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Abstract
We construct numerical approximations for Mean Field Games with fractional or
nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of
the underlying control problems/games along with dual approximations of the distri-
butions of agents. The methods are monotone, stable, and consistent, and we prove
convergence along subsequences for (i) degenerate equations in one space dimension
and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full
convergence and convergence to classical solutions. Numerical tests are implemented
for a range of different nonlocal diffusions and support our analytical findings.
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1 Introduction

In this article, we study numerical approximations of mean field games (MFGs) with
fractional and general nonlocal diffusions. We consider the mean field game system

⎧
⎪⎨

⎪⎩

−ut − Lu + H(x, Du) = F(x, m(t)), in (0, T ) × R
d ,

mt − L∗m − div(m Dp H(x, Du)) = 0 in (0, T ) × R
d ,

u(T , x) = G(x, m(T )), m(0) = m0 in Rd ,

(1)

where

Lφ(x) =
∫

|z|>0

[
φ(x + z) − φ(x) − 1{|z|<1}Dφ(x) · z

]
dν(z), (2)

is a nonlocal diffusion operator (possibly degenerate), ν is a Lévy measure (see
assumption (ν0)), and the adjoint L∗ is defined as (L∗φ,ψ)L2 = (φ,Lψ)L2 for
φ,ψ ∈ C∞

c (Rd).
The first equation in (1) is a backward in time Hamilton–Jacobi–Bellman (HJB)

equation with terminal data G, and the second equation is a forward in time Fokker–
Planck–Kolmogorov (FPK) equation with initial data m0. Here, H is the Hamiltonian,
and the system is coupled through the cost functions F and G. There are two different
types of couplings: (i) Local couplings where F and G depend on point values of
m, and (ii) nonlocal or smoothing couplings where they depend on distributional
properties induced from m through integration or convolution. Here, we work with
nonlocal couplings.

Amathematical theory ofMFGswas introduced byLasry andLions [51] andHuang
et al. [46], and describes the limiting behavior of N -player stochastic differential
games when the number of players N tends to ∞ [19]. In recent years, there has been
significant progress on MFG systems with local (or no) diffusion, e.g., modeling,
well-posedness, numerical approximations, long time behavior, convergence of Nash
equilibria, and various control and game theoretic questions, see, e.g., [5, 13, 19, 29,
41, 45] and references therein. The study of MFGs with “nonlocal diffusion” is quite
recent, and few results exist so far. Stationary problems with fractional Laplacians
were studied in [32], and parabolic problems including (1), in [35, 39]. We refer to
[50] and references therein for some development using probabilistic methods.

The difference between problem (1) and standardMFG formulations lies in the type
of noise driving the underlying controlled stochastic differential equations (SDEs).
Usually, Gaussian noise is considered [5, 21, 28, 51, 53], or there is no noise (the
first-order case) [18, 20]. Here, the underlying SDEs are driven by pure jump Lévy
processes, which leads to nonlocal operators (2) in the MFG system. In many real-
world applications, jump processes model the observed noise better than Gaussian
processes [9, 36, 52, 56]. Prototypical examples are symmetric σ -stable processes
and their generators, the fractional Laplace operators (−�)

σ
2 . In Economy and

Finance, the observed noise is not symmetric and σ -stable, but rather nonsymmet-
ric and tempered. A typical example is the one-dimensional CGMY process where
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dν

dz
(z) = C

|z|1+Y e
−Gz+−Mz−

for C, G, M > 0 and Y ∈ (0, 2) (see, e.g., [36,Chapter
4.5]). Such models are covered by the results of this article. Our assumptions on the
nonlocal operators (cf. (ν1)) are quite general, allowing for degenerate operators and
no restrictions on the tail of the Lévy measure ν.

There has been some development on numerical approximations for MFG systems
with local operators. Finite difference schemes for nondegenerate second-order equa-
tions have been designed and analyzed, e.g., by Achdou et al. [1–4, 6–8] and Gueant
[42–44]. Semi-Lagrangian (SL) schemes for MFG system have been developed by
Carlini–Silva both for first-order equations [24] and possibly degenerate second-order
equations [25]. Other numerical schemes for MFGs include recent machine learning
methods [30, 31, 54] for high dimensional problems. We refer to the survey article
[6] for recent developments on numerical methods for MFG. We know of no prior
schemes or numerical analysis for MFGs with fractional or nonlocal diffusions.

In this paper, we will focus on SL schemes. They are monotone, stable, connected
to the underlying control problem, easily handles degenerate and arbitrarily directed
diffusions, and large time steps are allowed. Although the SL schemes for HJB equa-
tions have been studied for some time (see, e.g., [15, 17, 37, 40]), there are few results
for FPK equations (but see [27]) and the coupledMFG system. For nonlocal problems,
we only know of the results in [16] for HJB equations.

Our Contributions

A. Derivation We construct fully discrete monotone numerical schemes for the MFG
system (1). These dual SL schemes are closely related to the underlying control for-
mulation of the MFG. In our case, it is based on the following controlled SDE:

dXt = −αt dt + dLt ,

where αt is the control and Lt a pure jump Lévy process [cf. (6)]. Note that Lt can
be decomposed into small and large jumps, where the small jumps may have infinite
intensity. We derive our approximation in several steps:

1. (Approximate small jumps)The small jumps are approximatedbyBrownianmotion
[see (7)] following, e.g., [10, 16, 38]. This is done to avoid infinitely many jumps
per time-interval and singular integrals, and gives a better approximation compared
to simply neglecting these terms.

2. (SL scheme for HJB) We discretize the resulting SDE from step 1 in time and
approximate the noise by random walks and approximate compound Poisson pro-
cesses in the spirit of [16] (Sect. 3.1). From the corresponding discrete time optimal
control problem, dynamic programming, and interpolation, we construct an SL
scheme for the HJB equation (Sect. 3.2).

3. (Approximate control) We define an approximate optimal feedback control for the
SL scheme in step 2 from the continuous optimal feedback control as in [24, 25]:
α∗
approx = Dp H(·, Duε

d), where uε
d is a regularization of the (interpolated) solution

from step 2 (Sect. 3.3).
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4. (Dual SL scheme for FPK) The control of step 3 and the scheme in step 2 define
a controlled approximate SDE with a corresponding discrete FPK equation for the
densities of the solutions. We explicitly derive this FPK equation in weak form,
and obtain the final dual SL scheme taking test functions to be linear interpolation
basis functions (Sect. 3.4).

See (18) and (24) in Sect. 3 for the specific form of our discretizations. These seem
to be the first numerical approximations of MFG systems with nonlocal or fractional
diffusion and the first SL approximations of nonlocal FPK equations. Our dual SL
schemes are extensions to the nonlocal case of the schemes in [24–27], and we give
a clear derivation of such type of schemes in Sect. 3. The schemes come in the form
of nonlinear coupled systems (27) that need to be resolved numerically. We prove
existence of solutions using fixed point arguments, see Proposition 3.4.

B. Analysis We establish a range of properties for the scheme includingmonotonicity,
consistency, stability, (discrete) regularity, convergence of individual equations, and
convergence to the full MFG system.

1. (HJB approximation) For the approximation of the HJB equation, we prove point-
wise consistency and uniform discrete L∞, Lipschitz, and semiconcavity bounds.
Convergence to a viscosity solution is obtained via the half-relaxed limit method
[12].

2. (FKP approximation) We prove consistency in the sense of distributions, preser-
vation of mass and positivity, L1-stability, tightness, and equi-continuity in time.
In dimension d = 1, we also prove uniform L p-estimates for all p ∈ (1,∞].
Convergence is obtained from compactness and stability arguments.

3. (The full MFG approximation) We prove convergence along subsequences to
viscosity-very weak solutions of the MFG system in two cases: (i) Degenerate
equations in dimension d = 1, and (ii) nondegenerate equation in R

d under the
assumption that solutions of the HJB equation are C1 in space. Full convergence
follows for MFGs with unique solutions, and convergence to classical solutions
follows under certain regularity and weak uniqueness conditions. Applying the
results to the setting of [39], we obtain full convergence to classical solutions in
this case.

Because of the nonlocal or smoothing couplings, the HJB approximation can be
analyzed almost independently of the FKP approximation. The analysis of the FKP
scheme, on the other hand, strongly depends on boundedness and regularity properties
of solutions of the HJB scheme. Compactness inmeasure is enough in the nondegener-
ate casewhen theHJB equation hasC1 solutions, while strongerweak (∗) compactness
in L p for some p ∈ (1,∞] is needed in the degenerate case. This way of reasoning is
inspired by and similar to [24, 25, 27]. As in [24], we are only able to prove this latter
compactness in dimension d = 1. A priori estimates and convergence for p ∈ (1,∞)

seems to be new also for local MFGs.
In this paper, we study general Lévy jump processes and nonlocal operators. This

means that the underlying stochastic processes may not have first moments whatever
initial distribution we take (e.g., σ -stable processes with σ < 1), and then we can no
longerwork in the commonly usedWasserstein-1 space (P1, d1) for the FKPequations.
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Instead we work in the space (P, d0) of probability measures under weak convergence
metrizised by theRubinstein–Kantorovichmetric d0 (see Sect. 2). Surprisingly, a result
from [33] (Proposition 6.1) allows us to prove tightness and compactness in this space
without any moment assumptions! We refer to Sect. 4.3 for a more detailed discussion
alongwith convergence results in the traditional (P1, d1) topology when first moments
are available.

This (P, d0) setting can be adapted to local problems, to give results also there
withoutmoment assumptions. Finally, we note that our results for degenerate problems
cover the first-order equations and improve [24] in the sense that more general initial
distributions m0 are allowed: P ∩ L p for some p ∈ (1,∞] instead of P1+δ ∩ L∞ for
some δ > 0, where P1+δ is set of the probability measures with finite (1+δ)moments.

C. Testing We provide several numerical simulations. In Examples 1 and 2, we use
a similar setup as in [25], comparing the effects of a range of different diffusion
operators: fractional Laplacians of different powers, CGMY-diffusions, a degenerate
diffusion, a spectrally one-sided diffusion, as well as classical local diffusion and the
case of no diffusion. In Example 3, we solve the MFG system on a long time horizon
and observe the turnpike property in a nonlocal setting. Finally, in Example 4 we study
the convergence of the scheme.

Outline of the Paper

In Sect. 2, we list our assumptions and state mostly known results of the MFG system
(1) and its individual HJB and FKP equations. In Sect. 3, we construct the discrete
schemes for the HJB, FKP, and full MFG equations from the underlying stochastic
control problem/game. The convergence results are given in Sect. 4, along with exten-
sions and a discussion section. In Sects. 5 and 6, we analyze the discretizations of
the HJB and FKP equations, respectively, including establishing a priori estimates,
stability, and some consistency results. Using these results, we prove the convergence
results of Sect. 4 in Sect. 7. In Sect. 8, we provide and discuss numerical simulations
of various nonlocal MFG systems. Finally, there are two appendices with proofs of
technical results.

2 Assumptions and Preliminaries

We start with some notation. By C, K , we mean various constants which may change
from line to line. The Euclidean norm on any R

d -type space is denoted by | · |. For
any subset Q ⊆ R

d or Q ⊆ [0, T ]×R
d , and for any bounded, possibly vector valued

function on Q, we will consider L p-spaces L p(Q) and spaces Cb(Q) of bounded
continuous functions. Often we use the notation ‖ · ‖0 as an alternative notation for
the norms in Cb or L∞. The space Cm

b (Q) is the subset of Cb(Q)with m bounded and

continuous derivatives, and for Q ⊆ [0, T ]×R
d , Cl,k

b (Q) is the subset of Cb(Q)with
l bounded and continuous derivatives in time and k in space. By P(Rd), we denote the
set of probability measure on R

d . The Kantorovich–Rubinstein distance d0(μ1, μ2)
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on the space P(Rd) is defined as

d0(μ1, μ2) := sup
f ∈Lip1,1(R

d )

{ ∫

Rd
f (x)d(μ1 − μ2)(x)

}
,

where Lip1,1(R
d) =

{
f : f is Lipschitz continuous and ‖ f ‖0, ‖D f ‖0 ≤ 1

}
.

Whereas the 1−Wasserstein metric d1 on the space P1(R
d), probability measures

with finite first moment, can be defined as

d1(μ1, μ2) := sup
f ∈Lip1(Rd )

{ ∫

Rd
f (x)d(μ1 − μ2)(x)

}
,

where Lip1(R
d) =

{
f : f is Lipschitz continuous and ‖D f ‖0 ≤ 1

}
.

We define the Legendre transform L of H as:

L(x, q) := sup
p∈Rd

{
p · q − H(x, p)

}
.

We use the following assumptions for Eq. (1):

(ν0) (Lévy condition) ν is a positive Radon measure that satisfies

∫

Rd
1 ∧ |z|2dν(z) < ∞.

(ν1) (Growth near singularity) ν is absolutely continuous for |z| < 1, and there exist
constants σ ∈ (0, 2) and C > 0 such that

0 ≤ dν

dz
≤ C

|z|d+σ
, |z| < 1.

(L0) (Continuity and local boundedness) The function L : Rd × R
d → R is contin-

uous in x, q, and for any K > 0, there exists CL(K ) > 0 such that

sup
|q|≤K

|L(x, q)| ≤ CL(K ), x ∈ R
d .

(L1) (Convexity and growth) The function L(x, q) is convex in q and satisfies

lim|q|→+∞
L(x, q)

|q| = +∞, x ∈ R
d .

(L2) (Lipschitz regularity) There exists a constant L L > 0 independent of q, such
that

|L(x, q) − L(y, q)| ≤ L L |x − y|.
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(L3) (Semi-concavity) There exists a constant cL > 0 independent of q, such that

L(x + y, q) − 2L(x, q) + L(x − y, q) ≤ cL |y|2.

(F1) (Uniform bounds) There exist constants CF , CG > 0 such that

|F(x, μ)| ≤ CF , |G(x, μ)| ≤ CG , x ∈ R
d , μ ∈ P(Rd).

(F2) (Lipschitz assumption) There exist constants L F , LG > 0 such that

|F(x, μ1) − F(y, μ2)| ≤ L F
[|x − y| + d0(μ1, μ2)

]
,

|G(x, μ1) − G(y, μ2)| ≤ LG
[|x − y| + d0(μ1, μ2)

]
.

(F3) (Semi-concavity) There exist constants cF , cG > 0 such that

F(x + y, μ) − 2F(x, μ) + F(x − y, μ) ≤ cF |y|2,
G(x + y, μ) − 2G(x, μ) + G(x − y, μ) ≤ cG |y|2.

(M) (Initial condition) We assume m0 ∈ P(Rd).
(M’) The dimension d = 1, and m0 ∈ P(R) ∩ L p(R) for some p ∈ (1,∞].

By (L1), the Legendre transform H = L∗ is well defined and the optimal q is
q∗ = Dp H(x, p). To study the convergence of the numerical schemes, we further
assume local uniform bounds on the derivatives of Hamiltonian:

(H1) The function Dp H ∈ C(Rd × R
d), and for every R > 0, there is a constant

CR > 0 such that for every x ∈ R
d and p ∈ BR we have |Dp H(x, p)| ≤ CR .

(H2) The function Dp H ∈ C1(Rd × R
d). For every R > 0, there exists a constant

CR > 0 such that for every x ∈ R
d and p ∈ BR , we have

|Dpp H(x, p)| + |Dpx H(x, p)| ≤ CR .

