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Abstract: CO oxidation, one of the most important chemical reactions, has been commonly studied
in both academia and the industry. It is one good probe reaction in the fields of surface science and
heterogeneous catalysis, by which we can gain a better understanding and knowledge of the reaction
mechanism. Herein, we studied the oxidation state of the Cu species to seek insight into the role of
the copper species in the reaction activity. The catalysts were characterized by XRD, N2 adsorption-
desorption, X-ray absorption spectroscopy, and temperature-programmed reduction. The obtained
results suggested that adding of Fe into the Cu/Al2O3 catalyst can greatly shift the light-off curve of
the CO conversion to a much lower temperature, which means the activity was significantly improved
by the Fe promoter. From the transient and temperature-programmed reduction experiments, we
conclude that oxygen vacancy plays an important role in influencing CO oxidation activity. Adding
Fe into the Cu/Al2O3 catalyst can remove part of the oxygen from the Cu species and form more
oxygen vacancy. These oxygen vacancy sites are the main active sites for CO oxidation reaction and
follow a Mars-van Krevelen-type reaction mechanism.

Keywords: carbon monoxide; oxidation; copper; kinetic; reaction mechanism

1. Introduction

The catalytic oxidation of carbon monoxide (CO), a simple and typical heterogeneous
catalytic reaction, is a key step in C1 chemistry and has been widely investigated for
decades [1]. It has been considered the most studied probe reaction in heterogeneous
catalysis, especially in the field of surface science, owing to its simple molecules [2–5].
With an in-depth understanding of this simple reaction, one can gain more and deeper
fundamental new insights or knowledge of the reaction chemistry and mechanism [1,6].
Further, this knowledge is supposed to allow us to make progress in catalyst design and
optimization. Therefore, CO oxidation, although seemingly a simple chemical reaction,
is still widely under exploration [2,7]. It is not only useful as a model reaction system
for fundamental studies for a better understanding of the reaction mechanism and the
surface properties of the catalysts, but also imperative for some practical applications such
as air cleaning, automotive emission control, and removal of CO impurities from H2 for
polymer electrolyte membrane fuel cells [8]. In addition, CO is a poisonous molecule
for some catalytic chemical reactions [9–11], in which it can strongly be adsorbed on the
surface of the working catalysts; it will block or inhibit the other reactants’ adsorption and
significantly hamper the catalytic performance. Those noble metals have long been used as
the most efficient catalysts for CO oxidation with high activity and stability.

Many types of catalysts have been developed and proposed including noble metals,
like Pt, Rh, Au, and Pd, either supported or non-supported catalysts [7,12]. However,
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owing to the high cost and limited availability of noble metals, the focus has been on
transition metals and/or their oxides as the substitute for noble metal catalysts. Transition
metals like Cu, Ru, and so on have been reported [13–20]. Among them, copper-based
catalysts have been explored widely, and have been recognized as a possible substitute for
noble metals for their high activity toward CO oxidation [13,21,22].

Much effort has been devoted to reaction mechanism studies in CO oxidation. The
traditional Langmuir-Hinshelwood mechanism has been commonly reported [23–26], and
the O2 adsorption has been reported as the rate-determining step. Besides, Mars–van
Krevelen reaction mechanisms were also reported [6,15,27,28], especially for the catalysts
with O-vacancy, in which the catalyst participates in the reaction with the reactants. Al-
though, CO oxidation has been studied for decades in both academia and industry and
uses multiple techniques. It still has significant meaning to continuously place some more
focus on this “simple and classical” chemical reaction.

In the present work, to gain better insights into the relationship between the oxidation
state of Cu species and CO oxidation activity, we report the effect of adding Fe as the
promoter to the Cu/γ-Al2O3 catalyst to boost the activity of CO oxidation. We found
that the Cu/γ-Al2O3 catalyst shows a weak or poor CO oxidation activity in the tested
temperature range. Meanwhile, the activity is greatly enhanced by adding Fe into the
Cu/γ-Al2O3 catalyst. A full conversion can be obtained at 250 ◦C. The promoter of Fe can
greatly increase the reduction of CuO. The discoveries in this work provide a systematic
understanding of the redox dynamics of Cu species under reaction conditions, which has
implications for a broad range of catalytic reactions beyond CO oxidation.

2. Results and Discussion
2.1. Catalyst Properties

The compositions of the prepared catalysts were analyzed by X-ray fluorescence
spectroscopy (XRF). The final metal loadings can be obtained as nominal with preparation.
The physical properties of the catalysts, such as specific surface area, pore volume, and
pore size, are summarized in Table 1. From the table, we know that, when depositing the
metals on the γ-Al2O3, the surface area, pore volume, and pore size decreased slightly
compared with the support. The nitrogen adsorption/desorption isotherms of the fresh
samples shown in Figure 1a can be categorized as type IV isotherms, the typical character
of mesoporous materials [29,30]. The pore size distribution shown in Figure 1b also
demonstrates the mesoporous properties of the prepared catalysts.

