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ABSTRACT The use of digital twins to represent a product or process digitally is trending in many
engineering disciplines. This term has also been recently introduced in the medical field. In arthroscopic
surgery education, the paradigm shift from apprenticeship to simulation training has driven the need for
better simulators, and the current focus is on improving simulators with respect to computational efficiency
and system accuracy. However, expanding surgical simulations towards digital twins has not yet been
explored. This paper introduces the digital twin concept for arthroscopic surgery, and explores its potential
in light of the existing scientific literature. Thus, a systematic review was conducted to summarize and
analyze the literature with respect to fast and robust design of an arthroscopic digital twin using patient-
specific information, and methods for interactive surgical soft tissue simulation. The review was conducted
using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol with
three reliable scientific search engines: IEEE Xplore, ScienceDirect and PubMed. Eighty papers were
included in the review, and the extracted data included modeling methods, tissue types, constitutive behavior,
computational efficiency or accuracy, hardware configuration, haptic device description, software tools,
and system architectures. Considering the review, a novel macro-level conceptual arthroscopic digital twin
system is presented, and the applicability of the review findings for the identified subsystems are discussed.
The proposed system integrates patient-specific images, diagnostic data, intraoperative sensor data, and
surgical practice as inputs, and conceptually enables surgical skills training, preoperative planning, and a
database of virtual surgeries.

INDEX TERMS Digital twin, biomechanics, haptic rendering, medical simulation, computational modeling.

I. INTRODUCTION

The paradigm shift in surgical education with focus on simu-
lation drives the need for better surgical simulators [1], [2].
In a recent editorial commentary Arthroscopic Simulators-
Are We There Yet?, Frank [3] highlighted the potential for
providing safe surgical training without causing harm to the
patient, as well as the importance of evaluating novel simu-
lators with respect to face and construct validity. Moreover,
studies have shown that surgery simulation effectively can be
used for training of junior resident doctors [4]-[6]. A review
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by Morgan et al. [7] identified 23 virtual reality-based knee
arthroscopy simulators, where 14 were developed by aca-
demic institutions. These simulators typically include a
virtual reality display, haptic feedback, real-time interac-
tive simulation and standardized operation-specific training
procedures. Another article by Vaughan et al. [8] reviewed
nine virtual reality-based arthroscopic knee simulators, and
pointed to patient-specific surgery simulators as an impor-
tant future development as surgeons can practice specific
procedures before an in-vivo procedure. Later, Ryu et al. [9]
reviewed medical literature for the educational value of
patient-specific simulation, and commented that current sim-
ulators provide limited educational value for senior surgeons.
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They concluded that if the technology is developed further,
patient-specific simulators could have the ability to develop
higher-level competencies outside a clinical setting.

The introduction of new technology in surgery also influ-
ences other aspects of lifelong arthroscopic surgical educa-
tion. Surgical tools with novel sensors have the potential to
provide more information about surgical procedures. Tool-
position systems can be used to improve surgeon performance
by providing an accurate display of the tool position rela-
tive to the patient’s anatomy. Force sensors and estimation
methods can provide valuable real-time assistance to limit
potentially injuring the patient. Golahmadi et al. [10] investi-
gated tool-tissue interaction forces in surgery, and highlighted
how “force measurement can provide a quantitative met-
ric of surgical skills, potentially useful for surgical training
and assessment.”” They found that in general, expert sur-
geons tended to use less force than novice and intermediate
surgeons.

With more patient and surgical data available, the emer-
gence of machine learning and artificial intelligence has the
potential to provide new insights into surgical procedures. In a
review of the history of computer-assisted orthopedic surgery
(CAOS), Picard et al. [11] stated that CAOS is still at the
stage of “measuring data” without really knowing what the
best use of these data is. Recently, Anh et al. [12] compared
feature extraction techniques for surgical skill assessment,
and found that a convolutional neural network (CNN), which
is a deep learning method, significantly outperformed other
techniques. These advancements pave the way for a novel
concept for arthroscopic surgery simulation, namely, the dig-
ital twin.

With a background in systems engineering, Grieves [13]
first coined the term digital twin as

(...) a set of virtual information contructs that
fully describes a potential or actual physical man-
ufactured product from the micro atomic level to
the macro geometrical level. At its optimum, any
information that could be obtained from inspecting
a physical manufactured product can be obtained
from its Digital Twin.

Working towards real-time interactive surgical simula-
tion, Lauzeral et al. [14] adopted the term and stated that
“(...) the Digital Twin, merges complex biophysical mod-
eling and advanced real-time simulation techniques with
data assimilation and analysis for decision support”. Later,
Fuller ef al. [15] pointed to the use of digital twins for plan-
ning and performing surgical procedures as a promising
application. Corral-Acero et al. [16] introduced the digital
twin concept in cardiology by stating that “providing ther-
apies that are tailored to each patient, and that maximize
the efficacy and efficiency of our healthcare system is the
broad goal of precision medicine”. They highlighted that
mechanistic and statistical models are the two pillars of the
digital twin. In 2021, Chase et al. [17] introduced the digital
twin concept for intensive care and transferred the definition
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from manufacturing to clinical practice. They stated that
“In medicine, the physical system is the patient, or a par-
ticular organ or physiological system to be managed”. Later,
in orthopedics, Aubert ef al. [18] used the term digital twin
to describe a patient-specific finite element model of a tibial
plateau fracture for optimizing trauma surgery and postop-
erative management. Similarly, Hernigou et al. [19] used the
term to describe the identification of a personalized motion
axis of the tibiotalar joint in total ankle artroplasty. They
defined a digital twin as (... ) a near real-time digital image
of a physical human”.

As a logical evolution and novel contribution, we intro-
duce the digital twin concept in the context of arthroscopic
surgery, and explore its potential in light of the existing
scientific literature. We argue that a true digital twin expands
on previous surgery simulators by including not only generic
anatomical models, but patient-specific digital information
with real-time calibration of simulations using intraoperative
data. Inspired by previous efforts, we define an arthroscopic
digital twin as virtual information that fully describes a
patient-specific biomechanical system, such as a joint. Utiliz-
ing digital twins, we see the potential for creating a database
of surgical procedures with known outcomes that can be
used for (i) training resident doctors and (ii) preparation for
experienced surgeons before an advanced procedure. In its
optimum form, the digital twin could serve as a virtual envi-
ronment where novel arthroscopic surgical procedures can be
explored, and new ones can be designed. To do so, we argue
that the digital twin needs to simulate all biomechanical
behaviors of the joint so that it is not restricted to individual
tissue types. Existing simulator systems largely rely on a
given set of instructions or sequences that must be performed
in a specific order. We argue that a digital twin should not be
constrained to such sequences, but rather allow the surgeon to
be free to perform any procedure and observe the implications
on the digital twin. These implications could include joint
stability and range of motion during surgery. We limit the
scope of this paper to consider a digital twin of the knee.
As orthopedic health service is highly specialized, we argue
that limiting the digital twin to a specific joint is best suited
for clinical practice. Similarly, we consider the lifecycle to be
the lifecycle of a given treatment, starting with preliminary
investigation and diagnosis, through surgery and treatment,
and proceeding through recovery and rehabilitation.

The contribution of this paper is twofold, as it (i) reviews
current state-of-the-art of enabling technologies needed for
realization of a digital twin for arthroscopic surgery, and
(i) presents a novel macro-level conceptual digital
twin system. The review investigates the literature from
January 2018 to December 2021 to cover gaps from previous
reviews and has the following objectives:

« Investigate fast and robust design of an arthroscopic

digital twin using patient specific information.

o Explore methods for interactive surgical soft-tissue

simulation for a digital twin, emphasizing speed and
accuracy.
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The remainder of this paper is organized as follows.
Section II presents relevant user scenarios that drive the
development of digital twins and shows their potential
value in clinical practice. Section III explains the meth-
ods used for conducting the literature review following the
PRISMA protocol. The results of the literature review are
presented in Section IV. Section V presents a novel con-
ceptual macro-level system of a digital twin for arthroscopic
surgery, and discusses the applicability of the findings from
Section IV in the identified subsystems. Section VI discusses
the methods used, ethical considerations, and suitability of a
digital twin in clinical practice.

Il. USER SCENARIOS

Based on discussions with orthopedic surgeons specialized
in arthroscopic surgery at Alesund General Hospital, con-
sidering how they conceive a digital twin relevant for knee
arthroscopy, we have identified three relevant user scenarios:

« Resident doctor with little surgical experience.

« Specialist surgeon facing a difficult surgery on a specific

patient.

« Specialist surgeon with limited access to practicing cer-

tain types of surgery, and for rare cases.

The first scenario concerns resident doctors specializ-
ing in arthroscopy. A lower volume of some arthroscopic
surgeries, such as partial meniscectomies, combined with
a higher demand for specialized competence, has led to
a gap in training subjects for the skills needed to tran-
sition from student to specialist. Surgery simulation can
fill this gap by supplying a generic kinematic anatomical
model with haptic feedback for certain types of surgeries,
allowing for high-volume training. Several existing generic
commercial-(Simbionix ArthroMentor, Simendo arthroscopy
simulator, Virtamed ArthroS) and academically developed
arthroscopic surgery simulators [20]-[24] supply this func-
tionality. However, both Vaughen et al. [8] and Frank [3]
pointed out that validation evidence of effectiveness with
respect to transfer, face, and skill validity is missing in the
literature.

The second scenario involves specialist orthopedic sur-
geons facing a challenging case of a specific, and sometimes
rare surgery. Preoperative planning using a digital twin of a
specific patient, including exact patient-specific 3D anatomy,
realistic material properties and haptic feedback, could poten-
tially (i) increase the surgeon’s confidence, (ii) reduce the
risk of unknown challenges, and (iii) lead to fewer intraop-
erative complications. To attain these potential benefits, the
process of establishing the digital twin of the injured patient
must be sufficiently fast to enable the surgeon to practice
before surgery. For arthroscopic knee surgeries, this is con-
sidered mostly relevant for non-critical procedures; therefore,
the time span normally ranges from a few days to a few
weeks.

The third scenario provides access to a bank of special sur-
gical cases. Surgeons working in smaller hospitals generally
have a lower volume of special cases. To prepare surgeons for
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FIGURE 1. Three levels of use cases for a knee-arthroscopic digital twin.

these cases, as some will ultimately encounter them, a digital
twin will enable the sharing of patient specific surgical cases.
At a minimum, this requires the sharing of patient-specific
anatomy and biomechanical properties. However, to signif-
icantly improve the value added from such a system, live
tool-tissue interaction data, supplemented by other sensor
data and operational statistics, could be added.

ill. METHOD

Recent literature reviews on soft tissue simulation [25],
surgery simulation [7], [8], and haptic feedback [4], [26],
[27] provide a good overview of relevant enabling technolo-
gies for real-time surgery simulation systems up until 2018.
Therefore, we conducted a systematic literature review in the
time period from January 2018 to December 2021 following
the PRISMA protocol [28]. The purpose of this review was
to identify relevant enabling technologies for a digital twin
for arthroscopic knee surgery, and the search was therefore
directed towards technical articles.

Because the review was limited to the period 2018-2021,
and because surgical simulation is a highly interdisciplinary
field, we have cited studies prior to this time period to intro-
duce important concepts in the respective sections. This is
to give the reader a better understanding of the presented
methods and form a more complete image of the digital twin
system. However, we emphasize that when review results
are displayed explicitly in tables, only the review results are
presented.

The search was performed using three scientific databases:
IEEE Xplore, ScienceDirect, and PubMed. Six search terms
were adopted from Nguyen ef al. [25] to investigate the
latest developments in soft tissue deformation, and two
additional search terms were added to investigate digital
twins and haptic feedback. The search terms are listed
in Table 1.

Two independent reviewers screened and selected search
results. The articles were selected from the respective
databases based on title and their relevance to one or more
of the following categories: digital twins, patient-specific
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imaging, material modeling, simulation strategies, haptic
feedback, surgical data collection, and system architecture.
No automation tools were used. After the initial selection, the
articles were grouped into one of the respective categories and
added to a database. The two reviewers then worked together
to assess whether the articles met the inclusion criteria, and
another selection round was performed based on abstract.
Grouping and further selection decisions were made by con-
sensus between the two reviewers. Following this, a full-text
assessment was made to decide on the studies to be included
in the review.

Papers describing technical development of a digital twin
for arthroscopic surgery have been included. Specifically,
the inclusion criteria were papers describing soft tissue
behavior, the development of surgical simulations, haptic
device or software development, digital twins in medicine,
and intraoperational sensors for orthopedic surgery. Papers
describing simulation strategies that only applied to primitive
geometry, and papers focusing on virtual reality (VR) or
augmented reality (AR) with head-mounted displays have
been excluded. Journal articles and conference papers were
included, but book chapters, encyclopedia articles and letters
were excluded.

The initial search resulted in a total of 103,325 articles,
with a distribution of 98,835 articles from ScienceDirect,
3,203 articles from PubMed and 1,287 articles from IEEE
Xplore. From ScienceDirect, search term #5 resulted in a total
of 65,205 results alone, with 27,969 articles from the time
period 2018-2019 and 37,236 articles from 2020-2021. Here,
the first 6000 articles in the time period 2018-2019 and the
first 6000 articles from 2020-2021 were checked, reducing
the total number of articles to 50,120. The 50,120 articles
were then screened based on title, and 49,857 articles were
excluded. A total of 263 articles were then sought for retrieval
based on their title, of which 53 were duplicates. A total of
210 articles were assessed based on the abstract. From here,
99 articles were assessed for eligibility based on their full text.
Finally, 80 studies were included in the review. The selection
process is illustrated in Fig. 2.

An independent reviewer reviewed each article. Where
necessary, discussions were held between the two review-
ers. The data extracted from the results included: modeling
methods, tissue types, constitutive behavior, computational
efficiency or accuracy, hardware configuration, haptic device
description, software tools and system architectures.

IV. REVIEW

A. PATIENT SPECIFIC IMAGING

Patient-specific three-dimensional physiological images
form the basis of a digital twin. Four studies were selected
for inclusion in this review. Three-dimensional medical
imaging modalities include 3D-ultrasound, computer tomog-
raphy (CT), positron emission tomography (PET), and
magnetic resonance imaging (MRI). In addition, hand-
held computer vision-based 3D-scanning techniques have
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recently emerged [29]. Each imaging modality has its
strengths and weaknesses in different applications. CT and
MRI are relevant for arthroscopic surgery planning and
simulation because of their ability to recreate internal bone
structures [30]. A high-resolution image of a human knee
takes approximately 45 minutes with MRI, and 30 minutes
with CT. However, MRI performs better in terms of
recreating soft structures such as cartilage, tendons and
ligaments.

Three-dimensional medical imaging data formats include
Analyze, Minc, Digital Imaging and Communications in
Medicine (DICOM), and Neuroimaging Informatics Tech-
nology Initiative (Nifti) [31]. For MRI, the quality of the
3D-model is dependent on the image slice thickness,
as well as sequence parameters such as T1-, T2-, PD-,
or FS-weighted sequences. To distinguish between different
anatomy in the 3D-reconstruction of an MRI image, seg-
mentation must be performed. Three approaches for auto-
matic MRI segmentation are model-based, image-based and
hybrid methods. Model-based methods are methods in which
landmark positions are determined by minimizing an energy
function. Image-based methods are based on the labelling
of voxels, and is also known as dense-segmentation. Exam-
ples include level set, graph cut and fully convolutional net-
works [32]. Recent advances in automatic segmentation using
convolutional neural networks have reduced the segmentation
times of MRI images from several days to a few minutes.
For example, Sun et al. [33] successfully automatically seg-
mented 12 different structures in a healthy knee in a few
minutes.

After segmentation, a three dimensional mesh can be gen-
erated using a 3D-reconstruction algorithm such as march-
ing cubes [34] or dual contouring [35]. This produce a
polygonal mesh that approximate the surface of the geom-
etry. Following this, meshing methods, such as Delaunay
tetrahedralization can be used to create a three-dimensional
volumetric mesh. Recently, Cheng ef al. [36] presented a
framework for improved computational performance and
vision effect of 3D-point cloud reconstruction for medical
images.

