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ABSTRACT
The Debye–Hückel Limiting Law (DHLL) correctly predicts the thermodynamic behavior of dilute electrolyte solutions. Most articles and
books explain this law using Peter Debye and Erich Hückel’s original formalism of linearizing the Poisson–Boltzmann equation for a simple
electrolyte model. Brilliant in its own right, this approach does not fully explain which microstates contribute in the range of the Debye–Hückel
theory. Notably, the original formalism does not establish the Energy Multiplicity Distribution (EMD), which is the energy distribution of
a system’s microstates. This work establishes an analytical expression for the EMD that satisfies the DHLL. Specifically, an EMD that is
proportional to exp(aU3

el) satisfies the DHLL for a monovalent electrolyte solution. Here, Uel is the effective electrostatic energy due to
ion–ion interactions. The proposed proportionality shows quantitative agreement with the simulated EMDs of a Coulomb lattice gas that
corresponds to an aqueous sodium chloride solution at a concentration of 3.559 × 10−4 M. The lattice gas that is used does not incorporate
solvent molecules, but the Coulomb interactions are scaled through a permittivity that emulates the solvent—similar to the Debye–Hückel
theory. Moreover, this work explains the proportionality by partitioning Uel into a set of energy contributions using minimal spanning graphs.
This discussion on the EMD is new in the field. It widens the scope of the Debye–Hückel theory and could lead to a new parameterization
option for developing equations of state.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0122869

NOMENCLATURE

CLG Coulomb Lattice Gas
DH Debye–Hückel
DHLL Debye–Hückel Limiting Law
EMD Energy Multiplicity Distribution
MC Monte Carlo

I. INTRODUCTION
In less than a year, it will be 100 years since Peter Debye

and Erich Hückel presented their seminal paper1 on the thermo-
dynamics of electrolyte solutions. Their approach, known as the
Debye–Hückel (DH) theory, correctly predicts the behavior of suf-
ficiently dilute electrolyte solutions. Since then, this theory has
become the standard approach to introducing the thermodynamics
of charged systems. Whether the field is plasma physics,2 electro-
chemistry,3 or electrolyte equations of state,4 it is likely that the
DH theory is the benchmark approach for modeling the long-
range interactions between charged molecules. Old but still valid,

the gracefully simple DH theory is far from obvious and leaves
many confused by its subtle approximations and abstract electrolyte
solution model.

The standard derivation of the DH theory follows three distinct
steps:1,4–6

1. Introducing an electrolyte model where a central ion (species
i) is a sphere of radius ai with a point charge qi at the cen-
ter. An ion does not interact with other discrete ions but
rather with the surrounding charge density called the ionic-
atmosphere. All other interactions are modeled by restrict-
ing ions to be separated farther apart than the ion radius.
The charge distribution of the ionic-atmosphere corresponds
to the time-average positions of the surrounding ions. The
contribution of the solvent scales the Coulomb interac-
tion between the central ion and its ionic-atmosphere, as a
dielectric continuum.

2. Deriving the contribution of the ionic-atmosphere to the
internal per-ion energy. It is assumed that the charge
distribution of the ionic-atmosphere follows a Boltzmann
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distribution. After linearizing the Boltzmann distribution, the
spherical Poisson–Boltzmann equation leads to an expression
of the electrostatic energy felt by the central ion due to the
surrounding ionic-atmosphere. By summing over the contri-
bution from all ions, the resulting DH model for the total
electrostatic energy Uel is

U DH
(Ni, V , T) = −

s

∑
i=1

Niz2
i q2

8πε s

κ
1 + κai

. (1)

N i and zi are the number of ions and the unit charge of ionic
species i, whereas V, T, εs, q, s, and kB are the volume, tempera-
ture, permittivity of the solvent, elementary charge, number of
different ionic species, and Boltzmann constant, respectively.
The Debye length 1/κ, defined as

κ2
=̂

q2

ε sk BTV

s

∑
i=1

Niz2
i , (2)

is the characteristic length for the effective Coulomb interac-
tion between ions in an electrolyte solution.

3. Estimating the Helmholtz energy and mean-ionic activity
coefficient expressions that correspond to Eq. (1). The partial
charging process4,5,7–9 is now the standard method for obtain-
ing the Helmholtz energy. The Helmholtz energy is then equal
to the work required to charge each ion in the presence of
the ionic-atmosphere at constant composition, temperature,
volume, and permittivity of the solvent. For a binary salt with
ions of identical radii a, the logarithm of the mean-ionic activ-
ity coefficient calculated from the resulting Helmholtz energy
expression is

ln(γ DH
± ) = −

q2
∣z+z−∣

8πε sk BT
κ

1 + κa
. (3)

The subscripts + and − denote the cation and anion, respec-
tively. Linearizing Eq. (3) while neglecting higher-order terms
leads to the Debye–Hückel Limiting Law (DHLL),

ln(γ DHLL
± ) = −

q2
∣z+z−∣

8πε sk BT
κ. (4)

Remarkably, the DHLL captures the universal thermodynamic
behavior for sufficiently dilute electrolyte solutions.10–12 The
corresponding limiting expression for the total electrostatic
energy, found by linearizing Eq. (1) at κ = 0, is

U DHLL
(N ions, V , T) = −

N ionsq2
∣z+z−∣

8πε s
κ. (5)

Here N ions is the total number of cations and anions. Equa-
tions (4) and (5) show that the limiting expressions for the
mean-ionic activity coefficient and electrostatic energy satisfy
U DHLL

= N ionsk BT ln(γ DHLL
± ).

The theory outlined above is conceptually simple but not trivial
and is still an active research area. In their 2018 review, Kontoge-
orgis et al.13 summarized how the DH theory should be used in
equations of state. Their study lists 17 unresolved questions regard-

ing the current understanding of the DH theory and electrolyte
thermodynamics. The questions concern the effects of modeling sol-
vation effects through the so-called Born term (not relevant for this
work), whether the complete DH theory or the DHLL should be
used in modeling, and under which conditions the DH theory is
valid. In recent years, there have been several attempts at resolv-
ing the challenges of the DH and related theories. Simonin14 argued
that the Born term, which corrects the DH theory by considering
the changes in the permittivity of a solution with composition, does
not accurately model the ion–solvent effects of electrolyte solutions.
Shilov and Lyashchenko15 and subsequent papers8,16–21 developed a
thermodynamically consistent DH-based theory that considers the
change in permittivity due to the presence of ions during the par-
tial charging process. Sun et al.19 analyzed how to parameterize the
ion radius and static permittivity in the DH theory. In a series of
corrections, several authors argued whether an apparent negative
deviation from the DHLL at dilute (and finite) concentrations of
highly charged polyvalent ions is physical.22–25 The aforementioned
articles show that there is still a reason to challenge the DH theory
and its interpretation.

The thermodynamics of a macroscopic system is governed
by the Energy Multiplicity Distribution (EMD) of the system’s
microstates. One early study on characterizing the microstates of
electrolyte solutions was conducted by Milner26,27 in 1912 and 1913.
He attempted to establish the limiting behavior of dilute electrolyte
solutions by estimating the number of microstates (and their ener-
gies) for a small Coulomb gas system. Debye and Hückel considered
Milner’s work inconclusive in their 1923 article. In a spirit similar
to Milner’s approach, this article seeks to establish an expression
for the energy distribution of a system’s microstates—the Energy
Multiplicity Distribution (EMD)—that corresponds to the limit-
ing thermodynamics of dilute electrolyte solutions. The EMD is
characterized by

1. the number of microstates with an energy E for systems with
discrete energies and

2. the number of microstates whose energies lie in the range from
E to E + dE for systems with continuous energies.