Figure 2 shows the XRD patterns of the fresh calcinated catalysts. The displayed
diffraction peaks can be assigned to the phase of γ-Al2O3 [31,32], and no diffraction peaks of
Fe and Cu species are observed. This indicates that both Fe and Cu are highly dispersed on
the surface of γ-Al2O3. Besides, no mixed metal oxides can be detected on the XRD pattern.
It was commonly reported that transition metal salts and oxides can be spontaneously
highly dispersed on the surface of the oxide support (like γ-Al2O3 and TiO2) and form a
monolayer or even sub-monolayer [31–37]. This was proven to be a thermodynamic process
during the impregnation process. This type of monolayer catalyst has been reported and
applied in multiple catalytic systems, forming one imported supported catalyst. Owing
to the high dispersion of the Cu species on the support, the influence of other dopants on
the Cu species is supposed to be imperative in affecting either the chemical state of the Cu
species or the catalytic performance of the total reaction.

Table 1. BET surface area, pore volume, and average pore size for the samples. Pore volume and
diameter calculations were determined using the BJH model on desorption data.

Catalyst Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Size
(nm)

Metal Loading
(wt%)

Cu/γ-Al2O3 181 0.55 9.07 5

FeCu/γ-Al2O3 144 0.43 9.10 1/5 (Fe/Cu)
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Figure 1. (a) N2 adsorption/desorption isotherms and (b) pore size distribution of all of the catalysts
(calculated by the BJH method).
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2.2. Catalytic Evaluation of the CO Oxidation

In the following section, the CO oxidation is evaluated over the Cu- and FeCu-
supported γ-Al2O3 catalysts. The light-off curve is the conversion–temperature plot of a
catalytic reaction; it can directly be used for the criteria for the catalyst comparison and
catalyst development. The light-off curve of the FeCu/Al2O3 and Cu/Al2O3 catalysts is
shown in Figure 3. The conversion of CO oxidation over the two catalysts increases when
the temperature increases. The activity of CO oxidation over the two catalysts is quite
different. Cu/Al2O3 shows a rather low CO conversion, in the temperature range from
100 ◦C to 250 ◦C, and the conversion can be reached at about 60% at 250 ◦C. However, when
the catalyst is promoted with Fe, the scenarios are different. The light-off curve is shifted to
the lower temperature range. The activity of CO oxidation is significantly enhanced over
the tested temperature range. A full conversion can be obtained at a temperature of 250 ◦C.

The stability of the FeCu/Al2O3 catalyst is also evaluated at a temperature of 250 ◦C,
and the result is shown in Figure 4. The initial increasing phase was reported as an
induction period of the catalyst. After the induction period, the conversion of CO is very
stable over the 450 min test. No decreasing tendency is observed in the time-on-stream
tests, and a longer reaction time can even be expected. This indicates that FeCu/Al2O3 is a
good catalyst for CO oxidation.
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It has been commonly reported that CO oxidation follows the Mars-van Krevelen
reaction mechanism over the Cu-based catalyst [13], in which Cu undergoes oxidation and
reduction reactions via the oxygen vacancy. To gain a better understanding of the reaction,
we also performed the transient experiment. The catalysts were first treated by the O2
atmosphere so that the catalyst is in the highest oxidation state. Then, by introducing CO
into the catalyst, the catalyst will be reduced with the production of CO2, which can be
traced by the online mass spectra. The normalized CO2 formation signal over the catalysts
is shown in Figure 5 for qualitative comparison. To make the comparison more reasonable
and to eliminate the influence caused by the baseline of the mass spectra, the signal was
normalized in the same time range. The relative difference between the two curves will be
discussed. We can see that the production rate over the FeCu/Al2O3 catalyst is much faster
than that over Cu/Al2O3, as the slope of the curve is much higher for the FeCu/Al2O3
catalyst, which is also confirmed by the activity test in Figure 3. The most likely reason
is that adding Fe into the catalyst can enhance the reduction of CuO with CO to a lower
Cu oxidation state and CO2; therefore, the activity of CO oxidation is much higher on the
FeCu/Al2O3 catalyst. Another parameter we should mention is the peak areas, which
are related to the produced amount of CO2 on the two pre-oxidized catalysts. We can
know that more oxygen can be removed from the Cu/Al2O3 catalyst because more CO2 is
produced. As reported, the oxygen vacancy participates in the MvK type reaction cycle.
Herein, we can know greater oxygen vacancy is produced on the FeCu/Al2O3 catalyst.
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Figure 5. Transient CO reduction of the oxidized catalyst after treatment in O2. Reaction conditions:
Wcat = 0.3 g, Ftot = 100 mL/min, PCO = 0.02 bar, T = 250 ◦C.

