
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  

Abstract—Battery electric buses (BEBs) have been regarded as 

effective options for sustainable mobility while their promotion is 

highly affected by the total cost associated with their entire life 

cycle from the perspective of urban transit agencies. In this 

research, we develop a collaborative optimization model for the 

lifecycle cost of BEB system, considering both overnight and 

opportunity charging methods. This model aims to jointly 

optimize the initial capital cost and use-phase operating cost by 

synchronously planning the infrastructure procurement and fleet 

scheduling. In particular, several practical factors, such as 

charging pattern effect, battery downsizing benefits, and time-of-

use dynamic electricity price, are considered to improve the 

applicability of the model. A hybrid heuristic based on the tabu 

search and immune genetic algorithm is customized to effectively 

solve the model that is reformulated as the bi-level optimization 

problem. A numerical case study is presented to demonstrate the 

model and solution method. The results indicate that the proposed 

optimization model can help to reduce the lifecycle cost by 7.77% 

and 6.64% for overnight and opportunity charging systems, 

respectively, compared to the conventional management strategy. 

Additionally, a series of simulations for sensitivity analysis are 

conducted to further evaluate the key parameters and compare 

their respective life cycle performance. The policy implications for 

BEB promotion are also discussed. 

 
Index Terms—Battery electric buses, public transit systems, 

lifecycle cost optimization, collaborative optimization, hybrid 

heuristic  

 

I. INTRODUCTION 

LECTRIFICATION of city bus systems is becoming a 

widespread policy choice to mitigate climate change and 

promote sustainable mobility in the field of urban transportation 
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[1]-[3]. As one of the major types of electric buses, battery 

electric buses (BEBs) have attracted significant attention owing 

to their environmental benefits, such as, zero tailpipe emission 

[4]. In contrast to conventional diesel-powered buses, BEBs are 

powered solely by rechargeable batteries and are able to further 

reduce system‐level emissions as renewable energy sources are 

introduced. Therefore, the promotion of BEB adoption has 

significance in the future of public transit systems. During the 

past decades, thanks to the ground-breaking technological 

improvements and rapid market-share growths for BEBs, there 

is an increasing trend to replace diesel buses with BEBs in many 

cities [5]. However, the promotion of BEBs in public transit 

systems is highly affected by the total cost associated with their 

entire life cycle from the perspective of urban transit agencies. 

For a BEB system, the lifecycle cost mainly comprises the 

initial capital cost and operating cost during the use phase. In 

addition, the charging methods also have significant impacts on 

the lifecycle cost of BEB systems. In general, two primary 

charging methods are implemented in BEB systems, including 

overnight charging and opportunity charging [6]. The overnight 

charging refers to charging during non-operational periods in 

the nighttime, and the BEBs are charged when parking at the 

terminal. By contrast, the opportunity charging refers to 

charging during the service operation, and the BEBs are usually 

charged on the bus stops with chargers [7]. These two different 

charging methods would contribute to considerable differences 

in terms of the lifecycle cost, for both initial capital and 

operating costs. For example, the opportunity charging often 

needs the charger with relatively higher charging power (i.e. 

fast charger) to charge BEBs during operation, which is much 

more expensive than that utilized for overnight charging (i.e. 

slow charger). Whereas, the on-board battery size with 
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opportunity charging is relatively smaller in comparison to the 

ones with overnight charging, which would reduce the unit 

battery cost as well as the energy consumption rate owing to 

lightweighting benefits of battery downsizing [8]. Moreover, 

the transit system usually has several routes that need to be 

served. Different routes may exert different workloads on a bus 

fleet, and thus results in differences in the battery life spans [9]. 

As the battery reaches its end-of-life, it should be replaced with 

a new one and the operating cost is increased as consequence. 

Rationally scheduling the bus fleets to operate on certain routes 

has the potential ability to minimize the investment for battery 

replacements over the whole life of BEBs and thus reduce the 

lifecycle cost. In view of the characteristics of the lifecycle cost 

for BEB systems, a comprehensive optimization framework for 

the lifecycle cost is in dire need, which should consider both 

infrastructure procurement and fleet scheduling with different 

charging methods.  

Over the years, efforts towards the lifecycle cost in terms of 

transportation electrification have attracted more attention from 

both the industrial and academic communities [10]. Several 

studies have discussed the lifecycle cost of electric vehicles 

(EVs) based on different analytical frameworks and EV models 

[11]-[15]. However, most of the existing literature is focusing 

on the lifecycle cost analysis for passenger EVs from the 

standpoint of individual drivers. There exist significant 

differences in the lifecycle cost between passenger EVs and 

BEBs. Compared to passenger EVs, for instance, BEBs 

generally have larger batteries, which further contributes to 

considerable additional weight and related energy consumption 

rate. Considering the features of BEBs, Cooney et al. [16] 

carried out the lifecycle assessment study to compare the 

environmental impacts of BEBs with diesel buses. Lajunen [17] 

further presented a lifecycle analysis of electric city buses based 

on extensive simulations in fleet operation, and the results 

showed that the energy efficiency of city buses can be improved 

by electrification. Nevertheless, solely focusing on the energy 

and environmental benefits has a limited attraction to public 

transit agencies, because the lifecycle cost for BEB system 

investment derives from more economic burdens, i.e. 

infrastructure procurement. Considering the purchase costs 

correspond to the initial cost of buses, Lajunen and Lipman [6] 

proposed the simulation models to assess the lifecycle cost for 

the transit systems with BEBs and other types of city buses. The 

results indicated that the bus purchase cost has significant 

impacts on the lifecycle cost for BEB systems. To investigate 

the effects of charger deployment on lifecycle cost, Bi et al. [18] 

provided an optimization framework to evaluate the system-

level costs for BEB systems with opportunity charging, where 

the energy consumption reduction benefiting from battery 

downsizing was also discussed. Moreover, Bi et al. [19] 

developed an integrated lifecycle assessment and lifecycle cost 

model based on a bus system simulation. The objective 

considered both capital and energy costs, which also evaluated 

the lifecycle costs for BEB systems utilizing either overnight or 

opportunity charging. Lajunen [20] presented a lifecycle cost 

analysis for a fleet of BEBs based on a specific simulation tool. 

The results showed that high battery capacity is crucial for the 

overnight charging buses, whereas the opportunity charging 

buses can accept the batteries with relatively low capacity. The 

costs associated with infrastructure procurement, including 

purchase costs of buses and charging devices, have 

considerable impacts on the lifecycle cost of BEB systems. 

However, in the previous studies, the lifecycle cost analysis is 

mainly based on the basic consideration that the BEB fleets 

operate in the fixed routes, and thus the influences of fleet 

scheduling are usually ignored. As a matter of fact, when 

different BEB fleets operate on different routes, the daily 

workloads of the BEBs are different, which further leads to 

different battery degradation speed. Therefore, the scheduling 

of BEB fleets should be considered to extend the battery life 

span, and thus reduce the related operating costs for battery 

replacement over the whole life cycle. 

For the scheduling of BEB fleets, several works have been 

done to establish the optimization methods to ensure cost-

effective operations [21]-[25]. However, most of existing 

studies have been focused on the BEB fleet scheduling at the 

daily operational level, instead of the whole life cycle 

perspective. Since the battery degradation is a cumulative 

process, it is hard to effectively involve the influence of battery 

fading on the lifecycle costs into the daily operational 

frameworks. In order to explore the effects of battery 

degradation process on the lifecycle costs of BEB fleets, Zhang 

et al. [26] developed a long-term fleet management framework 

that considers the practical battery fading mechanism within 

predefined charging and discharge cycling. Furthermore, Wang 

et al. [9] proposed an optimization model for BEB fleet 

scheduling based on dynamic programming. The objective of 

the model was to minimize the battery replacement costs during 

the entire service life of the BEB fleets. The research results 

implied that the number of battery replacement over the entire 

life cycle can be reduced through the optimal scheduling for 

BEB fleets. Note that, whilst the aforementioned works have 

shown some achievements in the scheduling of BEB fleets for 

lifecycle optimization, there are still several challenges need to 

be overcame. Firstly, the previous studies only discuss the fleet 

scheduling with overnight charging while ignore the influences 

of opportunity charging on the lifecycle costs. BEB systems 

with different charging methods would result in different 

infrastructure procurement, energy consumption, and related 

fleet scheduling strategies. Secondly, the impacts of bus fleet 

size on the workload sustained by a single BEB and related 

battery fading behavior are not considered in the literature. That 

is, the number of round-trips that a BEB needs to operate would 

be affected by the number of vehicles in the bus fleet, which 

further exerts influences on the life span of the batteries 

equipped in BEBs. Finally, the existing studies neglected the 

effects of charging patterns on the battery fading rate, which 

also have significant impacts on the battery degradation and 

related costs during the fleet scheduling. The fast-charging 

pattern would accelerate the battery aging process, while the 

slow-charging pattern has a quite limited impact on the battery 

fading [27]. 

Overall, even though the aforementioned studies have made 

achievements in the lifecycle cost optimization of BEB systems, 
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there are still some limitations that are summarized from two 

perspectives: from the perspective of optimization objective, 

the previous studies often focused on individual or partial cost 

components, whereas the comprehensive consideration for both 

initial capital cost and use-phase operating cost received little 

discussion; from the perspective of problem scenario, the 

existing studies mainly considered the case for overnight 

charging and often neglected the influences of several realistic 

factors on the lifecycle costs. In response to the research gaps, 

we attempt to advance the research frontier by developing a 

more comprehensive optimization framework considering the 

lifecycle cost of BEB systems. The major objective of this work 

is to optimize the total cost of BEB systems with different 

charging methods over a given planning horizon (i.e. the whole 

service life of the BEBs). We achieve this by investigating the 

collaborative optimization of infrastructure procurement and 

fleet scheduling with consideration of the realistic systems with 

overnight and opportunity charging methods, respectively. 

Collaborative optimization is a multidisciplinary design 

architecture that is well-suited to the collaborative problem with 

two interrelated objectives, and able to ensure that the 

corresponding schemes can match each other [28]. The factors 

from real-world scenarios are further considered in the problem, 

which has considerable effects on the lifecycle cost and can 

improve the applicability of the optimization results. Some 

managerial insights are discussed in detail based on the 

optimization results. To the best of our knowledge, this is the 

first time that the lifecycle costs of BEB systems with different 

charging methods are explored by the collaborative 

optimization of infrastructure procurement and fleet scheduling. 