Remark 2.1 (i) We impose most of the conditions on L , and not on H , as L appears
in the optimal control problem, which would be the basis of our semi-Lagrangian
approximation. Assumptions (L1) and (L2) (but, not (L3)!) would immediately
carry forward to the correspondingHamiltonian H from the definition of Legendre
transform.Whereas we require to assume (H1)–(H2) on H , in contrary to the other
assumptions, as it does not follow from the condition on L in general. However,
when the Lagrangian L behaves like | · |r in q variable for large q and r > 1,
the growth of the corresponding Hamiltonian H would be | · | r

r−1 in p variable
for large p (cf. [34,Proposition 2.1]). The growth of the derivatives of H for large
p can be computed similarly, which would correspond to similar condition as in
(H1)–(H2).

(ii) Couplings satisfying (F1)–(F3) are, e.g., given by

F(x, μ) = f (x, (ρ ∗ μ)(x))
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where f ∈ C2
b and ρ ∈ C2

b . These conditions can be relaxed in several directions.

In most of this paper, solutions of the HJB equation in (1) are interpreted in the
viscosity sense, we refer to [48] and references therein for general definition and well-
posedness results, while solutions of FPK equation in (1) are considered in the very
weak sense defined as follows:

Definition 2.2 (a) If u ∈ C0,1
b ((0, T ) × R

d), then m ∈ C([0, T ], P(Rd)) is a very
weak solution of the FPK equation in (1), if for every φ ∈ C∞

c (Rd) and t ∈ [0, T ]
∫

Rd
φ(x) dm(t)(x) −

∫

Rd
φ(x) dm0(x)

=
∫ t

0

∫

Rd

(
L[φ](x) − Dp H(x, Du) · Dφ(x)

)
dm(s)(x) ds.

(3)

(b) If u ∈ L∞(0, T ; W 1,∞(Rd)) and p ∈ [1,∞], a function m ∈ C([0, T ], P(Rd))∩
L p([0, T ] × R

d), is a very weak solution of the FPK equation in (1), if (3) holds
for every φ ∈ C∞

c (Rd) and t ∈ [0, T ].
Remark 2.3 Inequality (3) holding for every φ ∈ C∞

c (Rd) and t ∈ [0, T ] is equivalent
to
∫

Rd
φ(T , x) d(m(T ))(x) −

∫

Rd
φ(0, x) dm0(x)

=
∫ T

0

∫

Rd

(
φt (s, x) + L[φ](s, x) − Dp H(x, Du) · Dφ(s, x)

)
dm(s)(x) ds,

holding for every φ ∈ C1,2
b ([0, T ] × R

d) (cf. [33,Lemma 6.1]).

Definition 2.4 A pair (u, m) is a viscosity-very weak solution of the MFG system (1),
if u is a viscosity solution of the HJB equation, and m is a very weak solution of the
FPK equation (see, Definition 2.2).

We first give the well-posedness result of the HJB equation in (1) for fixed m.

Proposition 2.5 Fix, μ ∈ C([0, T ], P(Rd)). Let (ν0), (L2), and (F1) hold.

(a) (Comparison principle) If u is a viscosity subsolution and v is a viscosity super-
solution of the HJB equation in (1) with u(T , ·) ≤ v(T , ·), then u ≤ v.

(b) There exists a unique bounded viscosity solution u ∈ Cb([0, T ] ×R
d) of the HJB

equation in (1), and for any t ∈ [0, T ] we have ‖u(t)‖0 ≤ CF T + CG.
(c) If (L2) and (F2) hold, then the viscosity solution u is Lipschitz continuous in space

variable and for every t ∈ [0, T ] and x, y ∈ R
d we have

|u(t, x) − u(t, x + y)| ≤ (
T (L L + L F ) + LG

) |y|.

In addition, if (L3) and (F3) hold, then u is semiconcave in space variable and for
every t ∈ [0, T ] and x, y ∈ R

d we have

u(t, x + y) + u(t, x − y) − 2u(t, x) ≤ (
T (cL + cF ) + cG

) |y|2.
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Proof These results are by now standard: (a) follows by a similar argument as for
[48,Theorem 3.1], (b) follows by, e.g., Perron’s method, and (c) by adapting the com-
parison arguments of [48] in a standard way. We omit the details. Under some extra
assumptions, (b) and (c) also follow from Theorem 5.4 and Lemma 5.3. �


We also need a well-posedness result for the FPK equation in (1) for fixed u.

Proposition 2.6 Assume (ν0), (ν1), (H1), and (M).

(a) If u ∈ C([0, T ]; C1
b(Rd)), then there exists a very weak solution m ∈

C([0, T ]; P(Rd)) of the FPK equation in (1).
(b) If d = 1, u ∈ C([0, T ]; W 1,∞(R)), u semi-concave, and (M’) holds, then there

exists a very weak solution m ∈ C([0, T ]; P(R)) ∩ L p([0, T ] × R) of the FPK
equation in (1). Moreover,‖m(t)‖L p(R) ≤ eCT ‖m0‖L p(R) for some constant C > 0
and t ∈ [0, T ].

Proof The results follow from the convergence of the discrete scheme in this article.
The proof of (a) follows the proof of Theorem 4.3, setting Duρ,h = Du. The proof
of (b) follows the proof of Theorems 4.1 and 6.7, setting Duρ,h = Du. Note that
semi-concavity of u is crucial for the L p-bound of Theorem 6.7. �


Existence and uniqueness results are given in [39] for classical solutions of MFGs
with nonlocal diffusions under additional assumptions:

(ν2) (Growth near singularity) There exist constants σ ∈ (1, 2) and c > 0 such that
the density of ν for |z| < 1 satisfies

c

|z|d+σ
≤ dν

dz
, for |z| < 1.

(F4) There exist constants CF , CG > 0, such that ‖F(·, m)‖C2
b

≤ CF and

‖G(·, m̃)‖C3
b

≤ CG for all m, m̃ ∈ P(Rd).
(F5) F and G satisfy monotonicity conditions:

∫

Rd
(F (x, m1) − F (x, m2)) d (m1 − m2) (x) ≥ 0 ∀m1, m2 ∈ P(Rd),

∫

Rd
(G (x, m1) − G (x, m2)) d (m1 − m2) (x) ≥ 0 ∀m1, m2 ∈ P(Rd).

(H3) The Hamiltonian H ∈ C3(Rd ×R
d), and for every R > 0 there is CR > 0 such

that for x ∈ R
d , p ∈ BR , α ∈ N

N
0 , |α| ≤ 3, then |Dα H(x, p)| ≤ CR .

(H4) For every R > 0 there isCR > 0 such that for x, y ∈ R
d , u ∈ [−R, R] , p ∈ R

d :
|H (x, u, p) − H (y, u, p) | ≤ CR (|p| + 1) |x − y|.

(H5) (Uniform convexity) There exists a constant C > 0 such that 1
C Id ≤

D2
pp H (x, p) ≤ C Id .

(M”) The probability measure m0 has a density (also denoted by m0) m0 ∈ C2
b .

Theorem 2.7 Assume (ν0), (ν1), (ν2), (F2), (F4), (H3),(H4), and (M”).
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(a) There exists a classical solution (u, m) of (1) such that u ∈ C1,3
b ((0, T )×R

d) and

m ∈ C1,2
b ((0, T ) × R

d) ∩ C(0, T ; P(Rd)).
(b) If in addition (F5) and (H5) hold, then the classical solution is unique.

This is a consequence of [39,Theorem 2.5 and Theorem 2.6].We refer to [39] for more
general results, where in particular assumptions (ν1) and (ν2) can be relaxed to allow
for a much larger class of nonlocal operators L. In the nondegenerate case, for the
individual equations in (1) we also have uniqueness of viscosity-very weak solutions
and existence of classical solutions. Uniqueness for HJB equations and existence for
HJB and FPK equations follows by Theorem 5.3, Theorem 5.5, and Proposition 6.8
in [39]. We prove uniqueness for very weak solutions of FPK equations here.

Proposition 2.8 (Uniqueness for the FPK equation) Assume (ν0), (ν1), (ν2), and
Dp H(x, Du(t)) ∈ C0,2

b ((0, T ) × R
d). Then, there is at most one very weak solution

of the FPK equation in (1).

Proof Let m1, m2 be two very weak solutions, define m̃ := m1 − m2 and take any
ψ ∈ C∞

c

(
R

d
)
. For any τ ∈ (0, T ), the terminal value problem

∂tφ + Lφ − Dφ · Dp H(x, Du) = 0 in R
d × (0, τ ) and

φ(x, τ ) = ψ(x) in R
d ,

has a unique classical solution φ ∈ C1,2
b ((0, τ )×R

d) essentially by [39,Theorem 5.5]
(the result follows from Proposition 5.8 with k = 2 and the observation that the proof
of Theorem 5.5 also holds for k = 2). Using the definition of very weak solution (see
Remark 2.3), we get

∫

Rd
ψ(x) dm̃(τ )(x) =

∫ τ

0

∫

Rd

(
∂tφ + Lφ − Dφ · Dp H(x, Du)

)
dm̃(t)(x) dt = 0,

for any τ ∈ [0, T ]. Sinceψ was arbitrary, it follows that m̃(τ ) = 0 in P(Rd) for every
τ ∈ [0, T ], and uniqueness follows. �


3 Discretization of theMFG System

To discretize the MFG system (1), we first follow [16] and derive a Semi-Lagrange
approximation of the HJB equation in (1). Using this approximation and the optimal
control of the original problem, we derive an approximation of the FPK equation in
(1) which is in (approximate) duality with the approximation of the HJB-equation.

This derivation is based on the following control interpretation of the HJB equation.
For a fixed given density m = μ, the solution u of the HJB equation in (1) is the value
function of the optimal stochastic control problem:

u(t, x) = inf
α

J
(
x, t, α

)
, (4)
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where αt is an admissible control, J is the total cost to be minimized,

J
(
x, t, α

) = E

[ ∫ T

t

(
L(X̃s, αs) + F(X̃s, μs

)
ds + G(X̃T , μT )

]

, (5)

and X̃s = X̃ x,t
s solves the controlled stochastic differential equation (SDE)

{
dX̃s = −αs ds + ∫|z|<1 z Ñ (dz, ds) + ∫|z|≥1 zN (dz, ds), s > t,

X̃t = x,
(6)

where N a Poisson random measure with intensity/Lévy measure ν(dz)ds, and Ñ =
N (dz, ds) − ν(dz)ds is the compensated Poisson measure.1

3.1 Approximation of the Underlying Controlled SDE

A. Approximate Small Jumps by Brownian Motion

First, we approximate small jumps in (6) by (vanishing) Brownian motion2 (cf. [10]):
For r ∈ (0, 1), let Xs = X x,t

s solve

{
dXs = b̄(αs)ds + σr dWs + ∫|z|≥r zN (dz, ds), s > t

Xt = x,
(7)

where Ws is a standard Brownian motion, b̄(αs) = −αs − bσ
r , and

bσ
r :=

∫

r<|z|<1
z ν(dz), (8)

σr :=
(
1

2

∫

|z|<r
zzT ν(dz)

)1/2

. (9)

The last integral in (7) is a compound Poisson process (cf., e.g., [9]): For any t ≥ 0,

∫ t

0

∫

|z|≥r
zN (dz, dt) =

N̂t∑

j=1

J j (10)

where the number of jumps up to time t is N̂t ∼ Poisson(tλr ), the jumps {J j } j are iid
rv’s in Rd with distribution νr and J0 = 0, and for r ∈ (0, 1],
1 The N -integral is just a (difficult way of writing a) compound Poisson jump process, while the Ñ -integral
is a centered jump process with an infinite number of (small) jumps per time interval a.s. [9].
2 To avoid singular integrals and infinite number of jumps per time interval.
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νr := ν1|z|>r and λr :=
∫

Rd
νr (dz). (11)

The infinitesimal generators Lα and L̂α of the SDEs (6) and (7) are (cf. [9])

Lαφ(x) = −αt · ∇φ + L1φ(x) + L1φ(x),

L̂αφ(x) = b̄(αt ) · ∇φ(x) + tr
(
σ T

r · D2φ(x) · σr
)+ Lr [φ](x)

for φ ∈ C2
b (Rd), where the operator L in (2) can be rewritten as follows

Lφ(x) =
(∫

|z|<r
+
∫

|z|>r

)(
φ(x + z) − φ(x) − 1{|z|<1}Dφ(x) · z

)
dν(z)

:= Lrφ(x) + Lrφ(x).

(12)

The operator L̂α is an approximation of Lα .

Lemma 3.1 ([49]) If (ν1) holds and φ ∈ C3
b(Rd), then for Lr and σr defined in (12)

and (9), respectively, we have

|Lrφ(x) − tr
(
σ T

r · D2φ(x) · σr
)| ≤ Cr3−σ ‖D3φ‖0.

If in addition, φ ∈ C4
b(Rd) and the Lévy measure ν is symmetric, then

|Lrφ(x) − tr
(
σ T

r · D2φ(x) · σr
)| ≤ Cr4−σ ‖D4φ‖0.

B. Time Discretization of the Approximate SDE

Fix a time step h = T
N ∈ (0, 1) for some N ∈ N and discrete times tk = kh

for k ∈ {0, 1, . . . , N }. Following [16], we propose the following Euler-Maruyama
discretization of the SDE (7): Let Xtl ,x

n ≈ Xtl ,x
tn , where Xn = Xtl ,x

n solves

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xl = x

Xn = Xn−1 + hb̄(αn−1) + √
h

d∑

m=1

σm
r ξm

n−1, n − l = Ni + 1, . . . , Ni+1 − 1,

Xl+Ni+1 = Xl+Ni+1−1 + Ji .

(13)

Here, the control αn is constant on each time interval, σm
r is the mth-column of σr ,

and ξn = (ξ1n , . . . , ξd
n ) is a random walk in Rd with

P
(
ξ i

n = ±1
) = 1

2d
.
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The processes Jk and Nk define an approximation of the compound Poisson part of
(7) through equation (10) where N̂t is replaced by an approximation

Ñt = max{k : �T1 + �T2 + · · · + �Tk ≤ t},

where exponentially distributed waiting times (time between jumps) are replaced by
time grid approximations {�Tk}k∈N3: �Tk = h�Nk = h(Nk − Nk−1) where Nk :
� → N ∪ {0}, N0 = 0, and �Nk iid with approximate hλr -exponential distribution
given by

P[�Nk > j] = e−hλr j for j = 0, 1, 2, . . . .

Then for p j := P[�Nk = j], p0 = 0 and p j = P[�Nk > j − 1] − P[�Nk >

j] = e− jhλr (ehλr − 1) for j > 0. We find that
∑∞

j=0 p j = 1 and E(�Nk) =
∑∞

j=0 e
− jhλr = ehλr

ehλr −1
. Note that in each time interval, approximation (13) either

diffuses (the second equation) or jumps (the third equation), and that by definition of
Nk , there is at most one jump in this interval. For the scheme to converge, we will see
that we need to send both h → 0 and hλr → 0. In this case, E(�Nk) → ∞ and the
jumps become less and less frequent compared to the random walk (which is natural
in view of the limiting processes).

3.2 Semi-Lagrangian Approximation of the HJB Equation

A. Control Approximation of the HJB Equation

Weapproximate the control problem (4)–(6) by a discrete time control problem:Define
the value function

ũh(tl , x) = inf{αn} Jh
(
x, tl , {αn}), (14)

where tl = lh for l ∈ {0, 1, . . . , N − 1} and the controls {αn} are piecewise constant
in time, the cost function Jh is given by

Jh
(
x, tl , {αn}) = E

[ N−1∑

n=l

(
L(Xn, αn) + F(Xn, μ(tn))

)
h + G(X N , μ(tN ))

]

, (15)

and the controlled discrete time process Xn = Xtl ,x
n is the solution of (13). By the

(discrete time) dynamic programming principle, it follows that

ũh(tl , x) = inf
αn

E

[ l+p∑

n=l

(
L(Xtl ,x

n , αn) + F(Xtl ,x
n , μ(tn))

)
h + ũh(tl+p+1, Xtl ,x

l+p+1)

]

,

3 In the new model, Ñt still gives the number of jumps up to time t .
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for any fixed p ∈ {0, . . . , N − (l +1)}. Taking p = 04 and computing the expectation
using conditional probabilities (the probability to jump in the first time interval is
p1 = 1 − e−hλr ), we find a (discrete time) HJB equation

ũh(tl , x)

= inf
α

{

hF(x, μ(tl)) + hL(x, α) +
[e−hλr

2d

d∑

m=1

(
ũh(tl+1, x + hb̄(α) + √

hdσm
r )

+ ũh(tl+1, x + hb̄(α) − √
hdσm

r )
)]+ 1 − e−hλr

λr

∫

|z|≥r
ũh(tl+1, x + z)ν(dz)

}

.