For a canonical ensemble with β =̂ 1/(k BT), nm microstates and ne
possible energies, the EMD [denoted by g(E)] contains all thermo-
dynamic information through the canonical partition function

𝒵 =̂
nm

∑
i=1

e−βEi =

ne

∑
j=1

g(Ej)e−βEj. (6)

This article reveals the distribution of microstates that gov-
ern the universal thermodynamic behavior of monovalent dilute
electrolyte solutions by

1. developing an expression for the EMD satisfying the DHLL,
2. verifying the EMD expression by simulating a simple lattice

electrolyte solution model, and
3. partitioning the simulated EMD into a set of minimal

spanning graphs (defined in Sec. IV).

The physics of dilute electrolyte solutions presented here is from a
different but complementary approach to the standard DH theory.
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II. EMD OF A DILUTE ELECTROLYTE SOLUTION
This section derives the functional form of an EMD such that

it recovers the DHLL for monovalent electrolyte solutions in the
thermodynamic limit of nm →∞.

In the thermodynamic limit, macroscopic observables take
on deterministic values. Accordingly, the most probable per-entity
energy Ẽ/N for a system with N molecular entities28 and a given
β must converge to the expected per-entity energy ⟨E⟩/N for large
systems (a rigorous proof requires Gibbs measures29). Here,

Ẽ =̂ arg max
Ei∈E1 ,...,Ene

g(Ei)e−βEi (7)

and

⟨E⟩ =̂
1
𝒵

ne

∑
i=1

Eig(Ei)e−βEi (8)

in the canonical ensemble. Similarly, the most probable per-ion elec-
trostatic energy due to ion–ion interactions must converge to that
predicted by Eq. (5) for increasingly dilute electrolyte solutions.

The expected and most probable energies for macroscopic
monovalent electrolyte solutions that follow the DHLL satisfy

U DHLL
= −C

β1/2N3/2
ions

V1/2 , (9)

where C =̂ (8π)−1q3ε−3/2
s . From the ansatz that the EMD of an

electrolyte solution is of the form

g(U el; N ions, V) = be−a(N ions ,V)∣U el ∣k , (10)

the most probable energy is

Ũ el = −(
β

a(N ions, V)(k − 1)
)

1
k−1

. (11)

Here, a is a function that depends on N ions and V, b is a constant,
and k is a real number. In Eq. (11), Ũ el is the stationary point of
g(Uel)exp(−βUel) found by setting the derivative

d ln(g(U el)e−βU el)

d(−U el)
= −a(N ions, V)(k − 1)(−U el)

k−1
+ β (12)

to zero and solving for Uel. The exponent k must be equal to 3 for
Eq. (11) to recover the β

1
2 proportionality from Eq. (9). Substituting

k = 3 into Eq. (11) and comparing with Eq. (9) give

a(N ions, V) =
V

2C2N3
ions

. (13)

The final expression for an EMD whose most probable energy
corresponds to the DHLL for a monovalent electrolyte solution is

g(U el; N ions, V) = be
V

2C2N3
ions

U el
3

. (14)

As previously discussed, macroscopic observables converge to those
of the most probable state in the thermodynamic limit. Hence, a
sufficiently large system satisfies the DHLL if it has an EMD of the
analytical form of Eq. (14). Note that

1. Equation (14) only applies for Uel < 0 as the DHLL only pre-
dicts negative energies. Hence, ∣U el∣

3
= −U3

el, which makes
Eq. (14) consistent with Eq. (10).

2. The functional form in Eq. (10) is not unique, in which there
are potentially many other functional forms that could satisfy
the DHLL in the limit of infinite dilution.

Appendix A derives an expression that corresponds to the
DHLL for a system with an EMD that satisfies Eq. (10) but with a
k exponent different from 3.

III. MOLECULAR SIMULATIONS
This work uses Monte Carlo (MC) simulations of a Coulomb

lattice gas in combination with weighted linear regression to verify
that the EMDs of dilute monovalent electrolyte solutions converge
to Eq. (14). Section III A describes the lattice gas, and Sec. III B
introduces the MC simulations and the regression method.

A. Coulomb lattice gas
The EMD is estimated for a Coulomb Lattice Gas30–33 (CLG)

that corresponds to an aqueous sodium chloride solution. The model
describes N ions fully dissociated cations and anions distributed on a
cubic lattice grid where the sites are a distance σ apart. All simu-
lations use the minimum image convention,34 where each particle
only interacts with the closest periodic image of the other ions in the
system. Ions interact only according to the Coulomb potential such
that the total electrostatic energy between ions (in reduced units)
becomes

U∗el =
N ions

∑
i=1

N ions

∑
j>i

zizj

r∗ij
. (15)

Here, rij is the distance between ions i and j with charges qi and
qj. Furthermore, the short-range repulsive forces are modeled indi-
rectly by only allowing one single ion on each lattice site in a given
microstate. Table I summarizes the reduced units used in this work.

The distance between two adjacent lattice sites, denoted by σ, is
also the closest distance of approach of two ions. In the DH theory,

TABLE I. A summary of the reduced variables used in this work and their definitions.

Property Symbol Reduced symbol Definition

Distance r r∗ r/σ
Volume V V∗ V/σ3

Number density ρ ρ∗ ρσ3

Charge qi zi qi/q
Energy E E∗ 4πεsσE/q2

Temperature T T∗ 4πεsσkBT/q2

Thermodynamic
beta β β∗ q2β/(4πεsσ)
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this distance corresponds to the radius a in Eqs. (1) and (3). Ribeiro
et al.35 compared different methods for estimating this radius for dif-
ferent aqueous solutions. Their estimate ranges between 2.4 × 10−10

and 7.7 × 10−10 m for sodium chloride in water. This work uses a
moderate value of

σ = 3.6 × 10−10 m (16)

when simulation results are converted from reduced units to those
of the real solution. This value also corresponds to the average of
Kielland’s36 estimates for the rounded effective radii of hydrated
sodium and chloride ions. All other physical constants and quan-
tities used in this work come from the CRC Handbook of Chemistry
and Physics,37 with the exception of the permittivity of water at
25 ○C, which is taken from the study by Malmberg and Maryott.38

An in-house program designed explicitly for the CLG has been
used for all simulations. This program has been verified to repro-
duce the radial distributions functions of the study by Sørensen.11

The CLG leads to much shorter simulation times than its continuous
counterpart (the restricted primitive model39) because the Coulomb
energies between the different lattice sites can be precalculated and
tabulated. Since a lattice grid affects the behavior of ions that are
close together, a CLG should only be used to investigate phenomena
with length scales much longer than the grid spacing. Furthermore,
using a CLG without an explicit solvent presumes that it is the long-
ranged interactions between ions, not the solvent effects, that dictate
whether the EMD of a dilute electrolyte solution has the functional
form of Eq. (14).

B. Monte Carlo algorithms
This section explains how naive and Metropolis MC sampling

are used to estimate the EMD of the CLG from Sec. III A. All sim-
ulated EMDs are approximated by continuous distributions, even
though the CLG has discrete energies. Metropolis MC is used for all
simulations except when β = 0 where naive MC sampling is used. At
least 1000 samples are discarded at the start of all MC simulations
to reduce initialization bias. The section concludes by introducing a
weighted least squares procedure for estimating the functional form
of simulated EMDs. Table II summarizes all the MC simulations
performed in this work.

Naive Sampling: Naive MC sampling40,41 consists of the
following steps:

1. Generate a random and independent microstate.
2. Calculate and record the total energy.
3. Repeat steps 1 and 2 for a large number of microstates.
4. Count the number of microstates with energies within

predefined intervals (bins) using a histogram.