Indeed, as regard to the lifecycle cost of BEB systems, it is 

necessary to deal with the infrastructure procurement and fleet 

scheduling at the same time, and the reasons primarily lie in the 

following two points. On the one hand, both the infrastructure 

procurement and fleet scheduling have significant effects on the 

lifecycle cost for BEB systems, which respectively contribute 

to the initial capital cost and use-phase operating cost over the 

entire life cycle. Ignoring any of them cannot obtain the 

accurate results for lifecycle cost optimization. On the other 

hand, there is a close interaction between the infrastructure 

procurement and fleet scheduling when determining the optimal 

lifecycle cost for BEB systems, where the strategy of 

infrastructure procurement directly affects the scheduling of 

BEB fleets, while the latter can provide guidance to the former. 

The proposed methods may be used by public transit agencies 

and related stakeholders to construct and manage the BEB-

based urban transit systems in the decision-making process. 

To be specific, the contributions of this study are summarized 

as follows. Firstly, a collaborative optimization framework is 

constructed for the lifecycle cost of BEB systems with 

overnight and opportunity charging methods, respectively. 

Both the infrastructure procurement and bus fleet scheduling 

are incorporated in the optimization framework, where the 

former has a significant impact on the latter and further affects 

the total costs over the whole service life, including both the 

initial capital cost and use-phase operating cost. Compared to 

the existing studies that only discuss the lifecycle costs under 

the situation that the BEB fleet operates in the fixed route, this 

work further considers the scheduling for BEB fleets to 

minimize charging cost and battery replacement cost over the 

whole service life of the BEBs. Meanwhile, the realistic factors 

from several aspects, such as battery aging mechanism, battery 

downsizing benefits, and time-of-use electricity price, are 

considered to improve the performance and applicability of the 

proposed model in real-world scenarios. Secondly, with full 

consideration of the model’s complexity and unique 

characteristics, a hybrid heuristic-based algorithm is designed 

to search for the optimal solution, which consists of a tabu 

search (TS) framework and an immune genetic algorithm (IGA). 

Coordinating with the solution method, the original model is 

reformulated as a bi-level optimization problem, where the 

outer-level objective aims at the infrastructure procurement 

planning and the inner-level one responds to the BEB fleet 

scheduling. Finally, based on the proposed model and algorithm, 

a number of managerial insights that stemmed from the 

numerical case study are discussed. Further sensitivity analysis 

evaluates the individual contribution of key parameters to the 

optimal results and compares their respective life cycle 

performance between different charging systems. Moreover, 

compared to the existing formulations in previous literature, the 

proposed model simultaneously optimizes the BEB purchase 

cost, procurement cost of charging devices, charging cost and 

battery replacement cost over the whole planning horizon. The 

model is the combination of static and dynamic optimization 

problems, and several realistic factors are also considered in the 

constraints of the model.  

    The rest of this paper is organized as follows. Section II 

presents the problem description. The collaborative 

optimization model for the lifecycle cost of BEB system is 

built-in Section III. Section IV elaborates the hybrid TS-IGA 

method coupled with related model transformation for solving 

the problem. The numerical case study and simulations are 

furnished in Section V. Conclusions and policy implications are 

discussed in Section VI. 

II. PROBLEM DESCRIPTION 

In this work, we consider a case in which a public transit 

agency intends to build an urban transit system with a certain 

number of BEB fleets to serve the same number of routes. The 

operator optimizes the infrastructure procurement and fleet 

scheduling to minimize the lifecycle cost of a BEB system 

while satisfying the predefined timetable for each route. 

Specifically, planning of infrastructure procurement refers to 

the purchase strategy of BEBs and matched charging devices, 

which contributes to the initial capital cost. Afterward, 

scheduling for the BEB fleets would be performed to determine 

the optimal matches between the BEB fleets and routes to 

minimize the operating cost during the use phase, including 

charging cost and battery replacement cost over the whole 

service life of the BEBs. It is noted that the fleet scheduling 

involved in this study is a dynamic programming and different 

from the fleet scheduling at the daily operational level, where 

the former aims to assign a certain number of bus fleets to serve 

the same number of routes while the latter usually determines 
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the trip chains served by different buses [24]. Notably, we 

consider that the BEB fleets are fixed and do not involve the 

mixing of buses between fleets. Such a consideration ensures 

that the batteries equipped in a specific bus fleet will have the 

same utilization plan and thus result in the similar aging 

condition over their service lives. This will not only improve 

the cost saving for BEB fleet management, but also help the 

operator efficiently manage the batteries in batches. Similar 

consideration has been discussed in a number of existing studies 

in fleet management at long-term operational level to achieve 

maximum cost saving [26], [29]. Moreover, two charging 

methods, i.e. overnight charging and opportunity charging, 

could be selected to charge the BEBs, and the system with 

different charging methods would result in significant 

differences in the lifecycle cost. Note that, in order to better 

compare the difference in lifecycle cost between overnight and 

opportunity charging systems, this study considers the case that 

an urban transit system can only select one kind of charging 

method, and the hybrid strategy where BEBs are charged 

partially by overnight charging and partially by opportunity 

charging is not discussed. The charging strategy with one kind 

of charging method, i.e.   overnight or opportunity charging 

method, has been world-widely applied in several cities and 

discussed in related literature [20]. The outline of the lifecycle 

cost optimization for a BEB system is illustrated in Fig. 1. 

To explicitly elaborate a BEB lifecycle optimization problem, 

several essential factors involved in BEB systems with different 

charging methods should be fully considered and will be 

covered in this section, including the energy consumption, 

minimum BEB fleet size, number of charging devices, and 

battery life span. For simplicity of problem description, we 

assume the existence of n routes that need to be satisfied in an 

urban transit system (j=1,…,n), and accordingly, the same 

number of BEB fleets, denoted as m, which should be formed 

to serve the routes (i=1,…,m; m=n). The notations used 

throughout this study are summarized in Appendix A.  

A. Energy Consumption 

Different charging methods considered in this study would 

lead to a capacity difference in the battery pack. Specifically, 

the battery capacity for the BEB operating in an opportunity 

charging system is often smaller than the ones in an overnight 

charging system. This is because the opportunity charging 

method provides frequent charging opportunities at major bus 

stops during operation hours, and thus a battery pack with a 

relatively small capacity can be used, compared with the 

overnight charging method that only charges the BEB during 

non-operational periods in the nighttime. In addition, the weight 

of the battery pack would be downsized as the capacity 

decreases. As well known, the battery weight accounts for about 

20% of the total weight of BEB, considering the example of the 

long-range BEBs manufactured by BYD Auto Company [30]. 

It is noted that several existing studies have demonstrated that 

the vehicle mass has significant impacts on the energy 

consumption rate for a BEB, i.e., [18], [31]. For example, 

considering the unique characteristics of BEBs, such as the 

regenerative braking and higher powertrain efficiency, Bi et al. 

[31] have demonstrated that 10% vehicle mass reduction 

contributes to about 4.5% energy consumption reduction for a 

BEB. Based on such research results, we calculate the energy 

consumption rate of a BEB by considering the battery 

downsizing effects, as shown in (1). By this way, the difference 

in energy consumption rate between overnight and opportunity 

charging systems can be highlighted due to their significant 

difference in the battery capacity. The primary idea behind this 

equation is that the energy consumption rate (kWh/km) from 

baseline case is directly adjusted by the actual battery weight. 

The base energy consumption rate can be obtained by the 

vehicle performance test from BYD Auto company, where a 

reference BEB operates under conventional traffic conditions in 

an urban transportation system. This baseline case has also been 

adopted in related literature [18].  

 

/
1 4.5%

bat
base

base bus
base

W
ECR ECR

W

  −
=  −   

 

                 (1) 

where ECR is the adjusted energy consumption rate; baseECR is 

the base energy consumption rate of the reference BEB; 
bat

baseW

and
bus

baseW represent the base battery weight and base bus weight 

of the reference BEB, respectively;  is the battery capacity 

(kWh);  is the battery specific energy, which associates the 

battery capacity with the battery weight, where the battery 

weight can be obtained by /  . Note that, the base bus weight 

bus
baseW is assumed to comprise the curb weight and constant 

average weight for the driver, passengers, and cargo. The 

fluctuation of ridership is not involved in this study.   

    Based on the adjusted energy consumption rate obtained by 

(1), the energy consumption for a round-trip (terminal to 

terminal) of a specific route can be calculated, as shown in (2).  

                               j jE ECR l=                                          (2) 

where jE is the energy consumption for a round-trip of route j; 

jl represents the driving distance of a round-trip for route j. 

During the daily operation, the number of round-trips that a 

BEB needs to operate depends on the bus schedule and fleet 

size. Combined with the energy consumption for a round-trip, 

the average energy consumption over the yearly operation for a 

single BEB from a specific bus fleet is calculated as shown in 

(3). 

 
Fig.1. Outline of the lifecycle cost optimization for a BEB system 
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j j

ij in
j i

E
E D

Y




 =                                   (3) 

where ijE is the average energy consumption over the yearly 

operation on route j for a single BEB from bus fleet i; do
j and 

in
j are the daily total duration and operation interval for the 

timetable of route j, respectively; iY is the number of BEBs in 

bus fleet i; D is the total days for the operation of BEB in a year.  

B. Minimum BEB Fleet Size Required for Each Route 

When assigning a BEB fleet to a transit route, the bus fleet 

size needs to meet the minimum required number of BEBs for 

the route. Since different transit routes from a public transport 

system often have different timetables, they may have different 

requirements for minimum BEB fleet size to satisfy their 

specific bus schedules. Moreover, the overnight and 

opportunity charging methods also result in significant 

distinction in the minimum required number of BEBs in the bus 

fleet, which is discussed as follows. 

       For the overnight charging method, the minimum required 

BEB fleet size for a specific route depends on twofold aspects. 

On the one hand, the number of BEBs in a bus fleet should 

guarantee that all the operation intervals from the timetable are 

covered during the daily operation. On the other hand, the 

battery capacity and related driving range limitation also have 

impacts on the fleet size, because the BEBs from the overnight 

charging system can only be charged during non-operational 

periods in the nighttime. The calculation of the minimum 

required number of BEBs for a specific route under the 

overnight charging is presented in (4) 

               max( , )

br do
j j jON

j in in ON
j j

E
NumB

 

   

   
=    

      

                (4) 

where ON
jNumB is the minimum required number of BEBs for the 

route j under the overnight charging method; br
j is the travel 

duration of a round-trip on the route j; 
ON is the capacity of 

battery pack equipped in the BEB with overnight charging, and

 is the related usable state-of-charge range which is widely 

used to alleviate the range anxiety [32]; a   represents the 

integer that is no less than the value of a. 

