ref. [4] is an effective
anti-icing method, but requires additional power and mechanical
replacement, which can damage wind turbines.

To compensate for the above traditional methods, model-based
approaches, includingmathematical and data-basedmethods, have
received increasing attention in recent years. Mathematical
methods make predictions about wind turbine blade icing by
developingmathematical or numerical models, for example [7], but
their disadvantages are obvious. First, they are often highly
dependent on different assumptions, which can lead to a
misidentification of the blade icing conditions. Second, external
experimental tools, such as a wind tunnel, are required to obtain an
accurate mathematical model. Third, domain knowledge is often
needed to model the icing process [8]. In recent years, with the
wide spread of sensor technologies in wind farms, a large amount
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of data has been collected, making it possible to construct data-
driven methods for blade icing detection. Data-driven models
detect the icing state based on the mining of hidden information
from history data [9]. The advantage is that they do not rely on prior
domain knowledge, but rather on the available data, which is more
efficient and cost-effective. They are favored by both academia and
industry, and in particular, end-to-end solutions based on deep
neural networks to detect blade icing have received significant
interest.

Nevertheless, some challenges remain in the development of
data-driven models for blade icing detection. First, it often requires
large amounts of data for training, especially for deep learning
models. Traditional centralized modeling approaches require not
only large computing resources, but also large storage capacity,
which in many cases is prohibitively expensive. In addition, when
data are collected to a central storage, an additional communication
cost is required. Second, since wind farms are usually located in
different regions, such as mountainous areas and offshore, sending
data over the network is vulnerable to attacks [10]. Third, the
quality of wind turbine data is characterized by diversity, i.e., het-
erogeneity. When data are used directly for model training, this
may lead to low efficiency in operations, due to a too general model
and insufficient performance. Last but not least, there is a high
skewed class distribution between icing and non-icing samples, as
a wind turbine operates in a normal state most of the time. The
icing samples are typically much smaller than normal samples,
which presents a great challenge for constructing high-
performance detection models. A highly skewed distribution can
severely affect classification performance because the resulting
classification model tends to favor the majority of classes while
ignoring the minority.

To address these challenges, this paper proposes a federated
learning (FL) based model for detecting blade icing state of wind
turbines, named IcingFL. With IcingFL, it becomes possible to learn a
commonmodel collaboratively (global model), without the need to
collect data to the cloud; instead, the model is trained locally at the
site of each wind farm (client model). This approach pushes down
computing from the cloud to the edge, which not only reduces the
burden, but also enhances the data safety due to no-sharing data.
However, the federated approach may not be able to address
skewed data problems like the centralized approach in the cloud,
which can affect model performance. To address this problem, we
introduce a novel latent space to the client-sidemodeling, and use a
weighted learning method to create the global model by aggre-
gating the client models. This method differs not only from tradi-
tional approaches to data imbalance problems, i.e., oversampling
the minority classes or undersampling majority classes, but also
from traditional FL-based methods. Traditional FL methods gener-
ally do not consider data imbalance. Instead, it uses only the raw
data space or specially developed loss functions to create client
models.

In summary, the contributions of this paper are threefold:

C Proposes a federated learning-basedmodel, IcingFL, for wind
turbine blade icing detection. IcingFL optimizes the genera-
tion of global models, considering the importance of each
client model.

C Proposes a novel method to address data imbalance problem
at each client. The proposed method uses a specially
designed feature extractor to extract features from imbal-
anced raw data, and then balances the features in a latent
space based on the prototype of each class.

C Evaluates the proposed model comprehensively by
comparing with other baselines. The results demonstrate the
superiority of the proposed model over the others for blade
2

icing detection. Furthermore, ablation studies show the
effectiveness of the model network structure and validate
the feasibility of online estimation.

The rest of the paper is structured as follows. Section 2 reviews
the literature on wind turbine blade icing detection and federated
learning. Section 3 describes the proposed FL-basedmodel in detail.
Section 4 evaluates the proposed model through experiments.
Section 5 concludes the paper and presents future work.