A forward Fisher–Yates shuffling algorithm42,43 in conjunction with
Eq. (15) is used to calculate the energy for each microstate. Dividing
the number of samples in each histogram bin by the width of the bin
leads to a scaled EMD g s

0 (E), where the integrated area is equal to
the number of sampled states.44,45 This g s

0 (E) approximates the real
EMD scaled by an unknown value

g(E)∝ g s
0 (E). (17)

Unfortunately, for large systems, the naive MC simulation only cap-
tures the distribution of states close to the most probable energy. A

TABLE II. Summary of the simulated electrolyte solutions. Column c (M) denotes the
corresponding aqueous sodium chloride concentration, and column Ns denotes the
number of sampled microstates in an MC simulation. The footnotes present the β∗
values (defined in Table I) at which each system is simulated. For reference, 25 ○C
corresponds to β∗ = 1.988 for the sodium chloride solution.

System ρ∗ N ions L∗ c (M) Ns

Aa 1.000 × 10−5 10 000 1000 3.559 × 10−4 104

Bb 1.001 × 10−4 10 000 464 3.563 × 10−3 104

Cc 9.923 × 10−4 10 000 216 3.532 × 10−2 104

Da 1.001 × 10−5 1000 464 3.563 × 10−4 105

Ea 9.923 × 10−5 1000 216 3.532 × 10−3 105

Fa 1.000 × 10−3 1000 100 3.559 × 10−2 105

Ga 9.923 × 10−6 100 216 3.532 × 10−4 106

Ha 1.000 × 10−4 100 100 3.559 × 10−3 106

Ia 1.027 × 10−3 100 46 3.657 × 10−2 106

Jd 7.324 × 10−3 30 16 2.607 × 10−1 106

aSimulated at β∗ = −0.2, −0.1, 0.0, 0.3, 0.8, 1.5, and 2.8.
bSimulated at β∗ = −0.1, 0.0, 0.3, 0.8, 1.5, and 2.8.
cSimulated at β∗ = 0.0, 0.3, 0.8, 1.5, and 2.8.
dSimulated at β∗ = 0.0.

naive MC simulation of a CLG with 100 ions and 106 sites will never
adequately sample the approximately (106

)
100
= 10600 microstates.

The so-called importance sampling techniques such as Metropolis
MC are necessary for sampling the distribution of microstates with
less prevalent energies.

Metropolis Sampling: In Metropolis MC,40,41,46–48 microstates
are sampled differently based on the temperature. For a Metropo-
lis MC simulation with sufficiently many sampled microstates, the
probability of sampling a microstate i with energy Ei is proportional
to e−βEi . Just as for the naive approach, it is possible to approxi-
mate a continuous distribution hβ(E) of simulated energies using
histograms. This distribution satisfies

hβ(E)∝ g(E)e−βE. (18)

Substituting the scaled EMD

g s
β(E) =̂ hβ(E)e

βE (19)

into Eq. (18) leads to the proportionality g(E)∝ g s
β(E). As for

the naive approach, a scaled EMD calculated from a Metropo-
lis MC simulation captures only a limited energy range. Multi-
ple simulations at different temperatures are therefore necessary
when investigating a larger section of a system’s EMD. A positive
simulation temperature accentuates the underlying EMD at nega-
tive energies, whereas a physically unrealistic negative temperature
accentuates the EMD at positive energies. A system simulated at m
different temperatures leads to a set of scaled EMDs denoted by
g s

β1
(E), g s

β2
(E), . . . , g s

βm
(E). These distributions are proportional to

the EMD of the system but have different proportionality constants.
These constants are not known at the outset, and they must therefore
be estimated afterward.

Weighted Least Squares: It will be demonstrated in Sec. V
that the EMD of system A (defined in Table II) satisfies g(U el)

= b exp(−a∣U el∣
2.95
) for negative energies. Figure 1(a) shows three of
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FIG. 1. Scaled (a) and shifted (b) EMDs for three of the simulations of system
A performed at different temperatures. The EMD of system A satisfies g(U el)

= b exp(a∣U el∣
2.95
). The logarithms of the scaled EMDs are shifted to fit a single

line using weighted least squares. Figure b is a subset of Fig. 3 from the Results
and Discussion section.

the scaled EMDs of this system simulated at different temperatures.
When k = 2.95, these scaled EMDs satisfy

log g s
βi(U

k
el) = a∣U el∣

k
+ b(βi) (20)

for the same a but different b(βi) values (since they are scaled dif-
ferently). Weighted least squares49,50 leads to the a parameter and
b(βi) parameters that best fit the simulated EMDs for a given k by
minimizing the weighted sum of squares. The optimal k which min-
imizes the weighted sum of squares, indicates the functional form

from Eq. (10) that best fits the simulated and scaled EMDs. The log-
arithm of the EMD is then translated in the y direction using the
optimized b(β) parameters. These shifted EMDs are denoted by g a

βi

and differ from g s
βi

and g only by a proportionality factor. Figure 1(b)
shows the shifted EMDs for the previous example.

The weighted least squares procedure used in this work is
described in Appendix B. Notably, the approach consists of estimat-
ing a weighted sum of squares for both the positive and negative
branches of the EMD that are denoted by θp and θn. kp and kn that
minimize θp and θn are the k exponents in Eq. (10) that best fit the
EMD at positive and negative energies. Optimization of kp and kn
is one approach to characterize EMDs. Other possibilities can be
thought of, but have not been worked out.

IV. MINIMAL SPANNING GRAPHS
The ion interactions that represent a particular microstate can

be partitioned into a set of edge-disjoint graphs. The subsequent dis-
cussion explains the qualitative behavior of the simulated EMDs,
including the asymmetry between the number of states with positive
and negative energies, using a set of minimal spanning graphs.

A microstate can be encoded as a complete graph51 G = (V , A)
with vertices vi ∈ V and edges (vi, vj) ∈ A. In this context, a vertex
represents the position (and the charge) of an ion. An edge (vi, vj)

connects vertices vi and vj. The weight of the edge (vi, vj) is cho-
sen to be equal to the Euclidean distance between ions i and j and
is denoted by r(vi, vj). For illustration, Fig. 2(a) shows a complete
graph representation of a microstate with five ions.

The concept of a minimum spanning tree52 is that of an acyclic
graph that connects all vertices of the complete graph such that the
total edge weight

∑
(vi ,vj)∈A1

r(vi, vj) (21)

FIG. 2. (a)–(d) Illustration of how the pairwise interactions in a microstate with two
anions (in blue) and three cations (in red) correspond to a single complete graph
or multiple T1, T2, and T3 graphs. Each ion is represented by a vertex v i , and the
edge weight is equal to the separation r(v i , v j) between vertices (ions) i and j. The
red and blue lines denote positive and negative Coulomb interactions, respectively.
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is minimized. The minimum spanning tree T1 = (V , A1) hence
connects all vertices (ions) in a microstate, with a subset of
edges (pairwise interactions) A1 ⊂ A. Kruskal’s algorithm52 is
used to find minimal spanning graphs. The algorithm is greedy,
and r1 < r2 implies 1/r1 > 1/r2, which means that T1 also cor-
responds to the tree that connects all ions and maximizes
the sum

∑
(vi ,vj)∈A1

1
r(vi, vj)

. (22)

Figure 2(b) shows the minimum spanning tree T1 that connects all
five ions mentioned earlier. There is no restriction on which edges
are allowed in T1.