       Unlike overnight charging, the opportunity charging 

method can support the BEBs to be charged during the service 

operation using charging devices with high charging power and 

within a short charging time, i.e. 30s [20]. Therefore, the battery 

capacity has a quite limited influence on the BEB fleet size. The 

minimum required number of BEBs for a route under the 

opportunity charging is solely affected by the bus schedules, as 

given in (5). Note that, this equation is acceptable under the 

consideration of the short charging time and suitable to the 

conventional transit operation, where the dwelling time at bus 

stops is often less than 30s to pick up or drop off passengers. In 

some special scenarios, the operator intends to take a few 

minutes to charge the BEBs, in which the interaction between 

battery capacity, fleet size and schedules become more 

important [33]-[35]. For example, the travel duration for a trip 

increases as the charging time increases, which further result in 

the increase in the fleet size, under the specific bus schedule and 

battery capacity. This study focuses on the conventional 

scenario with short charging times. To consider the longer 

charging times, a straightforward way is to adjust the travel 

duration and charging time by considering the interaction 

between battery capacity, fleet size and schedules in the model.  
br
jOP

j in
j

NumB




 
=  

  

                                  (5) 

where OP
jNumB represents the minimum required number of 

BEBs for route j under the opportunity charging method. 

C. Number of Charging Devices Required for a BEB System 

In order to ensure the effective operation of a BEB system, 

an adequate number of charging devices should be constructed. 

The required number of chargers with different charging 

methods depends on different factors. For the overnight 

charging method, all the BEBs are charged at the terminal 

station during non-operational periods in the nighttime and the 

charging devices with relatively low charging power, i.e. slow 

chargers, are used to charge the vehicles. In view of this, we 

reasonably consider that the charging events are scheduled 

simultaneously and thus the number of chargers equals to the 

total number of BEBs, as shown in (6). The reasons for such a 

consideration mainly lie in the following two points. For one 

thing, it often takes more than six hours to charge a BEB due to 

large battery size and low charging power, and thus there is not 

enough time to complete more than one charging events by a 

charger during the non-operational periods in the nighttime [20]. 

For another, extra labors are needed to realize the sequential 

schedule of charging events, whereas it is difficult to find the 

labors who can undertake this work during nighttime in real-

world scenarios. 

                               
1

m
ON

i

i

NumC Y
=

=                                  (6) 

where 
ONNumC is the required number of chargers for the 

overnight charging system.   

    For the opportunity charging method, the BEBs can be 

charged when picking up or dropping off passengers at bus 

stops. The number of charging devices depends on the 

minimum number of chargers for a round-trip to guarantee the 

operability of the BEB. In view of this, the energy consumption, 

charging power levels, and charging time at bus stops have 

significant influences on the number of chargers. In addition, 

the route overlapping may occur in a network of routes, which 

is commonly seen in some compact cities. In this case, a bus 

stop may be covered by different routes, and thus the charger 

located in the bus stop may be utilized by BEB fleets for several 

different routes. To reflect the route overlapping, we define the 

overlapping coefficient in this study. Moreover, the availability 

of chargers may be affected by the route overlapping, because 

the charger located in a specific bus stop may be used by a BEB 
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when another BEB from the different fleet reaching the bus stop 

at the same time. Let   and j  respectively denote the 

overlapping coefficient for route network and the probability of 

charging availability for route j. The calculation of the number 

of chargers for the opportunity charging system is presented in 

(7). The calculation result ensures that the number of chargers 

can support the BEB finish each route without energy 

exhaustion during operation, and definitely avoids the situation 

that the BEB is unable to reach next charging station after 

charging at current charging station. Note that, the charging 

devices used in the opportunity charging system are chargers 

with relatively high charging power, i.e. fast charger. 

Furthermore, the optimal location of charging devices is not 

discussed because it is outside the scope of this work, and 

related well-studied methods are referenced in previous 

literature [18], [36], [37]. 

                     
1

n
jOP

ch
j j

E
NumC

P


 =

 
=   

   
                          (7) 

where
OPNumC represents the required number of chargers for 

the opportunity charging system; P is the charging power of 

the chargers; 
ch is the charging time at bus stops.  

D. Battery Life Span 

The battery has a finite life span and the aging phenomenon 

occurs during the BEB operation. The battery embedded in 

BEBs should be replaced when reaching its end-of-life. The 

battery cycle life is one of the commonly-used indicators to 

characterize the battery life span, which is generally defined as 

the number of complete charge-discharge cycles that the battery 

is able to perform before that its capacity falls under 80% of its 

original rated capacity [38]. In this section, we use the battery 

cycle life to represent the battery life span due to its adaptation 

for BEB application. Without loss of generality, we assume that 

BEBs studied in this work are equipped with the Lithium iron 

phosphate-based battery that is world-widely used in BEBs [39]. 

As has been mentioned before, the BEBs with different 

charging methods are equipped with batteries with different 

capacities and charged using chargers with different charging 

power levels. These features contribute to significant 

differences in the battery cycle life between overnight and 

opportunity charging methods, as follows. On the one hand, the 

rated cycle life ( rateCL ) of the battery used in the overnight 

charging system is shorter than that in the opportunity charging 

system. It is because the battery pack consists of a large number 

of battery cells and its cycle life is affected by the nominal 

capacity due to the influence of the inconsistencies caused by 

cell-to-cell parameter variations: the larger nominal capacity 

the battery pack has, the shorter rated battery cycle life is [40]. 

On the other hand, the actual battery cycle life of the battery 

used in the opportunity charging system is shorter than its rated 

battery cycle life. This is because the fast charging pattern has 

significant impacts on the battery aging behavior, and the 

battery fading rate is highly related to the charging power: the 

higher the charging power level is, the faster battery capacity 

fades [41]. In order to clearly reflect the difference in battery 

life span between overnight and opportunity charging systems, 

we calculate the total energy throughput over the entire lifetime 

of the battery by considering the differences in battery capacity, 

charging power and rated cycle life between the two charging 

systems. Let 
ON
rateCL and 

OP
rateCL denote the rated battery cycle 

life for overnight and opportunity charging methods, 

respectively. Based on the battery cycle life coupled with the 

capacity, the amount of total energy that can be stored in the 

battery over its whole life span for the overnight charging 

method is calculated, as shown in (8). In this way, the battery 

life span is converted into the total energy throughput over the 

entire lifetime.  

                               
ON ON ON
nom rateQ CL =                           (8) 

where ON
nomQ is the total energy throughput over the whole life 

span of the battery used in the overnight charging system; ON

is the nominal capacity of the battery used in the overnight 

charging system;  is a coefficient designed to adjust the 

battery capacity due to the capacity loss caused by the battery 

fading behavior over the entire lifetime, which also has the 

ability to reflect the decision preference of the operator for the 

trade-off between the benefit from sufficient utilization and the 

risk caused by overuse. According to the general definition of 

the battery cycle life, we consider the value of coefficient

ranging from 0.8 to 1. By this way, the normal level of the 

decision preference can be obtained if  equals to 0.9, which 

shows that the operator gives an equal importance to the benefit 

from sufficient utilization and the risk caused by overuse of the 

battery.  

For the opportunity charging method, we firstly borrow the 

empirical model developed by Omar et al. [42] to estimate the 

cycle life of the battery charged under a fast charging pattern. 

The model reveals the relationship between the number of 

cycles that could be achieved by the battery and the charging 

current rate used during fast charging processes, as shown in 

(9).  

( ) 5963 exp( 0.6531 ) 321.4 exp(0.03168 )ch ch chCL I I I=  −  +   (9) 

where ( )chCL I is the number of charge-discharge cycles as the 

battery is fast charged at a constant charging current rate before 

its reference capacity has decreased to 80% of its original 

nominal capacity; chI represents the charging current rate, 

which can be deduced by the charging power and battery 

capacity, as shown in (10). 

=ch OP

P
I


                                            (10) 

where
OP is the nominal capacity of the battery used in the 

opportunity charging system. Afterward, the actual cycle life 

can be determined by comparing the rated cycle life and the 

result from (9), as given in (11).  

                       = min{ , ( )}OP OP
rate chCL CL CL I                        (11) 

where
OPCL represents the actual cycle life of the battery used 

in the opportunity charging system. Therefore, the amount of 

total energy that can be stored in the battery over its whole life 
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span for the opportunity charging method is obtained, as 

presented in (12). 
OP OP OP
nomQ CL =                                (12) 

where
OP
nomQ is the total energy throughput over the whole life 

span of the battery used in the opportunity charging system. It 

is worth noting that, for the battery cycle life, only the cycling 

loss is considered and the calendar loss is neglected. This is 

reasonable, because the calendar loss in Lithium iron phosphate 

battery is very small, and thus has a negligible effect on the 

battery life span as compared to the cycling loss [26]. Moreover, 

the charging and discharging frequency would be increased as 

the battery is downsized, which is not considered into the 

estimation of battery cycle life. It is because the Lithium iron 

phosphate-based battery has low memory effect and thus the 

frequency of charging and discharging has a limited impact on 

the battery degradation as compared to the charging current rate 

[43]. Several existing studies have demonstrated that the 

charging current rate has adequate ability to estimate the battery 

cycle life [27], [42]. 

III. COLLABORATIVE OPTIMIZATION MODEL FOR LIFECYCLE COST OF BEB 

SYSTEM 

Comprehensive optimization of lifecycle cost is necessary to 

explore the economic efficiency of the lifetime operation of a 

BEB system. Based on the joint consideration of the unique 

features of energy consumption, bus fleet size, charging device 

construction, and battery life span for BEB systems with 

different charging methods, a lifecycle cost optimization model 

is then developed. The two main components of the lifecycle 

cost are the initial capital cost and the use-phase operation cost, 

the latter of which can be divided into charging cost and battery 

replacement cost. In view of this, we establish a collaborative 

optimization framework to comprehensively optimize the 

infrastructure procurement and fleet scheduling, where the 

former has a significant impact on the latter and thereby affects 

the battery replacement cost over the whole planning horizon. 

For BEBs, their battery degradation is a time-dependent 

dynamic process, which is highly related to the matching 

strategy of BEB fleets and routes at each scheduling period. In 

this study, we consider the whole service life of the BEB as the 

planning horizon, and all the BEBs coupled with matched 

charging devices are purchased at same time. This is an 

expected scenario for a transit agency as a new BEB-based 

urban transit system is constructed [17].  