2. Related work

2.1. Wind turbine blade icing detection

For blade icing detection of wind turbines, passive and active
de-icing systems,model-based and data-drivenmethods have been
proposed in the literature. Passive methods use special materials
such as liquid-infused surfaces [11] and porous superhydrophobic/
polyvinylidene fluoride coatings [12], while active methods use
external sensors or tools, e.g., Refs. [13e15]. Model-based methods
create mathematical models based on certain assumptions, which
are then verified by experiments, e.g., Ref. [16]. These methods
require human knowledge and assumptions for the icing process. In
recent years, data-driven methods have received increasing
attention, especially with the emergence of deep learning, which
has a strong ability to extract features. For example, Jim�enez et al.
used machine learning algorithms, including decision tree and
support vector machines, to implement a classifier that can identify
the presence and thickness of blade ice of wind turbines from ul-
trasonic signals [17]. Liu et al. proposed an ensemble depth-
learning model to extract multilevel features from SCADA data
[18]. Yuan et al. presented a wavelet-based CNN model [19], and
demonstrated that CNN can achieve competitive performance over
traditional machine learning methods.

All existing data-driven approaches build models based on the
data in a centralized server, which were collected from different
wind farms geographically located at different locations. These
approaches have a number of drawbacks, including the need for
large data storage and computational capacity of the central server,
vulnerability to cyberattacks and data leakage, network overhead
associatedwith data transfer, unwillingness of data owners to share
their data, etc. In this paper, we address these limitations by pro-
posing the FL framework to train the deep learning model in a
distributed manner. To our knowledge, this is the first attempt to
build the wind turbine blade icing detection model while
addressing data management issues associated with wind farms.

2.2. Federated learning

The proposed IcingFL uses the federated learning framework to
address data management issues during model construction. The
idea of federated learning was originally proposed in Ref. [20] to
solve data communication bottlenecks during distributed model
training. In federated learning, data are not collected on a central
server. Instead, all participating clients train their partial models
locally using their own data, and then the partial models are
aggregated to a global model by a central server, thus preserving
data privacy. In recent years, due to the emergence of deep learning,
the computational resources and data required for model training
are considerable. In addition, data protection has received un-
precedented attention. For example, the European Union has
implemented GDPR for data privacy protection. As a result, re-
searchers have started to explore more effective and efficient
learning approaches, among which federal learning has emerged as
a promising solution. In the energy section, Wang et al. [21]
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proposed a federated learning approach for the identification of
household profiles. Lin et al. [22] proposed a novel edge-based
federated learning framework for FDI attack detection in power
grid state estimation, which shows great potential in real-world
applications with unknown system parameters. Su et al. [23] pro-
posed a secure and efficient federated-learning-enabled AIoT
scheme for private energy data sharing in smart grids with edge-
cloud collaboration. With the advent of Industry 4.0, a large num-
ber of devices are interconnected in smart manufacturing, and data
security and privacy become an important issue [24]. Federated
learning can be a promising solution to this challenge, due to its
nature without the need for data sharing [20,25]. Several studies
have been found for FL in Industry 4.0. Among others, Yu et al.
proposed a novel data-driven cognitive computing platform for
Industry 4.0 smart manufacturing by combining federal learning
and blockchain technologies [26], and Hao et al. proposed a
privacy-enhanced efficient FL model for Industry 4.0 [10].

The construction of icing detection models must take into ac-
count the climatic differences of different wind farms. Climatic
factors, such as humidity and light distribution, vary from region to
region, which can influence model performance. Thus, traditional
centralized approaches that build a single model based on aggre-
gated data may not be sufficiently representative of the wind farm
in each region and therefore may have low performance. However,
if independent models are built entirely from their own data,
although most of the problems related to data management can be
eliminated, the model may also face the problem of using imbal-
anced data. Therefore, aggregation of partial models trained by
different wind farms should be the optimal solution; thus, feder-
ated learning comes into play in this regard.

3. Proposed IcingFL model

In this section, we will first present the FL-based architecture
proposed in IcingFL. Then, we will present the data preprocessing,
the imbalanced learning method to build the client model, and the
weighted aggregation method to create the global model.