Some medical imaging modalities also have the potential
to provide an estimation of in vivo biomechanical properties.
Magnetic resonance elastography (MRE) obtains informa-
tion regarding tissue stiffness by studying the propagation
of mechanical waves through the tissue using MRI [37].
Shear-wave elastography (SWE) is another imaging modal-
ity for estimating tissue stiffness based on ultrasound.
Kuervers et al. [38] recently studied the effects of knee angle
and quadriceps force on SWE measurements of the patel-
lar tendon. They concluded that SWE is a promising and
reliable method for measuring the tendon stiffness. Further,
the mapping of material properties from voxels to a model
finite element model is another way to formulate consti-
tutive behavior. The data obtained from a CT scan are in
Hounsfield units (HU), which vary according to the physical
density of the tissue. Toniolo et al. [39] developed an almost
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TABLE 1. The search terms used for the review process.

# Search terminologies (terms)

Search terms (STs)

—_

Computer-aided medical simulations/systems

Real-time = AND  computer-aided AND  medical
AND(simulations OR systems)

2 Real-time medical simulations Real-time AND medical AND simulations
3 Real-time muscle deformation models Real-time AND muscle AND deformation AND models
4 Real-time orthopaedic/orthopedic surgery Real-time AND (orthopaedic OR orthopedic) surgery
5 Real-time finite element methods Real-time AND finite AND element AND methods
6 Real-time soft-tissue deformations Real-time AND soft AND tissue AND deformations
7 Digital twin orthopedic surgery simulations Digital AND twin AND (orthopedic OR orthopaedic)
AND surgery
8 Haptic feedback real-time orthopedic surgery Haptic AND feedback AND real-time AND (orthopedic
OR orthopaedic) AND surgery
T
5 Number of results based on all search terms (n = 103,325)
g Records removed before screening:
= ScienceDirect (n = 98,835)
g PubMed (n = 3,203) ST #5 from ScienceDirect (n = 53,205)
= IEEE (n = 1,287)
—
\ 4
)
Records screened based on title (n = 50,120) »| Reports excluded based on title (n = 49,857)
Y
Reports sought for retrieval based on title (n = 263) »| Duplicates (n = 53).
- Reports assessed for eligibility based on abstract (n = 210) I—V Reports excluded based on abstract content (n = 111)
.g
8
2
A v
Reports assessed for eligibility based on full text (n = 99)
Category 1: digital twins (n = 10)
Category 2: patient specific imaging (n = 6)
Category 3: material modelling (n = 13) B
Category 4: simulation strategies (n = 34) Reports excluded based on full text (n = 19)
Category 5: haptic feedback (n = 24)
Category 6: surgical data collection (n = 10)
Category 7: system architectures (n = 2)
——
A4
e
Studies included in review (n = 80)
Category 1: digital twins (n = 6)
5 Category 2: patient specific imaging (n = 4)
E Category 3: material modelling (n = 13)
g Category 4: simulation strategies (n = 34)
Category 5: haptic feedback (n = 16)
Category 6: surgical data collection (n = 6)
Category 7: system architectures (n = 1)
—

FIGURE 2. Workflow of selection process using PRISMA protocol.

automatic procedure to predict orthotropic elastic con-
stants by analyzing the local HU value, and identified the
anisotropic directions considering the HU value distribution

around the specific location.
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B. REAL-TIME INTRAOPERATIVE DATA COLLECTION AND
SYSTEM IDENTIFICATION

Novel sensors are making their way into operating the-
atres in the setting of robot-assisted surgery and for
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technology-assisted manual surgery to improve surgeon per-
formance. Sensor technologies can be classified as tool-
position estimation for surgical navigation and force sensing.
From the review, six papers describing intraoperative data
collection were included.

In combination with AR and VR support systems, tool-
position systems have the potential to improve surgeon
performance by providing an accurate display of the tool
position relative to the patient’s anatomy. Ma et al. [40]
used the sensor fusion of stereo vision and surgical instru-
ment Inertial Measurement Unit (IMU) data for virtual
rendering and self-position tracking in knee arthroscopy,
as shown in Fig. 3. Hu et al. [41] demonstrated mark-
erless navigation using a RealSense D415 camera and
bounded iterative closest point (BICP) method for femoral
drilling. Jonmohamadi ez al. [42] demonstrated the auto-
matic segmentation of multiple structures from arthroscope
videos during surgery. Chen et al. [43] demonstrated a tis-
sue property-based model deformation method for updating
the 3D preoperative tissue structure in accordance with the
actual intraoperative arthroscopic view. They used intraop-
erative arthroscopic images to capture 3D-anatomical loca-
tions, together with preoperative CT images to capture patient
anatomy, and an optical tracking system to track arthroscopy.
The tool position and live-tissue deformation were displayed
using an AR overlay on a glasses-free AR device. The
mean error between the virtual and real arthroscopic images
was 0.32 mm.

Tool-force sensing systems can be classified into direct
and indirect methods. In direct methods, the force/torque
sensor is placed near the patient or tissue, usually in the
tool. Sensor examples include strain gauges, microelectric
mechanical systems (MEMS), piezoelectric, optical, and
Bragg sensors [44]. In a recent review, Nazari et al. [45]
highlighted that image-based force estimation techniques are
feasible for providing haptic force feedback in medical teler-
obotic systems. They further noted that haptic information
could be indirectly extracted through force estimation by
employing a mathematical model for soft tissue, consid-
ered a deformable object, and visual feedback provided by
a vision system placed in the operating room. They high-
lighted learning-based methods as a highly trending approach
for modeling deformable objects. Here, an artificial intel-
ligence (AI) model estimates the object model by learning
a relationship between the applied forces and object defor-
mations. The reader is referred to their review for tech-
nical details concerning image processing techniques, and
image-based force estimation systems.

C. MATERIAL MODELING

The two categories of tissues that must be addressed when
designing an arthroscopic digital twin are soft- and hard
tissues. Blood vessels, nerves, tendons, and tissues surround-
ing bones and joints are examples of soft tissues, whereas
cortical and medullary bones are examples of hard tissues.
The biomechanical properties of each tissue vary owing to
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FIGURE 3. Setup for self-position tracking in knee arthroscopy as shown
by Ma et al. [40].

differences in chemical composition and material orientation.
Hence, in this section, we discuss the different biomechan-
ical properties of tissues, the methods used to characterize
these properties, and the constitutive models for soft and
hard tissues. We only consider the tissues relevant for knee
arthroscopy. From the review, 13 papers were selected based
on material modeling. However, we relied on studies pub-
lished outside our review period to provide a better under-
standing of a wide range of constitutive models.

1) BIOMECHANICAL PROPERTIES OF TISSUE

Skeletal soft tissues such as the articular cartilage, menis-
cus, ligaments, tendons, and muscles have solid and a
fluid phases. Collagen and/or elastin fibers as well as
proteoglycans constitute the solid phase. It contributes
around 10 to 30% of the total wet weight of skeletal soft tissue
with the remaining being fluid phase [69]. In contrast, hard
tissues, such as bone, have a relatively low water content and
are primarily composed of minerals. The properties exhibited
by soft tissues include nonlinearity, anisotropy, viscoelastic-
ity, and quasi-incompressibility [70]. In contrast, hard tissues
are distinguished by their strength, strain rate effects, fracture,
and fatigue properties [71].

In soft tissues, the relationship between stress and strain
is nonlinear under the influence of an external force. Vis-
coelasticity is a time-dependent behavior in which a material
exhibits both viscous and elastic properties during deforma-
tion. These include stress relaxation, creep, and hysteresis
effects. Stress relaxation is the change in stress as a function
of time when the strain of the soft tissue remains constant.
Creep is a gradual change in soft tissue strain caused by a
constant external force. The stress-strain curve of soft tissue
during unloading clearly lags behind that of loading, which is
known as hysteresis. The mechanical characteristics of soft
tissues are influenced by the direction of the fiber compo-
nents. The distinct material properties in different material
directions are referred to as anisotropy. Soft tissues are mostly
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TABLE 2. Constitutive models for the tissues involved in orthopedic surgery simulator.

Tissue Type Material Model Reference
Cartilage Linear elastic, isotropic and homogeneous [46], [47]
Fibril reinforced biphasic (viscoelastic fibril, poro-hyperelastic matrix) [48]
Strain-dependent poro-viscoelastic [49]
Meniscus Linear elastic, isotropic and homogeneous [46]
Transversely isotropic, biphasic [50]
Linear elastic, transversely isotropic [47]
Linear viscoelastic (51]
Poroviscoelastic [52]
Ligaments Linear elastic, isotropic and homogeneous [53]
Transversely isotropic, hyperelastic [46], [54]
1-D non-linear spring [47]
Tendons Anisotropic elasto-damage [55]
Non-linear, rate dependent, and anisotropic [56]
Fiber reinforced, incompressible, [57]
Anisotropic, viscoelastic [58]
Muscles Hyperelastic, transversely isotropic [59]
Viscoelastic, anisotropic damage [60]
Blood vessels Pseudoelastic [61]
Poroelastic [62]
Viscoelastic [63]
Cortical bone Linear elastic, isotropic and homogeneous [64]
Isotropic, plastic damage [65]
Linear elastic, nonlinear viscoelastic [66]
Orthotropic, fracture [67]
Medullar bone Linear elastic, isotropic and homogeneous [64]
Orthotropic, damage [68]

composed of water, which adds to their quasi-incompressible
features.

The stress-strain curve is commonly used to study the
mechanical behavior of tissues. Tensile testing of soft tissue
results in a stress-strain curve with a toe region, an elastic
region, a plastic region, and a fracture region. This behavior is
caused by the straightening of collagen fibrils with increased
loading and subsequent fracture. Within the elastic limit,
if the load is removed, tissues can regain their original shape.
However, in the plastic region, irreversible changes occur
owing to the development of microfractures in the fibrils
and, eventually, the tissue breaks [69]. When hard tissue is
loaded, it responds elastically until it reaches the yield point.
Plasticity and damage occur after passing this yield point.
Plasticity refers to permanent deformation upon unloading,
similar to soft tissue deformation, whereas damage is related
with to formation of microcracks. Fracture, unlike damage,
is caused by the formation and propagation of macroscopic
cracks [72], while property fatigue is associated with failure
due to cyclic loading. Characterization of the biomechanical
properties require a variety of methods. This is discussed in
the following paragraphs.

2) METHODS FOR CHARACTERIZATION OF
BIOMECHANICAL PROPERTIES

The characterization of the highly complex behavior of
biological tissues is a demanding task. The material
properties vary at various hierarchical levels, as well as in
different directions [50]. In addition, age, sex, and health
condition are also influencing factors. Mechanical testing,
ultrasonic testing, and computational methodologies are
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commonly employed to obtain data to fit the constitutive
equations. Owing to the constraints of in vivo studies,
mechanical testing is considered the gold standard for char-
acterizing biomechanical properties. Tension, compression,
bending and torsion are conventional mechanical characteri-
zation techniques [69]. These experimental techniques facil-
itate the creation of a wide range of constitutive models,
from basic to complex. The selection criterion for the test
is to create a set-up that is as close to an in vivo condition
as possible. Accordingly, the sample size, shape, boundary
condition, and loading condition for the experiment vary.

Computational approaches have recently drawn increasing
attention owing to the destructive and time-consuming nature
of mechanical testing. These methods are promising when it
comes to patient-specific modeling [39]. Furthermore, these
models not only lead to the replication of complex structural
and material behaviors of tissues but also have a high predic-
tive power.

Usually, material attributes are formulated as an input for
simulating a biomechanical system. Grytz et al. [73] effec-
tively incorporated heterogeneous and anisotropic material
properties into eye-specific finite-element models using a
mesh-free approach. Obrezkov et al. [58] used an absolute
nodal coordinate formulation to analyze the deformation
of an Achilles tendon with anisotropic elastic features.
However, material properties can also be extracted from
a simulated model using reverse engineering techniques.
Bojairami et al. [74] extracted nonhomogeneous tissue prop-
erties in real time using cohesive elements. Kim and Lee [75]
identified material features using the virtual fields method
based on the finite element scheme (FE-VFM), in which
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the full-field displacements were experimentally measured
and then mapped onto finite element meshes. Seyfi et al. [52]
optimized constitutive parameters of the human meniscus
using an inverse finite element method.

Another approach for material characterization is the use of
machine learning (ML) techniques to train a model and then
use this model to accurately predict the effective mechanical
properties of patient-specific models, mainly in real time.
Many researchers have used this concept with the help of
different machine learning tools to develop mechanical mod-
els in divergent contexts. For instance, Hashemi et al. [76]
homogenized liver tissue from many samples of hetero-
geneous models and trained this database using artificial
neural networks (ANNs). Santhanam et al. [77] proposed a
similar machine learning approach, but used a constrained
generalized adversarial neural network (cGAN) to train the
models for predicting the tissue elasticity of the lungs.
Pellicer-Valero et al. [78] adopted this strategy to develop a
real-time biomechanical model of the liver that
considers various loading and material characteristics.
Mendizabal et al. [79] applied U-Mesh, a data-driven
approach that relies on the U-Net architecture, to sim-
ulate hyperelastic behavior in real time in liver tissue.
Lauzeral et al. [14] employed a model order reduction tech-
nique to compute the material response during breathing
simulations.

3) CONSTITUTIVE MODELING OF TISSUES

A constitutive material model is a mathematical model based
on fundamental physical principles that aims to recreate what
has been observed in reality. In other words, it encapsulates
the material behavior through the stress-strain relationship.
Many computational models are available based on these
relationships.

Linear elastic models are used to define tissues with a
generalized Hookean relationship, in which the stress is pro-
portional to the strain within the elastic limit of the material
and the proportionality constant is known as the stiffness
matrix. This stiffness matrix requires 21 elastic constants to
characterize the anisotropic nature of the tissues. It is possible
to approximate the anisotropic condition to orthotropic, trans-
versely isotropic, or isotropic after considering the structural
alignment of the fibers. In orthotropic materials, the prop-
erties vary in three mutually perpendicular directions,and
require nine elastic constants in the stiffness matrix. In trans-
versely isotropic materials, the properties are the same along
a plane, but different in the perpendicular direction. Here,
the number of elastic constants is reduced from nine to five.
Isotropic material properties are the simplest assumptions
in linear elastic models, with two elastic constants: Young’s
modulus and Poisson’s ratio.

Linear elastic material models are utilized to ensure
calculation simplicity and to reduce computing expenses.
Although this model is acceptable for small strain analysis,
the linear model is not sufficient for realistic simulation of
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soft tissues because of the significant nonlinear deformation
experienced by living tissues.

Hyperelastic models are used to characterize the nonlinear
stress-strain behavior. Several hyperelastic models have been
developed using the strain-energy potential function, includ-
ing the Mooney-Rivlin, Neo-Hookean, Arruda-Boyce, and
Ogden models. Viscoelastic models are employed to simulate
time-dependent behavior during creep and stress relaxation.
The Maxwell, Voigt, and Kelvin models are the conventional
viscoelastic models. The Maxwell model depicts a dashpot
and a linear spring in series, whereas the Voight model depicts
parallel connection between the two. The Kelvin model is
a combination of a Maxwell element and linear spring. The
behaviors of loading and unloading are modeled separately in
pseudoelastic modeling. Knowing that soft tissues are fluid-
saturated, incorporating fluid parameters into the model and
presenting these models as biphasic models would strengthen
the prediction performance. Poroelastic formulations con-
sider the flow of an interstitial fluid through a porous medium.
The biphasic, poroelastic model allows for the addition of
permeability, which is the most significant fluid property,
and the creation of a more sophisticated model. In another
approach, the fibril-reinforced model, the solid phase is con-
sidered fibrillar and non-fibrillar.

Combining the above models and/or improving the
mathematical formulation behind each model that suits the
problem at hand can aid in capturing accurate material prop-
erties. Nonlinear hyper-viscoelastic models [80], nonlinear
time-dependent model includes salient microstructural defor-
mation mechanisms [81], and anisotropic viscoelastic [82]
are few of the constitutive models developed for soft tissues
during the review period.

The aforementioned models would be insufficient for mod-
eling plastic, damage, and/or fracture behavior in hard tissues.
Precise information on damage and fracture behavior could
aid in the development of better orthopedic implants [65].
The details of these models are out of scope of our paper.
However, from the broad spectrum of available constitutive
models, we identified a few and listed them in Table 2.