      For model formulation, we assume that the operator 

periodically determines the optimal matches of the BEB fleets 

and the routes at the beginning of each year, and accordingly 

the planning horizon is discretized into finite scheduled periods 

of one year. Let {1,…,t,…,T} denote the set of scheduled 

periods with one-year intervals, where T is the whole service 

life of the BEB. Furthermore, the collaborative optimization 

framework has two decision variables, as follows. For one thing, 

the decision variable involved in the planning of the 

infrastructure procurement is the integer variable iY , which 

represents the number of BEBs in the bus fleet i, as has been 

described in Section II.A. For another, the decision variable 

involved in the bus fleet scheduling is denoted as the binary 

variable ijtX , which is equal to 1 if the BEB fleet i is assigned 

to the route j during the year t; otherwise, this variable is 0. 

Based on the definition of ijtX , the mathematical optimization 

model for the fleet scheduling can be designed as the dynamic 

programming, which aims to search the optimal values of ijtX to 

optimize the use-phase operation cost. During the optimization 

process, the values assigned to ijtX  must satisfy the predefined 

timetable that does not change over the whole planning horizon. 

To unify the notations with different charging methods, the 

uniform notations without the instruction of charging methods 

are used for modeling, and the parameters for different charging 

methods can be taken into the corresponding portions. Based on 

these settings, the lifecycle cost optimization model for BEB 

system is constructed as  

1

1 1 1 1

1 1

1 1

min =  (1 )

(1 ) (1 )

m T m n
t

lc bus i chd ij ijt i ele rate

i t i j

T m
t t

bat bat it i rate

t i

C C Y C NumC E X Y C d

C Y d  

−

= = = =

− −

= =

+  +  +

+  − +

 



(13)                    

s.t. 

1

1,              ( 1,..., ; 1,..., )
m

ijt

i

X j n t T
=

= = =                              (14)

1

1,              ( 1,..., ; 1,..., )
n

ijt

j

X i m t T
=

= = =                               (15)     

u ,    ( =1,..., ; 1,..., ; 1,..., )j ijt iN mB X Y i m j n t T  = =             (16)

,       ( =1,..., ; 1,..., ; 1,..., )it it nom ij ijtQ Q E X i m j n t T+   = =  (17)

1 1 1

,                                     ( =1,..., ; 1)   

, ( =1,..., ; 1,..., ; 2,..., )

nom

it
it it nom ij ijt

Q i m t
Q

Q Q E X i m j n t T− − −

=
= 

+ −  = =

 (18)

 0,1 , ,          ( =1..., ; 1,..., ; 1,..., )ijt iX Y Z i m j n t T+  = =，     (19) 

    Objective (13) minimize the lifecycle cost of the BEB system, 

which synchronously involves a static programming for 

infrastructure procurement and a dynamic programming for 

fleet scheduling, where lcC is the lifecycle cost for the BEB 

system; busC and chdC represent the purchase costs of a BEB 

(without battery) and a charging device, respectively; batC and 

eleC  are the unit battery cost and charging cost per kWh, 

respectively; rated is the discount rate; bat is the annual 

reduction rate of battery cost, which is necessary to be 

considered due to the rapid development of the automotive 

battery industry in recent decades [44]; it is defined as a binary 

variable with respect to the battery replacement, which is equal 

to 1 if the BEBs from fleet i replace their batteries during the 

year t when the old batteries reaching their end-of-life, and 0 

otherwise. In this objective function, the first term determines 

the total cost for BEB purchase in the whole system, where the 

total number of BEBs is obtained by summing up the number 

of BEBs from all the fleets; the second term focuses on the total 

procurement cost of the charging devices, where the number of 

chargers purchased for a BEB system is influenced by the type 

of the charging methods, as has been discussed in Section II.C; 
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the third term calculates the total charging cost over the whole 

planning horizon, and furthermore, the model considers that the 

unit charging cost differs for overnight and opportunity 

charging methods due to the influence of time-of-use electricity 

price, which presents the clear variations in unit charging cost 

from daytime to nighttime [45]; the final term gives the total 

cost for battery replacement over the whole service life of the 

BEBs, where the total number of batteries used for the lifetime 

operation of the BEB fleets is significantly affected by the 

matching strategy of BEB fleets and routes during the planning 

horizon. Note that, the salvage values are not considered in the 

objective function, because they are considered to be quite 

small after the expected service life, and thus have fairly limited 

impacts on the lifecycle costs [46]. Moreover, since we consider 

the service life of BEB as the planning horizon, the maintenance 

cost is also neglected. As a matter of fact, if necessary, it is 

straightforward to integrate the maintenance cost into the 

objective function, for instance, by adjusting the purchase cost.  

Equations (14)-(19) present the constraints for the lifecycle 

cost optimization model. To be specific, constraints (14) and 

(15) indicate a consistent one-to-one match between each BEB 

fleet and each route, where one BEB fleet can only be assigned 

to one route, and meanwhile one route can only accept one BEB 

fleet for each scheduled period. Constraint (16) ensures that the 

number of BEBs from bus fleet i is no less than the minimum 

BEB fleet size required for route j, if the BEB fleet i is assigned 

to the route j during the year t. Constraint (17) guarantees that 

the maximum energy obtained by a single BEB from bus fleet i 

during the year t is no less than the energy required for its yearly 

operation on route j, if the BEB fleet i is assigned to the route j 

during the year t, where itQ represents the initial capability of 

energy throughput over the remaining useful life of the battery 

equipped in the BEB from bus fleet i at the beginning of year t. 

Constraint (18) formulates the state transition equation for itQ , 

which reveals the dynamic change trends of the battery’s 

remaining useful life, represented as energy throughput, over 

the whole planning horizon. It is observed that, the fleet 

scheduling strategy in current year are highly related to the 

remaining useful life of the battery at the beginning of the 

subsequent year. Constraint (19) ensures that the decision 

variable ijtX is the binary variable, and meanwhile the decision 

variable iY belongs to the integer.    

The presented model is nonlinear due to the nonlinearity 

existed in both the objective function and constraints, even for 

its relaxations in case the decision variable iY  is continuous. 

For the objective function, it can be observed that the final term 

is nonlinear, where the binary variable it is highly related to the 

decision variable ijtX . For the constraints, the constraints (17) 

and (18) are nonlinear, where the variable ijE is calculated 

based on the decision variable iY , as shown in (3). Note that, the 

third term of the objective function can be regarded as the linear 

term, because iY acts as the denominator in (3) and thus it can be 

cancelled out in the calculation process. The nonlinearity of the 

model results in significant complexity to solve the problem. 

This is because that, the conventional exact algorithms or 

commercial solvers have limited ability to solve the complex 

nonlinear models. Based on this, the customized solution 

method should be designed to obtain the solution of the problem.  

IV. MODEL TRANSFORMATION AND SOLUTION 

A. Model Transformation Based on Bi-level Programming 

In the proposed model, the solution comprises two parts, 

including infrastructure procurement and fleet scheduling. For 

the infrastructure procurement part, the solution gives the 

number of BEBs purchased for each bus fleet and thus contains 

m variables upon the number of bus fleets in a public transit 

system. For each variable, the procurement decision is an 

integer value greater than zero. For the fleet scheduling part, the 

solution determines the BEB fleet scheduling during each 

scheduled period and accordingly contains m×n×T variables 

upon the number of bus fleets and routes as well as the whole 

service life of the BEB. For each variable, the fleet scheduling 

is a binary value. Hence, it is difficult to synchronously search 

for all the possibilities with respect to both parts of the solution. 

Nevertheless, it is worth noting that there exists a hierarchical 

relationship between the two parts of the solution, where the 

infrastructure procurement is able to determine the key 

impacting factors for the BEB fleet scheduling. The main 

reasons for such a relationship are twofold: on the one hand, the 

number of BEBs in a bus fleet has a direct influence on the 

feasibility of the fleet to be assigned to different routes. In other 

words, the number of BEBs from a specific bus fleet should 

satisfy the minimum required fleet size for a route, if the BEB 

fleet could be matched with the route, as mentioned in Section 

II.B; on the other hand, the annual energy consumption for a 

single BEB operating on a specific route is affected by the 

number of BEBs from the corresponding bus fleet, as presented 

in (3). This characteristic further indicates that the BEB fleet 

size would influence the battery fading behavior during the 

scheduling process, as discussed in Section II.D. In view of the 

hierarchical relationship between the infrastructure 

procurement and fleet scheduling, combining the bi-level 

programming principle [47], the collaborative optimization 

model can be regarded as a bi-level optimization problem, 

where the outer-level objective aims to determine the optimal 

number of BEBs purchased for each fleet, and the inner-level 

objective searches the optimal matches between BEB fleets and 

routes during each scheduled period. In this way, the initial 

objective function, as shown in (13), can be decomposed into 

two interrelated functions to reduce the computational 

complexity, as given in (20) and (21). Basically, the outer-level 

objective function (20) has control over the decision variable iY , 

and the inner-level objective function (21) has control over the 

decision variable ijtX .          

    
1

min =  
m

outer inner
lc bus i chd lc

i

C C Y C NumC C
=

+  +                        (20) 
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1

1 1 1

1 1

1 1

ˆmin = (1 )

ˆ(1 ) (1 )

T m n
inner t
lc ij ijt i ele rate

t i j

T m
t t

bat bat it i rate

t i

C E X Y C d

C Y d  

−

= = =

− −

= =

 +

+  − +





               (21) 

    In the above functions, 
outer
lcC and 

inner
lcC are used to denote 

the associated costs obtained from outer-level and inner-level 

objective functions, respectively. Furthermore, to solve the bi-

level optimization problem, once the outer-level objective 

function chooses the values of decision variable iY , the iY of 

the inner-level objective function become the constants. Thus, 

ˆ
iY represents the decision variable iY with known values. It is 

observed that the final lifecycle cost is obtained as the outer-

level objective is optimized.  

B. Hybrid TS-IGA Solution Method 

    Through model transformation, the collaborative 

optimization model with two categories of decision variables is 

reformulated as the bi-level optimization problem that has two 

interrelated objectives with single category of decision variable. 

By this way, the model can be solved by separately handling the 

inner-level and outer-level subproblems. Note that, even though 

the computational complexity is reduced by the model 

transformation, it is still difficult to deal with the problem. The 

primary complexities for determining the solution of the bi-

level optimization problem are summarized as follows. Firstly, 

there exists a transitive relation between the solutions of the two 

subproblems, where the outer-level subproblem sends its 

candidate solution to the inner-level subproblem, and then the 

inner-level subproblem provides its objective function value to 

the outer-level subproblem. Indeed, as regards the problems 

with the similar characteristic, there exist some exact 

algorithms that may have ability to deal with them. However, 

the exact algorithms are often available based on some strict 

conditions, and thus the heuristic algorithms are more widely 

used [48]. For instance, a most possible technique for solving 

the similar problems is the Benders decomposition method, 

whereas it is unable to solve the proposed model, because the 

model structure, e.g., the inner-level objective function (21), 

cannot satisfy the conditions of the Benders decomposition 

method [49]. Secondly, the scale of the candidate solution for 

the outer-level subproblem is large, which is the combination 

of a certain number of integers. Finally, the inner-level 

subproblem is a dynamic optimization problem, where the fleet 

scheduling in the immediately scheduled period has effects on 

that in the subsequent scheduled period. It is unrealistic to 

enumerate all the conditions to evaluate the use-phase operating 

cost for finding the optimal matches between BEB fleets and 

routes, which would increase exponentially with the increase in 

the number of scheduled periods.  

