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Abstract: Dynamic observers are commonly used in feedback loops to estimate the system’s states
from available control inputs and measured outputs. The presence of measurement noise degrades
the performance of the observer and consequently degrades the performance of the controlled system.
This paper presents a novel nonlinear higher-order extended state observer (NHOESO) for efficient
state and disturbance estimation in presence of measurement noise for nonlinear single-input–single-
output systems. The proposed nonlinear function allows a fast reconstruction of the system’s states
and is robust against uncertainties and measurement noise. An analytical parameterization technique
is proposed to parameterize the coefficients of the proposed nonlinear higher-order extended state
observer in the case of measurement noise in the output signal. Several scenarios are simulated to
demonstrate the effectiveness of the proposed observer.

Keywords: nonlinear systems; measurement noise; extended state observer; active disturbance
rejection control; nonlinear function filtering

MSC: 93-XX

1. Introduction

The presence of noise in engineering environments is inevitable and may reduce
considerably the performance of the controlled system that uses, in the feedback loop, noisy
outputs, directly or through state observers. The impact of noise may be attenuated by
applying suited filters on the system outputs that are injected in the observer. However, it
is difficult to overcome the differences in amplitude and phase between the filtered signals
and the actual system outputs. These differences may also degrade the performance of
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the controlled system. However, in some nonlinear systems the noise is beneficial for
enhancing weak signals of interest and signal estimation such as [1].

1.1. Related Work

An attenuation technique of measurement noise is applied to a state observer in [2]
to decouple the effect of noise from the observed states. To manage noisy estimations, the
extended state observer (ESO) structure is expanded with another fictional state variable
which is the integral of the output signal. This noise attenuation method, which depends
on augmenting the plant model with an extra integral state variable, permits designers to
select higher values of observer gains to give quicker estimation convergence, without the
risk of making the system less energy powerful because of noise intensification.

A Novel Augmented Extended State Observer (NAESO) was developed in [3] using a
singular perturbation technique which offers adequate noise rejection and easier parameter
selection. The Adaptive ESO (AESO) designed in [4] presented even better design flexibility
and estimation capabilities than Linear ESO (LESO), and a capacity for more complex
parameter refinement as the AESO order extends. Filtering of high-frequency noise mea-
surement may also be addressed with a first-order low-pass filter, as presented in [5], which
offers an additional alternative with which a modified active disturbance rejection control
(ADRC) could provide satisfactory noise measurement. Unfortunately, this low-pass fil-
ter introduced a time delay. An amended ESO, which included a nonlinear function to
improve the accuracy of estimations in the attenuation of measurement noises in system
outputs, was proposed in [6]. Moreover, the work in [7] examined the construction of a
Nonlinear ESO (NLESO) using piecewise, smooth, linear, and fractional power functions,
the properties of which included improved robustness of measurement noise and reduced
peaking values in the transient behaviour. In [8], the observer-based output feedback
control (OBOFC) problem was focused on a class of discrete-time strict-feedback nonlinear
systems (DTSFNS) with both multiplicative process noise and additive measurement noise.
In [9], a nonlinear observer was designed to estimate the inertial pose and the velocity of
a free-floating non-cooperative satellite using only relative pose measurements. In [10],
a nonlinear high-gain observer is proposed to overcome the effect of measurement noise
that is amplified in a traditional high-gain observer. In [11], a time-averaged Lyapunov
function was used to show that the sensor noise can be effectively reduced, and to calculate
explicitly a rate of convergence to the sliding surface of a noisy sliding mode observer. The
paper provided necessary and sufficient conditions for observer design that would allow
the proposed observer to be significantly less conservative than linear gain observers and
H∞ observers. In [12], a new observer, called High Gain (HG)/Linear Matrix Inequality
(LMI) observer, was obtained by combining the standard high-gain methodology with the
LMI-based observer design technique. Through analytical developments, the work showed
how the new observer provided lower gains, how it applies to systems with nonlinear
functions, and analysis performance in the presence of measurement noise and/or delayed
output measurements. Observer design using fuzzy filtering is studied in [13–16].

1.2. Paper Motivation and Contribution

This paper introduces a new analytical technique to parameterize a novel NHOESO
in the presence of measurement noise. Instead of adopting a trade-off between a fast
estimation of system states and measurement noise, the new NHOESO with the proposed
parameterization method aims to provide simultaneously fast estimation of systems states
and robustness to uncertainties and measurement noise. The proposed method is robust to
noise, which seems to create chaos in nonlinear systems [17].

The contribution of this paper is summarized as follows. The standard ESO is modi-
fied by adding an additional state to its state–space model and by introducing a smooth
saturation-like nonlinear error function, which leads to a Nonlinear Higher Order ESO
(NHOESO). This design enables accurate estimation of generalized disturbance with high-
order derivatives. The parameters of the proposed NHOESO are designed by employing a
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novel analytical method based on the Lyapunov method, which confers a higher immunity
against measurement noise.