In general, Tk = (V , Ak) is a minimal spanning graph that con-
nects the vertices, excluding all edges in A1, . . . , Ak−1, such that the
subtotal edge weight is minimized. Tk can be one single tree or mul-
tiple disconnected trees, depending on the edges in the previous
graphs. For a CLG, it is likely that Tk is a tree when k≪ N ions, due to
the large number of possible edges connecting the ions. The energy
of Tk is

U(k)el =
1

4πεs
∑

(vi ,vj)∈Ak

qiqj

r(vi, vj)
. (23)

A complete graph can be partitioned into nmax ∈ {⌊N ions/2⌋,
⌊N ions/2 + 1⌋, . . . , Nmax − 1} non-empty (a graph with at least one
edge) and edge-disjoint minimal spanning graphs. This nmax differs
for each microstate in the MC simulation. Summing the energy for
the first nmax graphs recovers Eq. (15),

U el = U(1)el +U(2)el + ⋅ ⋅ ⋅ +U(nmax)
el . (24)

Equation (24) is a kind of series expansion of graphs that partition
the interaction of a CLG into increasingly unimportant contribu-
tions. Figures 2(b)–2(d) show by example how a microstate of five
ions can be partitioned into two minimal spanning edge-disjoint
trees and one edge-disjoint graph called T1, T2, and T3.

V. RESULTS AND DISCUSSION
The main finding of this article is that the EMD of a

dilute monovalent electrolyte solutions satisfies the proportionality
g(U el)∝ exp(aU3

el). This section verifies this claim for a simulated
CLG and explains the qualitative behavior of electrolyte solutions by
partitioning ion–ion interactions into edge-disjoint sets of minimal
spanning graphs.

A. EMDs and optimization results
This section presents the simulated EMDs for the CLG from

Sec. III A and verifies to which extent they correspond to the
functional form derived in Sec. II. The weighted least squares
procedure introduced at the end of Sec. III B and thoroughly
described in Appendix B is used to shift the EMDs from differ-
ent runs (with different temperatures) so that they fit a single
straight line in an optimal way. The section ends with a short

discussion on how the DHLL changes with the functional form of
the EMD.

The EMDs in this sections are presented (and calculated) in
terms of the variable X defined as

X =̂

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(
U el

N ions
)

3
, if U el < Ü el,

(
U el − Ü el

N ions
)

1.2

, if U el ≥ Ü el.
(25)

Here, Ü el corresponds to the most probable g(Uel) and can be esti-
mated by interpolating g s

0 (U el). The branches of X corresponding to
energies larger and smaller than Ü are denoted by Xp and Xn, respec-
tively. Defining X in this manner ensures that a simulated g s

β(X) is
a monotonically increasing function when X = Xn, which is consis-
tent with Eq. (14). Furthermore, the definition of X ensures that Xp
and Xn correspond to strictly positive and negative per-ion ener-
gies. Appendix C demonstrates that this behavior is correct in the
thermodynamic limit where Ü el/N ions converges to zero.

Simulations of a system with an EMD of the form g(U el)

= b exp(aU3
el) for negative energies satisfy the linear proportional-

ity log gs
(Xn)∝ Xn. Figure 3 shows the shifted EMDs for system

A in Table II as a function of X. Visual inspection indicates that
the negative branch is close to linearity in Xn, implying that the
CLG at ρ∗ = 10−5 (almost) satisfies the DHLL over the simulated
temperature range. Plotting the logarithm of the EMD as a func-
tion of (U el/N ions)

2.95 instead of Xn reduces the slight curvature
in Fig. 3. Furthermore, the positive branch is close to linearity in
Xp. The linearity of the positive and negative EMD branches indi-
cates a significant asymmetry between the EMD at positive and
negative energies, in which they closely follow the functional form
from Eq. (10) for two different k exponents. This asymmetry will be
discussed in Sec. V B.

FIG. 3. Shifted EMDs g a
βi
(X) for system A. The weighted least squares procedure

from Appendix B with optimal kn = 2.95 and kp = 1.20 parameters is used to shift
the EMDs. A total of seven βi (thermodynamic beta) are required to span 60
decades in the diagram.
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TABLE III. The expectation value and standard deviation of θn for the systems in Table II as a function of kn. The optimal kn parameter is written in red.

System kn = 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00

A 19.06 ± 0.67 13.18 ± 0.32 8.38 ± 0.39 5.31 ± 0.39 3.19 ± 0.36 2.23 ± 0.33 2.92 ± 0.28
B 21.80 ± 1.55 13.89 ± 1.43 10.54 ± 0.78 11.86 ± 0.56 17.02 ± 0.96 24.36 ± 1.10 34.70 ± 1.17
C 115.52 ± 1.65 76.98 ± 1.96 52.84 ± 2.70 36.03 ± 2.19 32.70 ± 1.86 44.37 ± 1.00 62.86 ± 1.19

2.50 2.55 2.60 2.65 2.75 2.80 2.85 2.90

D 33.09 ± 0.94 31.85 ± 0.70 30.21 ± 0.92 30.35 ± 1.35 30.95 ± 2.73 31.62 ± 1.84 32.93 ± 2.09
E 30.64 ± 0.53 26.42 ± 0.40 23.01 ± 0.24 21.12 ± 0.53 20.41 ± 0.81 21.56 ± 0.41 23.61 ± 0.82
F 51.98 ± 0.67 38.84 ± 0.22 28.73 ± 0.40 21.66 ± 0.58 13.76 ± 0.19 14.65 ± 0.49 17.86 ± 0.49

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

G 17.07 ± 1.39 23.60 ± 2.51 34.91 ± 3.27 48.60 ± 3.81 63.92 ± 4.33 83.94 ± 4.33 110.37 ± 2.98 136.15 ± 8.26
H 27.31 ± 0.38 22.05 ± 0.45 24.74 ± 1.39 33.55 ± 1.84 45.81 ± 2.75 63.80 ± 4.15 86.14 ± 7.20
I 148.40 ± 2.47 111.90 ± 1.38 81.70 ± 0.57 58.37 ± 0.30 42.40 ± 0.30 33.28 ± 0.45 36.40 ± 2.03

2.20 2.30 2.40 2.50 2.70 2.80 2.90 3.00

J 4.31 ± 0.32 3.80 ± 0.41 3.28 ± 0.26 2.93 ± 0.36 2.89 ± 0.59 2.61 ± 0.88 2.88 ± 0.48

Section III B and Appendix B describe a weighted least
squares method for shifting the simulated EMDs and investigat-
ing how closely they follow different functional forms. The optimal
kn and kp, which minimize θn and θp, indicate the functional
form from Eq. (10) that best fits the Xn and Xp branches of the
simulated EMDs. For Eq. (14) to be consistent with the DHLL,
the optimal kn parameter must converge to three for sufficiently
dilute (ρ→ 0) and thermodynamically large ( 1

κL → 0) ensembles.
Tables III and IV reveal how θn and θp change with different
kn and kp parameters for the systems in Table II, respectively.
Table III suggests that the optimal kn parameter decreases from
∼2.80–2.95 to 2.65–2.80 and to less than 2.20 when the number
of ions is reduced from 10 000 ions to 1000 ions and 100 ions, respec-
tively. Similarly, Table IV suggests that optimal kp for all simulations
are in the range 1.05–1.25. At a given density, the optimal kn seems
to approach 3.0 with increasing system size. This behavior supports
the claim that the EMD of dilute electrolyte solutions follows the

functional form b exp(aU3
el). kn changing with system size indicates

significant finite-size effects in our simulations, especially for
systems with 1000 ions and less.

The Debye length 1/κ defined in Eq. (2) is a measure of the
range of the effective Coulomb interaction between ions in an elec-
trolyte solution.11,53,54 Sørensen et al.11,12 demonstrated significant
finite-size effects in molecular simulations of dilute electrolyte solu-
tions when 1/κ is of the same order of magnitude as the length
of the simulation box L. The Debye length in reduced units for a
sodium chloride solution at 25 ○C (or equivalently β∗ = 1.988) is
63.26 for ρ∗ = 10−5, 20.01 for ρ∗ = 10−4, and 6.33 for ρ∗ = 10−3.
Since the Debye length is proportional to β−

1
2 , there are significant

finite-size effects for any EMD simulated at β∗ ≪ 1. Since the Debye
length and the simulation box lengths scale with density accord-
ing to 1/κ∝ ρ−1/2 and L∝ ρ−1/3, the finite-size effects become more
pronounced at lower densities (for a fixed number of ions). Increas-
ing finite-size effects at smaller densities explains why the optimal

TABLE IV. The expectation value and standard deviation of θp for the systems in Table II as a function of kp. The optimal kp parameter is written in red.