Considering the abovementioned complexities in terms of the 

model, we attempt to introduce a hybrid heuristic to solve the 

bi-level optimization problem, which has been regarded as an 

effective combinatorial optimization technique in solving hard 

problems [50]. To this end, a hybrid heuristic solution method 

based on a TS and an IGA is customized to solve the model. 

Just like the characteristic of a bi-level problem, the framework 

of the solution method is constructed as a hierarchical structure, 

including inner-level and outer-level procedures. To be specific, 

the outer-level procedure is designed based on a TS framework 

to determine the number of BEBs in different fleet sizes, i.e., 

decision variable iY . In the outer-level procedure, the objective 

is to optimize the lifecycle cost, as shown in (20), where the 

initial capital cost can be calculated directly as the candidate 

solution of iY is chosen while the operating costs during use 

phase are obtained from the solution of the inner-level 

procedure. Given the above features of outer-level procedure, it 

is appropriate for TS. This is because TS has relatively high 

convergence rate and good adaptability for solving optimization 

models with complex solution spaces [51]. By using TS in the 

outer-level procedure, the integer variable iY can be efficiently 

optimized considering its interaction with the inner-level 

procedure. For the inner-level procedure, an IGA is designed to 

search the optimal matches between bus fleets and routes for 

each scheduled period, i.e. decision variable ijtX , and 

determine the use-phase operating cost, i.e. 
inner
lcC . The reason 

for choosing IGA lies in its strong ability to search global 

solution and good adaptability for dynamic programming with 

complicated solution spaces [52]. The inner-level procedure 

sends
inner
lcC to the outer-level procedure and thus the lifecycle 

cost, i.e. 
outer
lcC , is obtained under the current candidate 

solution of iY . In this way, the TS and IGA are performed 

iteratively until the termination criteria is met. Fig. 2 presents 

the flowchart of the hybrid TS-IGA solution method. For the 

initial solution, the initial values of iY can be generated 

according to the minimum required BEB fleet size. For example, 

 
 

Fig.2 Flowchart of the hybrid TS-IGA solution method 

 

 

 

 

 

 

 

Fig. 1.  Magnetization as a function of applied field. Note that “Fig.” is 
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the initial iY should ensure that the number of BEBs in each bus 

fleet can meet the requirement of all the routes. On this basis, 

the corresponding initial value of ijtX can be obtained using the 

IGA procedure, which need satisfy the constraints with respect 

to the fleet scheduling in the model. As a heuristic-based 

solution method, it should be noted that the computational 

solution obtained by the hybrid TS-IGA may be a satisfactory 

or near-optimal solution. For simplicity, the computational 

solution obtained by this hybrid heuristic is experientially 

called the optimal solution in this study. The implementations 

of IGA and TS for the inner-level and outer-level procedures 

are respectively detailed in following subsections. 

1) IGA for the inner-level procedure 

In the hybrid TS-IGA framework, a specialized IGA is 

designed for the inner-level procedure to search the optimal 

matches between BEB fleets and routes. IGA is an improved 

algorithm based on the combination of the immune concepts 

and the genetic algorithm (GA), which has a better ability to 

refrain the degenerative phenomena during evolution, as 

compared to the typical GA [53]. To be exact, IGA utilizes the 

local information to intervene in the global search process and 

restrain or avoid repetitive and useless work to overcome the 

blindness in crossover and mutation operations. This advantage 

inspires several studies use IGA for solving dynamic 

scheduling problems, because it significantly increases the 

algorithmic performance to find the global optimal solution in 

a complicated solution space [52], [54]. Therefore, given the 

dynamic characteristic of the fleet scheduling problem, the IGA 

is well-suited for the inner-level procedure. In an IGA, a 

solution is encoded as an antibody that is often represented by 

a chromosome with a certain number of gene bits, similarly as 

the canonical GA [55]. In order to accommodate the problem 

characteristics of BEB fleet scheduling, we customize the 

antibody to represent the matches between BEB fleets and 

routes for each scheduled period. To be exact, an antibody is 

formed by a one-dimensional array with m T elements, where 

the value of each gene bit is the serial number of the route that 

is matched to the corresponding BEB fleet. For example, Fig. 3 

illustrates an antibody corresponding to the scenario with three 

BEB fleets. According to the set of scheduled periods, the 

antibody chromosome is partitioned into T groups, and each 

group has three gene bits representing the fleet scheduling for 

the corresponding t. Obviously, within the group of t=1, the 

value of the first gene bit is equal to 1, which indicates that the 

BEB fleet 1 is assigned to the route 1 for t=1; similarly, the 

value of the second gene bit within the group of t=2, which is 

equal to 3, shows that the BEB fleet 2 is matched with the route 

3 for t=2.  

In the IGA, the number of antibodies is defined as the 

population size. For each antibody, the fitness is calculated 

based on the inner-level objective function, as shown in (21). 

According to the fitness values, the antibodies from the 

population are sorted, and subsequently the best two antibodies 

are selected as the vaccines saved into a vaccine library. The 

vaccine is the representative of the elitist antibody, which plays 

a critical role in the efficiency of the algorithm [56]. In addition, 

an iterative operation is applied to update the antibodies through 

crossover, mutation and selection operations coupled with 

immune operator. The primary principle behind immune 

operator utilization is to intervene aptly in the variation of genes 

in individual antibody by using vaccines. It can improve the 

convergence rate and population diversity during the 

evolutionary process. To be specific, in the population of each 

generation, the two-point crossover is used in principle for the 

crossover operation using a specified crossover probability, and 

then the mutation operation is employed to exchange the values 

of randomly selected two gene bits according to a given 

mutation probability (Jiao et al., 2000).  It is worth noting that, 

given the dynamic characteristics of fleet scheduling, both the 

crossover and mutation operations would perform T times for 

an specific antibody, because the gene bits in each group of t 

for the selected antibodies should be updated during the 

iterative process. The fitness values of the updated antibodies 

are also determined and sorted. Afterwards, the self-adaptive 

vaccine selection is introduced to ensure the validity of the 

vaccines, which refers to the adaptive capacity for updating the  

vaccine library during the evolutionary process. By this way, 

the vaccines can be replaced by the antibodies with better 

fitness values from the population of current generation.  

For the selection operation, an immune operator is adopted 

to improve the convergence rate and population diversity, 

which composed of two operations: vaccination and immune   

balance. The vaccination operation aims to modify the 

antibodies from the population in accordance with the vaccine 

library and thus raise the fitness with greater probability. In this 

study, we use both strategies of antibody replacement and gene 

modification to realize the vaccination operation, as illustrated 

in Fig. 4. As seen, case (a) presents the antibody replacement 

strategy, where the antibodies with worst two fitness values in 

the population are replaced by the vaccines from the vaccine 

 

(a) Antibody replacement strategy 

 

 (b) Gene modification strategy 

Fig.4 Vaccination operation in the IGA 

 

 
Fig.3 Toy antibody with three BEB fleets 
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library under the reverse order of fitness. By contrast, case (b) 

provides the gene modification strategy that modifies the genes 

on some bits for an individual antibody based on the vaccines, 

where the target antibodies and corresponding vaccines are 

randomly selected from the population and vaccine library, 

respectively; in particular, the gene bits marked by red color in 

the figure represent that they are selected to perform injection 

or modification between the vaccine and target antibody. A 

check operation is further implemented to test antibodies before 

and after the gene modification, and the antibody with better 

fitness value participate in the population. After the vaccination 

operation, the antibodies in the updated population are sorted 

again according to the fitness.  

On the other hand, the immune balance operation can ensure 

the diversity of antibodies by simultaneously integrating the 

fitness and concentration into the selection probability of an 

individual antibody. The concentration is a specific concept in 

the immune balance operation, which is related to the similarity 

of antibodies. In this work, we use the fitness as the metric for 

the similarity of antibodies, and accordingly the concentration 

refers to the proportion of the antibodies that are similar to the 

target one in the population, including the target antibody itself. 

Meanwhile, the probability regarding the fitness is also 

determined based on the proportion of the fitness value for each 

antibody in the total fitness for all the antibodies from the 

population. Combining the probabilities of fitness and 

concentration, the selection probability for each antibody in the 

population is calculated based on the immune balance operation. 

A sketched derivation of the selection probability with immune 

balance operation is detailed in Appendix B in the interest of 

brevity. Afterward, the roulette wheel selection method is used 

to perform the selection operation according to the selection 

probability, which is an effective and commonly-used method 

in intelligent algorithms [57]. In this way, the population in the 

new generation is obtained until the termination criteria is 

satisfied. For IGA termination, we consider that the algorithm 

halts as the iterations reach the maximum number, which is 

often adopted as the termination criterion in intelligent 

algorithms [58]. The detailed steps of the IGA for the inner-

level procedure are outlined in Algorithm 1.  

2) TS Algorithm for the Outer-level Procedure 

For the outer-level procedure, a TS algorithm is customized 

to determine the optimal number of BEBs that are purchased 

for each bus fleet. TS is an effective heuristic procedure for 

guiding search in complex solution spaces, which is able to 

ensure the diversified search through the simulation of human 

intellectual activities, thereby realize the efficient global 

optimization [51]. To be exact, TS explores the solution space 

by constantly replacing recent solution with new one that 

escapes from the already visited solutions and their neighbors. 

In general, TS algorithm starts the search from an initial feasible 

solution. Considering the feature of the proposed model, we use 

the1 m vector, i.e. 1( , , , , )i mY Y Y , to represent the solution in 

the TS, where the value of iY is the number of BEBs in ith bus 

fleet. In this study, we consider that an effective initial solution 

for the TS need to ensure the feasibility of the matches between 

any bus fleets and routes, thereby the maximum-minimum 

required number of BEBs among all the routes could be 

regarded as the initial solution, which can be obtained using (4) 

or (5) for different charging methods. Afterwards, the solution 

would be iteratively improved through the movement of 

decision variable iY , where the candidate solutions 

Algorithm 1 IGA for the inner-level procedure 

Step 1: Randomly generate the antibodies with m T gene           

bits to constitute the initial population. 