1.3. Symbol Definitions

The symbols used in this paper are explained in Table 1.

Table 1. Symbol definitions.

Symbol Definition

R Set of real numbers
t Time (s)
t0 Initial time
u System input signal
y Measured output signal

f (·) Unknown system function
w Uncertain exogenous disturbance
b Input gain

f0(·) Nonlinear function of internal dynamics
C Class of Differentiable functions
b0 Nominal input gain

V(·) Lyapunov function
ρ Relative degree
η Internal state vector
ξ External state vector
L Generalized disturbance
∆ Derivative of the generalized disturbance
M Upper bound of the derivative of the generalized disturbance
ω0 Observer bandwidth
u0 Nominal control signal
r Reference input signal

f al(·) ADRC nonlinear function
N Measurement noise
P Symmetric positive definite matrix

∆h Second derivative of the generalized disturbance
Mh Upper bound of the second derivative of the generalized disturbance
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(·) Proposed nonlinear function
O(·) Limiting behavior of a function, namely, “Big O” notation
λmax Maximum Eigenvalue
λmin Minimum Eigenvalue

1.4. Paper Structure

The rest of this paper is outlined as follows. The problem statement is introduced
in Section 2. In Section 3, the theoretical background of the Linear ESO (LESO) and the
tuning of its parameters are recalled. The proposed NHOESO with measurement noise is
presented in Section 4. The parameterization of the NHOESO to reduce noise influence is
introduced in Section 5. Section 6 presents numerical simulations of the proposed NHOESO
with different measurement noise scenarios which illustrate the validity and performance
of the proposed observer. Finally, a conclusion is given in Section 7.

2. Problem Statement

Consider an nth order uncertain nonlinear SISO system with relative degree ρ where
(ρ ≤ n) 

ξ(ρ) = f
(

ξ, . . . , ξ(ρ−1), η, w, t
)
+ b(t)u,

y = ξ +N ,
.
η = f0

(
η, ξ, . . . , ξ(ρ−1)

)
,

(1)

where ξi, i ∈ {1, 2, . . . , ρ} are system states, η is the state of internal dynamics, u(t) ∈
C(R, R) is the control signal, y(t) ∈ C(R, R) is the measured output, w(t) ∈ C(R, R) is
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the uncertain exogenous disturbance, b ∈ C(R, R) is the input gain, f0 ∈ C(Rn,Rn−ρ) is
the nonlinear function of internal dynamics, N ∈ R is a Gaussian measurement noise, and
f ∈ C(Rn ×R×R, R) is uncertain dynamics that are a part of the generalized disturbance
and may involve exogenous disturbances w, parameter uncertainties, and unmodeled
dynamics. The system (1) is not written as a “pure chain of integrators”. Assuming
ξ1 = y, ξ2 =

.
y. . . . , ξρ = ξ(ρ−1), one gets{

ξi = ξi+1 i ∈ {1, 2. . . . , ρ− 1}
.
ξρ = f

(
ξ1, ξ2, . . . , ξρ, w, t

)
+ (b(t)− b0)u + b0u

(2)

Extending the system with an additional state,

ξρ+1 = f + (b(t)− b0)u = L

in which L = f + (b(t)− b0)u is called the generalized disturbance [18–20], it includes all of
the unidentified internal dynamics, uncertainties, and exogenous disturbances. There are
two methods with which to select the value of the coefficient b0 ∈ R\{0}:
(i) The parameter b0 is a rough estimate of b(t) in the system within a ±50% range [7].
(ii) The parameter b0 is typically selected plainly by the designer as a design coeffi-

cient [21].

The second method will be adopted in this work. It is required to observe the system
states ξ and the generalized disturbance of (1) in the presence of measurement noise N
using the proposed NHOESO. Incorporating the ESO as part of the feedback control system
will ensure that (1) will be converted into a chain of integrators up to ρ. The estimated
states ξ will be used to realize feedback, whilst removing the generalized disturbance from
(1) in the ADRC structure.

3. Theoretical Background

The aim of an observer is to provide accurate estimation of the states of the system
from its known inputs and outputs. Luenberger [22] first proposed observer schemes
for linear dynamical systems, and various subsequent versions of state observers have
followed, such as high-gain observers [23] and sliding-mode observers [24]. The ESO was
pioneering in its autonomy of being independent on the mathematical model of the plant.
It was established for active disturbance rejection control (ADRC) to estimate in real-time
the individual elements of the generalized disturbance, which are model uncertainties,
exogenous disturbances, or unmodelled dynamics of the nonlinear system.

As in [25], the following three assumptions are considered for system (1):

Assumption 1. L is a continuously differentiable function.