D. SOFT TISSUE DEFORMATION AND CUTTING
SIMULATION STRATEGIES

Soft tissue modeling is the core of surgical simulation.
In interactive surgical simulation, meeting the needs of
real-time simulation without sacrificing physical realism is
challenging. Many improvements to traditional modeling
methodologies have been proposed to address this difficulty.
All identified simulation strategies for soft tissue model-
ing were categorized into three groups in this paper: mesh-
based, meshfree-based, and hybrid modeling methods [25].
Mesh-based modeling methods mainly include the tradi-
tional finite element method and its variations, which are
used to improve the computational efficiency and modeling
accuracy. Simpler techniques without meshing the problem
domain fall into the meshfree-based group. The term hybrid
method refers to an approach that combines two or more
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modeling techniques. Our review covers not only the
tool-tissue interaction associated with deformation but also
the simulation of the cutting technique. Under the category
of simulation strategies, 34 recent studies were selected
using the PRISMA protocol. 18 of these articles dealt with
mesh-based modeling approaches, ten with meshfree mod-
eling techniques, and six with hybrid modeling techniques.
Overall, 28 papers were mainly concerned with soft tis-
sue deformation, while the others also addressed soft tissue
cutting.

1) MESH-BASED MODELING METHODS
Finite-element-based approaches are widely accepted
mesh-based modeling method in the field of soft tissue
deformation. The finite-element method is based on the
continuum mechanics technique, which involves discretizing
the continuum into finite volume elements and connecting
them at nodes. The mechanical behavior of the soft tissues is
then described using an appropriate constitutive law. Finally,
nodal parameters, such as displacement, are determined by
solving the governing equation with specified loading and
boundary conditions. The realistic material modeling capac-
ity makes FEM popular in the spectrum of computational
biomechanics, despite the fact that it requires significant
computing power.

Traditional FEM has been effectively used for a wide
range of biomechanical models of both soft and hard tissues.
However, the inefficiency of this approach in achieving a
minimum visual refresh rate of 30 Hz and a minimum haptic
refresh rate of 1000 Hz limits its application in surgical
simulations. As a result, several alterations and modifications
have been made to the traditional FEM in order to reduce
computational complexity and achieve a closer accuracy to
the biomechanical system.

The formulation employed (total or updated Langrangian),
integration scheme (implicit or explicit) and element type
are the aspects on which the efficiency of FEM is
based. Total Lagrangian Explicit Dynamics (TLED) is a
numerical scheme used for accelerating the FEM. The
implementation of this algorithm is particularly suited for
soft tissue analysis due to its capability of incorporating
nonlinear and anisotropic material behavior [87]. However,
TLED is not ideal for real-time implementation because of
the explicit time integration strategy. The requirement for a
small time-step constraint in an explicit scheme may lead to
overshooting problems.

The simulation and real-time visualization of thermal
energy distribution is an important feature of electrosurgery.
Polousky et al. [96] reported electrosurgery as an effective
tool for arthroscopic meniscectomy. Zhang and Chauhan [90]
proposed a thermal analysis under tool-tissue deformation
based on the fast explicit dynamics finite-element algorithm
(FED-FEM). The FED-FEM uses an explicit time integration
scheme and computes the nodal load, in this case thermal
load, at the element level. There is no need to invert the
system stiffness matrix at each level, assemble the global
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stiffness matrix, or use the iterative Newton-Raphson at any
stage in the algorithm. Furthermore, the precomputation of
constant parameters makes it ideal for real-time or near-
real-time applications. In their later work, they combined
thermo-visco-hyperelastic finite element techniques based on
finite-strain thermoelasticity with TLED [91].

Soft tissue is treated as linearly elastic in the majority of
existing surgery simulators. This allows the stiffness matrix
to be computed ahead of time, reducing the time spent online.
Obviously, this assumption fails to include the geometric and
material nonlinearities of soft tissues. Therefore, an appro-
priate formalism for accounting for these linearities must
be devised in surgery simulations. The corotational FEM
can be used to address geometric non-linearity in soft tis-
sues, such as large deformations. Marinkovic¢ and Zehn [86]
proposed corotational finite-element formulation for virtual
reality-based surgery simulators. This method solves the
problem of artificial enlargement of the model caused by
moderately large rotations, while maintaining the benefits
of traditional linear FEM. Bui er al. [94], [95] also used a
linear elastic material based on a corotational formulation
for real-time simulation of needle insertion into soft tissue.
The assumption of small strain theory and linear material
response, which are clearly not satisfied in many clinically
relevant cases, is the fundamental disadvantage of the co-
rotational formulation.

To account for material nonlinearity, Tabatabaei et al. [97]
demonstrated the concept of the stress-strain relationship of
soft tissues in a non-integer order. This research is still in its
early phases. However, this would provide a new direction for
the advancement of soft tissue analysis. In addition to mod-
eling dynamic behavior, their model can be rearranged into
a state-space form. Under the premise of state-space model-
ing, it is worthwhile to mention the Kalman filter-finite ele-
ment method (KF-FEM). The Kalman filter is a well-known
algorithm for state estimation in the form of feedback con-
trol. Xie et al. [83] proposed the KF-FEM method for real-
time and accurate modeling of soft tissue deformation. This
method allows online estimation of soft-tissue deformation
from the local measurement of displacement by formulating
the deformation of the soft tissue as a filtering identifica-
tion process. To analyze the nonlinear soft tissue behavior,
an extended (nonlinear) Kalman filter is combined with the
traditional nonlinear FEM [84]. The computational head can
be further reduced by lowering the number of states of model
without compromising its physics [85].

Model-order reduction (MOR) is another promising topic.
MOR methods enable real-time simulations by reduc-
ing the dimension of a multidimensional physical model.
The proper orthogonal decomposition (POD) method is
frequently applied in soft tissue mechanics [85], [89].
Gao and Shang [89] achieved real-time simulation in vascular
interventional surgery using POD to decompose position and
then singular value decomposition (SVD) to minimize the
cost function. Calka et al. [88] developed a MOR method
based on machine learning (ML) techniques and applied it to
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a FE model of the human tongue to predict quantitative
movement after orofacial surgery. They chose SVD as MOR
technique and a recurrent neural network as the ML tool.

In the context of surgerical simulation, the use of ML has
been investigated in many ways. One method is to utilize the
constitutive relationships of accurate FE models to predict the
material properties. This is already discussed in Section I'V-C.
Another option is to use ML models to forecast the nodal
parameters and/or their derivatives. Wu et al. [98] investi-
gated how real data obtained during a robotic endoscopic
surgical procedure could be used to compensate for incorrect
FEM modeling results. Using the mesh vertex location of a
finite element model as the input, they trained a network to
predict the correction factor that adjusts for the gap between
the simulation and observation. The ML approach can also be
used to improve computational efficiency. Meister et al. [87]
employed a deep-learning method to accelerate the time inte-
gration of a TLED. Although these training processes are time
consuming, once trained, these models assist in achieving
faster real-time responses.

Mesh refinement is an effective method for increasing the
simulation accuracy. However, mesh refinement of the entire
organ or tissue under consideration reduces the simulation
rate. This problem can be solved using an adaptive mesh
refinement. The desired simulation accuracy and rate can be
obtained simultaneously using a refined mesh at the surgical
site and a coarse mesh at the nonsurgical site [92].

HoloFEM is an innovative software application developed
by Logg et al. [99] that allows for the automatic generation
of finite element meshes and simulations by scanning the
surroundings using Microsoft HoloLens. Despite the fact that
they only conceptually simulated temperature and air quality,
this research is intriguing in the context of the growing usage
of augmented reality, virtual reality, and mixed reality tech-
nologies in patient-specific surgery simulators [100].

In the boundary element method (BEM), mechanical
behavior is modeled by using surface integral equations. This
approach is simpler because it minimizes the degrees of free-
dom (DOF) while computing deformation. Wang et al. [101]
used this technique for real-time simulation of soft tissues
with a tumor. The mesh-based techniques are summarized
in Table 3.

2) MESHFREE-BASED MODELING METHODS

In the meshfree modeling approach, the continuum is
modeled using discrete points. Mass-spring system mod-
eling (MSM) is a widely used meshfree-based modeling
method because of its simplicity and less time-consuming
calculations. However, accurate modeling of material prop-
erties is a difficult problem in MSM. Moreover, an increase
in the number of springs increase the system stiffness. Both
these issues are key aspects to consider when dealing with
soft tissue deformation. Many improvements have been pro-
posed for classical mass-spring models to address these
shortcomings. Li et al. [106] presented new flexion springs
in a mass-spring model for real-time shape restoration.
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This improved model is based on a surface representation
without internal geometry, making it unsuitable for difficult
surgical operations like tearing and cutting. Tan et al. [102]
introduced the concept of a virtual stress layer to improve
realism. However, this method has an increased compu-
tational cost and necessitates the use of parallel comput-
ing. As part of modeling stump soft tissue deformation
in stump-socket interactions, Ballit et al. [110] developed a
mass-spring system with a correcting spring and applied on a
hexahedral mesh. They integrated additional springs named
“corrective springs’’ into the mass-spring system to incorpo-
rate the incompressible behavior of soft tissues.

Another method, called ChainMail, is also recognized
in real-time soft tissue simulations. The problem domain
in ChainMail is modeled as a chain of linked elements,
with motion between neighboring parts limited in the
same manner as in a chain. To address complex mechani-
cal behaviors, Zhang et al. [111] developed the time-saving
volume-energy conserved ChainMail (TSVE-ChainMail),
an enhanced ChainMail based on volume and strain energy
conservation. However, their method benefits isotropic mate-
rials solely in terms of computing efficiency.

Large deformations in complex geometries can be
addressed using a meshless method. This has the benefit of
not requiring a predefined mesh, such as in FEM. Mesh-
less methods based on the element-free Galerkin (EFG)
method [107] and radial basis function point interpolation
method (RPIM) [112] are used for accurate computation of
soft tissue deformation for surgical simulation. The mesh-
less total Lagrangian explicit dynamics (MTLED) approach
employed by Joldes et al. [107] provides reliable result for
large compressive strains around the tool-tissue contact zone.
The EFG approach has several drawbacks, one of which
is the difficulty in enforcing essential boundary conditions.
This obstacle is addressed by the Kronecker delta function
feature of the RPIM shape functions, which allows the essen-
tial boundary conditions to be implemented as easily as in
the FEM.

During the last five years, the position-based dynam-
ics (PBD) method has attracted the interest of researchers in
the field of soft tissue simulation. The traditional methods
start with forces, then utilize Newton’s second law to obtain
acceleration, any integration scheme to calculate velocity,
and finally extract the position from the velocity. In contrast,
PBD [113] works directly on the position to solve geomet-
rical constraints. PBD has the advantages of being easier
to implement, having more control over explicit integration,
and being free of instability issues. However, it ignores the
accurate modeling of the physical properties of soft tissues.
This geometrics-based approach has recently been employed
to mimic brain deformation during catheter insertion [103]
and to simulate periodical beating of the human heart [104].

Zhang et al. [108] modeled large nonlinear deformation in
soft tissue based on reaction-diffusion mechanics via neural
dynamics. They used cellular neural networks (CNN) con-
structed to modeling both the reaction-diffusion propagation
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TABLE 3. Classification of mesh-based modeling methods for soft-tissue simulation.

Ref Modeling methods Tissue type / be- Geometry Dis- Computation efficiency / Hardware Configurations
haviors cretization accuracy
[83] Kalman Filter combined  Human liver / 1083 nodes and 0.01937, 52Hz visual re- Intel® Core i7-8750 CPU @ 2.20
with linear FEM Linear elasticity 4941 tetrahedral  fresh rate, 1000Hz force @~ GHz, RAM 16 GB, 64-bit Windows
elements refresh rate 10
[84] Extended Kalman Fil- Liver / Non- 1083 nodes and 50Hz visual refresh rate, Intel® Core i7-8750, 2.20GHz CPU,
ter combined with non- linear elasticity 4941 tetrahedral ~ 1000Hz force refresh rate  16GB RAM , GTX 1070 graphics
linear FEM elements card
[85] Reduced order Extended  Liver / Hyper 1083 nodes and 80Hz visual refresh rate, Intel® Core i7-8750, 2.20GHz CPU,
Kalman Filter combined elasticity 4941 tetrahedral  1000Hz force refresh rate  16GB RAM , GTX 1070 graphics
with non-linear FEM elements card
[86] Corotational FEM Liver / Linear 5192 faces, 640 34 FPS Intel i3-2120 (3.3 GHz), NVidia 750
elasticity nodes, 2598 ver- GTI
tices
[78] ML models trained on  Liver / Hyper 11736 £ 3599 2ms to 5Sms (model de- Two-core iSprocessor, low end GT
FEM, feedforward neu- elasticity, first  nodes formation), above 500Hz  840M GPU
ral networks as ML tool  order Ogden haptic feedback
model
[87] Neural networks to ac- Liver lobe / 507 vertices and  Accurate displacement at -
celerate the time in-  Anisotropic, 1493 tetrahedral  time steps up to 20 times
tegration of Total La-  Holzapfel —  elements larger than TLED’s ex-
grangian Explicit Dy-  Ogden model plicit time step
namics (TLED)
[88] Machine-Learning based ~ Tongue /7763 nodes and  Sub-millimetric spatial ac- -
Model Order Reduction  Mooney-Rivlin 8780 hexahedral  curacy
(MOR) method material model elements
[89] Finite Element Method Blood vessel / - - Around 150Hz FPS 16GB RAM, Intel Xeon (R) E51607
and Model Order Re- CPU, NVIDIA GeForce GT 730 GPU
duction
[90] Fast Explicit Dynam-  Vascularised 7872 nodes, t = 14.110 ms per time Intel(R) Core(TM) i7-8750H CPU @
ics Finite Element algo-  human liver / 40021 linear  step 2.20GHz and 16.0GB RAM Laptop
rithm (FED-FEM) Neo-Hookean tetrahedrons using a serial execution
hyper elastic  elements
model
[91] Finite-strain Human liver 3268 nodes,  0.0002s per time step GPU
thermoelasticity and /  Transversely 18007 linear
total Lagrangian explicit  isotropic neo- tetrahedrons
dynamics Hookean visco- elements
hyperelastic
model
[92] Softness-based adaptive  Stomach lining / 715 mass points, 28.7 FPS Intel(R) Core(TM) i7-5500U CPU at
mesh refinement algo- - 1319  triangular 2.40 GHz, 8 GB ofRAM, and an ATI
rithm patches, 3957 Radeon R9 M375 graphics card with
edges 2 GB memory
[93] Interactive cutting by al-  Porcine liver / - Hexahedron, The total computation CPU i7-4770K
lowing small gaps be- triangular meshes  time is much smaller than
tween the model bound- for cut surface the sampling time for the
ary and the volumetric visual rendering
finite elements
[94] Posteriori  error-driven  Liver / Linear 1179 DOF for the 22 FPS 4 GHz processor
adaptive finite element elasticity initial mesh
approach
[95] Corotational cut finite Liver / Linear - Approximately 2.3 times -
element method elasticity faster than traditional

FEM

FPS - Frames per second.

of mechanical potential energy and the non-rigid mechanics
of motion to achieve real-time simulation, as shown in Fig. 4.
This work was further extended to achieve stable model
dynamics for soft tissue deformation owing to the nonlinear
properties of the cellular neural network [109]. A summary
of meshfree-based modeling methods is shown in Table 4.

3) HYBRID MODELING METHODS
Hybrid methods combine two or more modeling approaches
by incorporating the benefits of each of these. Tang et al. [70]
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proposed an improved soft tissue model by combining FEM
with MSM and estimated the mass-spring model parameters
using the finite element method. They showed that their
model could trace material behavior very close to the physical
system. Han and Lee [118] used Saint Venant—Kirchhoff
model for modeling non-linear material behaviour and iter-
atively updated the local position using the PBD frame-
work. However, they were unable to achieve a real-time
simulation rate for the finer models. Luo et al. [116] and
Xu et al. [115] integrated viscoelastic mass spring dampers
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TABLE 4. Classification of meshfree-based modeling methods for soft-tissue simulation.