System kp = 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30

A 14.76± 0.58 10.08± 0.40 6.22 ± 0.46 3.67 ± 0.42 1.92 ± 0.33 1.63 ± 0.57 2.91± 0.60
B 12.12± 0.92 6.91± 0.77 3.67 ± 0.68 2.33 ± 0.46 2.90 ± 0.53 6.19 ± 1.44 10.60± 2.18
C 0.71± 0.13 0.67± 0.14 0.68 ± 0.21 0.55 ± 0.13 0.56 ± 0.17 0.76 ± 0.26 0.64± 0.33
D 7.35± 0.45 5.92± 0.44 5.30 ± 0.34 5.28 ± 0.91 5.55 ± 1.08 6.37 ± 0.90 7.25± 1.00
E 8.72± 0.49 6.91± 0.74 5.35 ± 0.44 5.16 ± 0.62 4.56 ± 0.80 4.85 ± 0.73 5.55± 0.81
F 18.06± 0.40 10.78± 0.53 5.60 ± 0.26 4.63 ± 1.42 6.27 ± 1.16 12.13 ± 2.41 20.64± 3.61
G 19.27± 1.48 17.75± 1.94 15.82 ± 1.92 15.71 ± 1.83 17.72 ± 1.85 20.62 ± 3.45 23.08± 3.30
H 13.80± 0.49 12.09± 0.39 11.65 ± 0.87 12.44 ± 1.58 14.46 ± 1.49 16.22 ± 0.95 20.18± 1.88
I 10.27± 1.15 8.76± 0.75 8.63 ± 0.72 9.14 ± 1.37 10.72 ± 1.34 13.25 ± 0.83 15.44± 1.39
J 4.68± 0.29 3.68± 0.36 3.24 ± 0.47 3.37 ± 0.49 3.22 ± 0.73 4.11 ± 0.57 4.43± 1.26

AIP Advances 12, 115001 (2022); doi: 10.1063/5.0122869 12, 115001-7

© Author(s) 2022

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 4. Comparison of experimental mean-ionic activity coefficients for differ-
ent monovalent aqueous electrolyte solutions at 25 ○C (markers) and different
hypothetical limiting laws (lines) as a function of molality. The solid line shows
ln(γ DHLL

± ) = U DHLL
/(N ionsk BT) according to Eqs. (4) and (5). The dashed lines

indicate how UDHLL
/(NionskBT) would change if the EMD of an electrolyte solu-

tion followed Eq. (10) with the optimal exponents of systems A and F, equal to
k = 2.95 and k = 2.80, respectively, instead of 3. These dashed lines correspond
to Eq. (A6) set equal to the DHLL at the densities of systems A (ρ∗ = 10−5

) and
F (ρ∗ = 10−3

).

kn drops under 3.0 at low densities for systems with 1000 ions and
less.

Appendix A explains how the DHLL changes with the func-
tional form of the EMD. For instance, Figs. 4 and 5 illustrate how
the DHLL would differ if the EMD followed Eq. (10) with a k expo-
nent equal to the optimal exponents of systems A (k = 2.95) and
F (k = 2.80), respectively, instead of 3 in the thermodynamic limit.
These hypothetical limiting laws are arbitrarily set equal to the

FIG. 5. Figure 4 with logarithmic axes. The limiting law with a computer simulated
exponent k = 2.95 is barely discernible from the DHLL.

DHLL at the density of systems A (ρ∗ = 10−5
) and F (ρ∗ = 10−3

),
respectively. There are insufficient data to establish whether an expo-
nent of k = 3 (DHLL) or k = 2.95 best fits the limiting behavior of
dilute electrolyte solutions, given the limited range of experimental
concentrations. On this ground, the EMDs for system A are actually
indiscernible from the DHLL when compared with available experi-
mental data.

B. The asymmetric EMD of dilute electrolyte solutions
The EMD of dilute electrolyte solutions is asymmetric for posi-

tive and negative energies. This behavior is experimentally observed
in Fig. 3 (quantified by the difference between the optimal kn and kp
parameters in Tables III and IV). To explain the fundamental differ-
ence between the EMDs at positive and negative energies, ion–ion
interactions can be partitioned into minimal spanning graphs, as
explained in Sec. IV. A discussion on what the asymmetry implies
about the universal limiting behavior of dilute electrolyte solutions
is given at the end of this section.

System J has only 30 ions, but the tables given above still
indicate that the system exhibits the same qualitative behavior as
the larger ensembles. In Fig. 6, the EMD of this system has been
partitioned into a set of minimal spanning graphs. Appendix D
demonstrates that the net number of positive Coulomb interactions
in a tree Tk follows a Gaussian (and symmetric) distribution about
zero for the CLG in the thermodynamic limit. This behavior implies
that g(U(k)el ) is symmetric as Tk is equally likely to have a certain
surplus in the number of negative or positive ion–ion interactions.
Accordingly, any asymmetricity for U(1) and U(2) shown in Fig. 6
is due to the simulation box having a finite size. There exists a
mathematical proof that the distribution of the sum of two or more
symmetric and independent random variables must be symmetric.55

On the other hand, Fig. 6 demonstrates that the energy distribution
of U(1)el +U(2)el + ⋅ ⋅ ⋅ +U(k)el is without doubt asymmetric for k > 1.
This implies that the energies of the different graphs are correlated.

FIG. 6. Scaled EMD for system J partitioned into different minimal spanning
graphs. The total electrostatic energy (Uel) corresponds to the energy of at least
15 graphs.
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The asymmetry in the EMD of system J at positive and nega-
tive energies is evident when considering the energy distribution of
the first two graphs. Figure 6 demonstrates that the distribution of
U(1)el +U(2)el is smaller in magnitude than that of U(1)el for sufficiently
negative energies and larger than U(1)el for sufficiently positive ener-
gies. This observation implies that U(1)el is correlated with a positive
U(2)el for both sufficiently negative and positive energies. A simple
one-dimensional system explains why this behavior is expected for
systems with clusters of alternating and non-alternating charges.

A one-dimensional Ising model with nearest and next-nearest
neighbor interactions56,57 can be used to explain the nature of the
EMDs’ asymmetry. The charges are spread equidistantly along a
one-dimensional line, where each charge is equally likely to be pos-
itive or negative. In this model, the energy contribution from two
neighboring charges is either +ε or −ε. Similarly, the energy con-
tribution from next-nearest neighboring charges is ± 3

4 ε. The graphs
T1 and T2 contain all the nearest and next-nearest neighbor inter-
actions with energies U(1) and U(2), respectively. Figure 7 shows a
microstate with five alternating charges and a microstate with five
non-alternating charges. The nearest-neighbor energy is U(1)

= −4ε
in the alternating microstate and U(1)

= +4ε in the non-alternating
microstate. Both microstates have a next-nearest neighbor energy
of U(2) = + 9

4 ε. Notice how in this simple example the alternating
and non-alternating sequence of charges lead to a negative or a pos-
itive nearest neighbor energy but always to a positive next-nearest
neighbor energies. For alternating charges, therefore, the nearest
neighbor and next-nearest neighbor interactions are destructive in
which they have opposite signs. Oppositely, these energies are always
constructive and positive for non-alternating charges. The example
in the next paragraph demonstrates that microstates with negative
and positive nearest neighbor energies tend to have more alternating
and non-alternating charges, respectively.