3.1. Overview

The proposed IcingFL aims to address the following challenges.
The first is how to train the model using imbalanced data. Wind
turbines operate in a normal state most of the time, i.e., the blades
are free of ice, and only in a few cases the blades are icing. There-
fore, the data collected from the SCADA (Supervisory Control and
Data Acquisition) system is imbalanced in terms of distribution, and
models trained using imbalanced data will result in biased results.
The second is how to minimize the impact on the model due to the
differences between the clients. As each client uses its own data to
train the local model, the resulting blade icing detection model is
highly dependent on local climatic factors, such as temperature. FL
usually assumes that the used data are independent and identically
distributed, whereas in reality this is not the case. The performance
of the global model will be compromised if we simply aggregate the
client models without considering their differences. The third is
how to ensure data safety and security during model training. As FL
model training requires frequent communication between the
central server and each client, i.e., updating the model parameters,
this process is vulnerable to cyberattacks. Attackers can tamper
with client models to invalidate the aggregatedmodel or obtain the
trained model to recover the original data.

The proposed IcingFL addresses these challenges in two ways,
imbalanced learning and federated learning. Fig. 1 shows the ar-
chitecture of the IcingFL. It consists of three key components: local
client model training (client side), gradient data encryption
3

(communication) and global model aggregation (server side). Each
client first pre-processes the raw sensor data to reduce the negative
impact of noise on its model quality. Then a local prototype-based
modeling method is used to address the data imbalance problem in
the training (see the upper part of Fig. 1). Instead of using tradi-
tional oversampling or undersampling methods, we address this
problem by balancing the extracted features in a latent space
(described in Section 3.3). The training process begins with
initializing the model parameters on the central server, followed by
training the local model at each client. During the training, all cli-
ents upload their local models to the central server for aggregation,
and the server updates all clients with the aggregated global model.
This process is an iterative process until the model is convergent or
reaches a pre-set number of iterations. To ensure data security, we
apply homomorphic encryption for communication, which allows
the computation to be directly based on encrypted data, i.e.,
without the need for decryption [27]. The lower part of Fig. 1 shows
the homomorphic encryption method based on linear trans-
formation. The server aggregates all encrypted vectors from clients
based on the proposed weighted aggregation method (detailed in
Sections 3.4 and 3.5). The server adjusts the weight of each local
model based on the training sample size of each client (described in
Section 3.4). When the entire training process is over, the final
global model will be used for online blade icing detection.

3.2. Data preprocessing

The data used in this paper are collected by the SCADA system
and have some quality issues, including anomalies, redundant or
missing values, etc. To minimize the impact of data quality issues,
we perform the following preprocessing, including labeling, visual
analysis, segmentation, and normalization.

C Data labeling. All raw data are labeled as normal or icing by
experienced turbine engineers. All uncertain intervals that
are difficult to label were removed.

C Visual analysis. We ensure the data quality using the visual
analysis approach. First, we simply eliminate redundant data.
This is because redundant information in the data collected
by the sensors cannot contribute to the detection of blade
icing. In contrast, they canweaken the feature representation
capability. Second, we identify outliers by visual analysis and
fix them. Third, we also investigate the correlation between
different signals through visual analysis, such as power
output and wind speed. Through correlation analysis, we can
have a deep understanding of the features and the output.

C Segmentation and normalization. The data from SCADA
system are time series collected by the censors at regular
intervals. The data fed into the training or testing of the
model must satisfy a certain length. In addition, the raw data
represent the signal with a certain unit and magnitude. To
reduce the impact of these factors on the model, we first
perform a mix-max normalization of the data and then
segment the time series according to a fixed-length time
window.
3.3. Imbalanced learning-based client model

Class imbalance in the training data can deteriorate the per-
formance of the model, and thus the classification ability, especially
for the identification of minority classes. The imbalance problem
can generally be addressed at two levels: at the data level and at the
algorithm level. Data-level approaches, as the name implies,
require some processing of raw data, such as resampling and data