(16)

Note that this is an explicit backward in time one-step scheme.

B. Interpolation and the Fully Discrete Scheme

For ρ > 0, we fix a grid Gρ = {iρ : i ∈ Z
d} and a linear/multilinear Gρ-interpolation

I . For functions f : Gρ → R,

I [ f ](x) :=
∑

i∈Zd

f (xi )βi (x), x ∈ R
d , (17)

where the β j ’s are piecewise linear/multilinear basis functions satisfying

β j ≥ 0, β j (xi ) = δ j,i ,
∑

j

β j (x) = 1, and ‖I [φ] − φ‖0 = ‖D2φ‖0ρ2

for any φ ∈ C2
b (Rd). A fully discrete scheme is then obtained from (16) as follows:

ũi,k[μ] = Sρ,h,r [μ](ũ·,k+1, i, k), k < N , and ũi,N [μ] = G(xi , μ(tN )), (18)

where

Sρ,h,r [μ](v, i, k)

= inf
α

{

hF(xi , μ(tk)) + hL(xi , α)

+ e−hλr

2d

d∑

m=1

(
I [v](xi + hb̄(α) + √

hdσm
r ) + I [v](xi + hb̄(α) − √

hdσm
r )
)

+ 1 − e−hλr

λr

∫

|z|≥r
I [v](xi + z)ν(dz)

}

. (19)

4 The choice p = 0 gives a one-step scheme, the solution at tl depends on the solution at tl+1.
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Finally, we extend the solution of the discrete scheme ũi,k[μ] to the whole Rd ×
[0, T ] by linear interpolation in x and piecewise constant interpolation in t :

ũρ,h[μ](t, x) = I
(
ũ·,[ t

h ][μ])(x) =
∑

i∈Zd

βi (x) ũi,[ t
h ][μ] for (t, x) ∈ [0, T ) × R

d .

(20)

3.3 Approximate Optimal Feedback Control

For the HJB equation in (1), satisfied by the value function (4), it easily follows that
the optimal feedback control is

α(t, x) = Dp H(x, Du[μ](t, x)).

Based on this feedback law, we define an approximate feedback control for the discrete
time optimal control problem (13)–(15) in the following way: For h, ρ, ε > 0 and
(t, x) ∈ R

d × [0, T ],

αnum(t, x) := Dp H(x, Dũε
ρ,h[μ](t, x)), (21)

where ũρ,h[μ] is given by (20),

ũε
ρ,h[μ](t, x) = ũρ,h[μ](t, ·) ∗ ρε(x), (22)

and the mollifier ρε(x) = 1
εd ρ

( x
ε

)
for 0 ≤ ρ ∈ C∞

c (Rd) with
∫

Rd ρ(x)dx = 1. We
state a standard result on mollification.

Lemma 3.2 If u ∈ W 1,∞(Rd), ε > 0, and uε = u ∗ ρε . Then, uε ∈ C∞
b (Rd), and

there exists a constant cρ > 0, such that for all ε > 0,

‖uε − u‖0 ≤ ‖Du‖0 ε and ‖D puε‖0 ≤ cρ‖Du‖0 ε1−p for any p ∈ N.

By construction, we expect αnum to be an approximation of the optimal feedback
control for the approximate control problem with value function (14) when h, ρ, ε are
small and ũε

ρ,h is close to u.

3.4 Dual SL Discretization of the FPK Equation

A. Dual Approximation of the FPK Equation

First note that if X̃s = X̃0,Z0
s solves (6) with t = 0 and X0 = Z0, a rv with distribution

m0, then the FPK equation for m̃ := Law(X̃s) is

{
m̃t − L∗m̃ − div(m̃α) = 0,

m̃(0) = m0.
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Setting α = αnum, this equation becomes an approximation of the FPK equation in
(1). With this choice of α, we further approximate m̃ by the density m̃k := Law(Xk),
of the approximate process Xk = X0,Z0

k solving (13) with l = 0 and X0 = Z0.
We now derive a FPK equation for m̃k which in discretized form will serve as our

approximation of the FPK equation in (1). To simplify, we consider dimension d = 1.
By definition of m̃k ,

E[φ(Xk+1)] =
∫

R

φ(x) dm̃k+1(x),

for φ ∈ Cb(R
d) and k ∈ N∪{0}. Let Ak be the event of at least one jump in [tk, tk+1),

i.e., Ak = {ω : Nk+1(ω) − Nk(ω) ≥ 1} where Nk is the random jump time defined in
Sect. 3.1 B. Then by the definition of Xk in (13), the fact that Nk , Jk , and ξk are i.i.d.
and hence independent of Xk , and conditional expectations, we find that

∫

R

φ(x) dm̃k+1(x)

= E[φ(Xk+1)]
= E[φ(Xk+1)|Ac

k] P(Ac
k) + E[φ(Xk+1)|Ak] P(Ak)

= e−hλrE(φ(Xk + hb̄(αnum) + √
hσrξk)) + (1 − e−hλr )E(φ(Xk + Ji ))

= e−hλr

2

∫

R

(
φ(x + hb̄(αnum) + √

hσr ) + φ(x + hb̄(αnum) − √
hσr )

)
m̃k(dx)

+ (1 − e−hλr )

∫

R

∫

|z|>r
φ(x + z)

ν(dz)

λr
m̃k(dx).

Let Ei := (
xi − ρ

2 , xi + ρ
2

)
, m̃ j,k = ∫

E j
m̃k(dx).We approximate the above expression

by a midpoint (quadrature) approximation, i.e.,
∫

E j
f (x)m̃k(dx) ≈ f (x j )m̃ j,k , then

by choosing φ(x) = β j (x) (linear interpolant) for j ∈ Z and using β j (xi ) = δ j,i we
get a fully discrete approximation

m̃ j,k+1 ≈
∑

i∈Z
m̃i,k

[e−hλr

2

(
β j (xi + hb̄(αnum) + √

hσr )

+ β j (xi +hb̄(αnum)−√
hσr )

)
+ 1 − e−hλr

λr

∫

|z|>r
β j (xi + z)ν(dz)

]
.

In arbitrary dimension d, we denote

�
ε,±
j,k,p := x j − h

(
Hp(x j , Dũε

ρ,h[μ](tk, x j )) + Bσ
r

)± √
hdσ

p
r . (23)
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for j ∈ Z
d , k = 0, . . . , N , p = 1, . . . , d. Redefining Ei := xi + ρ

2 (−1, 1)d and
reasoning as for d = 1 above, we get the following discrete FPK equation

⎧
⎪⎪⎨

⎪⎪⎩

m̃i,k+1[μ] :=
∑

j∈Zd

m̃ j,k[μ]Bρ,h,r [Hp(·, Dũε
ρ,h[μ])(i, j, k),

m̃i,0 =
∫

Ei

dm0(x),

(24)

where

Bρ,h,r [Hp(·, Dũε
ρ,h[μ]](i, j, k) :=

[
e−λr h

2d

d∑

p=1

(
βi
(
�

ε,+
j,k,p

)+ βi
(
�

ε,−
j,k,p

))

+ 1 − e−λr h

λr

∫

|z|>r
βi (x j + z)ν(dz)

]

.

(25)

The solution is a probability distribution on Gρ × hNh , whereNh := {0, . . . , N }:
Lemma 3.3 Let (m̃i,k) be the solution of (24). If m0 ∈ P(Rd), then (m̃i,k)i ∈ P(Zd),
i.e., m̃i,k ≥ 0, i ∈ Z

d , and
∑

j∈Zd m̃ j,k = 1 for all k ∈ Nh.

Proof First note that m̃i,k ≥ 0 follows directly from the definition of the scheme and
mi,0 ≥ 0.Changing theorder of summation andas

∑
i Bρ,h,r [Hp(·, Dũε

ρ,h[μ]](i, j, k)

= 1, we find that

∑

i

m̃i,k+1 =
∑

i

∑

j

m̃ j,kBρ,h,r [Hp(·, Dũε
ρ,h[μ]](i, j, k) =

∑

j

m̃ j,k .

The result follows by iteration since
∑

j m̃ j,0 = 1. �


We extend (m̃i,k[μ]) to R
d by piecewise constant interpolation in x and then to

[0, T ] by linear interpolation in t : For t ∈ [tk, tk+1] and k ∈ Nh ,

m̃ε
ρ,h[μ](t, x) := t − tk

h
m̃ε

ρ,h[μ](tk+1, x) + tk+1 − t

h
m̃ε

ρ,h[μ](tk, x), (26)

where, m̃ε
ρ,h[μ](tk, x) := 1

ρd

∑
i∈Zd m̃i,k[μ]1Ei (x). Note that m̃ε

ρ,h[μ] ∈ C([0, T ],
P(Rd)) and the duality with the linear in x /constant in t interpolation used for ũρ,h in
(20).

3.5 Discretization of the CoupledMFG System

The discretization of the MFG system is obtained by coupling the two discretizations
above by setting μ = m̃ε

ρ,h[μ]. With this choice and u = ũ[μ] and m = m̃[μ], we get
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the following discretization of (1):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui,k = Sρ,h,r [mε
ρ,h](u·,k+1, i, k),

ui,N = G(xi , mε
ρ,h(tN )),

mi,k+1 = ∑
j∈Zd m j,k Bρ,h,r [Hp(·, Duε

ρ,h)](i, j, k),

mi,0 = ∫

Ei
dm0(x),

(27)

where Sρ,h,r ,Bρ,h,r , uε
ρ,h, mε

ρ,h are defined above.
The individual discretizations are explicit, but due to the forward-backward nature

of the coupling, the total discretization is not explicit. It yields a nonlinear system that
must be solved by some method like, e.g., a fixed-point iteration or a Newton type
method.

The approximation scheme (27) has a least one solution:

Proposition 3.4 (Existence for the discrete MFG system) Assume (ν0), (ν1), (L1)–
(L2), (F1)–(F2), (H1), and (M).

Then, there exist a pair (uρ,h, mε
ρ,h) solving (27).

The proof of this result is non-constructive and given in Sect. 7.

4 Convergence to theMFG System

In this section, we give the main theoretical results of this paper, various convergence
results as h, ρ, ε, r → 0 under CFL-conditions. The proofs will be given in Sect. 7
and require results for the individual schemes given in Sects. 5 and 6.

4.1 Convergence to Viscosity-VeryWeak Solutions

We consider degenerate and nondegenerate cases separately. For the degenerate case,
the convergence holds only in dimension d = 1.

Theorem 4.1 (Degenerate case, d = 1) Assume (ν0), (ν1), (L1)–(L3), (F1)–(F3),
(H1)–(H2), (M’), {(uρ,h, mε

ρ,h)}ρ,h,ε>0 are solutions of the discrete MFG system (27).

If ρn, hn, εn, rn → 0 under the CFL conditions ρ2
n

hn
, hn

rσ
n
,

√
hn

εn
= o(1), then:

(i) {uρn ,hn }n is precompact in Cb([0, T ] × K ) for every compact set K ⊂ R.
(ii) {mεn

ρn ,hn
}n is sequentially precompact in C([0, T ], P(R)), and (a) in L1 weak if

p ∈ (1,∞) in (M’), or (b) in L∞ weak ∗ if p = ∞ in (M’).
(iii) If (u, m) is a limit point of {(uρn ,hn , mεn

ρn ,hn
)}n, then (u, m) is a viscosity-very

weak solution of the MFG system (1).

Note that {mε
ρ,h} is precompact in C([0, T ], P(Rd)), just by assuming (M) for the

initial distribution. But in the degenerate case, this is not enough for convergence of
the MFG system, due to lower regularity of the solutions of the HJB equation (no
longer C1). Therefore, we need assumption (M’) and the stronger compactness given
by Theorem 4.1(ii) part (a) or (b). This latter result, we are only able to show in d = 1.
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In arbitrary dimensions,we assumemore regularity on solutions of theHJBequation
in (1):

(U) Let u[m] be a viscosity solution of the HJB equation in (1). For any m ∈
C([0, T ], P(Rd)) and t ∈ (0, T ), u[m](t) ∈ C1(Rd).

Remark 4.2 Assumption (U) holds in nondegenerate cases, e.g., under assumption
(ν2), see Theorem 2.7 and the discussion below.

We have the following convergence result in arbitrary dimensions.

Theorem 4.3 (Nondegenerate case) Assume (ν0), (ν1), (L1)–(L3), (F1)–(F3), (H1)–
(H2), (U), (M), {(uρ,h, mε

ρ,h)}ρ,h,ε>0 are solutions of the discrete MFG system (27).

If ρn, hn, εn, rn → 0 under the CFL conditions ρ2
n

hn
, hn

rσ
n
,

√
hn

εn
= o(1), then:

(i) {uρn ,hn }n is precompact in Cb([0, T ] × K ) for every compact set K ⊂ R
d .

(ii) {mεn
ρn ,hn

}n is precompact in C([0, T ], P(Rd)).

(iii) If (u, m) is a limit point of {(uρn ,hn , mεn
ρn ,hn

)}n, then (u, m) is a viscosity-very
weak solution of the MFG system (1).

These results give compactness of the approximations and convergence along sub-
sequences. To be precise, by part (i) and (ii) there are convergent subsequences, and
by part (iii) the corresponding limits are solutions of the MFG system (1).

We immediately have existence for (1).

Corollary 4.4 (Existence of solutions of (1)) Under the assumptions of either Theorem
4.1 or Theorem 4.3, there exists a viscosity-very weak solution (u, m) of the MFG
system (1).

If in addition we have uniqueness for the MFG system (1), then we have full
convergence of the sequence of approximations.

Corollary 4.5 Under the assumption of either Theorem 4.1 or Theorem 4.3, if the MFG
system (1) has at most one viscosity-very weak solution, then the whole sequence
{(uρn ,hn , mεn

ρn ,hn
)}n converges to a limit (u, m) which is the (unique) viscosity-very

weak solution of the MFG system (1).

4.2 Convergence to Classical Solutions

In the case the individual equations are regularizing, we can get convergence to clas-
sical solutions of the MFG system. To be precise, we need:

1. (“Weak” uniqueness of individual PDEs) The HJB equation has unique viscosity
solution, and the FPK equation has unique very weak solution.

2. (Smoothness of individual PDEs) Both equations have classical solutions.

This means that viscosity-very weak solutions of the MFG system automatically (by
uniqueness for individual equations) are classical solutions. If in addition

3. (Classical uniqueness for MFG) classical solutions of theMFG system are unique,
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we get full convergence of the approximate solutions to the solution of the MFG
system.

We now give a precise result in the setting of [39], see Theorem 2.7 in Sect. 2 for
existence and uniqueness of classical solutions of (1).

Corollary 4.6 Assume (ν0)–(ν2), (L1)–(L3), (F1)–(F4), (H3)–(H4), and (M”). Let
(uρ,h, mε

ρ,h) be solutions of the discrete MFG system (27). If ρn, hn, εn, rn → 0

under the CFL conditions ρ2
n

hn
, hn

rσ
n
,

√
hn

εn
= o(1), then:

(a) {(uρn ,hn , mεn
ρn ,hn

)}n has a convergent subsequence in the space Cb,loc([0, T ] ×
R

d) × C([0, T ], P(Rd)), and any limit point is a classical–classical solution of
(1).