Assumption 2. There exists Mh ∈ R+ such that supt∈[0,∞)|∆h(t)| = Mh.

Assumption 3. V : Rρ+2 → R+ and W : Rρ+2 → R+ are functions that are continuously
differentiable, with:

λ1

∣∣∣∣∣∣η∣∣∣∣∣∣2 ≤ V(η) ≤ λ2

∣∣∣∣∣∣η∣∣∣∣∣∣2, W(η) =
∣∣∣∣∣∣η∣∣∣∣∣∣2, (3)

ρ+1

∑
i=1

∂V(η)

ηi

(
ηi+1 − aik

(
η1

ω0
ρ

)
·η1

)
− ∂V(η)

∂yρ+2
aρ+2k

(
η1

ω0
ρ

)
η1 ≤ −W(η) (4)

where λ1 and λ2 are positive constants, and where η is the scaled estimation error which will
be described later in (16)–(18). Based on Assumptions 1, 2, and 3, a (ρ + 1)th order ESO can
be designed to estimate generalized disturbance. An ESO is either linear (LESO) or nonlinear
(NLESO) depending on the estimation error function that is used. As an extension of the Luenberger
observer [22], the LESO equation includes only linear correcting terms. These terms act on the error
between the estimated states and the actual system states such that the error tends to zero. In the
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NLESO, the error-correcting terms benefit from the inclusion of a nonlinear function of estimation
error, which enables a faster and smoother convergence to zero.

The system states given in Equation (1) with the generalized disturbance L will be
observed by the following LESO (2), as presented in [4]:

.
ξ̂ i = ξ̂i+1 + βi

(
y− ξ̂1

)
, i ∈ {1, 2, . . . , ρ− 1}

.
ξ̂ρ = ξ̂ρ+1 + βρ

(
y− ξ̂1

)
+ b0u

.
ξ̂ρ+1 = βρ+1

(
y− ξ̂1

) (5)

where βi is the ESO gain parameter to be tuned, i = 1, 2, . . . , ρ + 1.
The pole-placement technique [26] and the bandwidth-based method [27] are the

conventional ways to tune an LESO. If the objective is to limit the number of parameters,
they may be defined in terms of the LESO bandwidth. The observer gains, selected as
in [28], are given by 

β1
β2
...

βρ+1

 =


a1ω0
a2ω2

0
...

aρ+1ω
ρ+1
0

 (6)

where ω0 is the ESO bandwidth, ai, i = 1, 2, . . . , ρ + 1 are carefully chosen in such a way
that the characteristic polynomial sρ+1 + a1sρ + . . . + aρs + aρ+1 is Hurwitz. That is, all the
roots of the characteristic polynomial are in the open left-half complex plane. For the sake
of simplicity, let sρ+1 + a1sρ + . . . + aρs + aρ+1 = (s + 1)ρ+1 where the binomial coefficients
ai, i = 1, 2, . . . , ρ + 1 are defined as [29]:

ai =
(ρ + 1)!

i!(ρ + 1− i)!
, 1 ≤ i ≤ ρ + 1 (7)

The characteristic polynomial of Equation (2) has the following form:

sρ+1 + β1sρ + . . . + βρs + βρ+1 = (s + ω0)
ρ+1 (8)

Observer bandwidth ω0 is the lone adjusting observer parameter, which makes the
adjustment of the LESO easier. By manipulating a single parameter ω0, one can quickly
find the optimum balance between the speed at which the observer tracks the states
and its sensitivity to disturbances. The chosen bandwidth should be adequately larger
than the frequency of the disturbance while smaller than the unmodelled dynamics fre-
quency [30]. LESO performance will worsen if the bandwidth takes an unacceptably high
or low value [31]. Optimum values for the controller and LESO bandwidth will provide an
effective elimination of exogenic disturbances and tracking performance [32–39]. The side
effects of approving large bandwidth values can be summarized as measurement noise
potentially degrading output tracking, deterioration of the transient response of the LESO,
and the possibility of some unmodelled high-frequency dynamics being activated beyond
a certain frequency.

The two most common causes of bandwidth constriction are noise and sampling rates.
Consequently, it is essential to select an appropriate bandwidth that can elevate noise
tolerance and tracking performance. Hence, a new parameterization method is needed to
handle these issues without increasing the bandwidth.

4. The Proposed NHOESO with Measurement Noise

Measurement noise badly affects the performance and accuracy of controllers. Since
the ESO is the key element of the ADRC, this unit is highly affected by the presence of such
noise. This noise will cause a degradation in the performance of the system. Sometimes, it
might destabilize the system if the high-gain observers (e.g., LESO) are used to estimate
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the states ξi, i ∈ {1, 2, . . . , ρ} and the generalized disturbance ξρ+1 = L [4]. In this case,
the generated control signal u based on the estimated states ξi i ∈ {1, 2, . . . , ρ} and the
generalized disturbance ξρ+1 will include a high frequency that has many drawbacks.
The first of these is large control activity, which introduces a large energy, delivered to
the controlled plant. A reduction in tracking accuracy is another consequence due to the
existence of noise.