Fig. 1. Overview of IcingFL for blade icing detection of wind turbines.
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enrichment, which involves increasing the number of minority
classes or reducing the number of majority classes [28,29]. Data-
level approaches also require additional information in modeling,
such as the distribution of the training data. Since this may violate
the privacy of the data [30] and does not conform to the idea of LF,
they are not used in this study. On the contrary, algorithm-level
approaches focus on algorithm innovation for training, e.g.,
designing new neural network structures [31,32], or tuning model
training parameters. Algorithm-level approaches, therefore,
require no or much less processing on the data, which is favored in
this study. Fig. 2 illustrates the imbalanced learning process at a
client where a deep learning model is trained. In this approach, the
features are first extracted from the imbalanced data in a latent
space. Then the features/classes are balanced by learning the
Fig. 2. Imbalanced learnin

4

prototype of each class, and finally, the classifier is built based on
the resulting prototypes. Here, an attention-based method is used
to improve the prototype learning ability [33]. The following sub-
sections describe the whole learning process in more detail:
3.3.1. Feature extraction
In this work, we implement the feature extractor f based on the

Convolutional Neural Network (CNN) and the Long Short-Term
Memory (LSTM) as shown in Fig. 2. CNN consists of a convolution
layer (Conv1D), an attention layer (SE) [34], a normalized layer
(Norm1D), and an activation layer (ReLU). Assuming that the input

is Xraw2Rd�T , where d and T are the input dimension and the
window size of the samples, respectively, the output of CNN can be
represented by:
g-based client model.
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Xc ¼ Conv1DðXrawÞ
XSE ¼ SE ðXcÞ
XNorm ¼ Norm1DðXSE Þ
XCNN ¼ ReLUðXNormÞ

(1)

where Xc, XSE, XNorm, and XCNN are the output of the Conv1D layer,
SE layer, Norm1D layer, and ReLU layer, respectively. The values of

three variables have the same shape, RF�T , where F is the number
of filters in CNN. The transposition of XCNN is then fed into the LSTM
to capture temporal features. The calculation of the LSTM can be
represented as follows [35]:

gi ¼ s
�
Wiht�1 þ Iixtl

�

gf ¼ s
�
Wf ht�1 þ If xtl

�

go ¼ s
�
Woht�1 þ Ioxtl

�

gc ¼ tanh
�
Wcht�1 þ Icxtl

�

mt ¼ gf5mt�1 þ gi5gc

hl ¼ tanh
�
go5mt�

(2)

where gi, gf, go, gc are the output of the input, forget, output, and cell
state after the activation layer (sigmoid function s), respectively;
Wi,Wf,Wo,Wc represents the recurrent weight matrices; and Ii, If, Io,
Ic are projection matrices. The hidden state of the LSTM is ht and5

is the element-wisemultiplication. The output of the LSTM isRT�dl,
where dl is the feature dimension in the latent feature space.

3.3.2. Feature balancing through attentional prototype learning
Prototype-based method can be used to address the data

imbalance problem [36]. Let Xk ¼ ½x1;…; xm�2Rm�dl be a matrix of
time series embeddings for class k, where m is the total number of
data samples with a class label, k. In this paper, we use the pooling
to transfer the latent feature to embeddings. Then, the attentional
prototype of the class, Ck, can be presented by a weighted sum of
individual sample embeddings [33]:

Ck ¼
X
i

Ak;i,Xk;i (3)

where Ak,i is the weight of the i-th data sample in class k; and Xk,i
denotes the embeddings of the data sample.

The attention weights Ak for the k-th class can be computed
using the following equation:

Ak ¼ softmaxðuT
k sigmoidðVkX

T
k ÞÞ (4)

where uk2Ru�1 and Vk2Ru�dl are trainable parameters for the
attention model and u is the hidden dimension size for both
trainable parameters. In this work, we use separate parameters uk

and Vk for each class because different classes may pay distinct
attention to their feature spaces.