(b) If in addition (F5) and (H5) hold, then the whole sequence in (a) converges to the
unique classical–classical solution (u, m) of (1).

Proof 1. Assumption (U) holds by Theorem 2.7, and then by Theorem 4.3, there is a
convergent subsequence {(uρn ,hn , mεn

ρn ,hn
)}n such that (uρn ,hn , mεn

ρn ,hn
) → (u, m)

and (u, m) is a viscosity-very weak solution of (1).
2. Since m ∈ C([0, T ], P(Rd)), the viscosity solution u is unique by Proposition 2.5

(b) (see also [39,Theorem5.3]).Hence, it coincideswith the classicalC1,3
b ((0, T )×

R
d) solution given by [39,Theorem 5.5].

3. Now Dp H(x, Du(t)) ∈ C2
b (Rd) by part 2 and (H3), and then by Proposition 2.8

there is at most one very weak solution of the FPK equation. Hence, it coincides
with the classical C1,2

b ((0, T ) × R
d) solution given by [39,Proposition 6.8].

4. In addition if (F5) and (H5) hold, there is a most one classical solution (u, m) by
Theorem 2.7 (b).

5. This shows (compactness, smoothness, and uniqueness) that all convergent subse-
quences of {(uρn ,hn , mεn

ρn ,hn
)}n have the same limit, and thus the whole sequence

converges to (u, m), the unique classical solution of (1). �


4.3 Extension and Discussion

Extension to More General Nonlocal Lévy Operators

The results of Theorems 4.1 and 4.3 hold under much more general assumptions on
the Lévy operator L. In [39], they use (ν0) together with the assumptions,

(ν1′) There exists a constant c > 0 such that for every r ∈ (0, 1),

r−2+σ

∫

|z|<r
|z|2dν + r−1+σ

∫

r<|z|<1
|z|dν + rσ

∫

r<|z|<1
dν ≤ c.

(ν2′) There are σ ∈ (1, 2) and K > 0 such that the heat kernels Kσ and K ∗
σ of L and

L∗ satisfy for K = Kσ , K ∗
σ : K ≥ 0, ‖K (t, ·)‖L1(Rd ) = 1, and

‖Dβ K (t, ·)‖L p(Rd ) ≤ Kt−
1
σ

(
|β|+(1− 1

p )d
)

for t ∈ (0, T )

and any p ∈ [1,∞) and multi-index β ∈ N
d ∪ {0}.
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where the heat kernel of the operator L is defined as the fundamental solution of the
heat equation ∂t u −Lu = 0. These assumptions cover lots of new cases compared to
(ν0), (ν1), and (ν2). New cases include (i) sums of operators satisfying (ν1) on sub-
spaces spanningRd , having possibly different orders, (ii) more general non-absolutely
continuous Lévy measures, and (iii) Lévy measures supported on positive cones. An
example of (i) (cf. [39]) is

L = −
(
− ∂2

∂x21

)σ1/2 − · · · −
(
− ∂2

∂x2d

)σd/2
, σ1, . . . , σd ∈ (1, 2),

which satisfies (ν1′) with σ = mini σi and dν(z) = ∑d
i=1

dzi
|zi |1+σi

� j �=iδ0(dz j ). This

is a sum of one-dimensional fractional Laplacians of different orders. An example of
(iii) is given by the spectrally positive “fractional Laplacian" in one space dimension:
Lu = cσ

∫∞
0 (u(x + z) − u(x) − Du(x) · z1{z<1})z−1−σdz.

We have the following generalization of the well-posedness result for classical
solutions given in Theorem 2.7.

Theorem 4.7 ([39]) Theorem 2.7 holds when you replace (ν1) – (ν2) by (ν1′) – (ν2′).
It follows that (U) holds whenever Theorem 4.7 holds. Since (ν1) implies (ν1′) and
the integrals in (ν1′) are what appear in the different proofs, it is easy to check that
all estimates in this paper are true for Lévy measures satisfying (ν1′) instead of (ν1).
This means that under assumption (ν1′) and (ν2′) we have the following extensions
of Theorems 4.1 and 4.3 and Corollary 4.6.

Theorem 4.8 Theorem 4.1 holds when you replace (ν1) with (ν1′).

Theorem 4.9 Theorem 4.3 holds when you replace (ν1)–(ν2) by (ν1′)–(ν2′).

Corollary 4.10 Corollary 4.6 holds when you replace (ν1)–(ν2) by (ν1′)–(ν2′).

Extension to Mixed Local–Nonlocal Operators

The results of this article can be extended for the MFG system involving mixed local
and nonlocal diffusion operators. In this case, the underlying process replacing (6)
would be, e.g.,

{
dX̃s = −αs ds + ∫|z|<1 z Ñ (dz, ds) + ∫|z|≥1 zN (dz, ds) + a(s)dWs, s > t,

X̃t = x,

where Ws is a standard Brownian motion and a is continuous. The MFG system is
then
⎧
⎪⎨

⎪⎩

−ut − Lu − 1
2 tr[a(t)a(t)T D2u] + H(x, Du) = F(x, m(t)), in (0, T ) × R

d ,

mt − L∗m − 1
2 tr[a(t)a(t)T D2m] − div(m Dp H(x, Du)) = 0 in (0, T ) × R

d ,

u(T , x) = G(x, m(T )), m(0) = m0 in Rd ,

(28)
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where the operator L is defined in (2). A fully discrete approximation of (28) follows
by combining Sect. 3 for the nonlocal part and papers [25, 27] for the local part.
Under the assumptions of this paper, the proofs of existence and convergence follow
in a similar way as here and in [25, 27]: In the degenerate case, the conclusion of
Theorem 4.1 holds for the discretization of (28). In the nondegenerate case where
a(t)a(t)T ≥ cId > 0, the solution of (28) is regular even without assuming (ν2).
Hence, in this case the conclusion of Theorem 4.3 holds for the discretization of (28).

TheWasserstein Metric d1 Versus our Metric d0

The typical setting for the FPK equations in the MFG literature seems to be the metric
space (P1(R

d), d1), that is the 1−Wasserstein spaceW1 of probability measures with
finite first moment. This is also the case in [27] where convergence results are given
for SL schemes for local nondegenerate MFGs inRd . In this paper, we cannot assume
finite first moments if we want to cover general nonlocal operators. An example is the
fractional Laplacian −(−�)

σ
2 for σ < 1, where the underlying σ -stable process only

has finite moments of order less than σ . Instead we consider the weaker metric space
(P(Rd), d0), which is just a metrization of the weak (weak-* in Cb) convergence
of probability measures (see [14,Chapter 8.3]). In this topology, we can consider
processes, probability measures and solutions of the FPK equations that do not have
any finite moments or any restrictions on the tail behavior of the corresponding Lévy
measures.

Indeed, the following lemma shows that under additional assumptions convergence
in d0 implies convergence in d1.

Lemma 4.11 If mn converges to m in (P(Rd), d0) and mn and m has uniformly
bounded (1 + δ)-moments for δ > 0, then mn → m in (P1(R

d), d1).

Convergence in P1(R
d) [55,Definition 6.8] is by definition equivalent to weak conver-

gence plus convergence of first moments, and the result follows from, e.g., Proposition
1.1 and Lemma 1.5 in [5].

We then have the following version of Theorems 4.1 and 4.3.

Corollary 4.12 Assume m0 ∈ P1+δ(R),
∫

Rd\B1
|z|1+δdν(z) < ∞ for some δ > 0, and

the assumptions of Theorems 4.1 and 4.3. Then, the statements of Theorems 4.1 and
4.3 hold if we replace (P, d0) by (P1, d1) in part (ii).

Note that the number of moments of m is determined by the number of moments of
1|z|>1ν (and m0), see, e.g., the discussion in section 2.3 in [39]. Moreover, if 1|z|>1ν

has at most α finite moments, then Lu is well defined only if u has at most order α

growth at infinity. Hence, in the nonlocal case there is “duality" between the moments
of m and the growth of u. Note that um will always be integrable which is natural
since then, e.g., Eu(Xt , t) = ∫

u(x, t)m(dx, t) is finite.
In our case, we assume no moments and have to work with bounded solutions u.
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OnMoments andWeak Compactness in Lp in the Degenerate Case

Previous results for Semi-Lagrangian schemes in the first-order and the degenerate
second-order case [24, 25] cover the case m0 ∈ P1(R) ∩ L∞(R), which means that
m0 has finite first-moments. Our results assume m0 ∈ P(R)∩ L p(R), for p ∈ (1,∞],
and hence no moment bounds and possibly unbounded m0. When p < ∞ we have
weak compactness in L1 instead of weak-* compactness in L∞.

Since our results in the degenerate case allow for L = 0, they immediately give an
extension to this P ∩ L p setting for the convergence results for first-order problems
of [24]. Moreover, the same conditions, arguments, and results easily also hold in the
local diffusive case considered in [25].

5 On the SL Scheme for the HJB Equation

We prove results for the numerical approximation of the HJB equation, including
monotonicity, consistency, and different uniform a priori stability and regularity esti-
mates. Using the “half-relaxed" limit method [12], we then show convergence in the
form of vρn ,hn [μn](tn, xn) → v[μ](t, x), where v[μ] is the (viscosity) solution of the
continuous HJB equation. Let B(Gρ) be the set of all bounded functions defined on
Gρ .

Theorem 5.1 Assume (ν0), (L1), ρ, h, r > 0, μ ∈ C([0, T ], P(Rd)), and let Sρ,h,r [μ]
denote the scheme defined in (18).

(i) (Bounded control) If φ ∈ Lip(Rd), Sρ,h,r [μ](φ, i, k) has a minimal control and
|α| ≤ K where K only depends on ‖Dxφ‖0 and the growth of L as |x | → ∞.

(ii) (Monotonicity) For all v,w ∈ B(Gρ) with v ≤ w we have,

Sρ,h,r [μ](v, i, k) ≤ Sρ,h,r [μ](w, i, k) for all i ∈ Gρ, k = 0, . . . , N − 1.

(iii) (Commutation by constant) For every c ∈ R and w ∈ B(Gρ),

Sρ,h,r [μ](w + c, i, k) = Sρ,h,r [μ](w, i, k) + c for all i ∈ Gρ, k = 0, . . . , N − 1.

Assume also (ν1) and (F2).

(iv) (Consistency) Let ρn, hn, rn
n→∞−−−→ 0 under CFL conditions ρ2

n
hn

, hn
rσ

n
= o(1), grid

points (tkn , xin ) → (t, x), and μn, μ ∈ C([0, T ]; P(Rd)) such that μn → μ.
Then, for every φ ∈ C∞

c (Rd × [0, T )),

lim
n→∞

1

hn

[
φ(tkn+1, xin ) − Sρn ,hn ,rn [μn](φ·,kn+1, in, kn)

]

= −∂tφ(t, x) − inf
α∈Rd

[
L(x, α) − Dφ · α

]− Lφ(x) − F(x, μ(t)).
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Proof (i) Since

h(α) := e−hλr

2d

d∑

m=1

(
I [φ](xi + hb̄(α) + √

hσm
r ) + I [φ](xi + hb̄(α) − √

hσm
r )
)

is Lipschitz in α (maximum linear growth at infinity), while L(x, α) is coercive (more
than linear growth at infinity) by (L1), there exists a ball BR , where R depends on the
Lipschitz constant of I [φ] and the growth of L , such that the minimizing control ᾱ of
Sρ,h,r [μ](φ, i, k) belongs to BR .
(ii) and (iii) Follows directly from the definition of the scheme.
(iv) For ease of notation, we write ρ, h, r , μ instead of ρn, hn, rn, μn . A 4th order
Taylor expansion of φ gives

φ(x + hb̄(α) ± √
hdσm

r ) = φ(x) + Dφ(x) · (hb̄(α) ± √
hdσm

r )

+ hd

2
(σm

r )T D2φ(x)σm
r ± √

d h
3
2 b(α)T D2φ(x)σm

r + h2

2
b̄(α)T D2φ(x)b̄(α)

+
∑

|β|=3

Dβφ(x)

β! (hb̄(α) ± √
hd σm

r )β +
∑

|β|=4

Dβφ(ξ±)

β! (hb̄(α) ± √
hd σm

r )β,

for some ξ± ∈ R
d . Using that b̄(α) = −α − ∫

r≤|z|≤1 zν(dz), and by (ν1)
∫

r≤|z|≤1 zν(dz) = O(r1−σ ), we get that

φ(x + hb̄(α) + √
hdσm

r ) + φ(x + hb̄(α) − √
hdσm

r ) − 2φ(x)

= −2h Dφ(x) · α − 2h
∫

r<|z|<1
Dφ(x) · zν(dz) + hd(σm

r )T · D2φ(x) · σm
r

+ O(h2r2−2σ ). (29)

We used that h2
2 b̄(α)T D2φ(x)b̄(α) is of order O(h2r2−2σ ), the 3rd order terms are

of order O(h3r3−3σ + h2r1−σ ), and the 4th order terms are of order (
√

hdσr )
4 =

O(h2r4−2σ ). Then, the error of the Taylor expansion is O(h2r2−2σ ). Using Lemma
3.1,

φ(xi ) − Sρ,h,r [μ](φ, i, k)

= φ(xi ) − inf
α

[

hF(xi , μ(tk+1))+hL(xi , α)+ e−hλr

2d

d∑

m=1

(
2φ(xi )−2h Dφ(xi ) · α

+ hd(σm
r )T D2φ(xi )σ

m
r − 2h

∫

r<|z|<1
Dφ(xi ) · zν(dz)

)

+ 1 − e−hλr

λr

∫

|z|>r
φ(xi + z)ν(dz) + O(ρ2) + O(h2r2−2σ )

]
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= hF(xi , μ(tk+1)) − inf
α

[

hL(xi , α) − he−hλr Dφ(xi ) · α

]

+ (1 − e−hλr )φ(xi )

− he−hλr
(
Lrφ(xi ) + O(r3−σ )

)
+ he−hλr

∫

r<|z|<1
Dφ(xi ) · zν(dz)

− 1 − e−hλr

λr

∫

|z|>r
φ(xi + z)ν(dz) + O(ρ2 + h2r2−2σ ). (30)

Using that
∫

|z|<r |z|2ν(dz) ≤ Kr2−σ (by (ν1)), for the small jump operatorLr (defined
in (12)) we have

|Lrφ(xi ) − e−hλrLrφ(xi )| ≤ hλr r2−σ ‖D2φ‖0. (31)

Again, as
∫

r<|z|<1 |z|ν(dz) ≤ Kr1−σ and
∫

|z|>1 ν(dz) ≤ K , for the long jump operator
Lr (defined in (12)) we have that

∣
∣
∣Lrφ(xi ) + e−hλr

∫

r<|z|<1
Dφ(xi ) · zν(dz)

− 1 − e−hλr

hλr

∫

|z|>r
(φ(xi + z) − φ(xi ))ν(dz)

∣
∣
∣

≤ K (1 − e−hλr )r1−σ ‖Dφ‖0 + K
(
1 − 1 − e−hλr

hλr

)(
r1−σ ‖Dφ‖0 + ‖φ‖0

)

≤ K
(

hλr r1−σ ‖Dφ‖0 + hλr‖φ‖0
)
. (32)

Recalling that Lφ(xi ) = Lrφ(xi ) + Lrφ(xi ), combining (30) with (31) and (32), we
find

φ(xi ) − Sρ,h,r [μ](φ, i, k) = hF(xi , μ(tk+1)) − h inf
α

[

L(xi , α) − Dφ(xi ) · α

]

− hLφ(xi )

+ O(h2λr + hr3−σ + h2λr r1−σ + ρ2 + h2r2−2σ ).