The proposed NHOESO is described as,

.
ξ̂ i = ξ̂i+1 + βi
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(
y− ξ̂1

) (9)

where βi, i = {1, 2, . . . , ρ + 2}, is observer gains to be tuned. Let βi = aiω0
i, where ai,

i ∈ {1, 2. . . . , ρ + 2} is the associated tuning coefficient with each ω0
i, and ω0 is the selected

NHOESO bandwidth. The nonlinear function

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 17 
 

 

smooth saturation-like nonlinear error function, which leads to a Nonlinear Higher Order 
ESO (NHOESO). This design enables accurate estimation of generalized disturbance with 
high-order derivatives. The parameters of the proposed NHOESO are designed by 
employing a novel analytical method based on the Lyapunov method, which confers a 
higher immunity against measurement noise. 

1.3. Symbol Definitions 
The symbols used in this paper are explained in Table 1. 

Table 1. Symbol definitions. 

Symbol Definition ℝ Set of real numbers 𝑡 Time (s) 𝑡  Initial time 𝑢 System input signal 𝑦 Measured output signal 𝑓(∙) Unknown system function 𝑤 Uncertain exogenous disturbance 𝑏 Input gain 𝑓 (∙) Nonlinear function of internal dynamics C Class of Differentiable functions 𝑏  Nominal input gain 𝑉(∙) Lyapunov function 𝜌 Relative degree 𝜂 Internal state vector 𝜉 External state vector 𝐿 Generalized disturbance ∆ Derivative of the generalized disturbance 𝑀 Upper bound of the derivative of the generalized disturbance 𝜔  Observer bandwidth 𝑢  Nominal control signal 𝑟 Reference input signal 𝑓𝑎𝑙(∙) ADRC nonlinear function 𝒩 Measurement noise 𝑃 Symmetric positive definite matrix 𝛥  Second derivative of the generalized disturbance 𝑀  Upper bound of the second derivative of the generalized 
disturbance ℊ(∙) Proposed nonlinear function 𝑂(∙) Limiting behavior of a function, namely, “Big O” notation 𝜆  Maximum Eigenvalue 𝜆  Minimum Eigenvalue 

1.4. Paper Structure 
The rest of this paper is outlined as follows. The problem statement is introduced in 

Section 2. In Section 3, the theoretical background of the Linear ESO (LESO) and the tuning 
of its parameters are recalled. The proposed NHOESO with measurement noise is 
presented in Section 4. The parameterization of the NHOESO to reduce noise influence is 
introduced in Section 5. Section 6 presents numerical simulations of the proposed 
NHOESO with different measurement noise scenarios which illustrate the validity and 
performance of the proposed observer. Finally, a conclusion is given in Section 7. 

: R→ R is designed as,

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 17 
 

 

smooth saturation-like nonlinear error function, which leads to a Nonlinear Higher Order 
ESO (NHOESO). This design enables accurate estimation of generalized disturbance with 
high-order derivatives. The parameters of the proposed NHOESO are designed by 
employing a novel analytical method based on the Lyapunov method, which confers a 
higher immunity against measurement noise. 

1.3. Symbol Definitions 
The symbols used in this paper are explained in Table 1. 

Table 1. Symbol definitions. 

Symbol Definition ℝ Set of real numbers 𝑡 Time (s) 𝑡  Initial time 𝑢 System input signal 𝑦 Measured output signal 𝑓(∙) Unknown system function 𝑤 Uncertain exogenous disturbance 𝑏 Input gain 𝑓 (∙) Nonlinear function of internal dynamics C Class of Differentiable functions 𝑏  Nominal input gain 𝑉(∙) Lyapunov function 𝜌 Relative degree 𝜂 Internal state vector 𝜉 External state vector 𝐿 Generalized disturbance ∆ Derivative of the generalized disturbance 𝑀 Upper bound of the derivative of the generalized disturbance 𝜔  Observer bandwidth 𝑢  Nominal control signal 𝑟 Reference input signal 𝑓𝑎𝑙(∙) ADRC nonlinear function 𝒩 Measurement noise 𝑃 Symmetric positive definite matrix 𝛥  Second derivative of the generalized disturbance 𝑀  Upper bound of the second derivative of the generalized 
disturbance ℊ(∙) Proposed nonlinear function 𝑂(∙) Limiting behavior of a function, namely, “Big O” notation 𝜆  Maximum Eigenvalue 𝜆  Minimum Eigenvalue 