By Equation (3), the imbalanced features are compensated for
due to the classifier constructed with the same number of pro-
totypes for each class. The resulting prototypes are used to compute
the squared Euclidean distance between a class prototype and a
time series, i.e., dist. The distance is used to construct the classifier
represented by the following equation:

Pðy¼ kjxÞ ¼ expð�distðf ðXÞ;CkÞÞP
iexpð�distðf ðXÞ;CiÞÞ

(5)
5

3.4. Global model generation

With the FL framework, each client updates the central server
with its trained local model, instead of training data. The central
server generates a global model by aggregating local models from
the clients, which can perform well with respect to the data points
available at different clients. The strategy of how to generate a
global model is vital for federated learning. In this work, there
might be two strategies of obtaining the global model: 1) averaging
the model parameters of each participant and 2) weighted aver-
aging the model parameters of each participant.

We assume that there are N clients in our IcingFL, and there is a
random selection of K client models to generate the global model,
where K ¼ rN, r is the participation rate for each client model. For a
selected client, i, the local model is trained based on Si samples from
its own dataset. The i-th client model calculates the gradient giwith
themodelWi

c using gradient descent techniques, where c is the c-th
communication round. It should be noted that all participating
clients start with the same global model that was randomly
initialized in the first training round. For a client learning rate of x,
the local client update, Wi

cþ1, is given by:

Wi
c � xgi/Wi

cþ1 (6)

The central server aggregates all client models to create a new
global model, Wcþ1. As mentioned above, there are different
methods for generating the global model, which are described as
follows in detail:

1) Arithmetic mean

This method performs a simple average of the received client
models to generate the global model [20], which is defined as
follows:

XK

i¼1

1
K
Wi

cþ1/Wcþ1 (7)

where Wi
cþ1 is the i-th client model in the c þ 1 communication

round, K is the number of models involved in the learning process
and Wcþ1 is the global model in the same round. This method is
effective when the differences between the client models are
minor.

2) Weighted average

The weighted average method takes into account the number of
training samples of each client and gives a higher weight to the
client with the more training samples, which is defined as follows:

XK

i¼1

Si
K
PK

i¼1Si
Wi

cþ1/Wcþ1 (8)

where Wi
cþ1 is the i-th client model in the c þ 1 communication

round,Wcþ1 is the global model in the same round, Si is the sample
size of the i-th client and K is the number of models involved in the
learning process. This method accounts for the difference in the
training sample size of each client model. Compared to the simple
averaging method that treats all client models the same, the
weighted averaging method can take into account the influence of
training sample sizes. This method is favored in this study.
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3.5. Privacy analysis

With the FL framework, privacy can be preserved as follows.
First, each client uses its own data Xraw to train the local model of
the deep neural network Ui(ci), and the data are encoded. There-
fore, it is not possible to control the operations of a wind turbine
from the data (note that each wind turbine allows users to physi-
cally control its operations). Second, each wind turbine calculates
its own gradient descent updates gi(ci) locally and uploads only the
model parameters Wi(ci) to the central server. Thus, no raw data
(with possibly sensitive information) are sent over the network.
Each client must also send the number of training samples Ni to the
central server for the weight calculation. Homomorphic encryption
is used to secure communication between the central server and
each client, so that the model parameters and the training sample
size will not be tampered with. Last, the central server will never
store the local model Wi(ci) and Ni of each client. They are
immediately discarded when the global model has been generated.
When the model training is completed, the global model W will be
available for online blade icing detection.

4. Evaluation

4.1. Experimental settings and data

We simulate FL with one aggregation server and 70 clients. All
experiments were performed on a server equipped with Tesla T4,
16 GB. PyTorch was used as the deep learning framework for model
implementation. The following hyperparameters were set for
model learning: the Adam optimization learning rate was set to
0.01, and the server and client epochs were set to 200 and 100,
respectively.

The experimental data are from two wind farms with 60 and 10
turbines, respectively. The two wind farms are located in northern
China, in Shanxi and Henan provinces, about 700 km apart. Wind
farm SCADA systems are equipped with hundreds of sensors that
record turbine status at a frequency of 5 s. Wind turbine experts
have identified 16 variables related to blade icing, as shown in
Table 1.