As |λr | ≤ Cr−σ , we have

φ(tk, xi ) − φ(tk+1, xi )

h
+ 1

h

(
φ(tk+1, xi ) − Sρ,h[μ](φ·,k+1, i, k)

)

= −∂tφ(tk, xi ) − Lφ(tk+1, xi ) + F(xi , μ(tk+1))

− inf
α

[

L(xi , α) − Dφ(tk+1, xi ) · α

]

+ O(h + hr−σ + r3−σ + hr1−2σ + ρ2

h
+ hr2−2σ ).

Hence, the result follows by taking the limit n → ∞ with ρ2
n

hn
, hn

rσ
n

= o(1). �
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Theorem 5.2 (Comparison) Assume μ1, μ2 ∈ C([0, T ], P(Rd)), (ν0), and (L1). Let
uρ,h[μ1] and uρ,h[μ2] be defined by the scheme (20) for μ = μ1, μ2, respectively.
Then,

‖uρ,h[μ1] − uρ,h[μ2]‖0
≤ T ‖F(·, μ1) − F(·, μ2)‖0 + ‖G(·, μ1(T )) − G(·, μ2(T ))‖0.

Proof Let c±
m (α) := hb̄(α) ± √

hdσm
r , and note that

I [u·,k+1[μ1]](x) − I [u·,k+1[μ2]](x) =
∑

p∈Zd

βp(x)(u p,k+1[μ1] − u p,k+1[μ2]).

(33)

By (18) and the definition of inf, for any ε > 0, there is αε ∈ R
d such that

ui,k[μ2] ≥ hF(xi , μ2(tk)) + hL(xi , αε) + e−hλr

2d

d∑

m=1

[
I [u·,k+1[μ2]](xi + c+

m (αε))

+ I [u·,k+1[μ2]](xi + c−
m (αε))

]
+ 1 − e−hλr

λr

∫

|z|≥r
I [u·,k+1[μ2]](xi +z)ν(dz)−ε.

(34)

We then find, using (18), (33), (34),

ui,k[μ1] − ui,k[μ2] ≤ h
(
F(xi , μ1(tk)) − F(xi , μ2(tk)

)+ h(L(xi , αε) − L(xi , αε))

+
∑

p∈Zd

[
e−hλr

2d

d∑

m=1

(
βp(c

+
m (αε))+βp(c

−
m (αε))

)(
u p+i,k+1[μ1] − u p+i,k+1[μ2]

)

+ 1 − e−hλr

λr

∫

|z|≥r
βp(z)

(
u p+i,k+1[μ1] − u p+i,k+1[μ2]

)
ν(dz)

]

+ ε

≤ h‖F(·, μ1) − F(·, μ2)‖0 + c sup
i

|ui,k+1 − ũi,k+1| + ε,

where since
∑

p βp ≡ 1,

c =e−hλr

2d

d∑

m=1

∑

p∈Zd

(
βp(c

+
m (αε)) + βp(c

−
i (αε))

)

+ 1 − e−hλr

λr

∫

|z|≥r

∑

p∈Zd

βp(z)ν(dz) = 1.
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Since |ui,N [μ1] − ui,N [μ2]| ≤ ‖G(·, μ1(tN )) − G(·, μ2(tN ))‖0, a symmetry and
iteration argument shows that

∣
∣ui,k[μ1] − ui,k[μ2]

∣
∣

≤ (N − k)h‖F(·, μ1) − F(·, μ2)‖0 + ‖G(·, μ1(tN )) − G(·, μ2(tN ))‖0.

The result then follows from interpolation and T = Nh. �

The SL scheme is very stable in the sense that we have uniform in h, ρ, μ bound-

edness, Lipschitz continuity, and semi-concavity of the solutions ui,k .

Lemma 5.3 Let μ ∈ C([0, T ], P(Rd)) and ui,k[μ] be defined by the scheme (18).

(a) (Lipschitz continuity) Assume (ν0), (L2), and (F2). Then,

|ui,k − u j,k |
|xi − x j | ≤ (L F + L L)(T − tk) + LG , i, j ∈ Z

d , k ∈ {0, 1, . . . N }.

(b) (Semi-concavity) Assume (ν0) , (L3) and (F3). Then

ui+ j,k −2ui,k +ui− j,k

|x j |2 ≤(cF + cL)(T − tk)+cG , i, j ∈ Z
d , k ∈ {0, 1, . . . N .

(c) (Uniformly bounded) Assume (ν0), (L0)–(L2), (F1), and (F2). Then,

|ui,k | ≤ (CF + CL(K ))(T − tk) + CG , i, j ∈ Z
d , k ∈ {0, 1, . . . N },

where K is defined in Theorem 5.1 (i).

Proof (a) Note that since βm(x j + x) = βm− j (x),

I [u·,k+1](x j + x) − I [u·,k+1](xi + x) =
∑

p∈Zd

βp(x)(u p+ j,k+1 − u p+i,k+1). (35)

Then, by (L2), (F2), and similar computations as in Theorem 5.2, we find that

u j,k − ui,k ≤ h(L f + L L)|xi − x j | + sup
j

|ui,k+1 − u j,k+1| + ε,

Since |ui,N+1 − u j,N+1| = |G(xi , m(tN+1)) − G(x j , m(tN+1))| ≤ LG |xi − x j | by
(F2), the result follows by iteration.
(b) Similar to (35) we see

I [u·,k+1](xi+ j + x) − 2I [u·,k+1](xi + x) + I [u·,k+1](xi− j + x)

=
∑

p∈Zd

βp(xi + x)(u p+ j,k+1 − 2u p,k+1 + u p− j,k+1).
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Then, by (L3), (F3), and similar computations as in Theorem 5.2, we find that

ui+ j,k − 2ui,k + ui− j,k ≤ (cL + cF )h|x j |2 + sup
i

(ui+ j,k+1 − 2ui,k+1 + ui− j,k+1).

Since ui+ j,N − 2ui,N + ui− j,N ≤ cG |x j |2 by (F3), the result follows by iteration.

(c) By part (a) and Theorem 5.1 (i), |α| ≤ K , and then a direct calculation shows that

− sup
|α|≤K

(
h(|F |+|L|) + sup

j
|u j,k+1|

)
≤ ui,k ≤ sup

|α|≤K

(
h(|F | + |L|)+sup

j
|u j,k+1|

)
.

The result follows from (L1) and (F1). �

Theorem 5.4 (Convergence of the HJB scheme) Assume (ν0), (ν1), (F1), (F2),

(L2), ρn, hn, rn
n→∞−−−→ 0 under CFL conditions ρ2

n
hn

, hn
rσ

n
= o(1), μn → μ in

C([0, T ], P(Rd)), and uρn ,hn [μn] is the solution of the scheme (18) defined by (20).
Then, there is a continuous bounded function u[μ] such that uρn ,hn [μn] → u[μ]
locally uniformly in R

d × [0, T ], and u[μ] is the viscosity solution of the HJB equa-
tion in (1) for m = μ.

Proof The result follows from the Barles–Perthame–Souganidis relaxed limit method
[12], using the monotonicity, consistency, and L∞-stability properties of the scheme
(cf. Theorem 5.1 (ii), (iii), and Lemma 5.3 (c)), and the strong comparison principle
for the HJB equation in Proposition 2.5 (a).

We refer to the proof of [24,Theorem 3.3] for a standard but more detailed proof in
a similar case. �


We recall that the continuous extensions uρ,h[μ](t, x) and uε
ρ,h[μ](t, x) are defined

in (20) and (22), respectively. The results of Lemma 5.3 transfer to uε
ρ,h[μ](t, x).

Lemma 5.5 Let μ ∈ C([0, T ], P(Rd)) and uε
ρ,h[μ] be given by (22).

(a) (Lipschitz continuity) Assume (ν0), (L2) and (F2). Then,

∣
∣uε

ρ,h[μ](t, x) − uε
ρ,h[μ](t, y)

∣
∣ ≤ ((L L + L F )T + LG)|x − y|.

(b) (Approximate semiconcavity) Assume (ν0), (L2),(L3), (F2), and (F3). Then, there
exists a constant c1 > 0, independent of ρ, h, ε and μ, such that

uε
ρ,h[μ](t, x + y) − 2uε

ρ,h[μ](t, x) + uε
ρ,h[μ](t, x − y)

≤ c1(|y|2 + ρ2 + ρ2

ε
), and

〈Duε
ρ,h[μ](t, y) − Duε

ρ,h[μ](t, x), y − x〉 ≤ c1
(
|x − y|2 + ρ2

ε2

)
.
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(c) Assume d = 1, (ν0), (L3), and (F3). Then, there exists a constant c2 > 0, inde-
pendent of ρ, h, ε and μ, such that for each i, j ∈ Z

d and k ∈ Nh

〈Duε
ρ,h[μ](tk, x j ) − Duε

ρ,h[μ](tk, xi ), x j − xi 〉 ≤ c2|x j − xi |2.

Proof (a) Since ui,k satisfies the discrete Lipschitz bound of Lemma 5.3 (a), uρ,h[μ] is
Lipschitz with same Lipschitz constant as ui,k by properties of linear interpolation,
and uε

ρ,h[μ] is Lipschitz with same constant as uρ,h[μ] by properties of mollifiers
(Lemma 3.2).

(b) For i, j ∈ Z
d , we have by Lemma 5.3 (b), ui+ j +ui− j −2ui ≤ c|x j |2.Multiplying

both sides by βi (x), and summing over Zd , we get

uρ,h(x + x j ) + uρ,h(x − x j ) − 2uρ,h(x) ≤ c|x j |2.

Letting x → x − z, multiplying by a positive mollifier ρε(z) and integrating, we
get

uε
ρ,h(x + x j ) + uε

ρ,h(x − x j ) − 2uε
ρ,h(x) ≤ c|x j |2.

We multiply both sides with β j (y), and sum over Zd ,

I [uε
ρ,h](x + y) + I [uε

ρ,h](x − y) − 2I [uε
ρ,h](x) ≤ cI [| · |2](y) ≤ c(|y|2 + ρ2).

ByLemma 3.2 and part (a), we have that |I [uε
ρ,h](ξ)−uε

ρ,h(ξ)| ≤ K‖D2uε
ρ,h‖0ρ2

≤ K ρ2

ε
, where the Lipschitz bound K depends on the constants in (L2) and (F2).

Thus,

uε
ρ,h(x + y) + uε

ρ,h(x − y) − 2uε
ρ,h(x) ≤ c(|y|2 + ρ2 + ρ2

ε
).

The second part of (b) then follows as in [3,Remark 6].
(c) The proof is given in [24,Lemma 3.6]. �


Under our assumptions, the continuous HJB equation has a (viscosity) solution
u(t) ∈ W 1,∞(Rd), that is, the derivative exists almost everywhere [39,Theorem 4.3].
We have the following result for Duε

ρ,h[μ].

Theorem 5.6 Assume (ν0), (ν1), (L1)–(L2), (F1)–(F2), ρn, hn, rn, εn
n→∞−−−→ 0 under

CFL conditions ρ2
n

hn
, hn

rσ
n

= o(1), and μn → μ in C([0, T ], P(Rd)). Let uεn
ρn ,hn

[μn] be
defined by (22) and u[μ] the viscosity solution of the HJB equation in (1) for m = μ.
Then

(i) uεn
ρn ,hn

[μn] → u[μ] locally uniformly,

(ii) Assume also (L3), (F3) and ρn
εn

= o(1). Then Duεn
ρn ,hn

[μn](t, x) → Du[μ](t, x)

whenever Du(t, x) exists, that is, the convergence is almost everywhere.
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(iii) Assume also (L3), (F3), ρn
εn

= o(1), and (U). Then, Duεn
ρn ,hn

[μn] → Du[μ]
locally uniformly.

Proof (i) This follows from the convergence result Theorem 5.4 and Lemma 3.2.
(ii) and (iii). We refer to [24,Theorem 3.5] and [27,Proposition 5.1]. Estimates from

Lemma 5.5 are needed. For completeness, we give the proof in Appendix A. �


6 On the Dual SL Scheme for the FPK Equation

In this section, we establish more properties of the discrete FPK equation (24), includ-
ing tightness, equicontinuity in time, L1-stability of solutions with respect to μ, and
L p-bounds in dimension d = 1. To prove tightness, we will use a result from [33].

Proposition 6.1 Assume (ν0) and (M). Then, there exists a function 0 ≤ � ∈ C2(Rd)

with ‖D�‖0, ‖D2�‖0 < ∞, and lim|x |→∞ �(x) = ∞, such that

sup
x∈Rd

∣
∣
∣

∫

|z|>1

(
�(x + z) − �(z)

)
ν(dz)

∣
∣
∣ < ∞ and

∫

Rd
�(x) m0(dx) < ∞. (36)

Proof We use [33,Lemma 4.9] on the family of measures {ν1, m0}, where ν1 is defined
in (11), to get a function �(x) = V0(

√
1 + |x |2) such that V0 : [0,∞) → [0,∞) is a

non-decreasing sub-additive function, ‖V ′
0‖0, ‖V ′′

0 ‖0 < ∞, lim
x→∞ V0(x) = ∞, and

∫

Rd
�(x) μ(dx) < ∞ for μ ∈ {ν1, m0}.

We immediately get the result except for the first part of (36). But this estimate follows
from sub-additivity and ν1-integrability of V0, see [33,Lemma 4.13 (ii)]. �


Remark 6.2 (a) If dν

dz
≤ C

|z|d+σ1
for |z| > 1 and

∫

Rd |x |σ2 m0(dx) < ∞ for σ1, σ2 > 0,

then�(z) = log(
√
1 + |z|2) is a possible explicit choice for the function inProposition

6.1.
(b) Since � ∈ C2(Rd), the first part of (36) is equivalent to ‖L�‖0 < ∞ (see
[33,Lemma 4.13 (ii)]).

Lemma 6.3 Assume {μα}α∈A ⊂ P(Rd) and there exists a function 0 ≤ ψ ∈ C(Rd)

such that lim|x |→∞ ψ(x) = ∞ and supα

∫

Rd ψ(x)μα(dx) ≤ C. Then, {μα}α is tight.

This result is classical and can be proved in a similar way as the Chebyshev inequality.

Theorem 6.4 (Tightness) Assume (ν0), (ν1), (L1)–(L2), (F2), (H1), (M), the CFL

condition ρ2

h , hr1−2σ = O(1), μ ∈ C([0, T ], P(Rd)), and mε
ρ,h[μ] is defined by

(26). Take � as in Proposition 6.1. Then, there exists C > 0, independent of ρ, h, ε
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and μ, such that

∫

Rd
�(x) dmε

ρ,h[μ](t) ≤ C for any t ∈ [0, T ].

Proof Essentially we start by multiplying the scheme (24) by � and integrating in
space. By the definition of mε

ρ,h = mε
ρ,h[μ] in (26) and (24), we find that

∫

Rd
�(x)dmε

ρ,h(tk+1) = 1

ρd

∑

i∈Zd

mi,k+1

∫

Ei

�(x)dx

=
∑

i∈Zd

1

ρd

∫

Ei

�(x)dx
∑

j

m j,k Bρ,h,r [Hp(·, Duε
ρ,h)](i, j, k).

By the definition of Bρ,h,r in (25) and interchanging the order of summation and
integration, we have

∫

Rd
�(x)dmε

ρ,h(tk+1)

=
∑

j∈Zd

m j,k

ρd

[
1 − e−λr h

λr

∫

|z|>r

∑

i∈Zd

∫

Ei

�(x)βi (x j + z)dx ν(dz)

+ e−λr h

2d

d∑

p=1

∑

i∈Zd

∫

Ei

�(x)
(
βi (�

ε,+
j,k,p) + βi (�

ε,−
j,k,p)

)
dx

]

.

