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Abstract. This paper presents a methodology to obtain improved quality of sur-
face roughness during production of mobile case cover inside a Cyber Physical 
(CP) factory using micro-CNC end milling with aluminium alloy T6 (6068). The 
said machining is done with different machining parameters such as cutting ve-
locity, Spindle speed and cut depth. Three profile parameters (Ra, Rz and Rzmax) 
are projected as response variables. Thereafter, Taguchi’s orthogonal array de-
sign is considered with smaller-is-better Signal to Noise ratio and linear regres-
sion is performed to get optimal process parameter settings combination. This 
result is further verified using a Particle Swarm Optimization (PSO) technique 
and validation is done on CNC machining center. 
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1 Introduction 

Milling is an important metal removing technology among the different machining 
approaches for the manufacturing companies. In modern era the traditional milling has 
been replaced by Computer numerical controlled (CNC) milling which automates the 
cutting process and decreases the machining time, minimize variation in process, en-
hance product quality and boost the productivity of manufacturing processes [1]. The 
most common CNC milling operation is end-milling because of its high-speed metal 
cutting rate with accurate surface finish, which is generally used for creating various 
geometrical shapes in the workpiece by incorporating different types of sub-operations 
such as milling, drilling, reaming, profiling, chamfering, slotting, etc. [2] [3]. Surface 
roughness is an important parameter that needs to be considered during end milling 
operation as, majority of manufacturing industries considered surface roughness (Ra) 
as an important machining attribute, and it is responsible for the improved product qual-
ity and reduced cost of manufacturing. Various machining conditions such as cutting 
velocity, feed rate, spindle speed, machine vibration and depth of cut greatly influence 
the surface roughness in the end milling process [4], which are not only responsible for 
producing the good surface finish for end products but can also increase the tool life. 
In the recent year, the optimization of milling processes is evolving in tremendous rate, 
which further amplified the interest among manufacturing companies and researchers. 
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After careful investigation on milling processes it is found that different types of milling 
tools are being used according to the shape or geometry of the product design. Pillai et. 
al [5] used end milling cutting process of Aluminium workpieces using a multi-axis 
milling center to establish a set of optimum process parameter combinations using the 
Taguchi-Grey Relational Analysis to analyze the performance variables such as pro-
cessing time and surface roughness influenced by different process factors such as spin-
dle speed, feed rate and tool path scheme. Okokpujie et.al. [6] developed mathematical 
model based on the least square approximation method and Response Surface Method-
ology (RSM) that predicted the Ra for the end milling using spindle speed, axial depth 
of cut (axial and radial) and feed rate for Al 6061 alloy. Kumar et.al [7] utilized Taguchi 
technique for optimization of the end milling process parameters, which are coolant, 
feed rate, spindle speed and depth of cut for milling of SS-304. Qehaja et. al. [8] studied 
the influence of spindle speed, feed rate, depth of cut and hardness of workpiece mate-
rial on the Ra in the CNC end milling by developing the Ra based mathematical model. 
Wojciechowski et. al. [9] studied ball end milling process and demonstrated the rela-
tionships between the instantaneous tool displacements and Ra where the cutting sur-
face is inclined to the axis of the tool. Li and Zhu [10] estimated cutting force for five 
axis milling process using a flat end milling tool and coupled the result with the cutting 
effects. Gao et. al. [11], conducted various slot milling experiments using Aluminium 
7075 with chamfered tool at different chamfer length, considering tool wear and Ra as 
the process responses. Das et al. [12] conducted CNC milling of alumina green ceramic 
compact, where process factors such as spindle speed, 3 axis speed (along x, y, and z), 
and depth of cut were investigated. For performance characteristic the authors have 
used surface roughness and developed a regression model. Further they performed Ge-
netic Algorithm based optimization of the Ra.  

From the above study it could be stated that, Ra is the essential performance charac-
teristic for the CNC milling process. There are different other surface parameters that 
could be considered during the investigation of surface roughness, such as mean rough-
ness depth (Rz) and maximum roughness depth (Rzmax). Hence it is important to analyze 
the influence of different machining parameters on the various surface roughness coef-
ficients such as Ra, Rz and Rzmax. The objective of this research is to incorporate various 
parametric combinations during different end milling conditions and record the surface 
roughness values using a stylus based profilometer. Further the comparison would be 
carried out with the responses to find the ideal process parameters for the end milling. 
The analysis will be performed using Taguchi’s orthogonal design and regression anal-
ysis. The obtained results would be verified using a Particle Swarm Optimization (PSO) 
based algorithm. 