1.4. Paper Structure 
The rest of this paper is outlined as follows. The problem statement is introduced in 

Section 2. In Section 3, the theoretical background of the Linear ESO (LESO) and the tuning 
of its parameters are recalled. The proposed NHOESO with measurement noise is 
presented in Section 4. The parameterization of the NHOESO to reduce noise influence is 
introduced in Section 5. Section 6 presents numerical simulations of the proposed 
NHOESO with different measurement noise scenarios which illustrate the validity and 
performance of the proposed observer. Finally, a conclusion is given in Section 7. 
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where e = y− ξ̂1 is the estimation error, and Kα, Kβ, α and β are positive tuning coefficients,
see Figure 1. The proposed nonlinear function of (10) can be rewritten as,
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Kα
|e|α
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sign(e) + Kβ|e|β
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(e) =
{

0 e = 0
k(e)e e 6= 0

The function k : R/{0} → R+ is a nonlinear even-gain function with

k(e) = Kα|e|α−1 + Kβ|e|β

An analytical method is proposed in this paper to parameterize the coefficients of the
proposed nonlinear function
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Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Parameterization of NHOESO to Reduce Noise Influence

Consider a class of nonlinear affine single-input–single-output (SISO) systems with
measurement noise, uncertainties, and exogenous disturbances which can be represented
as follows: 

ξi = ξi+1, i ∈ {1, 2, . . . , ρ− 1}
.
ξρ = f (ξ, w, t) + b(t)u
y = ξ1 +N

(11)

where u ∈ C(R, R) is the control input, y ∈ C(R,R) is the measured output,
f ∈ C(Rρ ×R×R,R) is an unknown system function, ξ =

(
ξ1, ξ2, . . . , ξρ

)T ∈ Rρ is
system states, w(t) ∈ C(R,R) is the uncertain exogenous disturbance, b ∈ C(R,R) is the
input gain, and N ∈ [−δ, δ] is the bounded measurement noise where δ is a positive small
real number.

By adding an extended state ξρ+1 = f + (β− b0)u = L, ξρ+2 =
.
L, the system given in

Equation (11) can be written as 

.
ξ1 = ξ2.
ξ2 = ξ3
...
.
ξn = ξn+1 + b0u
.
ξn+1 = ξn+2.
ξn+2 = ∆h
y = ξ1 +N

(12)

where ∆h =
..
L.

Assumption 4. V : Rρ+2 → R+ and W : Rρ+2 → R+ are functions that are continuously
differentiable with:

λ1

∣∣∣∣∣∣η∣∣∣∣∣∣2 ≤ V(η) ≤ λ2

∣∣∣∣∣∣η∣∣∣∣∣∣2, W(η) =
∣∣∣∣∣∣η∣∣∣∣∣∣2 (13)

ρ+1
∑

i=1

∂V(η)
ηi

(
ηi+1 − aik

(
η1

ω0
ρ +N

(
t

ω0

))
η1

)
− ∂V(η)

∂ηρ+2
aρ+2k

(
η1

ω0
ρ +N

(
t

ω0

))
η1

≤ −W(η)

(14)

where λ1 and λ2 are positive constants.

Theorem 1. Given the system (12) and the NHOESO (9), under Assumptions 1, 2, 3, and 4
and max

i∈{1,2,...,ρ+2}
(ai) ≤ B, where B ∈ R+ for any initial values, it is proven that

lim
t→ ∞

ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 0, for specific values of the parameters of the nonlinear function
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(·),

where ξi and ξ̂i (i ∈ {1, 2, . . . , ρ + 2}) denote respectively the solutions of (12) and (9).

Proof of Theorem 1.
ei = ξi − ξ̂i, i ∈ {1, 2, . . . , ρ + 2} (15)

ηi(t) = ω0
ρ+1−iei(

t
ω0

), i ∈ {1, 2, . . . , ρ + 2} (16)
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ei

(
t

ω0

)
=

1
ω0

ρ+1−i ηi(t) (17)

The time-scaled estimation error dynamics is:

dη1
dt = η2 − a1k

(
η1

ω0ρ +N
(

t
ω0

))(
η1 + ω0

ρN
(

t
ω0

))
dη2
dt = η3 − a2k

(
η1

ω0ρ +N
(

t
ω0

))(
η1 + ω0

ρN
(

t
ω0

))
...

dηρ

dt = ηρ+1 − aρk
(

η1
ω0ρ +N

(
t

ω0

))(
η1 + ω0

ρN
(

t
ω0

))
dηρ+1

dt = ηρ+2 − aρ+1k
(

η1
ω0ρ +N

(
t

ω0

))
·
(

η1 + ω0
ρN
(

t
ω0

))
dηρ+2

dt = ∆h
ω0

2 − aρ+2k
(

η1
ω0ρ +N

(
t

ω0

))
·
(

η1 + ω0
ρN
(

t
ω0

))
(18)