Since � ∈ C2(Rd), by properties of midpoint approximation and linear/multilinear
interpolation we have

∣
∣ 1
ρd

∫

Ei
�(x)dx − �(xi )

∣
∣ + ∣

∣�(x) − ∑
i∈Zd βi (x)�(xi )

∣
∣ ≤

O(ρ2). Therefore

∫

Rd
�(x)dmε

ρ,h(tk+1) ≤
∑

j∈Zd

m j,k

[
e−λr h

2d

d∑

p=1

(
�
(
�

ε,+
j,k,p

)+ �
(
�

ε,−
j,k,p

))

+ 1 − e−λr h

λr

∫

|z|>r
�(x j + z) ν(dz)

]

+ O(ρ2). (37)

We estimate the terms on the right hand side. Let �ε,±
j,k,p = x j ± a±

h, j where

a±
h, j = h

(
Dp H

(
x j , Duε

ρ,h(tk, x j )
)+ Bσ

r

)
± √

hσ
p

r . (38)

By the fundamental theorem of Calculus,

�(x j − a+
h, j ) + �(x j − a−

h, j ) = 2�(x j ) − (a+
h, j + a−

h, j ) · D�(x j ) + E1 (39)
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where a+
h, j + a−

h, j = 2h
(
Dp H

(
x j , Duε

ρ,h(tk, x j )
)+ Bσ

r

)
and

E1 = −
∫ 1

0

[
a+

h, j · (D�(x j − ta+
h, j ) − D�(x j )

)

+ a−
h, j · (D�(x j − ta−

h, j ) − D�(x j )
)]
dt .

By Lemma 5.5 (a) and (H1), we find that ‖Dp H(·, Duε
ρ,h)‖0 ≤ CR with R = (L L +

L F )T + LG + 1, and then that

|E1| ≤ ‖D2�‖0(|a+
h, j |2 + |a−

h, j |2) ≤ 4‖D2�‖0
(
h2(C2

R + |Bσ
r |2) + h|σ p

r |2).

To estimate the nonlocal term, we write

∫

|z|>r
�(x j + z) ν(dz) =

∫

|z|>1
�(x j + z)ν(dz)

+
∫

r<|z|<1

{
�(x j ) + z · D�(x j ) +

∫ 1

0
z ·
[

D�(x j + t z) − D�(x j )
]
dt
}

ν(dz)

≤
∣
∣
∣

∫

|z|>1

(
�(x j + z) − �(x j )

)
ν(dz)

∣
∣
∣+ λr�(x j ) + Bσ

r · D�(x j )

+ ‖D2�‖0
∫

r<|z|<1
|z|2ν(dz)

≤ λr�(x j ) + Bσ
r · D�(x j ) + E2,

where E2 is finite and independent of ρ, h, ε by Proposition 6.1 and
∫

|z|<1 |z|2ν(dz) <

∞. Going back to (37) and using the above estimates then leads to

∫

Rd
�(x)dmε

ρ,h(tk+1)

≤
∑

j∈Zd

m j,k

[
e−λr h

2d

d∑

p=1

(
2�(x j )−2h

[
Dp H

(
x j , Duε

ρ,h(tk, x j )
)+Bσ

r

] · D�(x j )

+ |E1|
)

+ 1 − e−λr h

λr

(
λr�(x j ) + Bσ

r · D�(x j ) + E2

)]

+ Cρ2

≤
∑

j∈Zd

m j,k �(x j ) + C
(

h2λr |Bσ
r | + h2|Bσ

r |2 + h + ρ2
)
,

where we used | − he−λr h + 1−e−λr h

λr
| ≤ 3

2λr h2 and 1−e−λr h

λr
≤ h to get the last

inequality.
With Ak+1 = ∫

Rd �(x)d mε
ρ,h(tk+1), the above estimate becomes Ak+1 ≤ Ak + E

where E = C(λr h2|Bσ
r |+h2|Bσ

r |2+h+ρ2). By iteration, |Bσ
r |2 ≤ λr |Bσ

r | ≤ Cr1−2σ
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(by (ν0), (ν1)), and k ≤ N ≤ C
h , we find that

Ak+1 ≤ A0 + (k + 1)E ≤ A0 + C
(

hr1−2σ + 1 + ρ2

h

)
. (40)

By assumption ρ2

h , hr1−2σ = O(1), and by Proposition 6.1, A0 = ∫

Rd �(x)d m0 <

∞. Therefore

∫

Rd
�(x)dmε

ρ,h(tk) ≤ C for k = 0, 1, . . . , N ,

for some constant C > 0 independent of ρ, h, ε, μ, and hence by (26) the result
follows for t ∈ [0, T ]. �


Theorem 6.5 (Equicontinuity in time) Assume (ν0), (ν1), (L1)–(L2), (F2), (H1), (M),

μ ∈ C([0, T ], P(Rd)), and mε
ρ,h[μ] is defined by (26). Let ρ2

h , h
rσ = O(1) if σ ∈

(0, 1), or ρ2

h , hr1−2σ = O(1) if σ ∈ (1, 2). Then, there exists a constant C0 > 0,
independent of ρ, h, ε and μ, such that for any t1, t2 ∈ [0, T ],

d0(m
ε
ρ,h[μ](t1), mε

ρ,h[μ](t2)) ≤ C0
√|t1 − t2|.

Proof We start by the case σ > 1. For δ > 0, let φδ := φ ∗ ρδ for ρδ defined just
before Lemma 3.2. With mε

ρ,h = mε
ρ,h[μ] we first note that

d0(m
ε
ρ,h(t1), mε

ρ,h(t2)) = sup
φ∈Lip1,1

∫

Rd
φ(x)(mε

ρ,h(t1) − mε
ρ,h(t2))dx

= sup
φ∈Lip1,1

{ ∫

Rd
(φ − φδ)(m

ε
ρ,h(t1) − mε

ρ,h(t2))dx

+
∫

Rd
φδ (mε

ρ,h(t1) − mε
ρ,h(t2))dx

}

≤ 2δ‖Dφ‖0 + sup
φ∈Lip1,1

∫

Rd
φδ (mε

ρ,h(t1) − mε
ρ,h(t2))dx, (41)

where Lemma 3.2 was used to estimate the φ − φδ term and
∫

mε
ρ,hdx =

1. Since mε
ρ,h and

∫

Rd φδ(x)mε
ρ,h(t, x)dx are affine on each interval [tk, tk+1],

∫

Rd φδ(x) mε
ρ,h(·, x)dx ∈ W 1,∞[0, T ] and

∥
∥
∥
d

dt

∫

Rd
φδ(x) mε

ρ,h(·, x)dx
∥
∥
∥
0

≤ sup
k

|Ik |.
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where Ik = ∫

Rd φδ(x)
mε

ρ,h(tk+1,x)−mε
ρ,h(tk ,x)

h dx . It follows that

∫

Rd
φδ (mε

ρ,h(t1, x) − mε
ρ,h(t2, x))dx ≤ |t1 − t2| sup

k
|Ik |. (42)

Let us estimate Ik . By (26), (24), (25), the midpoint quadrature approximation error
bound, and the linear/multi-linear interpolation error bound, we have

Ik = 1

h

∑

i

1

ρd

∫

Ei

φδ(x) dx[mi,k+1 − mi,k]

= 1

hρd

∑

j,i

( ∫

Ei

φδ(x)dx
)[

m j,k Bρ,h,r [Hp(·, Duε
ρ,h)](i, j, k) − mi,k δi, j

]

= 1

h

∑

j

m j,k

[∑

i

φδ(xi )Bρ,h,r [Hp(·, Duε
ρ,h)](i, j, k)−φδ(x j )+C‖D2φδ‖0ρ2

]

= 1

h

∑

j

m j,k

[e−λr h

2d

( d∑

p=1

φδ(�
ε,+
j,k,p) + φδ(�

ε,−
j,k,p) − 2φδ(x j )

)

+ 1 − e−λr h

λr

∫

|z|>r

(
φδ(x j + z) − φδ(x j )

)
ν(dz) + C‖D2φδ‖0ρ2

]
.

Since �
ε,±
j,k,p = x j + a±

h, j by (38), a second-order Taylor’s expansion gives us

∣
∣Ik
∣
∣ ≤ 1

h

∑

j

m j,k

[

e−λr h
(
(−h Dp H

(
x j , Duε

ρ,h[μ](tk, x j )
)− h Bσ

r ) · Dφδ(x j )

+ ‖D2φδ‖0
2d

d∑

p=1

(|a+
h, j |2 + |a−

h, j |2
)+ 1 − e−λr h

λr

(
Bσ

r · Dφδ(x j )

+ ‖D2φδ‖0
∫

r<|z|<1
|z|2ν(dz) + 2‖φδ‖0

∫

|z|>1
ν(dz) + C‖D2φδ‖0ρ2

)]

≤ 1

h

[(
h‖Dp H(·, Duε

ρ,h)‖0 + h2λr |Bσ
r |
)
‖Dφδ‖0 + c3h‖φδ‖0

+ c1
(

h2‖Dp H(·, Duε
ρ,h)‖2+h2|Bσ

r |2+h|σr |2+h+ρ2
)
‖D2φδ‖0

]∑

j

m j,k .

The above inequality follows since ( 1−e−λr h

λr
−he−hλr ) ≤ h2λr (used for the Bσ

r · Dφδ-

terms), and
∫

r<|z|<1 |z|2ν(dz)+∫|z|>1 ν(dz) ≤ C independently of r by (ν0) and (ν1).
By Lemma 5.5 (a) and (H1), ‖Dp H(·, Duε

ρ,h)‖0 ≤ CR with R = (L L +L F )T +LG +
1. Since

∑
m j,k = 1, φ ∈ Lip1,1, ‖D2φδ‖0 ≤ ‖Dφ‖0

δ
, and |Bσ

r |2 ≤ λr |Bσ
r | ≤ Kr1−2σ
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(by (ν0), (ν1)), we get that

|Ik | ≤ C(1 + hr1−2σ ) + C
(
1 + h + hr1−2σ + ρ2

h

)1

δ
.

To conclude the proof in the case σ > 1, we go back to (41) and (42). In view of

the above estimate on Ik and the assumption that ρ2

h , hr1−2σ = O(1), we find that

d0(m
ε
ρ,h(t1), mε

ρ,h(t2)) ≤ 2δ + C |t1 − t2|
(
1 + 1

δ

)
.

Finally taking δ = √|t1 − t2|, we get d0(mε
ρ,h(t1), mε

ρ,h(t2)) ≤ C
√|t1 − t2|.

When σ < 1, we find that |Bσ
r | ≤ C and hence that

|Ik | ≤ C(1 + hr−σ ) + C
(
1 + h + hr−σ + ρ2

h

)1

δ
.

By assumption hr−σ + ρ2

h = O(1), so again we find that

d0(m
ε
ρ,h(t1), mε

ρ,h(t2)) ≤ 2δ + C |t1 − t2|
(
1 + 1

δ

)
,

and can conclude as before. �

We also need a L1-stability result for mε

ρ,h[μ] with respect to variations in μ.

Lemma 6.6 (L1-stability) Assume (ν0), (H1), and mε
ρ,h[μ] is defined by (26). Then

for μ1, μ2 ∈ C([0, T ], P(Rd)),

sup
t∈[0,T ]

‖mε
ρ,h[μ1](t, ·) − mε

ρ,h[μ2](t, ·)‖L1(Rd )

≤ cK T

ρ
e−hλr

∥
∥Dp H(·, Duε

ρ,h[μ1]) − Dp H(·, Duε
ρ,h[μ2])

∥
∥
0.

Proof Let α = Dp H(·, Duε
ρ,h[μ1]), α̃ = Dp H(·, Duε

ρ,h[μ2]), m j,k = m j,k[μ1],
and m̃ j,k = m j,k[μ2]. By (25) and Lemma 3.3, Bρ,h,r [α](i, j, k) ≥ 0 and m j,k ≥ 0,
so that

∑

i

∣
∣mi,k+1 − m̃i,k+1

∣
∣ =

∑

i

∣
∣
∑

j

(m j,k Bρ,h,r [α](i, j, k) − m̃ j,k Bρ,h,r [α̃](i, j, k))
∣
∣

≤
∑

i

∑

j

(
m j,k

∣
∣Bρ,h,r [α](i, j, k) − Bρ,h,r [α̃](i, j, k)

∣
∣

+ ∣∣m j,k − m̃ j,k
∣
∣Bρ,h,r [α̃](i, j, k)

)
.
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Since
∑

i Bρ,h,r [α̃](i, j, k) = 1 (follows from
∑

i βi = 1 and (25)),

∑

i

∑

j

∣
∣m j,k − m̃ j,k

∣
∣Bρ,h,r [α̃](i, j, k) =

∑

j

∣
∣m j,k − m̃ j,k

∣
∣.

Moreover, since only a finite number Kd of βi ’s are nonzero at any given point, βi

is Lipschitz with constant c
ρ
, and

∑
j m j,k = 1 by Lemma 3.3, by the definitions of

Bρ,h,r (25) and �±
j,k,p (23),

∑

i

∑

j

m j,k
∣
∣Bρ,h,r [α](i, j, k) − Bρ,h,r [α̃](i, j, k)

∣
∣

≤
∑

j

m j,k
e−hλr

2d

d∑

p=1

∑

i

∣
∣βi (�

+
j,k,p[μ1]) − βi (�

+
j,k,p[μ2])

+ βi (�
−
j,k,p[μ1]) − βi (�

−
j,k,p[μ2])

∣
∣ ≤ Kd

che−hλr

ρ
‖α − α̃‖0.

An iteration then shows that

∑

i

∣
∣mi,k+1 − m̃i,k+1

∣
∣ ≤

∑

i

∣
∣mi,0 − m̃i,0

∣
∣+ cKd T

ρ
e−hλr ‖α − α̃‖0.

Since mi,0 = m̃i,0 = ∫

Ei
m0 dx , the result follows by interpolation. �


We end this section by a uniform L p-bound on mε
ρ,h in dimension d = 1.

Theorem 6.7 (L p bounds) Assume d = 1, (ν0), (ν1), (L1), (L3), (F3), (H2), (M’),
μ ∈ C([0, T ], P(Rd)), and mε

ρ,h[μ] be defined by (26). Then, mε
ρ,h[μ] ∈ L p(R) and

there exists a constant K > 0 independent of ε, h, ρ and μ such that

‖mε
ρ,h[μ](·, t)‖L p(R) ≤ eK T ‖m0‖L p(R).

To prove the theorem, we need few technical lemmas.

Lemma 6.8 Assume d = 1, (ν0), (ν1), (L1), (L3), (F3), and (H2). There exists a
constant c0 > 0 independent of ρ, h, ε, μ such that

(
Dp H

(
x j , Duε

ρ,h(tk, x j )
)− Dp H

(
xi , Duε

ρ,h(tk, xi )
))

(x j − xi ) ≤ c0|x j − xi |2.