Consider the previously introduced one-dimensional Ising
model with Nc = 30 charges. Figure 8 shows the EMD of this sys-
tem partitioned into U(1), U(2), and U(1)

+U(2) contributions. The
system exhibits the same qualitative behavior as electrolyte solutions
and is small enough where one can calculate all of its 230 microstates.
Just as for system J (see Fig. 6), the distribution of U(1) and U(2) is

FIG. 7. (a)–(b) Pairwise interactions in an Ising model with five charges. The near-
est neighbor energy U(1) and the next-nearest neighbor energy U(2) correspond to
the pairwise interactions in graphs T1 and T2.

FIG. 8. EMD of the one-dimensional Ising model with 30 charges partitioned
into different graphs. The total energy of all minimal spanning graphs satisfies
(in this case) U = U(1)

+ U(2) since the Ising model only considers nearest and
next-nearest interactions.

symmetric, and U(1) correlates with a positive U(2) for energies
sufficiently large in magnitude. A sequence with three consecutive
charges in this system will belong to one of the following triplets:

1. The charges correspond to one of the alternating sequences
+ − + or − + −. Both nearest-neighbor interactions are nega-
tive in this triplet, and the next-nearest neighbor interaction is
positive.

2. The charges correspond to one of the non-alternating
sequences + + + or − − −. Both nearest-neighbor and the
next-nearest neighbor interactions are positive in such a
triplet.

3. The charges satisfy one of the sequences + − −, + + −, − + +,
or − − +. The sum of the nearest neighbor interactions is equal
to zero, and the next-nearest neighbor interaction is negative.

The average number of triplets of type x for a microstate with a total
nearest-neighbor energy U(1) is denoted by ⟨Nx⟩U(1) . Figure 9 illus-
trates ⟨Nx⟩U(1) for the system with 30 charges. This figure shows
that at sufficiently negative and positive U(1), there is a large surplus
of alternating triplets (x = 1) and non-alternating triplets (x = 2)
with positive next-nearest neighbor energies. This observation
implies that although g(U(1)

) and g(U(2)
) are symmetric about

U = 0, g(U(1)
+U(2)

) is asymmetric because all microstates (with
sufficiently negative and positive nearest neighbor energies)
always have positive next-nearest neighbor energies. Figure 9 also
demonstrates that the asymmetry of U(2) at moderately negative and
positive energies is primarily due to the triplets of the third type
(x = 3) where negative next-nearest neighbor energies dominate.

The one-dimensional Ising model shows that there is an inher-
ent asymmetry in the EMD of electroneutral (satisfied on aver-
age in the Ising model) charged systems. Specifically, there is a
fundamental difference in how successive U(k)el energies corre-
late for a microstate that has alternating vs non-alternating ionic
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FIG. 9. Average number of triplets of type x in a microstate with a total nearest-
neighbor energy U(1) for the one-dimensional Ising model as a function of per-
charge energy squared.

charges. The asymmetry in the EMD of electrolyte solutions is
because microstates with negative energies are dominated by alter-
nating charges, whereas in microstates with positive energies, the
charges are non-alternating. Thus, the g(U el) = b exp(aU3

el) func-
tional form from Sec. II recovers the statistics of microstates with
negative energies. On a side note, the DH theory indirectly pre-
dicts that ions alternate in R3 space as the ionic atmosphere (which
reflects the time-averaged positions of all other ions) has an opposite
charge to the central ion.

The methodology for simulating EMDs is not limited to CLGs.
Appendix E explains how the procedure from Sec. III is used to
simulate a non-Coulomb lattice gas corresponding to nitrogen gas
at (approximately) the density of an ideal gas at 5 bars and 25 ○C.
Except for a different pairwise potential and grid spacing, the same
algorithm is used to calculate the energies of this lattice gas and
CLG. The new set of energies is superscripted sr as in short-range.
Figure 10 presents the EMD for such a lattice gas with Nm = 300
molecules. This figure also includes the energy distributions for a
selection of graphs and the EMD scaled by the Boltzmann factor at
600 K.

Partitioning EMDs into minimal spanning graphs accentuates
the differences between the limiting behavior of systems with long-
range and short-range interactions. In Fig. 10, the first two graphs
T1 and T2 almost fully capture the EMD around the most prob-
able Boltzmann weighted energy. Reducing the density further at
constant temperature would result in U(2)sr /U

(1)
sr → 0 such that T1

alone would capture the complete EMD. There exists an analogy
between T1 and the second virial coefficient B2 from the virial
expansion

pV
Nk BT

= 1 + B2ρ + B3ρ2
+ ⋅ ⋅ ⋅ (26)

in the low-density limit as both capture all deviations from that of an
ideal gas. This is in contrast to electrolyte solutions where multiple

FIG. 10. Scaled EMD for a non-Coulomb lattice gas partitioned into the first minimal
spanning graph. This system corresponds to nitrogen gas at (approximately) the
density of an ideal gas at 25 ○C and 5 bars. The Boltzmann weighted EMD shows
the distribution of microstates at a temperature of 600 K. At this temperature and
density, the first graph captures almost all significant interactions. The total energy
(Usr) has contributions from at least 150 graphs.

graphs (T1, T2, . . .) contribute to the EMD even in the limit ρ→ 0.
If electrolyte solutions were short-ranged, only T1 would contribute
at the limit of infinite dilution, and g(Uel) would be symmetric.
This disparity between the (number of) minimal spanning graphs
for dilute electrolyte solutions and short-ranged systems explains
why models (such as the DH theory) are necessary for describing the
limiting behavior of electrolyte solutions. Only pairs of molecules
sufficiently close together govern the EMD of dilute short-ranged
systems, whereas the interactions between a central ion and many
of its neighbors dictate the thermodynamics of dilute electrolyte
solutions.

The CLG model reproducing the EMD of dilute electrolyte
solutions also elucidates the role of the solvent in the DH theory.
The model in Sec. III A has no explicit solvent, which demonstrates
that an electrolyte solution exhibiting the exp(aU3

el) proportionality
[which corresponds to the DHLL and ln(γ±)∝ κ from Eq. (3)] only
depends on ion interactions and is not contingent on ion–solvent
effects. The DH theory predicts that using a solvent with a larger
permittivity increases the factor a in Eq. (13), which would increase
the slope of log gs

(Xn) in Fig. 3, but beyond this, the exponent k = 3
is purely an ion–ion effect.

VI. CONCLUSION
The Debye–Hückel (DH) theory is still, after a century of ser-

vice, the standard model for calculating the thermodynamic prop-
erties of dilute electrolyte solutions. Despite its apparent simplicity,
the DH theory conceals several secrets about the universal limiting
behavior of dilute electrolyte solutions:

1. What is the prevalence of the underlying microstates?
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2. Why do long-range interactions lead to different physics than
short-range interactions do for dilute systems?

3. Is the solvent a necessity for observing the Debye–Hückel
limiting law (DHLL)?

These are three questions the standard Debye–Hückel theory does
not address directly and which we have attempted to explain in this
work.