Ref Modeling methods Tissue type / be- Geometry Dis- Computation efficiency / Hardware Configurations
haviors cretization accuracy
[102] Virtual stress layer mod- ~ Lung / Viscoelas-  Different models 17, 58 and 71 FPS for Different CPU cores
eling (improved MSM) ticity with masses  quadra core, 25, 69 and 66
1100, 2600 and FPS for eight core
4600
[103] Position Based Dynam-  Ovine brain / - - Close match with real Intel Core i7 6800k processor, 32
ics (PBD) brain deformations GB RAM, Titan XpGPU by NVIDIA
Corporation with CUDA 10.1
[104] Position Based Dynam-  Heart / - - Greater than 30 FPS Intel i7-6920HQ CPU @3.5
ics (PBD) GHz,NVIDIA GTX 10808G RAM
[105] Meshless physical Liver / Non- 541 triangular  consistent haptic interac- CUDA, GPU
model linear visco-  patches tion with the presentation
elasticity of visual effect
[106] Surface Mass Spring Heart / Linear 1529 points and  151.35 average FPS Intel(R) Core (TM) i7-6700 CPU
Model with flexion elasticity 3054 triangles at 3.40 GHz, Intel(R) HD Graphics
spring GPU, 8.00 GB RAM, and WIN10 64-
bit OS
[107] Meshless Total Brain / Neo- 8769 nodes and reliable results for com- -
Lagrangian Explicit ~ Hookean material 158,678 integra-  pressive strains exceeding
Dynamics (MTLED)  model tion points 70%
algorithms incorporating
a Modified Moving
Least Squares (MMLS)
method
[108] Reaction-diffusion me- Kidney / Non- 1378 mass points Force update rate 1000 Intel® Core™ i7-5500U CPU at 2.40
chanics via neural dy- linearity Hz with around 600 mesh ~ GHz and 4 GB memory PC
namics points, visual feedback
rate 30Hz with around
3000 mass points
[109] Cellular Neural Network ~ Kidney / Non- 1,378 nodes  Force update rate 1000 Hz  Intel(R) Core(TM) i7-4770 CPU @
(CNN) method linearity and 4,691  with around 1200 mesh  3.40 GHz and 8 GB RAM PC
tetrahedrons points, visual feedback

rate 30Hz with around
6500 mass points

FPS - Frames per second.

FIGURE 4. Zhang et al. [108] used cellular neural networks to model soft
tissue behavior of a kidney, and interfaced the simulation with a
Geomagic Touch haptic device.

into position-based dynamics to simulate soft tissue defor-
mation in real-time. To solve the defects of traditional mass
springs, Ye et al. [114] combined them with a filling model,
which could move and rotate freely. They claimed that includ-
ing an infinite number of filling models with mass, inertia,
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and volume properties would provide a more accurate sim-
ulation of the human tissue deformation behavior. Overall,
hybrid approaches improve traditional methods by drastically
reducing the computation time and complexity of soft-tissue
deformation behavior. A summary of these hybrid modeling
methods is presented in Table 5.

4) CUTTING

Other common interactions that must be considered for the
development of a surgical simulator include cutting, drilling,
and suturing. Robust cutting simulation requires a substantial
amount of processing power in additional to the requirements
of deformation modeling owing to topological and geometri-
cal changes.

Byeon and Lee [93] handled interactive soft tissue cutting
in real-time by approximating small gaps between the model
boundary and volumetric finite elements. This method over-
comes the computational burden of the addition degrees of
freedom and prohibits the formation of ill-shaped elements.
Bui et al. [94] demonstrated a real-time simulation of needle
insertion into soft tissues using an a posteriori error-driven
adaptive finite element approach. Indeed, the proposed local
remeshing, which is based on the error between the accurate
analytical solution and the FEM, is sufficient to perform
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TABLE 5. Classification of hybrid modeling methods for soft-tissue simulation.

Geometry Dis-

Computation efficiency /
accuracy

Hardware Configurations

Ref Modeling methods Tissue type / be-
haviors cretization
[114] Filling model and Mass  Liver / - -
Spring Model
[115] Position Based Dynamic ~ Liver and 650 nodes, 1938
method integrated with  gallbladder /  springs
viscoelastic Mass Spring ~ Viscoelasticity

[116]

Damper method
Mass Spring Modeling
and Position Based Dy-

and nonlinearity
Liver / Viscoelas-
ticity and nonlin-

2024 masses

Computation time - 1.58
ms, 63 FPS
Greater than 30 FPS

7.75 s, refresh rate 1140
Hz

Soft Deformation 36.8ms,
haptic Rendering 1.05ms,
topology update 98.3ms,
mesh skinning and graph-
ics rendering 20.83ms

Computation time 10 ms

GPU

Intel Core i7-7700 CPU@3.6 GHz
and NVIDIA GTX 1070 GPU

Inter(R)Xeon(R) CPU E5-1650v3 and
the graphics card is the NVIDIA
Quadro M4000

NVIDIA GeForce RTX 2080Ti, an
Intel i9-9900K CPU, 16GB RAM,and
two haptic devices

Intel Core(TM) i7-7700 CPU @ 3.60
GHz and 64GB memory

namics earity
[117] Tetrahedron mesh and  Liver / - 85240  vertices,
Position Based Dynam- 170277 triangles,
ics with cluster-based 885163
shape matching tetrahedrons,
170854 physical
particles, 3892
clusters
[118] The Saint Liver / Non- 596 tetrahedral
Venant—Kirchhoff linearity elements
model, Position Based
Dynamics (PBD)
[119] Position Based Dynam-  Liver, Spleen  Number

and Gallbladder /
Linear elasticity

ics and meshless method
and 466

of Time for
spheres 570, 452

deformation
6.25, 2.65 and 2.14 ms,
time for cutting 9.52, 3.33
and 2.58 ms, haptic rate
around 1kHz

NVIDIA GeForceGT 630,Intel(R)
Core(TM) i7-4790 CPU (3.60 GHz,
8 cores), and8G RAM

FPS - Frames per second.

real-time simulations. However, they did not take into account
modeling errors, such as those caused by tool-tissue interac-
tions and material modeling choices. Bui et al. [95] applied
the corotational cut FEM to needle insertion simulations and
used a background mesh that did not necessarily conform to
the boundary of the simulated object. The extended finite
element method (XFEM) addresses crack propagation and
material interface problems. Gutiérrez and Ramos [120] used
XFEM framework for soft tissue cutting.

Shi et al. [105] proposed a meshless physical model based
on point elements to improve visual and haptic rendering.
A hybrid modeling method combining geometric metaballs
and the meshless method [119] was used to simulate real-time
dissection in a VR-based laparoscopic surgery simulator.

E. HAPTIC FEEDBACK

Kinesthetic haptic feedback enables physical interaction with
a digital twin, and is identified as a critical functionality in
all three user scenarios described in Section II. We use the
terms haptic feedback and kinesthetic feedback interchange-
ably. From our literature review, 16 articles on haptic feed-
back were included. Nine articles described haptic device or
actuator development, six articles described simulator devel-
opment, and one article presented a method for predicting
haptic feedback from expert surgeon behavior. An overview
is presented in Table 6.

A fundamental principle in haptic feedback is the trade-off
between stability and transparency. The more accurate a sys-
tem is displayed, the more stability is compromised. This
is because the kinesthetic system is based on imperfect
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FIGURE 5. 3DOF haptic system for palpation based on magnetic
levitation, as shown by Tong et al. [121].

electro-mechanical design. The more accurate the system
is rendered, for example a virtual spring with high stift-
ness, the more prone the system is to time delays, nonlin-
earities, actuator saturation, and sensor and actuator accu-
racy [122]. Therefore, efforts in the design of haptic systems
are aimed at balancing this trade-off. The system is said
to enter a limit cycle if it exhibits a self-sustained oscilla-
tion, even if the system is perturbed or the oscillations are
bounded [123], [124].

Impedance and admittance control are the two primary
approaches for controlling closed-loop active kinesthetic
feedback systems. Impedance control is when a user applies
a motion to the system, position sensors detect displace-
ment, a force is computed as a function of position, and
a force is rendered to the user through the haptic device.
Admittance control is when the user applies a force to the
system, a force is detected by force sensors on the haptic
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device, a motion (displacement or velocity) is computed as
a function of force, and the user feels a motion [123]. While
impedance control enables easy rendering of no impedance
(infinite admittance), for example, a surgical tool moving
in free space, it suffers from instability when subjected to
high impedance. Conversely, admittance control allows for
rendering of high impedance but suffers from a lack of
transparency at low impedance. This is because admittance
devices must actively mask inertia and friction owing to
the reflected inertia and friction from high-geared actua-
tors [125]. Admittance devices are also usually more expen-
sive owing to costly force sensors and higher requirements
for tolerances and stiffness. Consequently, most commer-
cial haptic systems employ impedance control. However, the
range of achievable dynamics, or z-width, is higher for admit-
tance control than impedance control [125], [126]. Recently,
Ha-Van et al. [127] demonstrated the use of admittance con-
trol in a drill mockup for arthroscopic surgical training.

A widely adopted rule of thumb is that haptic systems
require a refresh rate of at least 1 kHz for stability and smooth
perception of stiff materials, and a few hundred Hertz for soft
materials [124]. Human cutaneous mechanoreceptors, such
as the Ruffini and Pacinian corpuscles, can sense frequencies
up to 500 Hz [128]. Therefore, the sensation of touch is much
more sensitive than the visual sensation. Colgate et al. [129]
showed that for an impedance-controlled virtual wall, the
sampling time influences stability. Other factors that affect
stability include physical and virtual damping. Moreover,
they defined a passivity condition as:

KT
b> —-+IB| ey

where b is the physical damping (or friction) of the haptic
device, K is the virtual wall stiffness, B is the virtual wall
damping coefficient, and 7 is sampling time. Interaction with
stiff virtual objects requires higher physical damping than
that with soft virtual objects. To overcome this instability
issue, virtual coupling was proposed in the same study by
introducing a virtual spring and damper between the haptic
interaction point and virtual object. The spring and damping
parameters can then be tuned to guarantee stability. Further-
more, the god-object method was introduced by Zilles and
Salisbury [130] to visually prevent penetration of the virtual
object, and thus enhancing the perception of stiffness.

For multi-DOF haptic device kinematic configurations,
dynamic transparency, size of the work space, actuation
power, and stiffness are all important physical properties to
be considered. Various kinematic structures found in existing
commercial haptic devices perform differently with respect
to these requirements. The five-bar linkage configuration,
as found in the Phantom Premium, stands out as the most
dynamically transparent, whereas the delta configuration,
as found in Force Dimension devices, is stiffer. The serial
linkage configuration, as found in cheaper devices such as
Geomagic Touch, is significantly softer.
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The requirements for actuation of active impedance-type
haptic devices are low inertia, low friction, low torque rip-
ple, back-drivability and low backlash, [124]. As such, the
most commonly implemented actuators in haptic devices are
permanent magnet direct current (DC) motors, coreless DC
motors, and brushless DC motors because torque can be con-
trolled with current [123]. However, other actuation methods
have also recently been explored. Wu et al. [131] explored
control strategies for the control of a pneumatic artificial mus-
cle (PAM)-based haptic device, and found that an adaptive
fuzzy sliding mode control force loop-based system provided
best force feel. Tong et al. [121] designed a 3DOF haptic sys-
tem for palpation based on magnetic levitation, using a mag-
netic stylus and stereoscopic tracking for position sensing,
as shown in Fig. 5. By controlling the current-carrying coils
using a self-adaptive fuzzy proportional—integral-derivative
(PID) algorithm, different virtual tissue stiffnesses can be ren-
dered. They conducted a user study with 22 participants for
liver tissue assessment, and found that their device performed
as well as a Phantom Omni/Geomagic Touch commercial
haptic device with respect to the quality of experience.

Closely related to actuation is the transmission of forces
from actuator to the haptic device, where traditional methods
for impedance devices are capstan and direct drives [123].
Recently, Lebel e al. [132] compared the use of magne-
torheological (MR) clutches to lower reflected inertia of
haptic devices. They found the MR clutch system to have
approximately 50 % more bandwidth, 190 % less reflected
inertia, and 66 % more damping than a DC-motor sys-
tem. Moreover, as shown in Equation 1 is removing energy
through damping an effective way of stabilizing the hap-
tic system. Recently, there has been a trend towards the
removal of energy from a system in a controlled manner,
referred to as semi-active haptic rendering. Nakamura and
Motoi [133] recently used a powder brake in combina-
tion with a constant-torque spring for the haptic control of
an exoskeleton haptic device. Hooshiar et al. [134] used
position-controlled permanent magnets to control the fric-
tion between a magnetorehological elastomer (MRE) and a
ferromagnetic shaft for haptic feedback in robot-assisted
cardiovascular interventions. Pepley et al. [135] used mate-
rial fracture to mimic the insertion of a needle, and
Yeh et al. [136] used piezoelectric actuators to control fric-
tion for haptic feedback. Huang er al. [137] designed a
haptic system based on an MR-damper piston. Additionally,
Choi et al. [138] introduced a high force density soft layer
jamming brake (SLJB) concept for soft robotics.

Several recent studies have focused on the haptic rendering
of drilling procedures. Maier et al. [139] used a finite-state
machine approach on a Haption Virtuose 6D commer-
cial device to simulate K-wire drilling for hand surgery.
Kaluschke et al. [140] demonstrated a novel algorithm for
material removal based on the god-object method and imple-
mented their algorithm on a Kuka LBR robot for 6DOF
high-force feedback (up to 200N). Fekri et al. [141] used a
recursive neural network with LSTM architecture to capture
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TABLE 6. Recent studies describing haptic feedback for surgical simulation.

Study Contribution Medical Application Haptic Device Actuation Principle
[134] Device development Cardiovascular surgery Custom design Magnetorheological elastomer
[141] Use of deep learning to capture  Surgical drilling Geomagic Touch with  DC-motor
expert behavior and predict haptic drill attached
feedback
[132] Device development - Custom design DC motor + magnetorheological
fluid clutch
[143] Simulator development Femoral nailing Entact W5D with custom  DC-motor
drill
[145] Simulator development Hand palpation Geomagic Touch DC-motor
[140] Drilling algorithm development Hip replacement Kuka LBR robot DC-motor
[137] Actuator design - Custom design Magnetorheological fluid damper
[127] Device development Surgical drilling Custom design DC-motor
[133] Device development - Custom design Powder brake with constant torque
spring
[136] Device development Palpation Custom design Piezoelectric actuator + friction
[131] Device development - Custom design Pneumatic artificial muscle (PAM)
[139] Drilling simulation development K-wire drilling for hand  Haption Virtuose 6D with  DC-motor
surgery custom drill
[135] Device development Needle insertion Custom design Material fracture (passive)
[121] Device development Palpation Custom design Magnetic levitation
[144] Method for haptic guidance Hearth catheterization Novint Falcon DC-motor
[142] Simulator development Neurosurgical — aneurism  Geomagic touch with cus- ~ DC-motor
clipping tom clipping forceps

expert behavior during surgical drilling. This behavior was
intended for the haptic guidance of novice surgeons during
training. They implemented their system on a Geomagic
Touch haptic device with an attached drill. Moreover, using
voxel-based 3D-geometry, the drilling resistance was con-
trolled by exchanging stiffness at a rate of 10 Hz.

Some studies have modified commercial haptic devices
for realism. Gmeiner et al. [142] used two Geomagic Touch
haptic devices with custom clipping forceps for aneurysm
clipping simulation. Racy et al. [143] developed a femoral
nailing simulator using an Entact W5D haptic device with a
custom 3D-printed drill handle. They also included intraop-
erative fluoroscopy in their simulation environment by using
gVirtualX-ray library. Halabi and Halwani [144] presented a
method for creating haptic guidance tunnels for pre-operative
path planning and training. Their system was implemented
on a Novint Falcon haptic device and was demonstrated
for heart catheterization. Finally, nine studies described in
Section IV-D reported the use of Geomagic Touch haptic
devices in their applications.