Proof By (L1) and (H2) for R = ((L F + L L)T + LG) + 1, we have

(
Dp H

(
x j , Duε

ρ,h(tk, x j )
)− Dp H

(
xi , Duε

ρ,h(tk, xi )
))

(x j − xi )

= (x j − xi )

∫ 1

0

d

dt

(
Dp H

(
x j , t Duε

ρ,h(tk, x j ) + (1 − t)Duε
ρ,h(tk, xi )

))
dt
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+ (x j − xi )
(

Dp H
(
x j , Duε

ρ,h(tk, xi )
)− Dp H

(
xi , Duε

ρ,h(tk, xi )
))

= (x j − xi )

∫ 1

0
Dpp H

(
x j , t Duε

ρ,h(tk, x j )

+ (1 − t)Duε
ρ,h(tk, xi )

)(
Duε

ρ,h(tk, x j ) − Duε
ρ,h(tk, xi )

)
dt

+ (x j − xi )
(

Dp H
(
x j , Duε

ρ,h(tk, xi )
)− Dp H

(
xi , Duε

ρ,h(tk, xi )
))

≤ CR c2|x j − xi |2 + CR |x j − xi |2,
where the last inequality follows from convexity of H (since L is convex by (L1)),
semiconcavity of uε

ρ,h in Lemma 5.5 (c), and regularity of H in (H2). �

Lemma 6.9 Assume d = 1, (ν0), (ν1), (L1), (L3), (F3), (H2), μ ∈ C([0, T ], P(Rd)),
and let �

ε,±
j,k [μ] be defined in (23). There exists a constant K0 > 0 independent of

ε, ρ, h, μ, such that for all i ∈ Z and k = Nh,

max
{∑

j∈Z
βi (�

ε,+
j,k )[μ],

∑

j∈Z
βi (�

ε,−
j,k )[μ]

}
≤ 1 + K0h.

The proof of this result is similar to the proof of [24,Lemma 3.8]—a slightly expanded
proof is given in “Appendix B.” A similar result holds for the integral-term:

Lemma 6.10 Assume d = 1. Then, we have

1

λr

∑

j∈Z

∫

|z|>r
βi (x j + z)ν(dz) = 1.

Proof By (11) and properties of the basis functions β j , we have

1

λr

∑

j∈Z

∫

|z|>r
βi (x j + z)ν(dz) = 1

λr

∫

|z|>r

∑

j∈Z
βi− j (z)ν(dz) = 1

λr

∫

|z|>r
ν(dz) = 1.

�

Proof of Theorem 6.7 By definition of mε

ρ,h in (26) and the scheme (24),

∫

R

(mε
ρ,h(x, tk+1))

pdx =
∫

R

( 1

ρ

∑

i

mi,k+11Ei (x)
)p

dx

= 1

ρ p−1

∑

i∈Z
(mi,k+1)

p = 1

ρ p−1

∑

i

(∑

j

m j,k Bρ,h,r (i, j, k)
)p

,

where Bρ,h,r = Bρ,h,r [Hp(·, Duε
ρ,h[μ])] is defined in (25). By Jensen’s inequality,

we have

∑

i∈Z

(∑

j

m j,k Bρ,h,r (i, j, k)
)p
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≤
∑

i∈Z

(∑

p∈Z
Bρ,h,r (i, p, k)

)p−1(∑

j

(
m j,k

)p Bρ,h,r (i, j, k)
)
,

and by Lemmas 6.9 and 6.10,

∑

p∈Z
Bρ,h,r (i, p, k) ≤ 1 + K0h,

where K0 is independent of i, ρ, h, ε and μ. Since
∑

i Bρ,h,r (i, p, k) = 1 (follows
from

∑
i βi = 1), we find that

∑

i∈Z
(mi,k+1)

p ≤ (1 + K0h)p−1
∑

j

(
m j,k

)p ∑

i

Bρ,h,r (i, j, k)

≤ ρ p−1‖mε
ρ,h(tk, ·)‖p

L p(R)
(1 + K0h)p−1.

By iteration and ‖mε
ρ,h(·, t0)‖L p = ‖m0‖L p , ‖mε

ρ,h(tk+1, ·)‖L p ≤ eK0T (1− 1
p )‖m0‖L p ,

and the result follows for p ∈ [1,∞).
The proof of p = ∞ is simpler, and in view of Lemmas 6.9 and 6.10, the proof

follows as in [25] for second-order case. �


7 Proof of Proposition 3.4, Theorems 4.1 and 4.3

7.1 Proof of Proposition 3.4

Theproof is an adaptation of theSchauder fixed-point argument used to prove existence
for MFGs. We will use a direct consequence of Theorems 6.4 and 6.5:

Corollary 7.1 Assume (ν0),(ν1), (L1)–(L2), (H1), (F2), (M), � is given by Proposition
6.1, and mε

ρ,h[μ] is defined by (26). Then, there is Cρ,h,ε > 0, such that for any

μ ∈ C([0, T ], P(Rd)) and t, s ∈ [0, T ],
∫

Rd
�(x) dmε

ρ,h[μ](t) + d0(mε
ρ,h[μ](t), mε

ρ,h[μ](s))√|t − s| ≤ Cρ,h,ε .

The point is that ρ, h, ε are fixed in this result.

Proof of Proposition 3.4 Let

C :=
{
μ ∈ C(0, T ; P(Rd)) : μ(0) = m0,

sup
t,s∈[0,T ]

[ ∫

Rd
ψ(x)dμ(t, x) + d0(μ(t), μ(s))√|t − s|

]
≤ Cρ,h,ε

}
,

where Cρ,h,ε is defined in Corollary 7.1. Forμ ∈ C, let uρ,h[μ] be solution of (18) and
uε

ρ,h[μ] defined by (22). Then, mε
ρ,h = S(μ) is defined to the corresponding solution
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of (24). Note that a fixed point of S will give a solution (u, m) of the scheme (27). We
now conclude the proof by applying Schauder’s fixed-point theorem since:

1. (C is a convex, closed, compact set). It is a convex and closed by standard
arguments and compact by the Prokhorov and Arzelà–Ascoli theorems.

2. (S is a self-map on C). The map S maps C into itself by Corollary 7.1 (tightness
and equicontinuity), and Lemma 3.3 (positivity and mass preservation).

3. (S is continuous). Let μn → μ in C. By Theorem 5.2 (comparison) and (F2),

‖uρ,h[μn] − uρ,h[μ]‖0
≤ T sup

t,x
|F(x, μn(t)) − F(x, μ(t))| + sup

x
|G(x, μn(T )) − G(x, μ(T ))|

≤ T L F sup
t

d0(μn(t), μ(t)) + LG d0(μn(T ), μ(T )) → 0.

Then, supi

∣
∣ ui,k [μn ]−ui− j,k [μn ]

ρ
− ui,k [μ]−ui− j,k [μ]

ρ

∣
∣ → 0 uniformly for |i − j | = 1,

‖Duε
ρ,h[μn] − Duε

ρ,h[μ]‖0 → 0, and finally by Lemma 6.6,

sup
t∈[0,T ]

‖mε
ρ,h[μn](t, ·) − mε

ρ,h[μ](t, ·)‖L1(Rd )

≤ cK T

ρ
e−hλr ‖Duε

ρ,h[μn] − Duε
ρ,h[μ]‖0 → 0.

Hence, S is continuous. �


7.2 Proof of the Convergence: Theorems 4.1 and 4.3

The main structure of the proofs is similar, so we present the proofs together. We
proceed by several steps.

Step 1. (Compactness ofmεn
ρn ,hn

) In view of Theorems 6.4 and 6.5,mε
ρ,h is precompact

in C([0, T ], P(Rd)) by the Prokhorov and Arzelà–Ascoli Theorem. Hence, there
exists a subsequence {mεn

ρn ,hn
} and m in C([0, T ], P(Rd)) such that

mεn
ρn ,hn

→ m in C([0, T ], P(Rd)).

This proves Theorem 4.3 (a) (ii) and the first part of Theorem 4.1 (a) (ii).
If (M’) holds with p = ∞, then Theorem 6.7 and Helly’s weak ∗ compactness

theorem imply that {mε
ρ,h} is weak ∗ precompact in L∞([0, T ] × R) and there is a

subsequence {mεn
ρn ,hn

} and function m such that mεn
ρn ,hn

∗
⇀m in L∞([0, T ]×R). If (M’)

holds with p ∈ (1,∞), then {mε
ρ,h} is equi-integrable in [0, T ] ×R by Theorems 6.4

and 6.7 and de la Vallée Poussin’s theorem. By Dunford–Pettis’ theorem, it is then
weakly precompact in L1([0, T ] × R) and there exists a subsequence {mεn

ρn ,hn
} and

functionm such thatmεn
ρn ,hn

⇀m in L1([0, T ]×R). The second part of Theorem 4.1 (a)
(ii) follows.
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Step 2. (Compactness and limit points for uρn ,hn ) Part (i) and limit points u as viscosity
solutions in part (iii) of both Theorems 4.1 and 4.3 follow from step 1 and Theorem
5.6 (i).

Step 3. (Consistency for mεn
ρn ,hn

) Let (u, m) be a limit point of {(uεn
ρn ,hn

, mεn
ρn ,hn

)}n .
Then by step 2, u is a viscosity solution of the HJB equation in (1). We now show that
m is a very weak solution of the FPK equation in (1) with u as the input data, i.e., m
satisfies (3) for t ∈ [0, T ] and φ ∈ C∞

c (Rd). In the rest of the proof, we use ρ, h, r , ε

instead of ρn, hn, rn, εn to simplify. We also let ̂̂m = mεn
ρn ,hn

, w = uεn
ρn ,hn

[̂̂m], and take
tn = [ t

hn

]
hn . Then, we note that

∫

Rd
φ(x)d̂̂m(tn)(x) =

∫

Rd
φ(0)dm0(x) +

n−1∑

k=0

∫

Rd
φ(x)d[̂̂m(tk+1) − ̂̂m(tk)],

so to prove (3), we must estimate the sum on the right.
By the midpoint approximation and (26), the scheme (24), and (25) combined with

linear/multilinear interpolation, and finally midpoint approximation again, we find
that
∫

Rd
φ(x)d̂̂m(tk+1) = 1

ρd

∑

i∈Zd

mi,k+1

∫

Ei

φ(x)dx =
∑

i

mi,k+1φ(xi ) + O(ρ2)

=
∑

i

φ(xi )
∑

j

m j,k Bρ,h,r [Hp(·, Dw)](i, j, k) + O(ρ2)

=
∑

j

m j,k

(e−λr h

2d

d∑

p=1

[φ(�
ε,+
j,k,p) + φ(�

ε,−
j,k,p)]

+ 1 − e−λr h

λr

∫

|z|>r
φ(x j + z)ν(dz)

)
+ O(ρ2)

=
∑

j

m j,k

ρd

∫

E j

(e−λr h

2d

d∑

p=1

[φ(�
ε,+
k,p )(x) + φ(�

ε,−
k,p )(x)]

+ 1 − e−λr h

λr

∫

|z|>r
φ(x + z)ν(dz)

)
dx + O(ρ2) + E� + Eν,

where�
ε,±
j,k,p is defined in (23),�

ε,±
k,p (x) = x −h

(
Hp(x, Dw(tk, x))+Bσ

r

)±√
hdσ

p
r ,

and E� + Eν is the error of the last midpoint approximation.
Since φ is smooth, uρ,h uniformly Lipschitz (Lemma 5.5 (a)), ‖D2w‖0 ≤

C‖Duρ,h‖0
ε

, and by assumption (H2),

∣
∣
∣φ(�

ε,±
j,k,p) − 1

ρd

∫

E j

φ(�
ε,±
k,p )(x)d

∣
∣
∣

≤ ‖Dφ‖0
ρd

∫

E j

|x − x j |dx + h‖Dφ‖0
ρd

∫

E j

∣
∣Dp H(x j , Dw(tk, x j ))
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− Dp H(x, Dw(tk, x))
∣
∣dx

≤ Kρ
(
1 + h(‖Hpp‖0‖D2w‖0 + ‖Hpx‖0)

) ≤ Kρ
(
1 + h

ε
‖Duρ,h‖0

)
,

and hence E� = O(
hρ
ε

). Similarly, Eν = O(hρ2λr ) = O(
hρ2

rσ ).
From the above estimates, we find that

∫

Rd
φ(x)d

(
̂̂m(tk+1) − ̂̂m(tk)

)
(x) =

∫

Rd

(e−λr h

2d

d∑

p=1

[φ(�
ε,+
k,p )(x) + φ(�

ε,−
k,p )(x)

− 2φ(x)] + 1 − e−λr h

λr

∫

|z|>r

(
φ(x + z) − φ(x)

)
ν(dz)

)
d̂̂m(tk)(x)

+ O(ρ2 + hρ

ε
+ hρ2

rσ

)
.

By a similar argument as in (29) and using Lemma 3.1,

φ(�
ε,+
k,p )(x) + φ(�

ε,−
k,p )(x) − 2φ(x) = −2h

(
Dφ(x) · Dp H(x, Dw(tk, x))

+ Bσ
r · Dφ(x)

)
+ 2hLr [φ](x) + O(h2r2−2σ + hr3−σ ).

Hence using (31) and (32), we have

∫

Rd
φ(x)d(̂̂m(tk+1) − ̂̂m(tk))(x)

= h
∫

Rd

[− Dφ(x) · Dp H(x, Dw(tk, x)) + Lr [φ](x) + Lr [φ](x)
]
d̂̂m(tk)(x)

+ O(h2r−σ + h2r1−2σ + h2r2−2σ )+O(ρ2+ hρ

ε
+ hρ2

rσ
+h2r2−2σ +hr3−σ ).

Summing from k = 0 to k = n − 1 and approximating sums by integrals, we obtain

∫

Rd
φ(x)d̂̂m(tn)(x) −

∫

Rd
φ(x)d̂̂m(t0)

= h
n−1∑

k=0

∫

Rd

[− Dφ(x) · Dp H(x, Dw(tk, x)) + L[φ](x)
]
d̂̂m(tk)(x)

+ n O(ρ2 + hρ

ε
+ hρ2

rσ
+ h2r−σ + hr3−σ )

=
∫

Rd

∫ tn

0

[− Dφ(x) · Dp H(x, Dw(s, x)) + L[φ](x)
]
d̂̂m(s)(x) ds

+ O
(ρ2

h
+ ρ

ε
+ ρ2 + h

rσ
+ r3−σ

)
+ E, (43)
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where E is Riemann sum approximation error. Let Ik(x) := −Dφ(x) · Dp H(x, Dw

(tk, x)) +L[φ](x) and use time-continuity ̂̂m in the d0-metric (Theorem 6.5), that
w(·, x) is constant on [tk, tk+1), (H1), (H2) and ‖D2w‖0 ≤ C‖Duρ,h‖0

ε
, to conclude

that for s ∈ [tk, tk+1)

∫ tk+1

tk

∫

Rd
Ik(x)d

(
̂̂m(tk) − ̂̂m(s)

)
(x)ds

≤ h
(‖Ik‖0 + ‖DIk‖0

)
C0 sup

s∈[tk ,tk+1)

√
s − tk

≤ K h
(
1 + ‖Dw‖0 + ‖D2w‖0

)√
h ≤ K h

(
1 + 1

ε

)√
h.

Summing over k, we have E = ∣
∣
∑n−1

k=0

∫ tk+1
tk

∫

Rd Ik(x)d
(
̂̂m(tk) − ̂̂m(s)

)
(x)ds

∣
∣ =

O(
√

h
ε

).
Since ̂̂m converges to m in C([0, T ], P(Rd)) and φ ∈ C∞

c (Rd) implies L[φ] ∈
Cb(R

d), we have

∫

Rd

∫ tn

0
L[φ](x)d̂̂m(s)(x)

n→∞−−−→
∫

Rd

∫ t

0
L[φ](x)dm(s)(x). (44)

It now remains to show convergence of the Dp H -term and pass to the limit in (43) to
get that m is a very weak solution satisfying (3).