Finding the derivative of V(η) with respect to t along the solution η of Equation (18),
one gets

.
V(η)

∣∣∣
along(18)

=
ρ+1

∑
i=1

∂V(η)

ηi

(
ηi+1(t)− aik

(
η1(t)
ω0ρ

+N
(

t
ω0

))
·η1

)
− ∂V(η)

ηρ+2
aρ+2k

(
η1(t)
ω

ρ
0

+N
(

t
ω0

))
·η1

+
ρ+2

∑
i=1

∂V(η)

ηi

(
−aik

(
η1

ω0ρ
+N

(
t

ω0

))
·ωρ

0N
(

t
ω0

))
+

∂V(η)

ηρ+2

(
∆h

ω2
0

) (19)

Consider Equation (14) given in Assumption 4:

.
V(η)

∣∣∣
along (18)

≤ −W(η) +
ρ+2

∑
i=1

∂V(η)

ηi

(
−aik

(
η1(t)
ω0

ρ +N
(

t
ω0

))
·ω0

ρN
(

t
ω0

))
+

∂V(η)

ηρ+2

(
∆h
ω02

)
(20)

Given Assumption 4, consider the candidate Lyapunov functions V, W : Rn+1 → R+

defined by V(η) = 〈Pη, η〉, where η ∈ Rρ+2 and P is a symmetric positive definite
matrix. Suppose (3) in Assumption 3 with λ1 = λmin(P) and λ2 = λmax(P). Thus,
when (η) ≤ λmax(P)||η||2 and

∣∣∣ ∂V
∂ηρ+2

∣∣∣ ≤∣∣∣∣∣∣ ∂V(η)
∂η

∣∣∣∣∣∣, then
∣∣∣ ∂V

∂ηρ+2

∣∣∣ ≤ 2λmax(P)||η||. More-

over, V(η) ≤ λmax(P)
∣∣∣∣η∣∣∣∣2 = λmax(P)W(η) . Thus, −W(η) ≤ − V(η)

λmax( P) . Finally, because

λmin(P)
∣∣∣∣η∣∣∣∣2 ≤ V(η) , this leads to ||η|| ≤

√
V(η)

λmin(P) . As a result,

.
V(η)

∣∣∣
along (14)

≤ −V(η)

λmax(P)
+ 2(ρ + 2)ω0

ρδBλmax(P)

√
V(η)

λmin(P)
k
(

η1(t)
ω0

ρ +N
(

t
ω0

))
+ 2λmax(P)

√
V(η)

λmin(P)

(
Mh
ω02

)
(21)

This is because d
dt

√
V(η) = 1

2
1√

V(η)

.
V(η). Thus

d
dt

√
V(η) ≤ 1

2
1√

V(η)

(
−V(η)

λmax(P)
+ 2(ρ + 2)ω0

ρδBλmax(P)

√
V(η)

λmin(P)
k
(

η1(t)
ω0

ρ +N
(

t
ω0

))
+ 2λmax(P)

√
V(η)

λmin(P)

(
Mh
ω02

))
(22)

d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+ (ρ + 2)ω0

ρδBλmax(P)

√
1

λmin(P)
k
(

η1(t)
ω0

ρ +N
(

t
ω0

))
+ λmax(P)

√
1

λmin(P)

(
Mh
ω02

)
(23)

To reduce the effect of noise on the NHOESO, the following constraint is considered:

λmax(P)

√
1

λmin(P)

(
Mh
ω02

)
� (ρ + 2)ω0

ρδBλmax(P)

√
1

λmin(P)
k
(

η1(t)
ω0

ρ +N
(

t
ω0

))
(24)

which leads to
(

Mh
ω0

2

)
� (ρ + 2)ω0

ρδBk
(

η1(t)
ω0

ρ +N
(

t
ω0

))
. After rearranging, one obtains

k
(

η1
ω0

ρ +N
(

t
ω0

))
� M

(ρ+2)δBω0
ρ+2 .
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Since k(e) = Kα|e|α−1 + Kβ|e|β, and by letting e =
η1

ω0
ρ + N

(
t

ω0

)
in k(e), the following

is obtained:

Kα

∣∣∣∣ η1(t)
ω0

ρ +N
(

t
ω0

)∣∣∣∣α−1
+ Kβ

∣∣∣∣ η1(t)
ω0

ρ +N
(

t
ω0

)∣∣∣∣β � Mh
(ρ + 2)δBω0

ρ+2 (25)

Firstly, letting Kα → 0, and α→ 1 , Equation (25) is then reduced to Kβ

∣∣∣ η1
ω0

ρ +N
(

t
ω0

)∣∣∣β �
Mh

(ρ+2)δBω0
ρ+2 , which leads to:

Kβ

∣∣∣∣η1 + ω0
ρN
(

t
ω0

)∣∣∣∣β � Mh

(ρ + 2)δBω0
ρ+2−ρβ

(26)

To cancel the term ω0
ρ+2−ρβ, ρ + 2− ρβ = 0 =⇒ β =

(
1 + 2

ρ

)
is considered. Subsequently,

Equation (26) is reduced to a simpler form which is expressed as

Kβ

∣∣∣∣η1 + ω0
nN
(

t
ω0

)∣∣∣∣β � Mh

(n + 2)δBω0
n+2−nβ

(27)

Consequently,

Kβ �
Mh

(ρ + 2)δB
∣∣∣η1(t) + ω0

ρN
(

t
ω0

)∣∣∣β (28)

A very large value of ω0 leads to a very small value of Kβ. The result of the parameterization
step is given as

Kα � 1, α→ 1, Kβ � 1, and β→
(

1 +
2
ρ

)
(29)

Figure 2 shows function (10) according to the parameters in (29), which is called
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new(·) and
leads to

d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+ λmax(P)

√
1

λmin(P)

(
Mh
ω02

)
(30)

Solving the ordinary differential Equation (30) gives√
V(η) ≤ 2Mhλ2

max(P)
ω02

√
λmin(P)

(
1− e−

t
2λmax (P)

)
+
√

V(η(0))e−
t

2λmax (P) (31)

Based on Assumption 4 and the foregoing analysis, then

||η|| ≤ 2Mhλ2
max(P)

ω02λmin(P)

(
1− e−

t
2λmax (P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax (P) (32)

It follows from Equation (17) that

∣∣ξi − ξ̂i
∣∣ = 1

ω0
ρ+1−i |ηi(ω0t)| ⇒

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0
ρ+1−i η(ω0t) (33)

Thus, using Equation (32) gives

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0
ρ+1−i

(
2Mhλ2

max(P)
ω02λmin(P)

(
1− e−

ω0 t
2λmax (P)

)
+

√
V(η(0))
λmin(P)

e−
ω0 t

2λmax (P)

)
(34)

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 1

ω0
ρ+3−i

2Mhλ2
max(P)

λmin(P)
= O

(
1

ω0n+3−i

)
(35)

Finally,
lim

t→ ∞
ω0 → ∞

∣∣ξi − ξ̂i
∣∣ = 0 (36)

�
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Comparing Figure 2a with Figure 2b, the slope in Figure 2b is lower than that of Figure 2a,
which brings the benefits of reducing the gain multiplied by the measurement noise N to a lower
gain value. To illustrate the above discussion with numerical values, consider the parameters of the
LESO with the following values ω0 = 50, a1 = 4, a2 = 6, a3 = 4, and a4 = 1.

The parameters of the nonlinear error function
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new(·) is selected with the
following parameters: α = 0.8, β = 2, kα = 0.05 and kβ = 0.05. Table 2 shows the value of the
error-correcting term for e1 = 0.1.
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new(e1)

1 20 7 4 1.6
2 1500 5507.9 119.6
3 50,000 18,359 6 3987.2

The LESO with gain βi = αiω
i for a large bandwidth leads to a high gain which is multiplied

by the measurement noise N . Therefore, the LESO shows a weaker level of performance.

6. Numerical Simulations
To evaluate the performance of the proposed NHOESO where measurement noise is present,

a hypothetical nonlinear SISO system is used, with the dynamics given as
.
ξ1 = ξ2.
ξ2 = f (ξ1, ξ2) + w(t) + (1 + a3sin(t))u
y = ξ1

(37)

where f (ξ1, ξ2) = a1ξ1 + a2sin(ξ2), with a1 = 0.2, a2 = a3 = 0.1, and w(t) = exp(−t)cos(t). The
reference input r(t) is chosen as a periodic signal and is expressed as cos(0.5t) applied at t = 0 sec.
A noise of Gaussian type was applied to the output with variance σ2 equal to 10−4 and the mean
µ = 0.

The system (34) is used to evaluate the performance of the proposed parameterized NHOESO.
The fal-based control law is chosen as

u = f al(ẽ1, α1, δ1) + f al(ẽ2, α2, δ2)− ξ̂3 (38)
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where f al(e, α, δ) is expressed as

f al(e, α, δ) =

{ e
δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ
(39)

The tracking error which is driving the control signal is given by (ẽ1, ẽ2)
T = (r1, r2)

T −(
ξ̂1, ξ̂2

)T . The desired transient profile vector (r1, r2)
T is obtained using the conventional TD given

as in [1], { .
r1 = r2,

.
r2 = −Rsign

(
r1 − r + r2|r2|

2R

) (40)

The simulation scenarios are explained below.
Scenario 1: The LESO is optimized for minimum Integral Time-weighted Absolute Error (ITAE)

and integration of the square of the control signal (ISU) without measurement noise and tested in a
noisy environment, where ITAE =

∫ t f
0 t|e| dt and ISU =

∫ t f
0 u2 dt.