F. SYSTEM ARCHITECTURES AND EXISTING
FRAMEWORKS

For real-time interactive simulation, a major obstacle is to
achieve a sufficient haptic refresh rate of 1 kHz based on
potentially computationally expensive dynamic, deformable
object, cutting, or material removal simulations, paired with
a real-time visual feedback of 30 Hz. One way to deal with
this is to separate haptic, deformable objects and visual sim-
ulations into separate threads. Peterlik et al. [146] introduced
a constraint-based method called multirate compliant mech-
anisms, where the dynamics of virtual objects are computed
at a low rate, and the interaction forces to the high-rate haptic
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FIGURE 6. Multirate compliant mechanisms as described by
Peterlik et al. [146].

thread are formulated as a constraint-based problem using
Lagrange multipliers. This method handles complex interac-
tions between medical devices and anatomical structures. The
interaction equations are built at low rates and then shared
with a separate high-rate haptic thread. An illustration is
shown in Fig. 6.

Several interactive simulation frameworks have been used
to develop surgical simulations. The multirate compliant
mechanism method was developed using the simulation
open framework architecture (SOFA) platform. This open-
source C++ library was described by Faure et al. [147], and
employs a multi-model representation consisting of deforma-
tion models based on MSM or corotational FEM, collision
models based on sphere mapping, and visualization models
where the mesh size can be different from the deformation
models. This framework uses mapping functions between
different models in a hierarchical system. SOFA also supports
GPU (Graphics Processing Unit)-based computations. From
the included studies, three reported the use of the SOFA
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framework in their development [89], [94], [95]. Another
popular C++ simulation framework reported in the litera-
ture is Chai3D. From our review, five studies reported the
use of the Chai3D framework in the development of their
simulators [127], [138]-[140], [144]. This framework also
uses separate threads for simulations, haptics and visual-
izations. A third framework, OpenHaptics, has also been
frequently reported in combination with Geomagic haptic
devices [108], [109], [145], [148]. Other reported frameworks
include Toia plugin with Unreal Engine [143], Bullet [142],
and VEGA [121].

Recent developments in GPU computing have the poten-
tial to accelerate simulation speeds, but require sys-
tem architectures compliant with parallel computations.
The CUDA framework allows easy GPU implementation.
Shao et al. [149] utilized a multi-GPU architecture with
CUDA-framework to perform virtual reality interactions,
including soft-object hybrid deformation based on the TLED-
and fast lattice shape matching methods, cutting simulation
based on TLED and virtual node algorithm, and cutting
with bleeding effects based on Lagrangian particle dynamics.
They compared performance in the three interaction scenarios
using CPU, single GPU and multiple GPUs. They found
that the multi-GPU approach accelerated performance by a
maximum of 14.5 times compared to the CPU, achieving a
frame rate of 25 FPS. Kaluschke et al. [140], Ye et al. [114],
Segato et al. [103], Gao and Shang [89] and Zhang et al. [91]
also reported using CUDA for GPU implementations.

V. TOWARDS A DIGITAL TWIN

In Section IV, we have reviewed the literature and presented
state-of-the-art methods with respect to a digital twin for
arthroscopic knee surgery. We have identified the key com-
ponents and state-of-the-art techniques needed for the real-
ization of such a system, such as patient-specific imaging,
real-time intraoperative data collection techniques, material
models for biomechanical tissue, tissue deformation simula-
tion, cutting simulation, virtual interaction, haptic feedback,
and system architectures. However, analyzing these findings
in relation to the presented user scenarios shown in Fig. 1,
we have identified gaps where the current state-of-the-art,
to our knowledge, has not yet presented solutions needed
for a true digital twin. Thus, we introduce a new section
presenting a conceptual macro-level system of a digital twin
for arthroscopic knee surgery, discussing applicability of
the findings from Section IV in the identified subsystems.
The macro-level design is shown in Fig. 7, and the following
sub-sections describe the respective boxes as presented in the
figure.

A. DIAGNOSIS DATA

After consultation with the physician, the patient receives a
diagnosis. The diagnosis data, a qualitative description of the
mechanism of injury, resulting in damage, and experienced
pain, is saved to the electronic patient record.

45044

B. ELECTRONIC PATIENT RECORD

Following our arthroscopic digital twin definition, virtual
information that fully describes a patient-specific biomechan-
ical system, we acknowledge that it is difficult to describe
all parts of a joint with models. Other factors affecting the
treatment, such as pain and health conditions, should be
included. As such, we argue that a qualitative description of
the diagnosis data, which is widely adopted in the healthcare
system, should follow the digital twin.

C. PATIENT SPECIFIC IMAGING

Analyzing the findings from Section IV-A, we identify MRI
as the most relevant modality for a true knee digital twin
because of the ability to recreate internal anatomical struc-
tures of both soft tissues and bone structures. As shown by
Sun et al. [33], a healthy knee MRI model can be automat-
ically segmented into 12 different anatomical structures in
minutes. The segmented structures were the cortical bone,
medullary bone, PCL, ACL, muscle, artery, collateral liga-
ments, tendons, menisci, fat, and veins. An assembly model
consisting of 12 individual STL files or voxel models form
the digital anatomy. More work is needed to establish a robust
automatic detection and segmentation of pathologies, such as
a partially torn ligament.

D. MATERIAL DATABASE

As shown in Section IV-C and Table 2, extensive efforts have
been made in terms of developing accurate material models
of biomechanical tissue. Although some imaging modalities
can estimate in vivo biomechanical properties as discussed
in Section IV-A, we regard patient-specific collection of
material properties as too costly and time consuming given
the current state-of-the-art. Instead, we propose a database
of predefined material constants for the respective tissues.
The choice of material parameters is determined based on
the patient’s age, sex, and health condition, and the database
should be updated as more data become available in the
digital twin.

E. BIOMECHANICAL MODEL

A simulation model can be automatically created by assign-
ing appropriate material constants and constitutive models
from the material database to the individual labeled digital
anatomy structures. Unilateral constraints, such as contact,
needle puncture, and friction, as well as bilateral constraints,
such as rigid attachments between bodies and sliding or
rotating joints, must also be specified here. For the knee,
important unilateral constraints are personalized motion axis
and friction between femoral cartilage and meniscus. These
constraints could be pre-defined but also tuned for each spe-
cific patient from the intraoperative data.

F. OFFLINE SIMULATION
As discussed in Section IV, and observed from
Tables 3, 4 and 5, the highest-performing methods employ an
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FIGURE 7. Digital twin concept for arthroscopic knee surgery. Arrows indicate flow of information.

offline simulation step to achieve real-time performance. For
the TLED approach [91], spatial derivatives, initial element
volumes, initial Jacobian, and mass and damping matrices can
be precomputed. Model order reduction by proper orthogonal
decomposition is performed before the real-time simula-
tion [14]. The Kalman-filter method compute the Kalman
gain offline [83]. Thus should offline simulation be included
to account for the most complex tissue simulations, or to
enable simulation of larger systems.

G. REAL-TIME INTERACTIVE SIMULATION

As shown in Section IV-F, the three threads in interac-
tive real-time simulation are haptic feedback, computational
biomechanics and visualization. As shown in Section IV-F,
these can be combined using multirate compliant
mechanisms.

Considering methods for real-time deformation, as shown
in Tables 3, 4 and 5, several methods demonstrate real-time
performance of at least a 30 Hz refresh rate. For meshfree
methods, it is still difficult to model accurate constitutive
behavior, but it is much easier to achieve real-time perfor-
mance. For mesh-based finite element methods, achieving
real-time simulation rates for large models remains difficult.
However, corotational formulations, model order reduction,
and Kalman filter-accelerated simulations all provide suffi-
cient simulation rates for moderate sized models. Addition-
ally, mesh-based methods have been demonstrated for use in
multi-thread architectures with constraint-based interactions
and for cutting simulations. Machine learning-based methods
are promising in terms of achieving real-time refresh rates,
but they require large datasets for training [78]. However, it is
likely that we will see further developments in the future.
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For haptic feedback, as presented in Section IV-E, recent
device developments have focused on novel actuation and
transmission methods to improve the performance of active
haptic devices. However, validation studies, including med-
ical personnel and case-based simulators, have mostly been
performed using commercial haptic devices [142], [143],
[148], [150]. Thus, we are most likely yet to observe the
impact of these novel methods in surgical simulation. Inter-
estingly, Vaghela et al. [150] recently investigated the effect
of active versus passive haptic systems in knee arthroscopic
surgery by comparing two commercially available arthro-
scopic simulators: Virtamed ArthroS and Simbionix Arthro
Mentor. They invited 38 participants, of whom 13 were
experts and 25 were surgeons with a moderate level of expe-
rience. The results showed that orthopedic surgeons prefer
passive haptic feedback to active feedback in the context of
VR arthroscopy. This shows that active systems still have
potential for improvement with respect to face validity. How-
ever, it should be noted that the active haptic devices in
the study were Geomagic Touch devices. Although popular,
as highlighted in Section IV-E, this device is located in the
low-end-low-cost part of the spectrum of the haptic devices,
and it is not unlikely that a higher-fidelity active system could
have affected the results.

Visualization has not been included as part of the scope of
this review, but remains an important feature. However, many
studies have utilized the Chai3D and SOFA frameworks,
where a higher-density mesh is used as a slave to the deforma-
tion model to achieve a more realistic visual impression [89],
[94], [95], [127], [139], [140], [144]. Some studies have also
reported implementation in game engines, and some have
included head-mounted displays [103], [114], [140], [143].
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H. INTRAOPERATIVE DATA

So far discussions have focused on aspects equally rel-
evant for surgery simulators as for a digital twin. How-
ever, the introduction of real-time sensor data changes
this. As shown in subsection IV-B, novel surgical naviga-
tion and force-sensing systems have recently been devel-
oped, and the need for sensemaking of the collected data
arises. As shown by Ma et al. [40], stereo vision fused with
IMU-tracking provides virtual rendering of tool position dur-
ing knee arthroscopy. Synchronizing position data with force
data, either from direct or indirect force sensors, can pro-
vide sufficient information for storing procedural, haptic and
deformable object data in an intraoperative database, as well
as calibrating haptic interactions.

I. INTRAOPERATIVE DATABASE

Using intraoperative data as input, haptic feedback in the
real-time interactive simulation and material database can
be calibrated from the measured data by pre-training an
Al-model. As pointed out by Nazari et al. [45], an Al model
can estimate haptic information by learning a relationship
between applied forces and object deformations. As shown
in Section IV-D1, have Wu et al. [98] used live data to cor-
rect a real-time FE simulation during endoscopic surgery.
This allows for patient-specific tuning of these parameters.
Another application is to provide force feedback in simula-
tion training and during surgery, that is feedback of whether
the amount of applied force is suitable (not the same as
haptic feedback). Feature extraction techniques using CNNss,
as pointed out by Anh et al. [12], can prove very useful in this
setting. Further studies are needed to explore this potential.

J. SURGICAL PRACTICE

Surgical practice is a set of established methods for treating
a specific injury in the context of a specific patient. These
methods determine the procedures and tools to be simulated,
as well as what is considered good practice. In other fields not
covered in this review, such as autonomous ship simulation,
good seamanship practice is defined as (... ) common prac-
tice of how to deal with situations that are not explained by
rules” [151]. Similarly, the best surgical practice is an impor-
tant pillar in designing a meaningful simulation procedure,
but also for providing meaningful surgical skill assessment
(construct validity). In autonomous ship control algorithms,
good seamanship is incorporated together with a path fitness
function and safety evaluation as a multi-object optimization
problem. A similar mindset could be employed in surgical
skill assessment by optimizing a cost function of surgical path
precision, interaction force data and best surgical practice.
These aspects should be explored further.

K. DIGITAL TWINS IN NEAR- AND FAR FUTURE
APPLICATIONS

As introduced in Section II, User Scenarios, and shown in
Fig. 7, a digital twin can provide resident doctor training,
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patient-specific pre-operative planning and a database of
virtual surgeries. The most common use is likely for the
training of resident doctors, as pointed out by Frank [3].
However, we argue that unexplored potentials exists in the
other two applications. For example, patient-specific pre-
operative planning does not have to be constrained by pre-
defined procedures. With sufficient fidelity, the digital twin
could serve as a simulation environment for the early explo-
ration of novel surgical methods, providing a similar purpose
as CAD/CAM/CAE-environments for design engineers. Fur-
ther, with advancements in Al it is not unimaginable that
this environment could be used to explore a range of surgical
procedures to find the best suited or perhaps even a novel
method.

Considering the digital twin lifecycle as the lifecycle of
a given treatment, post-operative patient information should
be supplied to the electronic patient record. We regard the
qualitative data supplied by the surgeon during polyclinic
assessment or physical therapist during rehabilitation, as the
most realistic means of implementing this. However, self-
reporting of pain, swelling and range of motion could also
provide this input, as well as through smart rehabilitation
devices or sensors not covered in this review.

Finally, if this conceptual digital twin system was realized
as envisioned, a database of surgeries, providing detailed
transcripts of surgeon actions and patient outcomes, would
inevitably follow. This could serve as a research tool and
provide new insights into the arthroscopic surgical domain.

VI. DISCUSSION

A. REVIEW

The objectives of our review were to investigate fast and
robust design of an arthroscopic digital twin using patient-
specific information, and to explore methods for interactive
surgical soft tissue simulation for a digital twin, emphasizing
speed and accuracy. The search terms, as listed in Table 1,
were selected to reflect these objectives. We acknowledge
that it is possible that these search terms do not capture all
developments in patient-specific imaging, which is reflected
in the number of results, but argue that including these find-
ings is important for the overall understanding of the digital
twin system.

An important feature of a true digital twin that has not been
explicitly addressed in this review is the dynamic behavior
of a joint. During knee arthroscopy, the surgeon changes the
position of the knee to enable insertion of arthroscopic instru-
ments. Here, internal cavities are opened or closed based
on the position of the knee. Modeling the behavior of these
cavities is important to fully simulate instrument insertion.

B. DIGITAL TWINS IN CLINICAL PRACTICE?

As presented in this article, a digital twin can have several
implications for the training of resident doctors, pre-operative
planning, and storage of surgical data. However, there are
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several barriers that must be overcome before implementation
of such a system could be considered.

Firstly, not all patients with knee injury undergo an MRI
scan. Thus, the establishment of a digital twin is thus not
possible for these patients. Furthermore, we must be sure
that automatic segmentation of anatomical structures does
not alter the digital representation of anatomy. Here, work
considering explainable Al could contribute to a better under-
standing and confidence.

As for the use of tool positioning systems and force sensors
during manual surgery, this technology is in early develop-
ment, and challenges related to sterilization procedures and
operational costs must be addressed. In addition, the justi-
fication of high investment costs for these systems must be
discussed in the medical community. Similar to the adoption
of other novel technologies, such as robotic surgery, it is
likely that the most specialized hospitals could serve as early
adopters. Likewise, a thorough discussion in medical com-
munities must determine for which procedures such a system
can add sufficient value.

Considering the fidelity of real-time interactive simulation,
there is evidence that current surgical simulation systems add
value to training of resident doctors given the current state-
of-the-art. However, we argue that there is still a need to
strive for higher fidelity with respect to computation speed,
accuracy, visualization, and haptic feedback, to fully exploit
the potentials of the digital twin presented in this article.
Moreover, as shown in Fig. 1, we argue that increasing fidelity
is necessary to enable the higher hierarchical user-case levels.

As for the implementation of an arthroscopic digital twin
in clinical practice, electronic patient records containing
patient-specific digital images with supplemental qualitative
diagnostic descriptions are already well established in global
health care systems. As such, if sufficiently developed and
automated, a digital twin could be considered a natural evo-
lution of such a medical record.

C. ETHICAL CONSIDERATIONS

Braun [152] discusses the ethics of digital twins in medicine.
Central to his analysis is the view of the digital twin repre-
senting the patient, in the sense that it acts on behalf of the
physical person. Such representation, it is argued, not only
requires informed consent, but also has to remain under the
control of the patient.