Step 2: Determine the fitness value of each antibody-based 

on (21) and save the best antibody as the temporary 

solution. 

Step 3: Establish the vaccine library and save the antibodies 

with the best two fitness values into the vaccine 

library. 

Step 4: Perform the crossover operation to update the 

population using a specific crossover probability. 

Step 5: Perform the mutation operation to update the 

population using a specific mutation probability. 

Step 6: Determine the fitness value of each antibody from 

the updated population and sort the antibodies in 

descending order. 

Step 7: Update the vaccine library based on the self-adaptive 

vaccine selection approach.  

Step 8: Perform the vaccination operation on the population 

and then sort the antibodies in a descending order 

according to their fitness.  

Step 9: Calculate the selection probability for each antibody 

based on the immune balance operation.  

Step 10: Perform the selection operation using the roulette   

wheel selection method to update the population.  

Step 11: Determine the fitness value of each antibody from 

the updated population and compare the best 

antibody with temporary solution. Save the best 

antibody as new temporary solution if its fitness 

value is better than the current temporary solution; 

otherwise, retain the current temporary solution. 

Step 12: Output the optimal solution if the iteration reaches 

the maximum number; otherwise, return to Step 4 

and continue the iterative repetitions.   

(a) Collective movement 

 

 (b) Individual movement 

Fig.5 Movement strategies regarding the candidate solution generation 
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corresponding to the current solution are searched based on the 

certain strategy. In the TS procedure, two types of movement 

strategies regarding the candidate solution generation are 

introduced, including the collective movement and individual 

movement. To be exact, the collective movement aims to adjust 

all the decision variables from the solution, while the individual 

movement solely alters one decision variable that is randomly 

selected from the solution, as shown in Fig. 5. As seen, cases (a) 

and (b) respectively illustrate the collective and individual 

movement strategies. For the sake of distinction, we use red 

color to highlight the decision variables that are selected from 

current solution to perform movement. The reason for such 

strategies lies in that the temporary solution is closer to the 

global optimal solution as the iterative generation increases, and 

accordingly the required movement intensity weakens. 

Therefore, the collective movement is mainly applied in the 

early iterative generations and the individual movement is used 

for the late iterative generations. For each type, a movement 

probability is introduced to guide the movement direction for 

the decision variable iY . The number of candidate solutions 

generated during each iterative generation is called candidate 

solution size.  

To circumvent the entrapment that the solution is trapped into 

local optimization, the TS procedure incorporates a memory 

structure to record the recent movements and whereby guide the 

search process. Such a memory structure is realized by 

establishing the tabu list in the TS. In the tabu list, each 

movement is formed by the 1 ( 1)m + vector in accordance with 

the solution structure, and the maximum number of movements 

recorded in the tabu list is called the tabu length.  For each 

movement, the last element records the optimal objective value 

obtained based on the corresponding solution which is recorded 

in the front m elements. Note that, the optimal objective value 

represents the optimal lifecycle cost under the solution, in 

which the use-phase operating cost is determined by the inner-

level procedure, as shown in (20). In each iterative generation, 

the movement recorded in the tabu list is forbidden when 

generating the candidate solutions. By this way, the TS 

algorithm could be prevented from revisiting the solutions that 

has been accessed in the previous iterative generations. 

Moreover, to further improve the optimization efficiency, the 

TS procedure also adopts the aspiration criteria to overrule the 

tabu movements in certain situations. In this work, we consider 

the aspiration criteria in which the candidate solution from a 

specific iterative generation is directly regarded as the 

temporary solution, if its optimal lifecycle cost is less than that 

of the current solution, and meanwhile update the tabu list by 

adding the candidate solution coupled with optimal objective 

value. As the candidate solutions with given size are obtained, 

only the one with minimum lifecycle cost is considered in the 

aspiration criteria. On the other hand, if the aspiration criteria is 

not satisfied, a check procedure is implemented to determine 

whether the candidate solutions and corresponding optimal 

objective values exist in the tabu list. For the situation that all 

the candidate solutions belong to the tabu list, the candidate 

solution with minimum lifecycle cost is regarded as the 

temporary solution. On the contrary, if there exist the candidate 

solutions that are not prohibited by the tabu list, use the best one 

among them to act as the temporary solution. For both the 

situations, the tabu list is updated using the candidate solution 

with minimum lifecycle cost and corresponding objective value 

during each iteration. For TS termination, we consider that the 

algorithm halts as the iterations reach the maximum number. 

The detailed steps of the TS for outer-level procedure are 

outlined in Algorithm 2. 

Algorithm 2 TS for outer-level procedure 

Step 1: Generate the initial feasible solution based on the 

maximum-minimum required number of BEBs for 

each route. 

Step 2: Calculate the optimal lifecycle cost of the initial 

feasible solution based on (20) and save it as the 

temporary solution, where the use-phase operating 

cost is determined using Algorithm 1. 

Step 3: Initialize the tabu list with a specific tabu length, 

where each movement is set as empty.  

Step 4: Check the iterative generation and generate the 

candidate solutions under a specific size for the 

current temporary solution: if the current iterative 

generation is less than the half of the maximum 

number of iterations, perform the collective 

movement strategy to generate the candidate 

solutions; otherwise, perform the individual 

movement strategy to generate the candidate 

solutions. 

Step 5: Calculate the optimal lifecycle cost of each candidate 

solution and sort the candidate solutions in an 

ascending order.  

Step 6: Select the candidate solution with minimum optimal 

lifecycle cost and determine whether the aspiration 

criteria is satisfied: if it is satisfied, save the 

candidate solution as the new temporary solution and 

go to Step 8; otherwise, go to Step 7. 

Step 7: Check whether all the candidate solutions and 

corresponding optimal lifecycle cost exist in the tabu 

list: if they all exist, save the candidate solution with 

minimum optimal lifecycle cost as the new 

temporary solution; otherwise, check the candidate 

solutions that do not exist in the tabu list and then 

select one with minimum optimal lifecycle cost 

among them as the new temporary solution. 

Step 8: Update the tabu list by adding the candidate solution 

with minimum optimal lifecycle cost and 

corresponding objective value, and meanwhile 

deleting the earliest added movement from current 

tabu list. 

Step 9: Output the optimal solution if the iteration reaches 

the maximum number; otherwise, return to Step 4 

and continue the iterative repetitions. 
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V. NUMERICAL CASE STUDY AND SIMULATIONS 

A. Example Scenario Description  

    In this section, a case study is presented to demonstrate the  

proposed model and solution method. Referring to the real-life 

scenario from a major city in China, we apply the lifecycle 

optimization model to a public transit system with six yet-to-be 

electrified bus lines, i.e. routes 1-6. TABLE I lists the 

information in terms of the studied routes in the case study, 

which exhibit considerably high heterogeneity for both length 

and the travel duration. Accordingly, six BEB fleets are 

considered in the case study, i.e. fleets 1-6.  

Besides the route information, the basic scenario parameters 

of the case study for overnight and opportunity charging 

methods are respectively presented in TABLE II, such as the 

parameters related to the purchase cost, energy consumption, 

and specific coefficients in the proposed model. Observably, 

most of the basic scenario parameters are assigned by reference 

to the related literature and the other ones are experientially 

given. Note that, TABLE II only presents the basic scenario 

parameters. Besides these basic scenario parameters, there are 

other parameters that can be deduced by the basic scenario 

parameters, as has been discussed in Section II. For instance, 

the battery weight can be obtained from battery nominal 

capacity   and battery specific energy  , as shown in (1). 

For the hybrid TS-IGA solution method, the primary 

parameters are given as follows: for the TS algorithm applied 

in the outer-level procedure, the candidate solution size, tabu 

length, and movement probability are respectively set as 20, 10, 

and 0.3; for the ICA applied in the inner-level procedure, the 

population size, crossover probability, and mutation probability 

are set as 50, 0.9, 0.1, respectively. The maximum number of 

iterations for both the procedures is set as 100. These 

parameters are obtained by referring to the typical parameter 

TABLE II 

SCENARIO PARAMETERS OF THE CASE STUDY 

Parameters Symbols Overnight 

charging 

Opportunity 

charging 

References 

Service life of 

BEBs 
T  

12 (years) 12 (years) [20] 

Purchase cost 

of a BEB 
busC  350000 (€) 350000 (€) [20] 

Purchase cost 

of a charger 
chdC  20000 (€) 250000 (€) [20] 

Unit battery 

cost  
batC  500 (€/kWh) 500 (€/kWh) [20] 

Battery 

nominal 

capacity  

  300 (kWh) 150 (kWh) [60] 

Base 

consumption 

rate 

baseECR  1.24 

(kWh/km) 

 

1.24 

(kWh/km) 

[18] 

Base battery 

weight 

bat
baseW  2492 (kg) 2492 (kg) [18] 

Battery 

specific 

energy 

  0.13 

(kWh/kg) 

0.13 

(kWh/kg) 

[18] 

Base bus 

weight 

bus
baseW  15000 (kg) 15000 (kg) [18] 

 

Rated battery 

cycle life 
rateCL  1000 

(#cycles) 

1500 

(#cycles) 

 

[35],[60] 

 

Charging 

power  
P  50 (kW) 400 (kW) [20] 

 

Operating 

days in a year 
D  

365 (days) 365 (days) ∕ 

 

Discount rate 
rated  3% 3% [20] 

 

Annual 

reduction rate  

of battery cost 

bat  8% 8% [38] 

 

 

Unit charging 

cost  
eleC  0.17 (€/kWh) 0.42 

(€/kWh) 

[39] 

Adjustment 

coefficient  

of battery 

capacity 

  0.9 0.9 ∕ 

 

 

Overlapping 

coefficient  

of road 

network 

  ∕ 0.9 ∕ 

 

 

Charging time 

at bus stops 

ch  ∕ 30 (s) [20] 

 

Probability of 

charging 

availability for 

routes 1-6 

j  ∕ 90%, 80%, 

85%, 80%, 

90%, 80% 

∕ 

 

 

 

(a) Overnight charging method 

 

 (b) Opportunity charging method 

Fig.6 Optimal fleet scheduling and battery replacement for the case study 

TABLE I 

ROUTE INFORMATION FROM THE CASE STUDY 

Routes Daily total 

duration 

(h) 

Round-trip 

travel duration 

(min) 

Operation 

interval 

(min) 

Round-trip 

driving distance 

(km) 

Route 1 12 80 20 22 

Route 2 13 90 20 23 

Route 3 13.5 105 20 25 

Route 4 12.5 150 30 40 

Route 5 13 120 30 32 

Route 6 13 130 20 34 
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settings in the existing literatures that present similar logical 

structure behind the problem formulation [53], [59]. 