Step 4 (Proof of Theorem 4.1 (a) (iii)). Now d = 1 and part (ii) of Theorem 4.1

(a) implies that ̂̂m
∗
⇀m in L∞([0, t] × R) if m0 ∈ L∞(R), or ̂̂m⇀m in L1([0, t] ×

R) if m0 ∈ L p(R) for p ∈ (1,∞). We also have Dw(t, x) = Duε
ρ,h(t, x) →

Du(t, x) almost everywhere in [0, T ] × R by Theorem 5.6 (ii). Since Dφ ∈ C∞
c (R)

and Dp H(·, Dw) uniformly bounded, by the triangle inequality and the dominated
convergence Theorem we find that

∫

R

∫ tn

0
Dφ(x) · Dp H(x, Dw(s, x)) d̂̂m(s)(x)

−→
∫

R

∫ t

0
Dφ(x) · Dp H(x, Du(s, x)) dm(s)(x).

Then by passing to the limit in (43) using the above limit, (44), and the CFL conditions
ρ2

h , h
rσ ,

√
h

ε
= o(1) (note that ρ2 ≤ h for large n), we see that (3) holds and m is a very

weak solution of the FPK equation. This completes the proof of Theorem 4.1 (a) (iii).

Step 5(Proof of Theorem 4.3(iii)). Now (U) holds and Dw = Duε
ρ,h → Du locally

uniformly by Theorem 5.6 (iii). Since Dφ ∈ C∞
c (Rd) and

∫

Rd d̂̂m(s)(x) = 1, by
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continuity and uniform boundedness of Dp H(·, Dw), it follows that

∣
∣
∣

∫

Rd

∫ tn

0
Dφ(x) · Dp H(x, Dw(s, x)) d̂̂m(s)(x)

−
∫

Rd

∫ tn

0
Dφ(x) · Dp H(x, Du(s, x)) d̂̂m(s)(x)

∣
∣
∣

≤ T ‖Dφ‖0‖Dpp H‖0‖Dw − Du‖L∞(supp(φ))

∫

Rd
d̂̂m(s)(x) −→ 0.

(45)

Since ̂̂m → m in C([0, T ], P(Rd)) and Dφ · Dp H(·, Du)(t) ∈ Cb(R
d) by (U), we

get

∫

Rd

∫ tn

0
Dφ(x) · Dp H(x, Du(s, x)) d̂̂m(s)(x)

−→
∫

Rd

∫ t

0
Dφ(x) · Dp H(x, Du(s, x)) dm(s)(x).

Then by passing to the limit in (43) using the above limit, (45), (44), and the CFL

conditions ρ2

h , h
rσ ,

√
h

ε
= o(1), we see that (3) holds and m is a very weak solution of

the FPK equation. This completes the proof of Theorem 4.3(iii).

8 Numerical Examples

For numerical experiments, we look at

⎧
⎪⎨

⎪⎩

−ut − σ 2Lu + 1
2 |ux |2 = f (t, x) + K φδ ∗ m(t, x) in (0, T ) × [a, b],

mt − σ 2L∗m − div(mux ) = 0 in (0, T ) × [a, b],
u(T , x) = G(x, m(T )), m(x, 0) = m0(x) in [a, b],

(46)

where a < b are real numbers, L is a diffusion operator, φδ = 1
δ
√
2π

e− x2

2δ2 , K some
real number, and f is some bounded smooth function.We will specify these quantities
in the examples below.

Artificial Boundary Conditions

Our schemes (18) and (24) for approximating (46) are posed in all of R. To work in a
bounded domain, we impose (artificial) exterior conditions:

(U1) u ≡ ‖u0‖0 + T · ‖ f ‖L∞((0,T )×(a,b)) in (R\[a, b]) × [0, T ],
(M1) m ≡ 0 in (R\[a, b]) × [0, T ], and m0 is compactly supported in [a, b].
Condition (U1) penalize being in [a, b]c ensuring that optimal controls α in (18) are
such that xi − hα ± √

hσr ∈ [a, b]. Condition (M1) ensures that the mass of m is
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contained in [a, b] up to some finite time, and there is no contribution from [a, b]c

when we compute L∗m. Note that some mass will leak out due to nonlocal effects
(and then vanish by the 0 exterior condition), but this leakage is very small: By the
decay of the Lévy measures ν at infinity, the contributions to nonlocal operators (of
m and u) from [a, b]c will be small far from the boundary.

We will present numerical results from a region of interest that is far away from the
boundary of [a, b], and where the influence of the (artificial) exterior data is expected
to be negligible.

Evaluating the Integrals

To implement the scheme, we need to evaluate the integral

∫

|z|≥r
I [ f ](xi + z)ν(dz) =

∑

j∈Z
f [xi ]ω j−i,ν ,

where, ω j−i,ν =
∫

|z|≥r
β j−i (z)ν(dz),

see (17). In addition, we need to compute the values of σr , br , and λr [see (9), (8),
and (11)]. To compute the weights ω j−i,ν , we use two different methods. For the
fractional Laplacians, we use the explicit weights of [47], while for CGMY diffusions,
we calculate the weights numerically using the inbuilt integral function in MATLAB.
When tested on the fractional Laplacian, the MATLAB integrator produced an error
of less than 10−15. Below the quantities σr , br , λr are computed explicitly, except in
the CGMY case where we use numerical integration.

Solving the Coupled System

We use a fixed-point iteration scheme: (i) Letμ = m0, and solve for uρ,h in (18)–(20).
(ii) With approximate optimal control Duε

ρ,h as in (21), we solve for mε
ρ,h in (24). (iii)

Let μnew = (mε
ρ,h + μ)/2, and repeat the process with μ = μnew. We continue until

we have converged to a fixed point to within machine accuracy.

Remark 8.1 Instead μnew = mε
ρ,h , we take μnew = (mε

ρ,h + μ)/2. That is, we use a
fixed-point iteration with some memory. This gives much faster convergence in our
examples.

Example 1 Problem (46) with [0, T ] × [a, b] = [0, 2] × [0, 1], G = 0, f (t, x) =
5(x − 0.5(1 − sin(2π t)))2, m0(x) = Ce− (x−0.5)2

0.12 , where C is such that
∫ b

a m0 = 1.
Furthermore, in accordance with the CFL-conditions of Theorem 4.1, we let h = ρ =
0.005, r = h

1
2s , ε = √

h ≈ 0.0707, σ = 0.09, δ = 0.4, K = 1.
For the diffusions, we consider L = (−�)

s
2 for s = 0.5, 1.5, 1.9, L = �, and

L ≡ 0. In Fig. 1, we plot the different solutions at time t = 0.5 and t = 1.5.

In Fig. 2, we plot the solution with s = 1.5 on the time interval [0, 2].
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Fig. 1 The solutions m in Example 1 for different fractional Laplacians

Fig. 2 Solution m and u in Example 1 with diffusion parameter s = 1.5

Example 2 Problem (46) with the same cost functions as in Example 1, but different
diffusions with parameter s = 1.5:

(i) L = σ 2(−�)
s
2 ,

(ii) L = σ 2Cd,s
∫

R
[u(x + y) − u(x) − Du(x) · y1|y|<1]1[0,+∞)

dy
|y|1+s ,

(iii) L = σ 2Cd,s
∫

R
[u(x + y) − u(x) − Du(x) · y1|y|<1]1[−0.5,0.5]c

dy
|y|1+s ,

(iv) L = σ 2Cd,s
∫

R
[u(x + y) − u(x) − Du(x) · y1|y|<1] e−10y−−y+ dy

|y|1+s ,

where Cd,s is the normalizing constant for the fractional Laplacian (see [47]). Case
(i) is the reference solution, a symmetric and uniformly elliptic operator. Case (ii) is
nonsymmetric and nondegenerate, case (iii) is symmetric and degenerate, and case
(iv) is a CGMY-diffusion (see, e.g., [36]). We have plotted m at t = 0.5 and t = 1.5
in Fig. 3.

Example 3 (Long time behavior). Under certain conditions (see, e.g., [22, 23]), the
solution of time dependent MFG systems will quickly converge to the solution of the
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Fig. 3 The solutions m in Example 2 for different nonlocal operators

Fig. 4 Long time behavior and turnpike property. The solution m in Example 3 with different right hand
sides

corresponding stationary ergodic MFG system, as the time horizon T increases. We
check numerically that this is also the case for nonlocal diffusions. In (46), we take
L = (−�)

s
2 , with s = 1.5, [0, T ] × [a, b] = [0, 10] × [−1, 2], G(x) = (x − 2)2,

f (t, x) = x2, and m0(x) = 1[1,2](x). We expect (from the cost functions f and G)
that the solution m will approach the line x = 0 quite fast, and then travel along this
line, until it goes toward the point x = 2 in the very end. Our numerical simulations
show that this is the case also for nonlocal diffusions. Here, we have considered the
cases K = 0 (no coupling in the u equation) and K = 0.4 (some coupling). The
parameters used in the simulations are h = ρ = 0.01, ε = √

h, r = h1/2s , and the
results are shown in Fig. 4.

The players want to avoid each other in the case of K = 0.4, so the solution is more
spread out in space direction than in the case of K = 0.

Example 4 We compute the convergence rate when f , G, m0 are as in Example 1,
s = 1.5, ν = 0.2, δ = 0.4, and the domain [0, T ]× [a, b] = [0, 0.5]× [0, 1]. We take
ρ = h, r = h

1
2s , and for simplicity ε = 0.25.
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We calculate solutions for different values of h, and compare with a reference
solution computed at h = 2−10. We calculate L∞ and L1 relative errors restricted to
the x-interval [ 13 , 2

3 ] (to avoid boundary effects), and t = 0 for u and t = T for m:

ERRu :=
‖uρ,h(0, ·) − uref(0, ·)‖L∞( 13 , 23 )

‖uref(0, ·)‖L∞( 13 , 23 )

,

ERRm :=
‖mε

ρ,h(T , ·) − mref(T , ·)‖L1( 13 , 23 )

‖mref(T , ·)‖L1( 13 , 23 )

.

The results are given in the table below.

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9

ERRu 0.3155 0.1951 0.0920 0.0446 0.0218 0.0097 0.0035 0.0013
ERRm 0.8055 0.4583 0.2886 0.1869 0.1023 0.0596 0.0300 0.0186

We see that when we halve h, the error is halved, i.e., we observe an error of order
O(h).
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Appendix

A Proof of Lemma 5.6 (ii) and (iii)

Fix (t, x) ∈ [0, T ] × R
d and consider a sequence (tk, xk) → (t, x). For any y ∈ R

d ,
a Taylor expansion shows that

uεn
ρn ,hn

[μn](tk, xk + y) − uεn
ρn ,hn

[μn](tk, xk) − Duεn
ρn ,hn

[μn](tk, xk) · y

=
∫ 1

0

(
Duεn

ρn ,hn
[μn](tk, xk + sy) − Duεn

ρn ,hn
[μn](tk, xk)

) · y ds :=
∫ 1

0
I (s) · y ds.

(47)
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Using first Lemma 5.5 (a) and then part two of Lemma 5.5 (b), we find that

∫ ρn
εn |y|

0
I (s) · y ds ≤ 2‖Duεn

ρn ,hn
[μn]‖0 ρn

εn
≤ 2((L L + L F )T + LG)

ρn

εn
∫ 1

ρn
εn |y|

I (s) · y ds ≤ c1

∫ 1

ρn
εn |y|

1

s

(
|sy|2 + ρ2

n

ε2n

)
ds = c1|y|2

∫ 1

ρn
εn |y|

(
s + 1

s

ρ2
n

|y|2ε2n
)
ds

≤ c1|y|2
∫ 1

ρn
εn |y|

(
s + 1

s
s2
)
ds ≤ c1|y|2.

By Lemma 5.5 (a), the sequence Duεn
ρn ,hn

[μn](tk, xk) is precompact. Now take any
convergent subsequence as n, k → ∞ and ρn

εn
= o(1). If p is the limit, then by passing

to the limit in (47) along this subsequence we have

u[μ](x + y) − u[μ](x) − p · y ≤ c1|y|2 for every y ∈ R
d ,

and p ∈ D+u[μ](t, x), the superdifferential of u[μ](t, x). At points (x, t)where u[μ]
is differentiable, D+u[μ](t, x) = {Du[μ](t, x)} and p = Du[μ](t, x), and then since
the subsequence was arbitrary in the above argument and all limit points p coincide,

lim sup
(tk ,xk )→(t,x),n→∞

Duεn
ρn ,hn

[μn](tk, xk)

= lim inf
(tk ,xk )→(t,x),n→∞ Duεn

ρn ,hn
[μn](tk, xk)

= Du(t, x).

(48)

We conclude that Duεn
ρn ,hn

[μn] → Du[μ] at (t, x). Part (ii) now follows since u[μ] is
Lipschitz in space by Proposition 2.5 (c) and then x-differentiable for a.e. x and every
t .

To prove part (iii), we note that u is C1 by (U), so now (48) holds for every (t, x).
Then in view of the uniform Lipschitz estimate from Lemma 5.5 (a), local uniform
convergence follows from [11,Chapter V, Lemma 1.9]. The proof is complete.

B Proof of Lemma 6.9

We first show strong separation between any two characteristics�ε,±: By Lemma 6.8,

∣
∣�

ε,±
j,k − �

ε,±
i,k

∣
∣2 =

∣
∣
∣x j − xi ± √

hσr ∓ √
hσr − h

(
Dp H(x j , Duε

ρ,h(tk, x j )) + Bσ
r

− Dp H(xi , Duε
ρ,h(tk, xi )) − Bσ

r

)∣
∣
∣
2

≥ |x j −xi |2−2h
(

Dp H
(
x j , Duε

ρ,h(tk, x j )
)−Dp H

(
xi , Duε

ρ,h(tk, xi )
))

(x j −xi )

≥ (1 − c0h)|x j − xi |2.
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Hence, we have

min
{∣
∣�

ε,+
j,k − �

ε,+
i,k

∣
∣,
∣
∣�

ε,−
j,k − �

ε,−
i,k

∣
∣
}

≥ √
1 − c0h| j − i |ρ > ρ

√
1 − c0h. (49)

The result now holds following the proof of [24,Lemma 3.8]. We give the proof for
completeness.

Since the diameter of the support of a (hat) basis functions βi is 2ρ, by (49) there
can be at most 3 characteristics inside the supp(βi ) for small enough h. The result
is trivial if there is only one in characteristic supp(βi ). When supp(βi ) contains 2
characteristics, say �

ε,+
j1,k

and �
ε,+
j2,k

, we see by (49) (check the different orderings of

xk , �
ε,+
j1,k

, �ε,+
j2,k

) that

βi (�
ε,+
j1,k

) + βi (�
ε,+
j2,k

) = 1 −
∣
∣
∣xi − �

ε,+
j1,k

∣
∣
∣

ρ
+ 1 −

∣
∣
∣xi − �

ε,+
j2,k

∣
∣
∣

ρ

≤ 2 −
∣
∣
∣�

ε,+
j1,k

− �
ε,+
j2,k

∣
∣
∣

ρ
≤ 2 −√1 − c0h ≤ 1 + K0h.

Finally, assume support(βi ) contains 3 characteristics �
ε,+
j1,k

,�
ε,+
j2,k

and �
ε,+
j3,k

. By
(49) that all three characteristics cannot be on one side (left or right) of xi . Without
loss of generality we assume �

ε,+
j1,k

< xi < �
ε,+
j2,k

< �
ε,+
j3,k

, and find

βi (�
ε,+
j1,k

) + βi (�
ε,+
j2,k

) + βi (�
ε,+
j3,k

)

= 1 − xi − �
ε,+
j1,k

ρ
+ 1 − �

ε,+
j2,k

− xi

ρ
+ 1 − �

ε,+
j3,k

− xi

ρ

≤ 3 − �
ε,+
j2,k

− �
ε,+
j1,k

ρ
− �

ε,+
j3,k

− �
ε,+
j2,k

ρ

≤ 3 − 2
√
1 − c0h ≤ 1 + 2(1 −√1 − c0h) ≤ 1 + K0h.

Combining all three cases, we get

∑

j∈Z
βi (�

ε,+
j,k ) ≤ 1 + K0h for any i ∈ Z.

The estimate of
∑

j∈Z βi (�
ε,−
j,k ) is similar. This completes the proof.
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