A complementary perspective is found in the literature on
the ethics of electronic patient records (EPR). As introduced,
adigital twin is an EPR in the sense that it records information
about the patients’ state of health. Jacquemard et al. [153]
makes a scoping review of EPR ethics, identifying five
areas of concern, in privacy, autonomy, risk/benefit analysis,
human relationships, and responsibility. As such, the use of a
digital twin in settings outside the regulations of EPR’s, such
as for educational or research purposes, must be carefully
considered with respect to informed consent and patient data
protection.
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VIi. CONCLUDING REMARKS

In this paper, an arthroscopic digital twin concept was
explored in light of the existing scientific literature. A system-
atic review was conducted following the Preferred Reporting
Items for Systematic Review and Meta-Analyses (PRISMA)
protocol to summarize the literature from January 2018 to
December 2021. This review investigated fast and robust
design of an arthroscopic digital twin using patient-specific
information, and methods for interactive surgical soft tissue
simulation with respect to speed and accuracy. Considering
the review findings, a conceptual macro-level arthroscopic
digital twin was presented. The review results indicate that
interactive surgical soft-tissue simulation is an active field
of research, with many recent studies presenting methods for
improving computational efficiency and accuracy as well as
haptic feedback interaction. However, little work has been
conducted on digital twins in the context of arthroscopic
surgery. The potential of digital twins should be further
explored.

REFERENCES

[1] N. Berte and C. Perrenot, ““Surgical apprenticeship in the era of simula-
tion,” J. Visceral Surgery, vol. 157, no. 3, pp. S93-S99, Jun. 2020.

[2] J.Lu, R.F. Cuff, and M. A. Mansour, *“‘Simulation in surgical education,”
Amer. J. Surg., vol. 221, no. 3, pp. 509-514, Mar. 2021.

[3] R. M. Frank, “Editorial commentary: Arthroscopic simulators—Are we
there yet?” Arthroscopy: J. Arthroscopic Rel. Surg., vol. 35, no. 8,
pp. 2391-2393, Aug. 2019.

[4] E. M. Overtoom, T. Horeman, F.-W. Jansen, J. Dankelman, and
H. W. Schreuder, “Haptic feedback, force feedback, and force-sensing
in simulation training for laparoscopy: A systematic overview,”’
J. Surg. Educ., vol. 76, no. 1, pp. 242-261, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1931720418300394

[5] L. L. M. van der Heijden, M. Reijman, M. C. van der Steen,
R. P. A. Janssen, and G. J. M. Tuijthof, ‘““Validation of simendo knee
arthroscopy virtual reality simulator,” Arthroscopy: J. Arthroscopic Rel.
Surg., vol. 35, no. 8, pp. 2385-2390, Aug. 2019.

[6] W.Li, K.-J. Zhang, S. Yao, X. Xie, W. Han, W.-B. Xiong, and J. Tian,
“Simulation-based arthroscopic skills using a spaced retraining sched-
ule reduces short-term task completion time and camera path length,”
Arthroscopy: J. Arthroscopic Rel. Surg., vol. 36, no. 11, pp. 28662872,
Nov. 2020.

[7] M. Morgan, A. Aydin, A. Salih, S. Robati, and K. Ahmed, “Cur-
rent status of simulation-based training tools in orthopedic surgery:
A systematic review,” J. Surgical Educ., vol. 74, no. 4, pp. 698-716,
Jul. 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1931720417300089

[8] N. Vaughan, V. N. Dubey, T. W. Wainwright, and R. G. Middleton,
“A review of virtual reality based training simulators for orthopaedic
surgery,” Med. Eng. Phys., vol. 38, no. 2, pp.59-71, Feb. 2016.
[Online].  Available:  http://www.sciencedirect.com/science/article/
pii/S1350453315002799

[91 W. H. A. Ryu, N. Dharampal, A. E. Mostafa, E. Sharlin, G. Kopp,
W. B. Jacobs, R. J. Hurlbert, S. Chan, and G. R. Sutherland, *“Systematic
review of patient-specific surgical simulation: Toward advancing medical
education,” J. Surgical Educ., vol. 74, no. 6, pp. 1028-1038, Nov. 2017.

[10] A. K. Golahmadi, D. Z. Khan, G. P. Mylonas, and H. J. Marcus, ““Tool-
tissue forces in surgery: A systematic review,” Ann. Med. Surg., vol. 65,
May 2021, Art. no. 102268.

[11] F. Picard, A. H. Deakin, P. E. Riches, K. Deep, and J. Baines, “Computer
assisted orthopaedic surgery: Past, present and future,” Med. Eng. Phys.,
vol. 72, pp. 55-65, Oct. 2019.

[12] N. X. Anh, R. M. Nataraja, and S. Chauhan, “Towards near real-
time assessment of surgical skills: A comparison of feature extraction
techniques,” Comput. Methods Programs Biomed., vol. 187, Apr. 2020,
Art. no. 105234.

45047



IEEE Access

@. Bjelland et al.: Toward Digital Twin for Arthroscopic Knee Surgery: A Systematic Review

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

45048

M. Grieves, “Digital twin: Manufacturing excellence through virtual fac-
tory replication,” Flordia, USA, White Paper, 2014. [Online]. Available:
https://www.researchgate.net/publication/275211047_Digital_Twin_
Manufacturing_Excellence_through_Virtual _Factory_Replication

N. Lauzeral, D. Borzacchiello, M. Kugler, D. George, Y. Rémond,
A. Hostettler, and F. Chinesta, “A model order reduction approach to cre-
ate patient-specific mechanical models of human liver in computational
medicine applications,” Comput. Methods Programs Biomed., vol. 170,
pp. 95-106, Mar. 2019.

A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” [EEE Access, vol. 8,
pp. 108952-108971, 2020.

J. Corral-Acero et al., “The ‘digital twin’ to enable the vision of precision
cardiology,” Eur. Heart J., vol. 41, no. 48, pp. 4556-4564, Dec. 2020.

J. G. Chase, C. Zhou, J. L. Knopp, G. M. Shaw, K. Niswall,
J. H. K. Wong, S. Malinen, K. Moeller, B. Benyo, Y. S. Chiew, and
T. Desaive, “Digital twins in critical care: What, when, how, where,
why?”” IFAC-PapersOnLine, vol. 54, no. 15, pp. 310-315, 2021.

K. Aubert, A. Germaneau, M. Rochette, W. Ye, M. Severyns, M. Billot,
P. Rigoard, and T. Vendeuvre, ‘“Development of digital twins to optimize
trauma surgery and postoperative Management. A case study focusing on
tibial plateau fracture,” Frontiers Bioeng. Biotechnol., vol. 9, Oct. 2021,
Art. no. 722275.

P. Hernigou, R. Olejnik, A. Safar, S. Martinov, J. Hernigou, and B. Ferre,
“Digital twins, artificial intelligence, and machine learning technology
to identify a real personalized motion axis of the tibiotalar joint for
robotics in total ankle arthroplasty,” Int. Orthopaedics, vol. 45, no. 9,
pp. 2209-2217, Sep. 2021.

J. D. Mabrey, W. D. Cannon, S. D. Gillogly, J. R. Kasser, H. J. Sweeney,
B. Zarins, H. Mevis, W. E. Garrett, and R. Poss, ““Development of a virtual
reality arthroscopic knee simulator,” in Medicine Meets Virtual Reality
2000. Amsterdam, The Netherlands: IOS Press, 2000, pp. 192-194, doi:
10.3233/978-1-60750-914-1-192.

J. D. Mabrey, S. D. Gillogly, J. R. Kasser, H. J. Sweeney, B. Zarins,
H. Mevis, W. E. Garrett, R. Poss, and W. D. Cannon, “Virtual real-
ity simulation of arthroscopy of the knee,” Arthroscopy: J. Arthro-
scopic Rel. Surg., vol. 18, no. 6, pp. 1-7, Jul. 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0749806302700364
A. McCarthy, L. Moody, A. Waterworth, and D. Bickerstaff, “Passive
haptics in a knee arthroscopy simulator: Is it valid for core skills train-
ing?” Clin. Orthopaedics Rel. Res., vol. 442, pp. 13-20, Jan. 2006.
P-A. Heng, C.-Y. Cheng, T.-T. Wong, Y. Xu, Y.-P. Chui, K.-M. Chan,
and S.-K. Tso, “A virtual-reality training system for knee arthroscopic
surgery,” IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 2, pp. 217-227,
Jun. 2004.

J. P. Braman, R. M. Sweet, D. M. Hananel, P. M. Ludewig, and
A. E. Van Heest, “Development and validation of a basic arthroscopy
skills simulator,” Arthroscopy: J. Arthroscopic Rel. Surg., vol. 31, no. 1,
pp. 104-112, Jan. 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0749806314006185

T.-N. Nguyen, M.-C. Ho Ba Tho, and T.-T. Dao, “A systematic
review of real-time medical simulations with soft-tissue deformation:
Computational approaches, interaction devices, system architectures,
and clinical validations,” Appl. Bionics Biomech., vol. 2020, pp. 1-30,
Feb. 2020. [Online]. Available: https://www.hindawi.com/journals/abb/
2020/5039329/

C. G. Corréa, F. L. S. Nunes, E. Ranzini, R. Nakamura, and
R. Tori, “Haptic interaction for needle insertion training in medical
applications: The state-of-the-art,” Med. Eng. Phys., vol. 63, pp. 6-25,
Jan. 2019.

D. Wang, Y. Guo, S. Liu, Y. Zhang, W. Xu, and J. Xiao, “Haptic dis-
play for virtual reality: Progress and challenges,” Virtual Reality Intell.
Hardw., vol. 1, no. 2, pp. 136-162, Apr. 2019.

M. J. Page, J. E. McKenzie, P. M. Bossuyt, 1. Boutro, T. C. Hoffmann,
C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, and E. A. Akl, “The PRISMA
2020 statement: An updated guideline for reporting systematic reviews,”
Systematic Rev., vol. 10, no. 1, Dec. 2021, Art. no. 105906.

P. S. Kleppe, A. F. Dalen, and W. Rekdalsbakken, “A novel way of
efficient adaption of orthopaedic braces using 3D technology,” in Proc.
IEEE Ind. Cyber-Phys. Syst. (ICPS), May 2018, pp. 345-350.

A. Marro, T. Bandukwala, and W. Mak, *“Three-dimensional printing and
medical imaging: A review of the methods and applications,” Current
Problems Diagnostic Radiol., vol. 45, no. 1, pp. 2-9, 2016.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. Larobina and L. Murino, “Medical image file formats,” J. Digit.
Imag., vol. 27, no. 2, pp. 200-206, Apr. 2014.

H. E. Gromholt, “Computer-aided diagnostics: Segmentation of
knee joint anatomy using deep learning techniques,” Tech. Rep.,
2019. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/2621247

M. Sun, L. Lu, I. A. Hameed, C. P. S. Kulseng, and K.-I. Gjesdal, “‘Detect-
ing small anatomical structures in 3D knee MRI segmentation by fully
convolutional networks,” Appl. Sci., vol. 12, no. 1, p. 283, Dec. 2021.
W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” ACM SIGGRAPH Comput. Graph.,
vol. 21, no. 4, pp. 163-169, 1987.

T. Ju, F. Losasso, S. Schaefer, and J. Warren, ‘“Dual contouring of Hermite
data,” in Proc. 29th Annu. Conf. Comput. Graph. Interact. Techn. (SIG-
GRAPH), New York, NY, USA, 2002, pp. 339-346.

Q. Cheng, P. Sun, C. Yang, Y. Yang, and P. X. Liu, “A morphing-
based 3D point cloud reconstruction framework for medical image pro-
cessing,” Comput. Methods Programs Biomed., vol. 193, Sep. 2020,
Art. no. 105495.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, ‘“Magnetic
resonance elastography: A review,” Clin. Anatomy, vol. 23,
pp.- 497-511, Jul. 2010. [Online]. Available: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/ca.21006

E. J. Kuervers, C. R. Firminger, and W. B. Edwards, “Effect of knee
angle and quadriceps muscle force on shear-wave elastography measure-
ments at the patellar tendon,” Ultrasound Med. Biol., vol. 47, no. 8,
pp. 2167-2175, Aug. 2021.

1. Toniolo, C. Salmaso, G. Bruno, A. De Stefani, C. Stefanini,
A.L.T.Gracco, and E. L. Carniel, “‘Anisotropic computational modelling
of bony structures from CT data: An almost automatic procedure,” Com-
put. Methods Programs Biomed., vol. 189, Jun. 2020, Art. no. 105319.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31951872/

C. Ma, X. Cui, F. Chen, L. Ma, S. Xin, and H. Liao, “Knee arthroscopic
navigation using virtual-vision rendering and self-positioning technol-
ogy,” Int. J. Comput. Assist. Radiol. Surg., vol. 15, no. 3, pp. 467-477,
Mar. 2020.

X. Hu, H. Liu, and F. R. Y. Baena, ‘““Markerless navigation system for
orthopaedic knee surgery: A proof of concept study,” IEEE Access, vol. 9,
pp. 64708-64718, 2021.

Y. Jonmohamadi, “Automatic segmentation of multiple structures in knee
arthroscopy using deep learning,” IEEE Access, vol. 8, pp. 51853-51861,
2020.

F. Chen, X. Cui, B. Han, J. Liu, X. Zhang, and H. Liao, “Augmented
reality navigation for minimally invasive knee surgery using enhanced
arthroscopy,” Comput. Methods Programs Biomed., vol. 201, Apr. 2021,
Art. no. 105952.

A. Song and L. Fu, “Multi-dimensional force sensor for haptic interac-
tion: A review,” Virtual Reality Intell. Hardw., vol. 1, no. 2, pp. 121-135,
Jan. 2019.

A. A. Nazari, F. Janabi-Sharifi, and K. Zareinia, “Image-based force
estimation in medical applications: A review,” IEEE Sensors J., vol. 21,
no. 7, pp. 8805-8830, Apr. 2021.

E. Pefia, B. Calvo, M. A. Martinez, and M. Doblaré, “A three-
dimensional finite element analysis of the combined behavior
of ligaments and menisci in the healthy human knee joint,”
J. Biomech., vol. 39, no. 9, pp. 1686-1701, 2006. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/15993414/

T. L. H. Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs, “How the
stiffness of meniscal attachments and meniscal material properties affect
tibio-femoral contact pressure computed using a validated finite element
model of the human knee joint,” J. Biomech., vol. 36, no. 1, pp. 19-34,
2003. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/12485635/
M. E. Mononen, J. S. Jurvelin, and R. K. Korhonen, ‘“Implementa-
tion of a gait cycle loading into healthy and meniscectomised knee
joint models with fibril-reinforced articular cartilage,” Comput. Methods
Biomech. Biomed. Eng., vol. 18, no. 2, pp. 141-152, Jan. 2015, doi:
10.1080/10255842.2013.783575.

K. S. Halonen, M. E. Mononen, J. S. Jurvelin, J. Toyrds, and
R. K. Korhonen, “Importance of depth-wise distribution of collagen and
proteoglycans in articular cartilage—A 3D finite element study of stresses
and strains in human knee joint,” J. Biomech., vol. 46, pp. 1184-1192,
Apr. 2013.

R. L. Spilker, P. S. Donzelli, and V. C. Mow, “A transversely
isotropic biphasic finite element model of the meniscus,” J. Biomech.,
vol. 25, no. 9, pp.1027-1045, Sep. 1992. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/1517263/

VOLUME 10, 2022


http://dx.doi.org/10.3233/978-1-60750-914-1-192
http://dx.doi.org/10.1080/10255842.2013.783575

@. Bjelland et al.: Toward Digital Twin for Arthroscopic Knee Surgery: A Systematic Review

IEEE Access

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. Gaugler, D. Wirz, S. Ronken, M. Hafner, B. Gopfert, N. F. Friederich,
and R. Elke, “Fibrous cartilage of human menisci is less shock-absorbing
and energy-dissipating than hyaline cartilage,” Knee Surg., Sports Trau-
matol., Arthroscopy, vol. 23, no. 4, pp. 1141-1146, Apr. 2015, doi:
10.1007/500167-014-2926-4.

B. Seyfi, N. Fatourace, and M. Imeni, ‘“Mechanical modeling and
characterization of meniscus tissue using flat punch indentation and
inverse finite element method,” J. Mech. Behav. Biomed. Mater., vol. 77,
pp. 337-346, Jan. 2018.

Z. Wang, Y. Xiong, Q. Li, G. Chen, Z. Zhang, X. Tang, and
J. Li, “Evaluation of tibial tunnel placement in single case posterior
cruciate ligament reconstruction: Reducing the graft peak stress
may increase posterior tibial translation,” BMC Musculoskeletal
Disorders, vol. 20, no. 1, pp. 1-8, Dec. 2019. [Online]. Available:
https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/
$12891-019-2862-z

J. C. Gardiner and J. A. Weiss, ““Subject-specific finite element analysis
of the human medial collateral ligament during valgus knee loading,”
J. Orthopaedic Res., vol. 21, no. 6, pp. 1098-1106, 2003. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/14554224/

A. N. Natali, P. G. Pavan, E. L. Carniel, M. E. Lucisano, and G. Tagliala-
voro, “Anisotropic elasto-damage constitutive model for the biomechan-
ical analysis of tendons,” Med. Eng. Phys., vol. 27, no. 3, pp. 209-214,
Apr. 2005.