B. Optimal Results and Analysis 

    For the BEB system with overnight charging method, the 

optimal numbers of BEBs that are purchased for the fleets 1-6 

are 5,5,6,7,7,7, respectively; for the BEB system with 

opportunity charging method, the optimal number of purchased 

BEBs for the fleets 1-6 are 6,6,7,5,5,5, respectively. 

Accordingly, the optimal scheduling of the BEB fleets is 

illustrated in Fig. 6. The battery replacement during the 

planning horizon for each BEB fleet is also obtained based on 

the fleet scheduling results and presented in the figure. In 

addition, to clearly distinguish the different BEB fleets, we 

utilize different colors to mark the fleet scheduling coupled with 

battery replacement for the fleets 1-6 in the figure.  

      Based on the optimal solution of the case study, we can 

obtain the corresponding lifecycle cost of the BEB systems with 

overnight and opportunity charging methods, respectively. In 

total, the optimal lifecycle costs for overnight and opportunity 

charging systems are 30.20 M€ and 47.96 M€, respectively. 

This result indicates a significant difference in the lifecycle 

costs between overnight and opportunity charging systems. To 

further explore the underlying causes of the difference, Fig. 7 

presents the components of the optimal lifecycle cost for the 

two charging systems, which include the charging cost, BEB 

purchase cost, charger phase cost, and battery replacement cost. 

On one hand, it is observed that the BEB purchase cost and 

battery replacement cost for the overnight charging are higher 

than the ones for the opportunity charging. The result indicates 

that the overnight charging system requires a larger number of 

BEBs than the opportunity charging system. Meanwhile, the 

cost of batteries used in the overnight charging system is larger 

than that used in the opportunity charging system, because of 

higher battery capacity. Even though the number of battery 

replacements for overnight charging is less than that for 

opportunity charging during the whole service life of the BEBs, 

the higher cost of batteries still contributes to a higher total cost 

of battery replacement. On the other hand, the opportunity 

charging results in higher charging cost and charger purchase 

cost than the overnight charging. The difference in charging 

cost is mainly affected by the difference in unit charging cost 

between overnight and opportunity charging systems. This 

result also indicates that the time-of-use electricity price has a 

harsher influence on the charging cost as compared to the 

energy consumption reduction arising from battery downsizing 

effects. When it comes to the charger purchase cost, there 

exhibits a striking difference between the two charging systems, 

where the opportunity charging system costs 17.01 M€ more 

than the overnight charging system. Such a result mainly lies in 

that the purchase cost of the fast charger for opportunity 

charging is significantly higher than the slow charger for 

overnight charging. More importantly, it is worth noting that 

the difference in charger purchase cost is highly close to the 

difference in the total lifecycle cost between the two charging 

systems, i.e. 17.76 M€. Therefore, it is concluded that the 

lifecycle cost difference stems primarily from the difference in 

the purchase cost of charging devices between overnight and 

opportunity charging systems.  

Fig.8 further provides the component proportion of the 

optimal lifecycle cost for overnight and opportunity charging 

systems, respectively. As can be seen, the BEB purchase cost 

and battery replacement cost dominate the lifecycle cost for the 

overnight charging system, where the sum of them accounts for 

83% of the total cost. By contrast, for the opportunity charging 

system, the sum of BEB purchase and battery replacement costs 

only accounts for 41% of the lifecycle cost. On the contrary, the 

charger purchase cost occupies the largest proportion of the 

lifecycle cost for the opportunity charging system, whereas it 

has a negligible influence on the lifecycle cost for the overnight 

charging system.  

As mentioned before, this study customizes the hybrid TS-

IGA solution method to solve the model, thereinto IGA is the 

improved algorithm based on the combination of the immune 

concepts and GA. To evaluate the performance of the proposed 

algorithm, we further solve the model by using the hybrid 

heuristic algorithm based on the TS and canonical GA, i.e., 

 
Fig.7 Components of the optimal lifecycle costs 

 

 

(a) Overnight charging system 

 

 (b) Opportunity charging system 

Fig.8 Component proportion of the optimal lifecycle costs 
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hybrid TS-GA, and accordingly carry out the comparative 

assessment. The primary parameters of the hybrid TS-GA are 

consistent with the proposed hybrid TS-IGA to ensure the fair 

and valid comparison. The optimal solution derived from the 

hybrid TS-GA exhibits that the lifecycle costs for overnight and 

opportunity charging systems are 31.37 M€ and 49.43 M€, 

respectively. By comparison, it is concluded that the proposed 

hybrid TS-IGA algorithm has the better performance to solve 

the model, which can reduce the lifecycle cost by 3.73% and 

2.97% compared to the hybrid TS-GA algorithm for overnight 

and opportunity charging systems, respectively. 

In a real-world scenario, public transit agencies often tend to 

adopt the conventional management strategy for BEB system, 

where all the fleets have a unified fleet size and keep driving on 

the fixed route pre-determined at the beginning of the planning 

horizon [9]. To evaluate the effectiveness of the proposed 

model, we compare the optimal lifecycle cost from the model 

with that from the conventional management strategy in which 

the fleet size meets the requirements for all the routes. To be 

specific, the conventional management strategy uniformly 

purchases seven BEBs for the fleets 1-6, and each fleet only 

serves one route without scheduling over the whole planning 

horizon. The results indicate that the proposed methods can 

reduce the lifecycle cost by 7.77% and 6.64% compared to the 

conventional management strategy for overnight and 

opportunity charging systems, respectively. Thereinto, for the  

overnight charging system, the proposed model can save 11.90% 

of BEB and charger purchase costs and 5.36% of battery 

replacement cost compared with the conventional management 

strategy; for the opportunity charging system, the proposed 

model can save 19.05% of BEB purchase cost and 7.29% of 

battery replacement cost as compared to the conventional 

management strategy.  The above results show that the 

collaborative optimization of infrastructure procurement and 

fleet scheduling can help to reduce both the initial capital cost 

and use-phase operating cost. 

C. Sensitivity analysis 

In the numerical case study, several key parameters of the 

example scenario are given by considering the real-life 

conditions referenced in existing studies, as shown in TABLE 

II. On this basis, we further carry out a series of simulations for 

sensitivity analysis to explore the relative importance of the key 

parameters for the optimal lifecycle cost. The parameters 

considered in the sensitivity analysis include the purchase cost 

of BEB, purchase cost of charger, unit battery cost, battery 

nominal capacity, charging power, and unit charging cost. The 

sensitivity analysis evaluates these parameters by changing 

their values individually. To be exact, the values of each 

parameter in sensitivity analysis are determined by respectively 

increasing and decreasing 20% from the base value that is 

presented in the aforementioned case study. The results of 

sensitivity analysis are summarized in Fig. 9, which presents 

the percentage difference of lifecycle costs obtained from the 

optimal results with variation of each parameter for both 

overnight and opportunity charging systems.  

    In Fig.9, cases (a) and (b) provide the results of sensitivity 

analysis for overnight and opportunity charging systems, 

respectively. For the overnight charging system, the optimal 

lifecycle cost is most sensitive to the battery nominal capacity, 

because the battery nominal capacity can not only affect the 

battery replacements but indirectly influence the required 

number of BEBs and energy consumption rate. The optimal 

results are also sensitive to the purchase cost of BEB and unit 

battery cost, which have primary effects on the BEB purchase 

cost and battery replacement cost, respectively. Since the unit 

charging cost and purchase cost of the charger is relatively low, 

the changes in them have comparatively limited impacts on the 

optimal results. In addition, the optimal lifecycle cost is least 

sensitive to the charging power, because the slow charging 

pattern used in overnight charging systems has an ignorable 

effect on battery fading rate as well as battery replacement costs. 

On the other hand, for the opportunity charging system, the 

optimal lifecycle cost is significantly sensitive to the battery 

nominal capacity, purchase cost of the charger, and charging 

power. Specifically, the battery nominal capacity has 

significant influences on the battery replacements and indirect 

influences on energy consumption rate. More importantly, 

unlike the overnight charging system, the changes in battery 

nominal capacity further affect the battery aging behavior, 

because the battery fading rate is highly related to the charging 

current rate under the fast charging pattern used in the 

opportunity charging system, which is associated with the 

 

(a) Overnight charging system 

 

 (b) Opportunity charging system 

Fig.9. Percentage difference of lifecycle costs with variation of each parameter 
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battery nominal capacity and charging power. Thus, the 

charging power also has a considerable impact on the battery 

replacement cost. The purchase cost of charger has a significant 

impact on the optimal results owing to its relatively expensive 

price and large proportion in the lifecycle cost. Moreover, the 

optimal results are also sensitive to the purchase cost of BEB 

and unit charging cost, which directly affect the BEB purchase 

cost and charging cost from the lifecycle cost, respectively. The 

optimal lifecycle cost is least sensitive to the unit battery cost, 

because the battery used in opportunity charging system often 

has a relatively small nominal capacity. Moreover, the results 

also present that the battery performance improvement has 

greater benefits on the overnight charging system compared 

with the opportunity charging system. This is because the 

increase of driving range can reduce the fleet size for overnight 

charging system and thus save the BEB purchase cost. 

Therefore, it is better to charge using overnight charging 

method than opportunity charging method as the battery 

performance is improved. 

Besides the aforementioned key parameters, we design an 

adjustment coefficient σ, ranging from 0.8 to 1, to adjust the 

battery capacity considering the battery fading behavior, and 

meanwhile reflect the decision preference of the operator for 

the trade-off between the benefit from sufficient utilization and 

the risk caused by overuse, as presented in (8) and (12) from 

Section II.D. If the adjustment coefficient σ is assigned a 

relatively large value, it indicates that the operator attaches 

greater importance to the benefit from sufficient utilization of 

the battery than that to the risk caused by its overuse. On the 

contrary, a relatively small value of the adjustment coefficient 

σ indicates that the operator is more inclined to avoid the risk 

caused by overuse of battery than achieve additional benefit 

from its sufficient utilization. The normal level of the decision 

preference is obtained if the adjustment coefficient σ is equal to 

0.9, which is applied in the numerical case study. Here, we 

further consider other two conditions with σ=0.8 and σ=1.0 to 

explore the impacts of the decision preference of the operator 

on the optimal results. Fig.10 illustrates the optimal lifecycle 

costs and related percentage differences under different 

conditions with σ=0.8, σ=0.9 and σ=1.0 for both overnight and 

opportunity charging systems, where the result under the 

condition with σ=0.9 is obtained by the case study and thus 

regarded as the base case. 