The rest of this paper is organized as, section #2, which portrays the detailed expla-
nation on the experimental set-up on CNC milling machine, material, and the input 
parameters are explained, section #3, which depicts the methodologies applied in this 
research and the results and discussions and finally section #4, which concludes this 
work with future scopes.   
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2 Material and Method 

The machining is carried out on a CNC micro milling machine (Proxxon FF 
500/BL). It is a three axis CNC milling center with 50µm precision and has brushless 
direct drive (Fig. 1). It has a large transverse area (X- 290mm, Y-100mm, and Z- 
200mm). The surface profile is measured using an electronic profilometer Handysurf 
E-35B, manufactured by Carl Zeiss, Japan. The surface profile measurement parame-
ters are selected according to three standard, ISO 4287-1997, DIN EN ISO 4287 AND 
JIS B0601. 

  
2.1 Material 

Aluminium alloy 6082 (T6) is used as the test workpiece for machining. The dimen-
sion of the aluminium alloy block is 160×80×15 mm3. This material is primarily used 
for machining in highly stressed application. The chemical composition by percentage 
of weight of 6082 (T6) are Al (95.1% - 98.2%), Si (0.71% - 1.29%), Mg (0.59% - 
1.195%), Mn (0.39% - 0.99%), Fe (0.1% - 0.5%), Cr (0.05% - 0.25%), Zn (0.01% - 
0.2%), Ti (0.01% - 0.1%), Cu (0.05% - 0.1%) and other (0%-0.15%). Further Table 1 
portrays the mechanical properties of Aluminium alloy 6082(T6) [13]. The proposed 
products are machined and recreated inside the CP factory which are mobile case co-
vers, originally made with plastic. The 3D design files of the workpieces are obtained 
from Festo (Fig. 2a and 2b). These designs are made with solidworks. The exterior 
dimension of the product is (11.4×60×11.7 mm3). 
 

 
Fig. 1. CNC setup with NCCAD 9 

 
Table 1. Mechanical property of aluminium alloy 6082(T6) 

Tensile 
strength 

Yield 
strength 

Shear 
strength 

Elastic 
modulus 

Poisson’s 
ratio 

Elonga-
tion 

330 MPa 270 Mpa 220Mpa 69 Gpa 0.33 9.8% 
 
 

2.2 Experiments 

The preparation of work piece is done using the CNC machining center. The CNC mill-
ing machine uses NCCAD 9 software where, the input of the 3D model and other 
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different cutting factors such as tools, cutting speed, cut depth etc. are defined and with 
respect to these inputs a tool path is generated. For machining two major cutting tools 
are used in the experiments (Fig. 3). The tools are made of high-speed steel 12mm for 
material removal and 4mm for geometric shaping respectively. cutting speed (CS) and 
spindle speed (SS) are selected within range of 150 ≤ CS ≤ 280 and 3500 ≤ SS ≤ 4000 
and depth of cut (DOC) is fixed at 0.3mm. Using Taguchi’s L9 orthogonal design, a 
total of nine experiments are carried out on nine samples (Table 2). The surface rough-
ness values (Ra, Rz and Rzmax) are recorded using Handysurf for every experimental trial 
and portrayed in Table 2. 

 

 
Fig. 2. 3D model of the product 

 
Fig. 3. Cutting Tools 

 
Table 2. Taguchi’s L9 orthogonal design for experiments 

 
No. of 

Run 

Process parameters Response parameters 
Cutting 

velocity 
Spindle 

speed 
Surface 

roughness 
(Ra) 

(Rz) Rzmax 

1 150 3500 0.583 2.453 3.197 
2 150 3800 0.463 2.097 2.273 
3 150 4000 0.383 2.000 2.467 
4 200 3500 1.000 4.710 7.653 
5 200 3800 0.776 3.427 5.433 
6 200 4000 0.653 2.943 5.217 
7 280 3500 1.266 5.273 8.613 
8 280 3800 0.943 4.260 7.757 
9 280 4000 0.783 3.713 6.680 

3 Methodology and Results 

In this paper the optimization is carried out using Taguchi’s design of experiment and 
further the obtained result is verified using a PSO algorithm. Eberhart and Kennedy 
[14] introduced PSO to the research community, which is based on natural phenomenon 
and population derived stochastic optimization method. PSO imitates the actions of a 
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swarm of birds. It has many similar features of GA. PSO begins with a swarm or group 
of solutions or particles generated using a random function. It further leads to the peak 
or valley area in quest of best solutions. In general, all the particles go by the finest one 
and fly through the problem space. All of the particles have their own positions and 
fitness scores and have velocities which fix the flying direction of the particles. Fol-
lowing are the velocity and position updating expressions, 