L. A. Spyrou and N. Aravas, “Muscle and tendon tissues: Constitutive
modeling and computational issues,” J. Appl. Mech., vol. 78, no. 4, 2011,
Art. no. 041015.

D. E. Beskos and J. T. Jenkins, “A mechanical model for mammalian
tendon,” J. Appl. Mech., vol. 42, no. 4, pp. 755-758, Dec. 1975.

L. Obrezkov, P. Eliasson, A. B. Harish, and M. K. Matikainen, ““Usability
of finite elements based on the absolute nodal coordinate formulation for
deformation analysis of the Achilles tendon,” Int. J. Non-Linear Mech.,
vol. 129, Mar. 2021, Art. no. 103662.

G. M. Odegard, T. L. Haut Donahue, D. A. Morrow, and
K. R. Kaufman, “Constitutive modeling of skeletal muscle tissue with
an explicit strain-energy function,” J. Biomech. Eng., vol. 130, no. 6,
Dec. 2008, Art. no. 061017. [Online]. Available: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2823080/

D. Ito, E. Tanaka, and S. Yamamoto, ‘“A novel constitutive model of
skeletal muscle taking into account anisotropic damage,” J. Mech. Behav.
Biomed. Mater., vol. 3, no. 1, pp. 85-93, Jan. 2010. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/19878905/

F. L. Wuyts, V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer,
E. R. Raman, and S. Buyle, “Elastic properties of human aortas in
relation to age and atherosclerosis: A structural model,” Phys. Med.
Biol., vol. 40, no. 10, pp. 1577-1597, Oct. 1995. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/8532741/

D. Kenyon, “A mathematical model of water flux through aortic tissue,”
Bull. Math. Biol., vol. 41, no. 1, pp. 79-90, 1979.

G. A. Holzapfel, T. C. Gasser, and M. Stadler, “A structural model for the
viscoelastic behavior of arterial walls: Continuum formulation and finite
element analysis,” Eur. J. Mech.-A/Solids, vol. 21, no. 3, pp. 441-463,
Jan. 2002.

'W. Murphy, J. Black, and G. Hastings, ‘““Handbook of biomaterial prop-
erties, second edition,” in Handbook of Biomaterial Properties, 2nd ed.
Jan. 2016, pp. 1-676.

T. P. Ng, S. S. R. Koloor, J. R. P. Djuansjah, and M. R. Abdul
Kadir, “Assessment of compressive failure process of cortical
bone materials using damage-based model,” J. Mech. Behav.
Biomed. Mater., vol. 66, pp.1-11, Feb. 2017. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/27825047/

J. Lei, L. Li, Z. Wang, and F. Zhu, “Characterizing strain rate-
dependent mechanical properties for bovine cortical bones,”
J. Biomech. Eng., vol. 142, no. 9, Sep. 2020. [Online]. Available:
http://asmedigitalcollection.asme.org/biomechanical/article-pdf/142/9/
091013/6534741/bio_142_09_091013.pdf

M. Mirzaei, F. Alavi, F. Allaveisi, V. Naeini, and P. Amiri, “Linear
and nonlinear analyses of femoral fractures: Computational/experimental
study,” J. Biomech., vol. 79, pp. 155-163, Oct. 2018. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/30135015/

M. Ovesy, B. Voumard, and P. Zysset, “°A nonlinear homogenized finite
element analysis of the primary stability of the bone—implant inter-
face,” Biomech. Model. Mechanobiol., vol. 17, pp. 1471-1480, Jun. 2018.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29858707/

VOLUME 10, 2022

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

R. K. Korhonen and S. Saarakkala, “Biomechanics and modeling of
skeletal soft tissues,” in Theoretical Biomechanics. Rijeka, Croatia,
InTech, vol. 6. 2011.

Y. Tang, S. Liu, Y. Deng, Y. Zhang, L. Yin, and W. Zheng, “An improved
method for soft tissue modeling,” Biomed. Signal Process. Control,
vol. 65, Mar. 2021, Art. no. 102367.

J. D. Currey, “Mechanical properties of vertebrate hard tissues,” Proc.
Inst. Mech. Engineers, H, J. Eng. Med., vol. 212, no. 6, pp. 399411,
Jun. 1998.

A.J. Sedman, “Mechanical failure of bone and antler: The accumulation
of damage.,” Ph.D. dissertation, Dept. Biol., Univ. of York, Sept. 1993.
R. Grytz, K. Krishnan, R. Whitley, V. Libertiaux, 1. A. Sigal,
C. A. Girkin, and J. C. Downs, “A mesh-free approach to incorporate
complex anisotropic and heterogeneous material properties into eye-
specific finite element models,” Comput. Methods Appl. Mech. Eng.,
vol. 358, Jan. 2020, Art. no. 112654.

I. E. Bojairami, A. Hamedzadeh, and M. Driscoll, “Feasibility
of extracting tissue material properties via cohesive elements:
A finite element approach to probe insertion procedures in non-
invasive spine surgeries,” Med. Biol. Eng. Comput., vol. 59, no. 10,
pp. 2051-2061, Oct. 2021. [Online]. Available: https://link.springer.com/
article/10.1007/s11517-021-02432-9

C. Kim and M.-G. Lee, “Finite element-based virtual fields method with
pseudo-real deformation fields for identifying constitutive parameters,”
Int. J. Solids Struct., vol. 233, Dec. 2021, Art. no. 111204.

M. S. Hashemi, M. Baniassadi, M. Baghani, D. George, Y. Remond,
and A. Sheidaei, “A novel machine learning based computational
framework for homogenization of heterogeneous soft materials:
Application to liver tissue,” Biomech. Model. Mechanobiol.,
vol. 19, no. 3, pp.1131-1142, Jun. 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s10237-019-01274-7

A. P. Santhanam, B. Stiehl, M. Lauria, K. Hasse, 1. Barjaktarevic,
J. Goldin, and D. A. Low, “An adversarial machine learning framework
and biomechanical model-guided approach for computing 3D lung tis-
sue elasticity from end-expiration 3DCT,” Med. Phys., vol. 48, no. 2,
pp. 667-675, Feb. 2021.

O. J. Pellicer-Valero, M. J. Rupérez, S. Martinez-Sanchis, and
J. D. Martin-Guerrero, “Real-time biomechanical modeling of
the liver using machine learning models trained on finite element
method simulations,” Expert Syst. Appl., vol. 143, Apr. 2020,
Art. no. 113083.

A. Mendizabal, P. Mdrquez-Neila, and S. Cotin, “Simulation of hyper-
elastic materials in real-time using deep learning,” Med. Image Anal.,
vol. 59, Jan. 2020, Art. no. 101569.

S. K. Panda and M. L. Buist, “A finite nonlinear hyper-viscoelastic
model for soft biological tissues,” J. Biomechanics, vol. 69, pp. 121-128,
Mar. 2018.

C. Miller and T. C. Gasser, “A microstructurally motivated constitutive
description of collagenous soft biological tissue towards the description
of their non-linear and time-dependent properties,” J. Mech. Phys. Solids,
vol. 154, Sep. 2021, Art. no. 104500.

F. T. Stumpf, “An accurate and efficient constitutive framework for finite
strain viscoelasticity applied to anisotropic soft tissues,” Mech. Mater.,
vol. 161, Oct. 2021, Art. no. 104007.

H. Xie, J. Song, Y. Zhong, and C. Gu, “Kalman filter finite ele-
ment method for real-time soft tissue modeling,” IEEE Access, vol. 8,
pp. 53471-53483, 2020.

H. Xie, J. Song, Y. Zhong, J. Li, C. Gu, and K.-S. Choi,
“Extended Kalman filter nonlinear finite element method for
nonlinear soft tissue deformation,” Comput. Methods Programs
Biomed., vol. 200, Mar. 2021, Art. no. 105828. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169260720316618
J. Song, H. Xie, Y. Zhong, J. Li, C. Gu, and K.-S. Choi, “Reduced-order
extended Kalman filter for deformable tissue simulation,” J. Mech. Phys.
Solids, vol. 158, Jan. 2022, Art. no. 104696.

D. Marinkovic and M. Zehn, “Corotational finite element
formulation for virtual-reality based surgery simulators,” Phys.
Mesomech., vol. 21, no. 1, pp. 15-23, Jan. 2018. [Online]. Available:
https://link.springer.com/article/10.1134/S1029959918010034

F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier, and
T. Mansi, “Deep learning acceleration of total Lagrangian explicit
dynamics for soft tissue mechanics,” Comput. Methods Appl. Mech. Eng.,
vol. 358, Jan. 2020, Art. no. 112628.

45049


http://dx.doi.org/10.1007/s00167-014-2926-4

IEEE Access

@. Bjelland et al.: Toward Digital Twin for Arthroscopic Knee Surgery: A Systematic Review

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

45050

M. Calka, P. Perrier, J. Ohayon, C. Grivot-Boichon, M. Rochette, and
Y. Payan, “Machine-learning based model order reduction of a biome-
chanical model of the human tongue,” Comput. Methods Programs
Biomed., vol. 198, Jan. 2021, Art. no. 105786.

B. Gao and L. Shang, “Research on real-time simulation method of
vascular interventional surgery based on model order reduction,” in Proc.
IEEE Int. Conf. Mechatronics Autom. (ICMA ), Oct. 2020, pp. 1026-1031.
J. Zhang and S. Chauhan, “Fast computation of soft tissue thermal
response under deformation based on fast explicit dynamics finite ele-
ment algorithm for surgical simulation,” Comput. Methods Programs
Biomed., vol. 187, Apr. 2020, Art.no. 105244. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/31805458/

J. Zhang, R. J. Lay, S. K. Roberts, and S. Chauhan, “Towards real-
time finite-strain anisotropic thermo-visco-elastodynamic analysis of
soft tissues for thermal ablative therapy,” Comput. Methods Programs
Biomed., vol. 198, Jan. 2021, Art. no. 105789. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/33069033/

L. Qi, C. Guo-Dong, and W. Shu-Zhen, ‘“Softness-based adap-
tive mesh refinement algorithm for soft tissue deformation,” Biosys-
tems, vols. 191-192, May 2020, Art. no. 104103. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32044422/

S. P. Byeon and D. Y. Lee, “Adaptive surface representation based
on homogeneous hexahedrons for interactive simulation of soft tissue
cutting,” Comput. Methods Programs Biomed., vol. 200, Mar. 2021,
Art. no. 105873.

H. P. Bui, S. Tomar, H. Courtecuisse, S. Cotin, and S. P. Bordas, ‘“Real-
time error control for surgical simulation,” IEEE Trans. Biomed. Eng.,
vol. 65, no. 3, pp. 596-607, Mar. 2018.

H. P. Bui, S. Tomar, and S. P. Bordas, “Corotational cut finite element
method for real-time surgical simulation: Application to needle insertion
simulation,” Comput. Methods Appl. Mech. Eng., vol. 345, pp. 183-211,
Mar. 2019.

J. D. Polousky, T. P. Hedman, and C. Vangsness, “Electrosurgical
methods for arthroscopic meniscectomy: A review of the literature,”
Arthroscopy: J. Arthroscopic Rel. Surg., vol. 16, no. 8, pp. 813-821,
2000. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0749806300521616

S. S. Tabatabaei, M. R. Dehghan, and H. A. Talebi, “Real-time prediction
of soft tissue deformation; a non-integer order modeling scheme and a
practical verification for the theoretical concept,” Chaos, Solitons Frac-
tals, vol. 155, Feb. 2022, Art. no. 111633.

J. Y. Wu, P. Kazanzides, and M. Unberath, “Leveraging vision
and kinematics data to improve realism of biomechanic soft tis-
sue simulation for robotic surgery,” Int. J. Comput. Assist. Radiol.
Surgery, vol. 15, no. 5, pp. 811-818, May 2020. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32323207/

A. Logg, C. Lundholm, and M. Nordaas, “Finite element simulation
of physical systems in augmented reality,” Adv. Eng. Softw., vol. 149,
Nov. 2020, Art. no. 102902.

S. Condino, G. Turini, P. D. Parchi, R. M. Viglialoro, N. Piolanti,
M. Gesi, M. Ferrari, and V. Ferrari, “How to build a patient-specific
hybrid simulator for orthopaedic open surgery: Benefits and limits
of mixed-reality using the Microsoft HoloLens,” J. Healthcare Eng.,
vol. 2018, Nov. 2018, Art. no. 5435097.

P. Wang, A. A. Becker, I. A. Jones, A. T. Glover, S. D. Benford,
M. Vloeberghs, P. Wang, A. A. Becker, I. A. Jones, A. T. Glover,
S. D. Benford, and M. Vloeberghs, “Real-time surgical simula-
tion for deformable soft-tissue objects with a tumour using bound-
ary element techniques,” in Proc. J. Phys., Conf., vol. 181, 2009,
Art. no. 012016. [Online]. Available: https://ui.adsabs.harvard.edu/abs/
2009JPhCS.181a2016W/abstract

D. Tan, J. Zhao, W. Shi, X. Li, H. Yang, and Z. Jiang, “An improved soft
tissue deformation simulation model based on mass spring,” in Proc. Int.
Conf. Virtual Reality Vis. (ICVRV), Nov. 2020, pp. 121-127.

A. Segato, C. Di Vece, S. Zucchelli, M. D. Marzo, T. Wendler,
M. F. Azampour, S. Galvan, R. Secoli, and E. De Momi, “Position-based
dynamics simulator of brain deformations for path planning and intra-
operative control in keyhole neurosurgery,” IEEE Robot. Autom. Lett.,
vol. 6, no. 3, pp. 6061-6067, Jul. 2021, doi: 10.1109/LRA.2021.3090016.
H. Wang and J. Wu, “A virtual reality based surgical skills training
simulator for catheter ablation with real-time and robust interaction,”
Virtual Reality Intell. Hardw., vol. 3, pp. 302-314, Aug. 2021. [Online].
Available: https://www.vr-ih.com

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

W. Shi, P. X. Liu, and M. Zheng, ““Cutting procedures with improved
visual effects and haptic interaction for surgical simulation sys-
tems,” Comput. Methods Programs Biomed., vol. 184, Feb. 2020,
Art. no. 105270.

C. Li, J. Ding, Z. Hong, Y. Pan, and P. X. Liu, “A surface mass-spring
model with new flexion springs and collision detection algorithms based
on volume structure for real-time soft-tissue deformation interaction,”
IEEE Access, vol. 6, pp. 75572-75597, 2018.

G. Joldes, G. Bourantas, B. Zwick, H. Chowdhury, A. Wittek, S. Agrawal,
K. Mountris, D. Hyde, S. K. Warfield, and K. Miller, ““Suite of meshless
algorithms for accurate computation of soft tissue deformation for surgi-
cal simulation,” Med. Image Anal., vol. 56, pp. 152-171, Aug. 2019.

J. Zhang, Y. Zhong, and C. Gu, “Soft tissue deformation modelling
through neural dynamics-based reaction-diffusion mechanics,” Med.
Biol. Eng. Comput., vol. 56, no. 12, pp. 2163-2176, Dec. 2018. [Online].
Available: https://link.springer.com/article/10.1007/s11517-018-1849-5
J. Zhang, Y. Zhong, and C. Gu, “Neural network modelling of soft
tissue deformation for surgical simulation,” Artif. Intell. Med., vol. 97,
pp. 61-70, Jun. 2019.

A. Ballit, I. Mougharbel, H. Ghaziri, and T.-T. Dao, “Fast soft tis-
sue deformation and stump-socket interaction toward a computer-aided
design system for lower limb prostheses,” IRBM, vol. 41, no. 5,
pp. 276-285, Oct. 2020.