The data from the two wind farms have a length of 360 and
384 h, respectively. In this experiment, we will evaluate the per-
formance of the global model. 90% of the data are used for training,
and the remaining 10% for testing. To evaluate the robustness of
IcingFL, we randomly set the imbalance ratio of each client's
training samples with the highest ratio of 20:1 and the lowest ratio
of 4:1. The imbalance ratio of the test data is 12:1. All experiments
Table 1
Specification of the SCADA data.

No. Variable name Description

1 wind_speed Wind speed
2 wind_direction Wind direction
3 generator_speed Generator speed
4 power Active power
5 yaw_position Yaw position
6 pitch1_angle Angle of pitch 1
7 pitch2_angle Angle of pitch 2
8 pitch3_angle Angle of pitch 3
9 pitch1_speed Speed of pitch 1
10 pitch2_speed Speed of pitch 2
11 pitch3_speed Speed of pitch 3
12 environment_temp Environment temperature
13 internal_temp Internal temperature of nacelle
14 pitch1_moto_tmp Temperature of pitch motor 1
15 pitch2_moto_tmp Temperature of pitch motor 2
16 pitch3_moto_tmp Temperature of pitch motor 3

6

are repeated five times, and the average performance is reported.
4.2. Evaluation metrics

The following metrics are used for the evaluation, including
AUC, F1, and Matthews correlation coefficient (MCC). The defi-
nitions of F1 and MCC are as follows:

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

(9)

F1 ¼ 2� Precision� Recall
Precisionþ Recall

(10)

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (11)

where TP, FP, FN, and TN represent true positive, false positive, false
negative, and true negative, respectively.

AUC is another robust indicator to assess the performance of
imbalanced learning. The AUC value ranges from 0.5 to 1, where 0.5
is a random estimate and 1 is an excellent classifier. The task in this
paper is a binary classification problem and the AUC can be calcu-
lated using the following equation.

AUC ¼ 1
2

�
TP

TP þ FN
þ TN
TN þ FP

�
(12)
4.3. Evaluation of model aggregation

To evaluate the proposed model aggregation of IcingFL, we
compare it with FedAvg [20], which aggregates the parameters of
all clients by averaging. Both methods employ the same feature
extractor to make the comparison fair. We vary the participation
rate (PR), and measure the metrics including F1, AUC and MCC. The
window size of the sensor data is 128 (almost 11 min). In IcingFL,
the number of filters in the CNN part and the number of hidden
nodes in the LSTM part are set to 128, and the participation rate of
each client is set to 50%. The results are shown in Table 2.

Based on the results, we can observe that our model out-
performs FedAvg for all metrics by varying the RP value, with the
only exception of AUC, which FedAvg is better for PR ¼ 0.7. The
results also validate the effectiveness of the proposed weighted
approach for global model generation by weighting the sample size
of each client. Specifically, there is an absolute improvement of
0.44%, 1.23%, and 2.11% for F1, AUC, and MCC, respectively. When
the PR is 0.3. When PR is 0.5, the absolute improvements of our
method for the three metrics are 0.19%, 0.65%, and 2.96%, respec-
tively. The AUC of FedAvg is slightly higher than ours when the PR is
0.7. From the results, we can also observe that the performance of
Table 2
Performance of model aggregation, % (Numbers in bold indicate the better
performance).

PR F1 AUC MCC

FedAvg IcingFL FedAvg IcingFL FedAvg IcingFL

0.3 93.12 93.56 78.23 79.46 46.21 48.32
0.5 93.68 93.87 79.38 80.03 47.15 50.11
0.7 93.26 93.70 81.19 79.96 48.76 49.88
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IcingFL increases with PR from 0.3 to 0.5. This is because the more
clients participate in the training, the more information they pro-
vide, and this information helps to improve performance. However,
we observe a slight drop in performance from 0.5 to 0.7, which can
be explained by the fact that it becomes difficult to further improve
the performance when more clients join. Therefore, there is a pivot
to the increasing value of PR.