To further verify the discovery in the transient CO experiments, the CO temperature-
programmed reduction (CO-TPR) was also performed to have an overview of the oxidation
state and the reduction ability of the catalysts. The fresh catalyst was pre-treated in Ar at
100 ◦C to remove the adsorbed H2O caused by the storage in the atmosphere. Then, the
catalyst was reduced by introducing CO, and the temperature was increased to 350 ◦C and
maintained for a certain period until a stable baseline was observed on the mass spectra, as
shown in Figure 6. CO2 is produced during the heating process; it indicates that oxygen is
removed from the catalyst surface, and the catalyst is undergoing a reduction reaction with
CO. This means the Cu or part of the Cu on the catalyst was in the oxidized state. While
comparing the two catalysts, we can see that more CO2 is produced on the Cu/Al2O3
catalyst than that on the FeCu/Al2O3 catalyst. This shows that more Cu is in the oxidized
state on the Cu/Al2O3 catalyst, and more oxygen species are accessible. Adding Fe as the
promoter to the Cu/Al2O3 catalyst can enhance the reduction of CuO during the synthesis
process. Greater oxygen vacancy is formed on the FeCu/Al2O3 catalyst. Furthermore,
this oxygen vacancy is supposed to influence the activity of CO oxidation. This can also
be concluded from the X-ray adsorption near-edge spectroscopy (XANES), as shown in
Figure 7. The white line intensity of the FeCu/Al2O3 catalyst is much lower than that of
Cu/Al2O3, indicating that the oxidation state of Cu in Cu/Al2O3 is much higher than the
FeCu/Al2O3 catalyst. This is consistent with the transient and CO-TPR experiments stating
that more oxygen vacancy is formed on the FeCu/Al2O3 catalyst.
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As mentioned above, CO oxidation follows a Mars van-Krevelen reaction mechanism.
The catalyst undergoes reduction and oxidation via the oxygen vacancy, as summarized in
the following equations.

CO + OL → CO2 +�S (1)

0.5O2 +�S → OL (2)

where OL is surface lattice oxygen and �S is the surface oxygen vacancy.
In this reaction mechanism, re-oxidation of the catalytic surface is usually faster than

the step of withdrawal of oxygen from the copper oxide, so Equation 1 can be recognized as
the rate-determining step [13,38]. From the CO-TPR, we know that, by adding Fe into the
Cu/Al2O3 catalyst, the ability to withdraw oxygen from the catalyst surface becomes easier.
It was reported that variations in copper valence during CO oxidation over CuO and Cu2O
cycled between 2 and 0 for CuO, but between 1 and 2 for Cu2O [39]. The activity of CO
oxidation over copper oxide species can be explained in terms of species transformation and
changes in the amount of surface lattice oxygen. It seems the intermediate Cu oxidation state
or non-stoichiometric metastable copper oxide species shows a good ability to transport
surface lattice oxygen. Herein, it can be derived from the TPR that, in transient experiments,
adding Fe into the Cu/Al2O3 catalyst increased the oxygen vacancy on the catalyst. Thus,
the conversion of the FeCu/Al2O3 catalyst is much higher than that on Cu/Al2O3.

3. Materials and Methods
3.1. Catalyst Preparation

All of the catalysts were prepared by wetness impregnation methods. The precursor
was CuCl2·2H2O (Sigma-Aldrich, St. Louis, MO, USA, ≥99%) and Fe(NO3)3·9H2O (Sigma-
Aldrich, St. Louis, MO, USA, ≥99%), which were impregnated on the γ-Al2O3 (Sasol
Germany GmbH, Hamburg, Germany) and mixed well by stirring. The metal loadings for
Cu and Fe are 5 wt% and 1 wt%, respectively. Then, the resultant mixture was placed into
the oven and dried at 100 ◦C for 10 h, followed by calcination at a temperature of 500 ◦C for
2 h with a ramping rate of 5 ◦C/min. The obtained samples were represented as Cu/Al2O3
and FeCu/Al2O3 in the following context, and the fresh samples were directly used for
characterizations and catalytic evaluation.