Microstates: The principal claim of this article is that a suf-
ficiently dilute monovalent electrolyte solution exhibits a univer-
sal distribution of microstates. Specifically, the energy distribu-
tion of the system’s microstates (EMD) due to ion–ion interac-
tions satisfies g(U el) = b exp(aU3

el) for some a and b. Molecular
simulations of a lattice model have been performed to test the
claimed functional form. Notably, this work simulates the EMD
of a Coulomb lattice gas (CLG), which approximates an aque-
ous sodium chloride solution at 25 ○C and 3.559 × 10−4 M. The
observed EMD spans about 60 decades—made possible by com-
bining Monte Carlo simulations for seven different temperatures.
The simulated EMD of a system with 10 000 ions is found to sat-
isfy g(U el) = b exp(aU2.95

el ). The exponent k = 2.95 corresponds to
a DHLL where the logarithm of the mean-ionic activity coeffi-
cient is proportional to the concentration of salt to the power of
1/2 + 1/234 instead of the standard 1/2. The difference is well within
the uncertainty of experimental mean-ionic activity coefficients for
dilute electrolyte solutions. The optimal k exponent, is observed to
approach 3 from below with decreasing ion density, a trend that
supports the ansatz on the EMD of dilute electrolyte solutions,
which is the basis of this work. Knowing the energy distribution
of microstates that corresponds to the limiting behavior of the DH
theory sheds light on the thermodynamics of dilute electrolyte solu-
tions from a different angle, which is complementary to the standard
derivation.

Short-Range vs Long-Range: The simulated EMDs exhibit an
asymmetry for microstates with negative and positive energies.
To be specific, the negative and positive branches of the simu-
lated EMDs for systems A–C are approximately proportional to
exp(aU3

el) and exp(−aU1.2
el ), respectively. To investigate the cause

of this asymmetry, all pairwise interactions are partitioned into a
set of so-called minimal spanning graphs. These graphs are defined
such that the energy distribution of each graph is symmetric in
the thermodynamic limit. Since simulated EMDs are asymmet-
ric, multiple graphs must contribute to the electrostatic energy
of dilute electrolyte solutions. This behavior differs from systems
that only have short-range interactions, where a single graph cap-
tures all the important interactions in the limit of infinite dilution.
The partitioning of the graphs illustrates a fundamental differ-
ence between electrolyte solutions and non-Coulomb systems: more
interactions are necessary to capture the behavior of increasingly
dilute electrolyte solutions compared to fewer ones for increasingly
dilute short-ranged systems. In addition, the correlation between the
energy of successive graphs shows that microstates with alternat-
ing anions and cations in R3 space dominate for dilute electrolyte
solutions.

Solvent: The CLG simulations (closely) reproduce the square
root of the concentration proportionality of the DHLL for mono-
valent electrolytes at a given temperature T without including the
solvent as molecules. This observation means that no solvent effects

(besides scaling the Coulomb interaction between ions through
permittivity εs) are necessary to explain the DHLL and the EMD
of dilute electrolyte solutions. The CLG and the Debye–Hückel
theory both predict that using a solvent with a different permit-
tivity changes the constant a in exp(aU3

el) such that εsT rather
than T specifies the thermodynamic state. Investigating the micro-
scopic phenomenon, which leads to this behavior, would fur-
ther explain the role of the solvent in the Debye–Hückel theory.
Increased knowledge could lead to new options for parameteriz-
ing equations of state. This, along with deriving the exp(aU3

el)

proportionality without relying on the DH theory, is a possi-
ble topic of future research on the EMD of dilute electrolyte
solutions.
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APPENDIX A: ALTERNATIVE DHLL

This section derives an expression corresponding to the DHLL
for a system whose EMD satisfies Eq. (10) but with a k exponent
different from 3. It is demonstrated that the DHLL and Eq. (14) scale
with volume and charge according to Coulomb’s law.

Assume a reference system that consists of Npc point charges in
a box of volume V. The magnitude of the point charges is q± =̂ ∣ziq∣.
The EMD of the system when scaled by an arbitrary constant is
denoted as gs

(Uel; Npc, V , q±). This quantity is adequately repre-
sented by a selection of Ω different microstates. Suppose now there
exists a different box with the same number of point charges but
with a new volume λV . The scaled EMD of the new system can be
calculated from the microstates of the reference system by scaling all
distances to fit the new volume. The scaled EMD satisfies
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g s
(U el; N pc, V , q±) = g s

(
U el

λ
1
3

; N pc, λV , q±). (A1)

Equation (A1) relies on scaling the distances in R3 with the cube
root of volume and calculating the total electrostatic energy of point-
charges from Eq. (15). Substituting Eq. (10) into Eq. (A1) gives

a(N pc, λV , q±)
a(N pc, V , q±)

= λ
k
3 , (A2)

or equivalently a∝ V
k
3 . A similar argument leads to a∝ q−2k

± . The
EMD according to Eq. (10) is

g s
(U el; N pc, V) = be

−a′ V
k
3

q2k±
∣U el ∣k

, (A3)

where a′(N pc) =̂ aq2k
± V−

k
3 . The most probable energy becomes

Ũ el = −(
βq2k
±

a′(k − 1)V
k
3

)

1
k−1

. (A4)

For Eq. (A4) to satisfy Euler homogeneity, it can be argued that a′

∝ N
1− 4k

3
pc such that

Ũ el = −
⎛
⎜
⎝

βq2k
± N

4k
3 −1

pc

a′′(k − 1)V
k
3

⎞
⎟
⎠

1
k−1

, (A5)

where a′′ =̂N
4k
3 −1

pc a′. Equations (A3) and (A4) reduce to Eqs. (14)
and (9) when k = 3, ∣zi∣ = 1, and N ions = Npc.

Equation (A1) assumes that there is a one-to-one correspon-
dence between the microstates before and after scaling the volume
of a system. This assumption is not valid for ensembles where ions
are restricted by a closest distance of approach, such as the DH
theory or the CLG from Sec. III A. For example, decreasing the vol-
ume would exclude the microstates where the scaling causes ions to
overlap. The previous derivation shows that for a sufficiently dilute
electrolyte solution, the EMD (and DHLL) depends on volume and
charge as if the energies of a system’s microstates scale according to
the Coulomb potential for point charges. This observation suggests
that the DHLL captures the physics when the predominant contri-
bution to the total electrostatic energy comes from ions far apart that
do not overlap when scaling the volume.

Equation (A5) can be conveniently expressed as a function of
salt concentration c (or molality m) and a temperature dependent
constant D,

U el

N pc
= Dc

k
3(k−1) . (A6)

Equation (A6) explains how the DHLL differs from that in Eq. (9)
when exponent k is allowed to vary.

APPENDIX B: WEIGHTED LEAST SQUARES

Technical details of the weighted least squares procedure used
to scale (and shift) EMDs and estimate whether the simulated EMDs
are on the functional form of Eqs. (10) and (14). The Xn and Xp
variables used in this section are defined in Eq. (25) and described at
the start of Sec. V A.

An EMD that is of the functional form of Eq. (10) satisfies

log g(X
k
3
n) = b n + a n∣X n∣

k
3 (B1)

in the domain X = Xn for some an and bn constants.
Weighted least squares can be used to find the optimization

parameters a n, b(β1)
n , . . . , b(βl)

n that minimize the weighted sum of
squares

θ n =
l

∑
k=1

n

∑
i=1

w(βk)
i ∣log g s

βk
(X

k n
3

n,i) − log ĝ s
βk
(X

k n
3

n,i)∣
2

(B2)

for the estimator

log ĝ s
βk
(X

k n
3

n,i) = a nX
k n
3

n,i +
l

∑
j=1

b(βj)
n δkj (B3)

and the set of scaled EMDs g s
β1
(X n), . . . , g s

βl
(X n). In Eqs. (B2) and

(B3), kn is a predefined parameter, n is the number of data points
per scaled EMD, and δ is the Kronecker delta. The optimal kn para-
meter, which minimizes the weighted sum of squares, corresponds
to the k exponent in Eqs. (10) and (B1) that leads to the best fit of the
simulated EMDs. To reduce the effect of outliers, the weights w(βk)

i
are set equal to the common logarithm of the number of sampled
energies corresponding to a data point g s

βk
(X n,i).