4.4. Evaluation of feature extraction

To evaluate the performance of the proposed feature extractor,
we select five commonly used neural networks as baselines for
comparison, including 1) MLP (MultiLayer Perceptron), a three-
layer MLP with 128 hidden nodes in each layer and with a
dropout layer between two layers of the MLP [37]; 2) LSTM, which
is one of the most popular neural networks for time series
modeling. The performancewith the number of hidden nodes of {8,
16, 32, 64, 128} will be evaluated, and the best will be selected for
comparison; 3) CNN, which will be evaluated with the filter num-
ber in {16, 32, 64, 128}, and the best one will be selected; 4) FCN,
which is a fully convergent network for time series classification
[37]. The model with the same structure and hyperparameters as in
Ref. [37] will be evaluated; and 5) DenseNet, which has the state-
of-the-art performance according to Ref. [9]. The model with the
same network structure as in Ref. [9] will be used, but all the
attention layers will be removed.

The comparison will use the same experimental parameters as
in Section 4.3. Table 3 shows the results, where the best value is
shown in bold. As can be seen, IcingFL has the best performance,
except for AUC, which ranks second, a little lower than CNN. For
MCC, the performance of our model shows a 9.91% improvement
over the second ranked method, DenseNet, and 51.30% over the last
ranked method, MLP. As for F1, the results of all methods are close.
LSTM has the worst AUC value, but its F1 is second. This means that
although LSTM can identify whether the blade is icing or not, it is
not competitive in terms of values of all metrics. Another inter-
esting result is that the performance does not scale with the
complexity of the model structure. For example, DenseNet has the
most complex network, but its performance is not the best. This
suggests that we should choose the appropriate model, instead of
increasing the model complexity, i.e. the number of layers of a
neural network. The results have validated the effectiveness of our
model structure that combines CNN and LSTM to extract spatial and
temporal information.

4.5. Evaluation of imbalance learning

We evaluate the proposed imbalanced learning method by
comparing it with two other famous baselines: 1) WeightedCE
(weighted cross entropy), in which different weights are assigned
to classes. With cross-entropy, the ability to learn features can be
greatly improved from imbalanced data; 2) Focalloss, which has a
popular loss function for imbalanced learning. It compensates for
Table 3
Performance of feature extractor, % (Numbers in bold indicate the best
performance).

Method F1 AUC MCC

MLP 92.86 75.84 33.12
LSTM 93.84 74.37 43.51
CNN 92.34 80.57 44.61
FCN 93.24 77.08 42.56
DenseNet 93.71 78.14 45.59
IcingFL 93.87 80.03 50.11
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imbalanced features using a specific-designed loss function [31]. To
make a fair comparison, in our method we replace the prototype
component with the two loss functions and set the imbalance ratio
to \{6, 8, 10\}. The experiments use the following two widely used
metrics for imbalance learning evaluation, AUC and MCC. Table 4
shows the results.

From the results, we can see that the proposed imbalanced
learning method is more effective than the others. In terms of AUC,
our method achieves an improvement of 3.83%, 2.99%, and 5.23%
over theWeightedCEmethod for the three imbalance ratios, and an
improvement of 8.41%, 10.80%, and 20.74% over the Focalloss
method for the three ratios. In terms of MCC, our method shows an
improvement of 26.77%, 32.64%, and 41.22% over WeightedCE for
the three ratios and a slight improvement over Focalloss. From the
results, we also find that the performance of WeightedCE and
Focalloss decreases with an increasing imbalance ratio. In contrast,
our method is more stable. Therefore, we can safely conclude that
the proposed method is effective in addressing the imbalance
problem.

4.6. Ablation study

To assess the effectiveness of the key components of our model,
we perform ablation and sensitivity analysis in this section. We
compare the following two variants of IcingFL: 1) IcingFL_No_SE,
where the SE module was removed; 2) IcingFL_No_Imbalance,
where the feature compensation module was removed, but a fully
connected layer was added. We use the same settings as in Section
4.3 for the experiments.