Scenario 2: The NHOESO is optimized for minimum ITAE and ISU without measurement noise
and tested in a noisy environment.

Scenario 3: The NHOESO is tested in a noisy environment. The parameters are selected based
on the values found in Theorem 1.

It should be noted that the difference between Scenario 3 and the other scenarios is that in
Scenario 1 and 2 the NHOESO is tuned without taking into consideration the effect of measurement
noise. While for Scenario 3, the noise is taken into account during the tuning while adopting Theorem
1 for the selection of the NHOESO parameters.

Both the LESO given in Equation (2) and the NHOESO of Equation (5) are used in these

simulations to find the estimated states
(
ξ̂1, ξ̂2

)T and the estimated generalized disturbance ξ̂3. The
response curves of these scenarios are shown in Figures 3–5, respectively.

Figure 3a illustrates the worst tracking response, where the LESO exhibits a bad response to
noise. To alleviate the effect of the noise, several solutions are considered. Firstly, the NHOESO
is tuned under no measurement noise. Next, the NHOESO with its tuned parameters is tested for
the case of measurement noise. Figure 4 shows a better tracking response and a big reduction in
chattering in the control signal and the estimated generalized disturbance.

Selecting the parameters of the NHOESO based on the method proposed in Equation (29) of
Theorem 1 has a considerable effect on both the accuracy of the transient response and the energy of
the controller. As can be seen from Figure 5, a greater reduction in chattering is obtained in both the
control signal and the estimated generalized disturbance. This is very apparent, in contrast to the
previous two scenarios. Applying the adaptive techniques leads to substantial improvement in the
output response of the system.

Furthermore, in the presence of measurement noise N , the NHOESO is the most practical
ESO with moderated delivered energy. Using the NHOESO with an analytical approach (i.e., fixed
parameters) shows a big reduction in control energy because the parameters are selected analytically
to diminish the noise terms in the estimated error dynamics βi
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1.4. Paper Structure 
The rest of this paper is outlined as follows. The problem statement is introduced in 

Section 2. In Section 3, the theoretical background of the Linear ESO (LESO) and the tuning 
of its parameters are recalled. The proposed NHOESO with measurement noise is 
presented in Section 4. The parameterization of the NHOESO to reduce noise influence is 
introduced in Section 5. Section 6 presents numerical simulations of the proposed 
NHOESO with different measurement noise scenarios which illustrate the validity and 
performance of the proposed observer. Finally, a conclusion is given in Section 7. 

(
y− ξ̂1

)
, i ∈ {1, . . . , ρ + 2}. The

performance of the NHOESO is improved because it leads to a better state estimation and minimum
estimation errors under measurement noise N . This has a direct effect on the generation of the
appropriate control law u, which is a nonlinear combination of the feedback estimated states and
reference signals.

The numerical results of the three scenarios in terms of both ITAE and ISU are listed in Table 3.

Table 3. Values of the performance indices of the three scenarios.

Scenario ITAE ISU

Scenario 1 41.347519 2782.555268

Scenario 2 1.321808 28.825156

Scenario 3 1.586651 11.719821

As illustrated in Table 3, large values of both the ITAE and ISU reflect the impact of measurement
noise on the LESO, with a big reduction in performance indices for the second scenario concerning
the indices of Scenario 1. Additionally, the NHOESO (Scenario 3), when the parameters are applied
as indicated in (26), shows a reduction of 59.3% of the ISU.
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input r; (b) control action u; (c) estimation of the generalized disturbance ξ̂3.
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input r; (b) control action u; (c) estimation of the generalized disturbance ξ̂3.
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7. Conclusions
To provide the controller with necessary information about the environment, it is required to use

sensors. However, measurement noise is largely associated with these sensors, which badly affects
the performance and accuracy of the control systems. The ESO is highly affected by the presence
of measurement noise. In this case, control signals generated based on the estimated state and the
generalized disturbance will include a high frequency that has many drawbacks. Firstly, a large
control activity, which introduces large energy, is delivered to the controlled plant. Secondly, tracking
accuracy is reduced. In this work, the proposed nonlinear function introduced in the NHOESO acts as
a filter without introducing a delay in the estimation error. The proposed analytical parameterization
technique of the proposed nonlinear observer error function has many advantages. It leads to a
large reduction in the delivered control signal energy and a significant reduction in the chattering
phenomena, which reduces wear on the mechanical parts. With the proposed parameterization
technique of the NHOESO, measurement noise has a negligible effect on system performance, which
is illustrated in simulations.
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