In Fig.10, cases (a) and (b) present the optimal results and 

corresponding percentage differences for overnight and 

opportunity charging systems, respectively. It is observed that 

the optimal lifecycle costs for both the charging systems show 

a trend of change with the variation of adjustment coefficient σ. 

Specifically, a decrease of the adjustment coefficient σ would 

increase the lifecycle cost while an increase of that would 

reduce the lifecycle cost. This is because the adjustment 

coefficient σ significantly affects the battery replacements. 

Moreover, since the battery used in overnight charging system 

has a larger capacity and thus higher purchase cost than that 

used in opportunity charging system, the variation of 

adjustment coefficient σ has a slightly harsher impact on the 

optimal lifecycle cost of overnight charging system than that of 

opportunity charging system from the perspective of the 

percentage difference. 

VI. CONCLUSIONS AND POLICY IMPLICATIONS  

This study investigates the lifecycle cost optimization for 

BEB system by considering overnight and opportunity charging 

methods, respectively. A collaborative optimization model that 

simultaneously plans the infrastructure procurement and fleet 

scheduling are developed to comprehensively explore the 

economic efficiency of the lifetime operation of BEB system. 

Before modeling, we systematically analyze the essential 

factors involved in the BEB systems with the two different 

charging methods, including the energy consumption, BEB 

fleet size, number of chargers, and battery life span. In 

particular, the impacts of battery downsizing, charging patterns, 

and charging current rate on these factors are discussed and 

considered in the problem formulation. To effectively solve the 

proposed model, the collaborative optimization model is 

reformulated as the bi-level optimization problem and 

subsequently a hybrid heuristic solution method based on a TS 

and an IGA is customized by considering the hierarchical 

relationship between the infrastructure procurement and fleet 

scheduling. Moreover, a numerical case study is performed to 

demonstrate the proposed model and solution method, where 

most of the scenario parameters are assigned by reference to the 

real-life conditions and existing literature. The optimal BEB 

fleet sizes coupled with the optimal matches between fleets and 

routes are simultaneously obtained, and the optimal lifecycle 

cost can be reduced by 7.77% and 6.64% for overnight and 

 

(a) Overnight charging system 

 

 (b) Opportunity charging system 

Fig.10. Optimal lifecycle costs and related percentage differences under 

different adjustment coefficient σ 
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opportunity charging systems, respectively, compared to the 

conventional management strategy. A series of simulations are 

further carried out to conduct sensitivity analysis and evaluate 

the key parameters on the optimal results. The results reveal the 

relative importance of the parameters for lifecycle cost and 

indicate the significant differences in their life cycle 

performance between overnight and opportunity charging 

methods, especially in that of the charger purchase cost and 

charging power, which is able to provide the managerial 

insights to public transit agencies and related stakeholders to 

construct and manage the BEB system. In addition, the research 

results can also contribute to the policy proposal for BEB 

promotion in the urban transit system under various regional 

features. Some of the policy implications are drawn as follows: 

    1) The construction of overnight charging systems often 

requires adequate land resources to provide long-term parking 

[61]. The results from the study indicate that the BEB purchase 

cost accounts for 93.48% of the initial capital cost for the 

overnight charging system. Therefore, for the regions that are 

suitable for the overnight charging method, introducing the 

purchasing subsidy policies of BEBs is an effective means to 

promote the electrification of the city bus system.  

2) Frequent charging under fast charging patterns would 

bring challenges to the load capacity of the power grid, and the 

construction of an opportunity charging system has a high 

requirement to local power resources as consequence [61]. The 

results from the study imply that the charger purchase cost 

accounts for 59.68% of the initial capital cost for the 

opportunity charging system. Thus, the construction subsidy of 

charging devices can provide effective guidance to improve the 

attraction of BEBs in the regions that are suitable for the 

opportunity charging method. Moreover, by introducing the 

appropriate construction subsidy of fast chargers, the 

transformation from overnight charging to opportunity 

charging can be guided to improve the energy and 

environmental performance of BEB system, because the bus 

weight reduction can induce the reduction of battery-to-wheel 

energy consumption and greenhouse gas emissions [31].  

3) Even though the cost of Lithium iron phosphate batteries 

has been experiencing a gradually declining trend owing to its 

technological development, the battery replacement cost still 

accounts for a considerable proportion of the lifecycle cost for 

both charging methods. For some regions that are difficult to 

introduce subsidy policies, improving the battery efficiency is 

an effective method to enhance the competitiveness of BEBs in 

the urban transit system. Therefore, this is necessary to 

introduce targeted incentive policies to encourage operators to 

optimize the fleet scheduling over the whole life cycle and the 

battery replacement cost would be reduced as consequence.  

      Notably, the policy implications are inspired by the 

numerical results from the case study coupled with the 

sensitivity analysis considering a specific variation range of the 

parameters, whereas the realistic extent of potential changes in 

the values of the parameters are not comprehensively discussed. 

Our future work will further deal with the uncertainty of the 

parameters by using Monte Carlo analysis or other effective 

methods [62]. Moreover, this study considers the impacts of 

route overlapping on the required number of chargers with the 

opportunity charging method, which are reflected by defining 

the overlapping coefficient and probability of charging 

availability in the proposed model. Such definitions can reduce 

the model complexity yet leaves out the potential complexities 

of route network structure and traffic conditions. The structure 

of route network has potential effects on the location of chargers 

while the traffic conditions may fluctuate the travel duration 

between different bus stops. Therefore, built upon the 

collaborative optimization model, an in-depth investigation 

regarding the route overlapping effects will be carried out in 

future research based on real-world data. Meanwhile, the more 

realistic energy consumption models will also be applied in 

extending the lifecycle cost optimization of BEB system based 

on the real-world driving profile of different bus routes. In 

addition, this study evaluates the overnight and opportunity 

charging methods separately to better compare their impacts on 

lifecycle cost of BEB systems, while does not discuss the hybrid 

strategy with combination of different charging methods. The 

hybrid strategy may lead to lower lifecycle cost, which will be 

discussed in our future research. 

APPENDIX 

Appendix A. List of Notations 

Subscripts  

i  Index of the BEB fleet 

j  Index of the routes 

t  Index of the scheduled periods 

Parameters  

 T  Service life of BEBs 

   Nominal capacity of battery without instruction of 

charging method 
ON  Nominal capacity of battery used for overnight charging 

method 
OP  Nominal capacity of battery used for opportunity charging 

method 
in
j  Operation interval for the timetable of route j 

br
j  Travel duration of a round-trip on route j 

do
j  Daily total duration for the timetable of route j 

ECR  Adjusted energy consumption rate 

baseECR  Base energy consumption rate of the reference BEB 

bat
baseW  Base battery weight of the reference BEB 

bus
baseW  Base bus weight of the reference BEB 

  Battery specific energy 

jE  Energy consumption for a round-trip of route j 

jl  Driving distance of a round-trip of route j 

j  Probability of charging availability for route j 

  Usable state-of-charge range for the capacity of battery 

  Adjustment coefficient for battery capacity considering 

the battery fading behavior 

P  Charging power of the chargers in BEB system 

  Overlapping coefficient for route network 

D  Total days for the operation of BEB in a year 

ch  Charging time at bus stop 
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jNumB  Minimum required number of BEBs for route j without 

instruction of charging method 
ON
jNumB  Minimum required number of BEBs for route j under 

overnight charging method 
OP
jNumB  Minimum required number of BEBs for route j under 

opportunity charging method 

NumC  Required number of chargers without instruction of 

charging method (for opportunity charging) 
OPNumC  Required number of chargers for opportunity charging 

method 

nomQ  Total energy throughput over the whole life span of 

battery without instruction of charging method 
ON
nomQ  Total energy throughput over the whole life span of 

battery used in overnight charging method 
OP
nomQ  Total energy throughput over the whole life span of 

battery used in opportunity charging method 

chI  Charging current rate 

rateCL  Rated battery cycle life without instruction of charging 

method 
ON
rateCL  Rated battery cycle life for overnight charging method 

OP
rateCL  Rated battery cycle life for opportunity charging method 

OPCL  Actual cycle life of the battery used in opportunity 

charging method 

busC  Purchase cost of a BEB 

chdC  Purchase cost of a charger  

batC  Unit battery cost  

eleC  Unit charging cost 

rated  Discount rate 

bat  Annual reduction rate of battery cost 

Variables  

iY  Decision and integer variable, number of BEBs in the bus 

fleet i 

ijtX  Decision and binary variable, decision of whether to 

assign BEB fleet i to route j at scheduled period t 

it  Binary variable, representation of whether need to replace 

the batteries of BEB from fleet i during scheduled period 

t 

ijE  Average energy consumption over the yearly operation on 

route j for a single BEB from bus fleet i 

NumC  Required number of chargers without instruction of 

charging method (for overnight charging) 
ONNumC  Required number of chargers for overnight charging 

method 

lcC  Lifecycle cost for the BEB system 

itQ  Initial capability of energy throughput over the remaining 

useful life of the battery in the BEB from bus fleet i at the 

beginning of year t. 

Function  

( )chCL I  Number of charge-discharge cycles as the battery is fast 

charged at a constant charging current rate chI before 

reaching its end-of-life 

 

Appendix B. Derivation of Selection Probability with Immune 

Balance Operation in the IGA. 

Assume that 
1af and 

2af are the fitness values of any two 

antibodies 1a and 2a in the population. If the antibodies 1a and 

2a are similar to each other, the following condition with a 

given similarity threshold  should be satisfied： 

                           
1 2a af f −  −                                 (B1) 

      Based on the similarity, the concentration of an antibody 

can be determined, which is the proportion of the antibodies that 

are similar to it in the population. Let 
kacon denote the 

concentration of antibody ak, the probability in terms of the 

concentration is defined as shown in (B2).  
1

1
max( ) min( )

,                                   if 
2

1 1
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+ − +
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

   (B2) 

where
kapf is the probability regarding the concentration of 

antibody ak; ascon represents the number of antibodies whose 

concentration is less than the mean value of the maximum and 

minimum concentration values of the antibodies from the 

population; anum is the population size.  

      Furthermore, the probability in terms of the fitness is 

denoted as
kapf , which is defined as the proportion of the fitness 

value for antibody ak in the total fitness of all the antibodies 

from the population. Therefore, combining the probabilities of 

fitness and concentration, the selection probability for antibody 

ak is calculated based on the immune balance operation, as 

shown in (B3).  

(1 )
k k ka a aps ps pf = + −                          (B3) 

where 
kaps is the selection probability for antibody ak;  is the 

trade-off coefficient between fitness and concentration.  
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