Fig. 3 shows the results of the ablation study. We can observe
that when no attention layer is used, the performance of F1, AUC,
and MCC decreases by 1.35%, 2.58%, and 2.85% (absolute value)
compared to IcingFL (see IcingFL_No_SE line). When no feature
balancing module is used, the performance of F1, AUC and MCC
decrease by 0.16%, 8.6% and 10.35%, respectively (see the Ici-
ngFL_No_Imbalance line).

4.7. Sensitivity study

We perform a sensitivity analysis to assess the impact of
hyperparameters, including the window size for training data
segmentation and the participation rate of clients. Sensitivity
analysis is evaluated based on three metrics, including F1, AUC, and
MCC.

Fig. 4 shows that performance varies with thewindow size used,
but in general, the accuracy for all three metrics increases steadily
with increasing window size. It reaches its maximum when the
window size is 128, and then slowly decreases.

Fig. 5 shows the performance with the participation rate
increased from 0.1 to 1 with a step size of 0.1. The results show that
the performance of the three metrics increases steadily with
increasing participation rate before 0.5, but the performance tends
to be stable after 0.5. However, when the participation rate is low,
i.e., below 0.2, the performance is not as good as when it is high.
This may be because what IcingFL has learned is not sufficient to
support the construction of a good model. Another possible
explanation is that the knowledge learned by participating clients
is not transferred well to nonparticipating clients. Since the test set
contains data from 70 clients and not all of them can be learned by
the model. Therefore, the accuracy of the final test results will
remain low if the knowledge has not been transferred well.

4.8. Online blade icing detection

We train themodel offline and then use it for online detection in



Table 4
Performance of model aggregation, % (Numbers in bold indicate the best performance).

Imbalance Ratio AUC MCC

WeightedCE Focalloss IcingFL WeightedCE Focalloss IcingFL

6 78.10 74.80 81.09 40.42 49.39 51.24
8 77.80 72.32 80.13 37.74 47.34 50.06
10 76.91 67.22 81.16 35.35 43.02 49.98

Fig. 3. Ablation study.

Fig. 4. Sensitivity analysis of varying window size.

Fig. 5. Sensitivity analysis of varying participation rate.
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Fig. 6. Online blade icing detection of wind turbines.
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wind farms. Online detection uses the sliding-window approach,
which divides the time series into equally sized windows as the
training data segmentation. The model calculates the probability of
blade icing for the input data. If the probability value is greater than
a given threshold value, it means that the blade is icing, otherwise it
is not icing. To ensure the robustness of the online detection, we use
the majority voting algorithm [19] to further improve the accuracy
of the detection.

Fig. 6 shows the results of the online detection. The magenta-
colored area represents the icing period identified by a wind farm
engineer, and the blue dotted line represents the given threshold to
identify blade icing. From the results, the proposed model can es-
timate the blade icing condition with almost 100% accuracy using
SCADA data.
5. Conclusion and future work

Data management related issues are becoming critical for wind
farms due to privacy, ownership, competition and technical bar-
riers. This paper proposes an imbalanced federated learning model
for wind turbine blade icing detection, IcingFL. This model allows
different clients to distributively train local models without sharing
their data, then the trained local models are aggregated to obtain a
global model by a central server. In this paper, we addressed the
data imbalance problem by proposing a prototype learning
method, which can balance the learned prototypes in a latent space
and generate the classification model for detecting blade icing
state. We also proposed averaging and weighted averaging
methods to generate the global model. The weighted averaging
method is more effective as it takes into account the sample size of
each client. We comprehensively evaluated the model by
comparing it with five state-of-the-art models. The results showed
that the proposed IcingFL model outperforms the others remark-
ably. We compared the proposed imbalance learning method with
two baselines and the results indicated the superiority of our model
in terms of accuracy. Finally, we performed ablation and sensitivity
studies, as well as online experiments, which validate the effec-
tiveness of model design, parameter setting, and its capability for
real-world blade icing detection.

There are several directions for future work. First, we will study
server-side imbalance learning in FL, while in this paper, we focus
more on client-side learning. Second, we will develop a method
capable of identifying the severity of wind turbine blade icing.
Finally, we also plan to explore model update policies for online
detection.
9
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