J. Zhang, Y. Zhong, J. Smith, and C. Gu, “A new ChainMail
approach for real-time soft tissue simulation,” Bioengineered, vol. 7,
pp. 246-252, Jul. 2016. [Online]. Available: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4970612/

Y. Zou, P. X. Liu, Q. Cheng, P. Lai, and C. Li, “‘A new deformation model
of biological tissue for surgery simulation,” IEEE Trans. Cybern., vol. 47,
no. 11, pp. 3494-3503, Nov. 2017.

M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” J. Vis. Commun. Image Represent., vol. 18, pp. 109-118,
Apr. 2007.

X. Ye, X. Mei, and S. Xiao, “Filling model based soft tissue deforma-
tion model,” in Proc. IEEE Int. Conf. Mechatronics Autom. (ICMA),
Aug. 2018, pp. 1655-1659.

L. Xu, Y. Lu, and Q. Liu, “Integrating viscoelastic mass spring dampers
into position-based dynamics to simulate soft tissue deformation in real
time,” Roy. Soc. Open Sci., vol. 5, no. 2, Feb. 2018, Art. no. 171587.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29515870/

D. Luo, Y. Zhang, and R. Zhao, “Study on deformation technology of
virtual surgery simulator based on liver puncture,” in Proc. 3rd Int. Conf.
Robot. Autom. Eng. (ICRAE), Nov. 2018, pp. 176-179.

H. Wu, H. Yu, F. Ye, J. Sun, Y. Gao, K. Tan, and A. Hao, “Interactive
hepatic parenchymal transection simulation with haptic feedback,” Vir-
tual Reality Intell. Hardw., vol. 3, no. 5, pp. 383-396, Oct. 2021.

H. Han and D. Y. Lee, “Deformable objects modeling with
iterative updates of local positions,” Comput. Methods Programs
Biomed., vol. 190, Jul. 2020, Art.no. 105346. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32014719/

J. Pan, S. Yan, H. Qin, and A. Hao, “Real-time dissection of organs via
hybrid coupling of geometric metaballs and physics-centric mesh-free
method,” Vis. Comput., vol. 34, no. 1, pp. 105-116, Jan. 2018. [Online].
Auvailable: https://link.springer.com/article/10.1007/s00371-016-1317-x
L. Gutiérrez and F. Ramos, “XFEM framework for cutting soft tissue
including topological changes in a surgery simulation,” in Proc. Int. Conf.
Comput. Graph. Theory Appl., Feb. 2022, pp. 275-283.

Q. Tong, Z. Yuan, X. Liao, M. Zheng, T. Yuan, and J. Zhao, ‘“Magnetic
levitation haptic augmentation for virtual tissue stiffness perception,”
IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 12, pp. 3123-3136,
Dec. 2018.

D. A. Lawrence, ““Stability and transparency in bilateral teleoperation,”
IEEE Trans. Robot. Autom., vol. 9, no. 5, pp. 624-637, Oct. 1993.

V. Hayward and K. Maclean, “Do it yourself haptics: Part1,”” IEEE Robot.
Autom. Mag., vol. 14, no. 4, pp. 88-104, Dec. 2007. [Online]. Available:
http://ieeexplore.ieee.org/document/4437756/

B. Hannaford and A. M. Okamura, “Haptics,” in Springer Handbook of
Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Germany: Springer,
2008, pp. 719-739, doi: 10.1007/978-3-540-30301-5_31.

E. L. Faulring, K. M. Lynch, J. E. Colgate, and M. A. Peshkin, ‘““Haptic
display of constrained dynamic systems via admittance displays,” IEEE
Trans. Robot., vol. 23, no. 1, pp. 101-111, Feb. 2007.

VOLUME 10, 2022


http://dx.doi.org/10.1109/LRA.2021.3090016
http://dx.doi.org/10.1007/978-3-540-30301-5_31

@. Bjelland et al.: Toward Digital Twin for Arthroscopic Knee Surgery: A Systematic Review

IEEE Access

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

J. Colgate and J. Brown, “Factors affecting the Z-width of a haptic
display,” in Proc. IEEE Int. Conf. Robot. Automat., vol. 4, May 1994,
pp. 3205-3210.

Q. Ha-Van, H. Schwendinger, Y. Kim, and M. Harders, ‘‘Design and char-
acterization of an actuated drill mockup for orthopedic surgical training,”
IEEE Trans. Haptics, vol. 13, no. 4, pp. 655-667, Oct. 2020.

J. C. Makous, R. M. Friedman, and C. J. Vierck, ““A critical band filter
in touch,” J. Neurosci., vol. 15, no. 4, pp. 2808-2818, 1995. [Online].
Available: https://www.jneurosci.org/content/15/4/2808

J.E. Colgate, M. C. Stanley, and J. M. Brown, “Issues in the haptic display
of tool use,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. Hum. Robot
Interact. Cooperat. Robots, vol. 3, Aug. 1995, pp. 140-145.

C. B. Zilles and J. K. Salisbury, “A constraint-based god-object method
for haptic display,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. Hum.
Robot Interact. Cooperat. Robots, vol. 3, Aug. 1995, pp. 146-151.

Y.-C. Wu, F-W. Chen, T.-T. Liao, and C.-T. Chen, “Force reflection
in a pneumatic artificial muscle actuated haptic system,” Mechatronics,
vol. 61, pp. 3748, Aug. 2019.

L.-P. Lebel, J.-A. Verreault, J.-P. L. Bigué, J.-S. Plante, and A. Girard,
“Performance study of low inertia magnetorheological actuators for
kinesthetic haptic devices*,” in Proc. IEEE World Haptics Conf. (WHC),
Jul. 2021, pp. 103-108.

S. Nakamura and N. Motoi, “Development of exoskeleton haptic device
using powder brake and constant torque spring,” Elect. Eng. Jpn.,
vol. 214, no. 2, 2021, Art. no. 23311, doi: 10.1002/eej.23311.

A. Hooshiar, A. Payami, J. Dargahi, and S. Najarian, ‘“Magnetostriction-
based force feedback for robot-assisted cardiovascular surgery using
smart magnetorheological elastomers,” Mech. Syst. Signal Process.,
vol. 161, Dec. 2021, Art. no. 107918.

D. F. Pepley, H.-E. Chen, Y. Tang, S. D. Adhikary, S. R. Miller, and
J. Z. Moore, “Low-cost haptic simulation using material fracture,” JEEE
Trans. Haptics, vol. 12, no. 4, pp. 563-570, Oct. 2019.

C.-H. Yeh, F.-C. Su, Y.-S. Shan, M. Dosaev, Y. Selyutskiy, I. Goryacheva,
and M.-S. Ju, “Application of piezoelectric actuator to simplified hap-
tic feedback system,” Sens. Actuators A, Phys., vol. 303, Mar. 2020,
Art. no. 111820.

B.L.Huang, W.D. Zhan, W. T. Hu, and Y. F. Tang, “‘Force feedback based
on magnetorheological fluid,” Proc. Comput. Sci., vol. 166, pp. 15-20,
Jan. 2020.

1. Choi, N. Corson, L. Peiros, E. W. Hawkes, S. Keller, and S. Follmer,
“A soft, controllable, high force density linear brake utilizing layer jam-
ming,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 450-457, Jan. 2018.
J. Maier, J. Perret, M. Huber, M. Simon, S. Schmitt-Riith, T. Witten-
berg, and C. Palm, “Force-feedback assisted and virtual fixtures based
K-wire drilling simulation,” Comput. Biol. Med., vol. 114, Nov. 2019,
Art. no. 103473.

M. Kaluschke, R. Weller, N. Hammer, L. Pelliccia, M. Lorenz, and
G. Zachmann, “‘Realistic haptic feedback for material removal in med-
ical simulations,” in Proc. IEEE Haptics Symp. (HAPTICS), Mar. 2020,
pp. 920-926.

P. Fekri, J. Dargahi, and M. Zadeh, “Deep learning-based haptic guidance
for surgical skills transfer,” Frontiers Robot. Al, vol. 7, p. 185, Jan. 2021.
M. Gmeiner, J. Dirnberger, W. Fenz, M. Gollwitzer, G. Wurm,
J. Trenkler, and A. Gruber, “Virtual cerebral aneurysm clipping with real-
time haptic force feedback in neurosurgical education,” World Neuro-
surgery, vol. 112, pp. e313—e323, Apr. 2018.

M. Racy, A. Barrow, J. Tomlinson, and F. Bello, “Development and
validation of a virtual reality haptic femoral nailing simulator,” J. Surgical
Educ., vol. 78, no. 3, pp. 1013-1023, May 2021.

O. Halabi and Y. Halwani, “Design and implementation of haptic virtual
fixtures for preoperative surgical planning,” Displays, vol. 54, pp. 9-19,
Sep. 2018.

Y. Tang, S. Liu, Y. Deng, Y. Zhang, L. Yin, and W. Zheng, “Con-
struction of force haptic reappearance system based on geomagic touch
haptic device,” Comput. Methods Programs Biomed., vol. 190, Jul. 2020,
Art. no. 105344.

I. Peterlik, M. Nouicer, C. Duriez, S. Cotin, and A. Kheddar, ““Constraint-
based haptic rendering of multirate compliant mechanisms,” /IEEE Trans.
Haptics, vol. 4, no. 3, pp. 175-187, Jul. 2011.

F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin,
“SOFA: A multi-model framework for interactive physical simulation,”
in Soft Tissue Biomechanical Modeling for Computer Assisted Surgery.
Berlin, Germany: Springer, 2012, pp. 283-321.

VOLUME 10, 2022

[148] Y. Tai, J. Shi, J. Pan, A. Hao, and V. Chang, “‘Augmented reality-based
visual-haptic modeling for thoracoscopic surgery training systems,” Vir-
tual Reality Intell. Hardw., vol. 3, no. 4, pp. 274-286, Aug. 2021.

[149] X. Shao, W. Xu, L. Lin, and F. Zhang, ‘A multi-GPU accelerated virtual-
reality interaction simulation framework,” PLoS ONE, vol. 14, no. 4,
Apr. 2019, Art. no. e0214852.

[150] K. R. Vaghela, A. Trockels, and M. Carobene, ‘‘Active vs passive haptic
feedback technology in virtual reality arthroscopy simulation: Which is
most realistic?”” J. Clin. Orthopaedics Trauma, vol. 16, pp. 249-256,
May 2021.

[151] A. Vagale, R. T. Bye, and O. L. Osen, “Evaluation of path planning
algorithms of autonomous surface vehicles based on safety and collision
risk assessment,” in Proc. Global Oceans: Singapore-U.S. Gulf Coast,
Oct. 2020, pp. 1-8.

[152] M. Braun, “Represent me: Please! towards an ethics of digital twins
in medicine,” J. Med. Ethics, vol. 47, no. 6, pp. 394-400, Jun. 2021.
[Online]. Available: https://jme.bmj.com/content/47/6/394

[153] T. Jacquemard, C. P. Doherty, and M. B. Fitzsimons, ‘“Examination and
diagnosis of electronic patient records and their associated ethics: A
scoping literature review,” BMC Med. Ethics, vol. 21, no. 1, pp. 1-13,
Dec. 2020.

OYSTEIN BJELLAND was born in Bergen,
Norway, in 1991. He received the M.Sc. degree
in mechanical engineering from the Norwegian
University of Science and Technology (NTNU),
Alesund, Trondheim, in 2016, where he is cur-
rently pursuing the Ph.D. degree in engineering
cybernetics. From 2016 to 2020, he worked as
a Mechanical Design Engineer at Clara Venture
Labs (formerly Prototech), Bergen, developing
mechatronic systems for oil and gas industry, fuel
cell systems for space applications, and metal additive manufacturing.
Since 2020, he has been a Researcher at the Cyber-Physical Systems
Laboratory, NTNU. He is also affiliated with the Aalesund Biomechanics
Laboratory and TrollLabs. His current research interests include surgery
simulation, haptic feedback, and biomechatronics. Other research interests
include additive manufacturing and engineering didactics.

BISMI RASHEED graduated in civil engineering
from the University of Calicut, India, in 2014.
She received the M.Tech. degree in computer
aided structural analysis and design from the
Cochin University of Science and Technology,
India, in 2017. She is currently pursuing the
Ph.D. degree with the Department of ICT and
Natural Sciences, NTNU, Alesund. She was
a Research Scholar with the Department of
Applied Mechanics, Indian Institute of Technol-
ogy Madras, from 2018 to 2020. She is also affiliated with the Cyber-Physical
Systems Laboratory, NTNU, and the Alesund Biomechanics Laboratory.
Her research interests include computational modeling, solid mechanics,
and biomechanics. Her current research interests include biomechanical
characterization, soft tissue deformation modeling, and surgical simulation.

HANS GEORG SCHAATHUN received the
cand.mag. degree in mathematics, economics, and
informatics, the cand.scient. degree in industrial
and applied mathematics and informatics, and
the dr.scient. degree in informatics—coding theory
from the University of Bergen, Norway, in 1996,
1999, and 2002, respectively. He was a Lecturer
in coding and cryptography at the University of
&‘ Bergen, in 2002, and a Postdoctoral Researcher,

‘. from 2003 to 2006. From 2006 to 2010, he was
a Lecturer and a Senior Lecturer in computer science at the University of
Surrey, U.K. He became a Professor of computing at Alesund University
College, in 2011, which merged into NTNU, in 2016. His research focused
on multimedia security, including applications of coding theory and steganal-
ysis using machine learning. His current research interests include artificial
intelligence, epistemology, and engineering didactics.

45051


http://dx.doi.org/10.1002/eej.23311

IEEE Access

@. Bjelland et al.: Toward Digital Twin for Arthroscopic Knee Surgery: A Systematic Review

MORTEN D. PEDERSEN received the M.Sc. and
Ph.D. degrees in engineering cybernetics from the
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, in 2009 and 2017,
respectively.

Since 2018, he has been serving as an Associate
Professor at the Department of Engineering Cyber-
netics, NTNU, where he teaches several courses in
control systems technology. His research interests
include modeling and control of fluid-mechanical
systems, pedagogical topics related to the teaching of control theory, biomed-
ical applications of control theory, and the fundamentals of cybernetics.

MARTIN STEINERT was born in Dresden,
Germany. He received the B.A., M.A., and Ph.D.
(Dr.rer.pol) degrees in technology management
from the University of Fribourg, Switzerland.
He has been an Assistant Professor with the
University of Fribourg, Switzerland, and a Vis-
iting Scholar at MIT and Stanford University,
before changing full time to Stanford University
X as the Deputy Director of the Center for Design
"44'~ A Research (CDR) and an Assistant Professor
(Acting) in mechanical engineering. Since 2013, he has been a Full Professor
of engineering design at the Department of Mechanical and Industrial Engi-
neering (MTP), Norwegian University of Science and Technology (NTNU).
His research interests include fuzzy front end of new product development
and design: optimizing the intersection of engineering design thinking and
new product development, mechatronics/sensors, and computer sciences
(especially machine learning). A special focus is on conceptual develop-
ment and alpha prototype generation of high-performance requirements and
on experimental tools and setups. As of August 2021, he has more than
200 publications registered in Google Scholar. He has several prizes in both
teaching and research. He has been a member of the Norwegian Academy of
Technological Sciences (NTVA), since 2015.

45052

ALF INGE HELLEVIK received the M.D. and
Ph.D. degrees from the Norwegian University of
Science and Technology (NTNU), Trondheim, in
2010 and 2018, respectively.

He currently works as an Orthopedic Surgeon at
Alesund General Hospital, where he is the Head
of the Aalesund Biomechanics Laboratory. His
research interests include Osteoarthritis in hip and
knee, and general biomechanics.

ROBIN T. BYE (Senior Member, IEEE) was born
in Alesund, Norway, in 1979. He received the
B.Eng., M.Eng.Sc., and Ph.D. degrees (Hons.)
in electrical engineering from the University of
New South Wales, Sydney, Australia, in 2004,
2005, and 2009, respectively. Since 2008, he has
been working at the Department of ICT and
Natural Sciences (IIR), Norwegian University of
Science and Technology (NTNU), Alesund, and
became a Full Professor, in 2020. At the depart-
ment, he heads the undergraduate automation engineering programme as
well as the Cyber-Physical Systems Laboratory. His research interests
include cybernetics, artificial intelligence, neuroengineering, and engineer-
ing didactics. He was awarded the Goodeve Medal by The Operational
Research Society, in 2019.

VOLUME 10, 2022