3.2. Catalyst Characterization

The specific surface areas of the two γ-Al2O3 were measured on a TriStar 3000 instru-
ment at liquid nitrogen temperature using N2 adsorption isotherms. BET and BJH analysis
methods were used for the specific surface area and pore volume calculations. Samples
were degassed under a vacuum condition at 200 ◦C overnight before measurements. XRD
profiles were recorded with a Bruker D8 Davinci X-ray diffractometer (Bruker Nano GmbH,
Berlin, Germany), using a Cu Ka1 (0.154 nm) wavelength.
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The sample compositions were analyzed by X-ray fluorescence spectroscopy (XRF,
Rigaku Supermini 200, Tokyo, Japan). The samples were dried and prepared in the form of
pressed powder pellets.

3.3. X-Ray Absorption Spectroscopy Measurement

The X-ray absorption spectroscopy of the Cu K-edge was collected at BM 31 beamline
station in ESRF (Swiss-Norwegian Beamline, European Synchrotron Radiation Facility,
Grenoble, France) using the transmission mode with the use of a water-cooled flat Si [1 1 1]
double-crystal monochromator. The Cu foil was used as the reference to conduct the energy
calibrations. The spectra were normalized to the unity edge jump using Athena software
(Demeter version 0.9.26, Bruce Ravel, BNL, NY, USA).

3.4. Catalytic Evaluation of CO Oxidation

The CO oxidation reaction was performed in a fixed bed reactor at 1 bar combined
with an online mass spectrum (Omnistar GSD 3010, Asslar, Germany). The reactant gases
were introduced into the reactor with specific mass flow controllers. Before the reaction,
the catalysts were heated to the target temperature in Ar with a ramping rate of 5 ◦C/min.
In one typical experiment, 0.3 g of catalyst was used at a total flow rate of 100 mL/min.
The MS was used to perform the conversion calculation, in which Helium gas was used as
the reference.

3.5. Carbon Monoxide Temperature-Programmed Reduction (CO-TPR)

CO-TPR was performed on the same setup with a fixed bed reactor, combined with an
online MS recording the effluence gas. Before the TPR tests, the catalyst (0.3 g) was treated
in Ar at 100 ◦C for 1 h to purge out the adsorbed water. Then, the samples were cooled
down to room temperature in Ar. When a stable MS baseline was obtained, the samples
were heated to 350 ◦C in 100 mL/min CO/Ar with a ramping rate of 10 ◦C/min. The final
temperature was maintained until a stable MS baseline was obtained.

4. Conclusions

In summary, the γ-Al2O3 supported Cu with and without adding Fe as the promoter,
and catalysts were prepared, characterized, and evaluated for CO oxidation reaction. Both
Cu and Fe are highly dispersed on the surface of γ-Al2O3. The catalyst with Fe as the
promoter shows much better activity than the neat Cu/Al2O3 catalyst over CO oxidation.
Both the XAS results and transition experiments demonstrate that, by adding Fe inside
the Cu/Al2O3 catalyst, the reduction of CuOx is greatly enhanced, which benefits the
CO oxidation reaction. Adding Fe into the base Cu/Al2O3 catalyst, part of the oxygen
can be removed, leaving greater oxygen vacancy on the catalyst. We demonstrate the
role of oxygen vacancy in influencing the activity of CO oxidation, which follows a Mars-
van Krevelen-type reaction mechanism. From the transient experiment and temperature-
programmed reduction, we know this oxygen vacancy will further contribute to the activity
of CO oxidation, which makes the FeCu/Al2O3 catalyst highly active for CO oxidation. This
work also demonstrates the relationship between the activity and the Cu oxidation state.

Author Contributions: Conceptualization, G.M. and H.M.; Methodology, G.M. and H.M.; Writing—
Original Draft Preparation, G.M. and H.M.; Writing—Review and Editing, G.M., L.W., X.W., L.L.,
and H.M.; Funding Acquisition, G.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Open Foundation of Key Laboratory of Auxiliary Chem-
istry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and
Technology (No. KFKT2021-07); the Shaanxi Collaborative Innovation Center of Industrial Auxiliary
Chemistry and Technology, Shaanxi University of Science and Technology (No. KFKT2021-07); and
the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JQ-765). And the
APC was funded by the Norwegian University of Science and Technology.



Catalysts 2022, 12, 1030 8 of 9

Data Availability Statement: All relevant data are included in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Freund, H.-J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO Oxidation as a Prototypical Reaction for Heterogeneous Processes.

Angew. Chem. Int. Ed. 2011, 50, 10064–10094. [CrossRef] [PubMed]
2. Van Spronsen, M.A.; Frenken, J.W.M.; Groot, I.M.N. Surface science under reaction conditions: CO oxidation on Pt and Pd model

catalysts. Chem. Soc. Rev. 2017, 46, 4347–4374. [CrossRef] [PubMed]
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