The same procedure is used to find the optimization parameters
a p, b(β1)

p , . . . , b(βl)
p that minimize

θ p =
l

∑
k=1

n

∑
i=1

w(βk)
i ∣log g s

βk
(X

k p
1.2
p,i) − log ĝ s

βk
(X

k p
3

p,i)∣

2

(B4)

for the estimator

log ĝ s
βk
(X

k p
1.2
p,i) = a pX

k p
1.2
p,i +

l

∑
j=1

b(βj)
p δkj (B5)

and the scaled EMDs g s
β1
(X p), . . . , g s

βl
(X p).

MC simulations lead to EMDs that are scaled differently
depending on the simulation temperature and the number of sam-
ples. If the optimization (for a given kn and kp) captures the
underlying distribution of states, then the shifted EMD, defined as

log g a
β (X) =̂

⎧⎪⎪
⎨
⎪⎪⎩

log g s
β(X n) − (b

(β)
m − b(0)m ), if X < 0,

log g s
β(X p) − (b

(β)
p − b(0)p ), if X ≥ 0,

(B6)

can be used to find a common proportionality factor for a set of
scaled EMDs g s

β1
(X p), . . . , g s

βm
(X p).

The Results and Discussion section presents the expected value
and standard deviation of θn and θp for the systems in Table II.
These statistical properties are estimated using bootstrapping58
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with ten bootstrap samples. A single bootstrap sample consists of
estimating θn and θp using weighted least squares for a dataset
g s, b

β1
(X), . . . , g s, b

βl
(X) constructed by resampling lNs of the system’s

MC simulated energies with replacement.

APPENDIX C: EXPECTED PER-ION ELECTROSTATIC
ENERGY

The expected per-ion energy for the EMD of a CLG is zero
in the thermodynamic limit. Since macroscopic observables take on
deterministic values in a thermodynamic system, it follows that the
most probable per-ion energy must also go to zero. The most prob-
able electrostatic energy and the expected electrostatic energy follow
by inserting β = 0 into Eqs. (7) and (8).

The expected per-ion electrostatic energy for the CLG from
Sec. III A is

E[
U∗el

N ions
]

1.
= E
⎡
⎢
⎢
⎢
⎢
⎣

1
N ions

N ions

∑
i=1

N ions

∑
j>i

zizj

r∗ij

⎤
⎥
⎥
⎥
⎥
⎦

2.
=

N ions − 1
2

E[
z1z2

r∗12
]

3.
=

N ions − 1
2

E[z1z2]E[
1

r∗12
]

4.
= −

1
2

E[
1

r∗12
]. (C1)

The list of equalities is explained below:

1. The total electrostatic energy expression is from Eq. (15).
2. The expectation value for the sum of two random variables X

and Y is E[X + Y] = E[X] + E[Y]. Here, X and Y do not need
to be independent. There are a total of N ions(N ions−1)

2 pairwise
interactions in an ensemble with N ions ions.

3. The expectation value for two independent random variables
X and Y is E[XY] = E[X] E[Y].

4. There are 2 ×
N ions

2 ( N ions
2 −1)

2 =
N2

ions
4 −

N ions
2 positive (anion–

anion and cation–cation) and N ions(N ions−1)
2 − 2 ×

N ions
2 ( N ions

2 −1)
2

=
N2

ions
4 negative (anion–cation) interactions. Accordingly,

there is a surplus of N ions
2 negative interactions, that is, E[z1z2]

= −
N ions

2
N ions(N ions−1)

2

.

Since the expected distance between two random points in a box
scales linearly with the box length, the expected inverse distance
between two non-overlapping ions decreases to zero in the thermo-
dynamic limit. Equation (C1) shows that if E[ 1

r∗12
] goes to zero, then

so does the expected per-particle energy.

APPENDIX D: DISTRIBUTION OF EDGES IN A SINGLE
GRAPH

The net number of positive edges in a tree Tk becomes Gaussian
about zero in the thermodynamic limit for a monovalent electrolyte
solution (the definitions of graphs, trees, edges, and vertices are
those of Sec. IV).

Let Tk be a tree connecting N ions monovalent ions that are
cations or anions with equal probability. The net number of positive
interactions in Tk is

Sk = ∑
(vi ,vj)∈Ak

zizj. (D1)

A procedure for calculating Sk for a given microstate is outlined
below:

1. Let T′k = (V
′
k, A′k) be a graph where A′k is an empty set and V′

consists of a single random ion modeled as vertex v1.
2. Pick a random ion vj ∈ Vk/V′k with an edge (vj, vi) ∈ Ak/A′k

such that vi ∈ V′.
3. Add vj and (vj, vi) to V′ and A′.
4. Calculate zizj.
5. Repeat steps 2–4 for all N ions − 1 edges until Tk = T′k and all

terms in Eq. (D1) are found.

Ion j is equally likely a cation or anion in steps 2–4, which means
there is an equal probability that zizj is +1 or −1. Accordingly, each
summation term in Eq. (D1) is equally likely to be minus or plus
one. The central limit theorem guarantees that the distribution of a
sum of identically distributed and independent variables converges
to a Gaussian about their average. This result is not contingent on
Tk being a tree, but it is valid if Tk is a graph with sufficiently many
edges.

The derivation assumes that the charges of ions are indepen-
dent. This assumption is valid for electrolyte solutions in the grand
canonical ensemble, where electroneutrality needs only to be satis-
fied on average.59 There is, however, a weak dependence between
the charges of different ions in the canonical ensemble since there
must always be an equal number of anions and cations to satisfy elec-
troneutrality. Equivalence of ensembles59 suggests that the statistics
of both ensembles should converge in the thermodynamic limit.

APPENDIX E: LATTICE GAS MODEL FOR NITROGEN

How the simulation procedure described in Sec. III was
adjusted to fit the modeling of a dilute nitrogen gas at 5 bar and
25 ○C?

At low densities, the Lennard-Jones model accounts correctly
for both repulsion and dispersion forces observed between polar-
izable neutral atoms.60 According to this model, molecules i and j
interact according to the potential

uij = 4ε LJ

⎡
⎢
⎢
⎢
⎢
⎣

(
σ LJ

rij
)

12

− (
σ LJ

rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

. (E1)

Here, σLJ and −εLJ are the collision diameter and minimum value
of the potential, respectively. The Lennard-Jones model is similar to
the lattice gas defined by the potential61

uij = −4ε LJ(
σ LJ

rij
)

6

, (E2)

to the extent that the lattice gas mimics the repulsive forces indirectly
by excluding microstates with overlapping molecules. Such a lattice
gas can be implemented using the same procedure as in Sec. III,
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but with a lattice spacing equal to σLJ as a measure of the mini-
mum approach distance between ions. This procedure is equivalent
to modelling nitrogen as a non-Coulomb lattice gas.

The Results and Discussion section shows the EMD of a non-
Coulomb lattice gas corresponding to nitrogen gas at approximately
the density of an ideal gas at 5 bar and 25 ○C. This system was
simulated by naively sampling 105 microstates of a system with
Nm = 300 molecules in a box of length 36σLJ, which corresponds
to a reduced density ρσ3

LJ = 6.430 × 10−3. The simulated system cor-
responds approximately to the density at the previously mentioned
temperature and pressure, where the reduced density and reduced β
of nitrogen gas, respectively, are

ρσ3
LJ = 6.334 × 10−3 (E3)

and

βε LJ = 0.320. (E4)

Equations (E3) and (E4) are consistent with the density of an ideal
gas when using Edalat’s62 estimate for σLJ and εLJ of nitrogen,
namely,

σ LJ = 3.736 × 10−10 m (E5)

and

ε LJ/k B = 95.48 K. (E6)
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