 
𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑤𝑤 × 𝑣𝑣𝑖𝑖𝑡𝑡−1 + 𝑐𝑐1 × [𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡−1] + 𝑐𝑐2 × [𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡−1]                    (1) 

𝑥𝑥𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑖𝑖𝑡𝑡                                                                                              (2) 
 
Each particle of the swarm updates its position with respect to two near-optimal parti-
cles, (1) the best fitness scoring particle of the swarm in current iteration, which is 
termed as the Pbest and (2) the best particle with finest fitness score in all iterations, 
which is termed as the global best or Gbest [15]. The PSO flowchart obtained from [15] 
as, 

 
START 
Step 1. Define the fitness function f(x), X=(x1, x2, …, xd)T  
Step 2. Initialize the swarm of particles xi, (i = 1, 2, ..., n) and velocity vi  
Step 3. Define the w, c1, c2 (inertial and learning parameters) 

Step 4. While (t< maximum number of iteration) do 
Step 5.   for each particle xi in the swarm do 
Step 6.    Generate new particle using Eq. (1), (2) 
Step 7.    if f(xi)<f(xbest) then (f is objective function) 
Step 8.     Accept the new solution 
Step 9.    end  
Step 10.  end  
Step 11. end 
Step 12. return the global best bat xbest 
STOP 
 

3.1 Results and Discussion 

Taguchi’s orthogonal array design is employed to obtain the response tables for means 
and signal-to-noise ratios (Table 3(a) and 3(b)). For the problem in hand, surface rough-
ness is a minimization type response. Hence smaller-is-better SN-ratio is selected as 
optimization approach. 

Table 3. Response tables for (a) S-N Ratio (b) Means 
(a)  (b) 

Level 
Cutting 
velocity 

Spindle 
Speed 

 
Level 

Cutting 
velocity 

Spindle 
Speed 

1 -5.961 -12.387  1 1.768 3.861 
2 -12.210 -10.265  2 3.535 3.048 
3 -14.179 -9.699  3 4.365 2.760 
Delta 8.218 2.688  Delta 2.597 1.101 
Rank 1 2  Rank 1 2 
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Fig. 4. Effects plot for means 

 
The main effect plot is portrayed in Fig. 4 which states that the best Ra values are ob-
tained at cutting velocity =150 and Spindle Speed=4000. Further regression equations 
(R2 values > 70%) are obtained for all the response parameters (Ra, Rz and Rzmax) which 
are portrayed in eq. (3)-(5). These equations can be used to predict the response param-
eters value with different values of process parameters. 

 
R𝑎𝑎  =  2.555 +  0.003853 × Cutting Velocity –  0.000691 × Spindle Speed     (3)  

Rz  =  9.60 +  0.01614 × Cutting Velocity –  0.002554 × 𝑆𝑆pindle Speed      (4) 
Rzmax  =  10.82 +  0.03699 ×  Cutting Velocity –  0.00348 × Spindle Speed    (5) 

 
These equations are used to generate the objective function of the PSO which is por-
trayed in eq. (6). For the PSO, the parameters are selected based on the recommendation 
provided in [14], w=rand(), c1=0.45, c2=0.55, swarm size= 1000, Iteration count = 500. 
 

𝑓𝑓 = 0.33 × (𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑧𝑧 + 𝑅𝑅𝑧𝑧𝑧𝑧𝑎𝑎𝑧𝑧)                                              (6) 
 
The PSO algorithm is substantially quick (< 10 Sec. CPU time) and obtains the optimal 
solution which is not different than the Taguchi’s optimization. The response values 
are Ra=0.369, Rz=1.805, Rzmax=2.4485 obtained using regression eq. (3)-(5), which are 
substantially close to the experimental values (Table 2). The convergence curve is pre-
sented in Fig. 5. The final products are portrayed in Fig. 6(a) and 6(b). 

4. Conclusions 

 This paper presents an experimental machining process optimization approach within 
the production of CP factory. The product manufactured is a mobile phone case cover 
which is recreated using the micro-CNC end milling facility and T6 aluminium alloy 
(6068). Different process variables such as cutting velocity, spindle speed and cut depth 
are considered for CNC milling and various surface roughness parameters (Ra, Rz and 
Rzmax) are considered as process responses. Taguchi’s orthogonal design is carried out 
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using smaller-is-better SN ratio for optimization and linear regression is performed to 
obtained the response equations. Further a PSO algorithm is employed to verify the 
result obtained from Taguchi’s analysis. This research concludes that, the better surface 
finish is obtained with lower cutting velocity (150 m/min) and higher spindle speed 
(4000 RPM). This work is aimed to extend with additional process variables such as 
tool size, process vibration, in the future. Also, 3D profile analysis would be another 
area which will be explored further.  
 

 
Fig. 5. PSO Convergence Plot 

 

  
Fig. 6. (a) flat surface                                Fig. 7. (b)inner side of product 

 

Acknowledgement 

This work is supported by the SFI Manufacturing (Project No. 237900) and funded by 
the Research Council of Norway (RCN). 



8 

References 

1. Ghosh, T., Wang, Y., Martinsen, K., Wang, K.: A surrogate-assisted optimization approach 
for multi-response end milling of aluminum alloy AA3105. The International Journal of 
Advanced Manufacturing Technology 111, 2419-2439 (2020).  

2. Rajeswari, B., Amirthagadeswaran, K.: Experimental investigation of machinability charac-
teristics and multi-response optimization of end milling in aluminium composites using 
RSM based grey relational analysis. Measurement 105, 78-86 (2017).  

3. Hu, L.: CNC Milling of Complex Aluminum Parts. Lehigh Preserve Institutional Repository 
(2014). 

4. Krolczyk, G.M., Legutko, S., Experimental analysis by measurement of surface roughness 
variations in turning process of duplex stainless steel, Metrology and Measurement Systems 
21(4), 759-770 (2017).  

5. Pillaia, J.U., Sanghrajkaa, I., Shunmugavel, M., Muthuramalingam, T., Goldberg, M., and 
Littlefair, G.: Optimisation of multiple response characteristics on end milling of aluminium 
alloy using Taguchi-Grey relational approach. Measurement 124, 291-298 (2018).  

6. Okokpujie, I.P., Ajayi, O.O., Afolalu, S.A., Abioye, A.A., Salawu, E.Y. Udo, M.O.: Mod-
eling and optimization of surface roughness in end milling of aluminium using least square 
approximation method and response surface methodology. International Journal of Mechan-
ical Engineering and Technology 9(1), 587-600 (2018).  

7. Kumar, G., Kumar, M., Tomer, A.: Optimization of End Milling Machining Parameters of 
SS 304 by Taguchi Technique. In: Muzammil M., Chandra A., Kankar P.K., Kumar H. (eds.) 
Lecture Notes in Mechanical Engineering, Springer, Singapore (2020).  

8. Qehaja, N., Zhujani, F., Abdullahu, F.: Mathematical model determination for surface 
roughness during CNC end milling operation on 42CRMO4 hardened steel. International 
Journal of Mechanical Engineering and Technology 9(1), 624-632 (2018).  

9. Wojciechowski, S., Wiackiewicz, M., Krolczyk, G.M.: Study on metrological relations be-
tween instant tool displacements and surface roughness during precise ball end milling. 
Measurement 129, 686-694 (2018).  

10. Li, Z.-L., Zhu, L.: Mechanistic Modeling of Five-Axis Machining With a Flat End Mill 
Considering Bottom Edge Cutting Effect. Journal of Manufacturing Science and Engineer-
ing 138, 111012 (2016).  

11. Gao, P., Liang, Z., Wang, X., Li, S., Zhou, T.: Effects of different chamfered cutting edges 
of micro end mill on cutting performance. The International Journal of Advanced Manufac-
turing Technology 96, 1215–1224 (2018).  

12. Das, R., Mohanty, S.S., Panigrahi, M., Mohanty, S.: Predictive modelling and analysis of 
surface roughness in CNC milling of green alumina using response surface method and ge-
netic algorithm. In: IOP Conference Series: Materials Science and Engineering 410 (2018).  

13. MakeItFrom, "Home>Aluminum Alloy>AA 6000 Series (Aluminum-Magnesium-Silicon 
Wrought Alloy)>6082 Aluminum," [Online]. Available: https://www.makeitfrom.com/ma-
terial-properties/6082-T6-Aluminum. [Accessed 25 November 2021]. 

14. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of 
the sixth international symposium on micro machine and human science (1995). 

15. Ghosh, T., Martinsen, K.: CFNN-PSO: An Iterative Predictive Model for Generic Paramet-
ric Design of Machining Processes. Applied Artificial Intelligence 33(11), 951-978 (2020).  


	1 Introduction
	2 Material and Method
	2.1 Material
	2.2 Experiments

	3 Methodology and Results
	3.1 Results and Discussion

	4. Conclusions
	Acknowledgement
	References

