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Abstract—The assimilation of ocean temperature measure-
ments into ocean models provides useful insights on how to
design heterogeneous ocean observation systems. In systems of
this kind, ocean models can be complemented with multiscale
operational assets such as satellites and in-situ unmanned vehi-
cles. In this article, the authors simulate three different ocean
model domains with horizontal resolutions of 20 km, 4 km and
800m. The assimilated data sets are a global observation product
including sea surface temperature, a vertical temperature profile
measurement data set from the Norwegian Sea, and sea surface
temperature measurements from an unmanned surface vehicle
operating in the coastal waters of Frohavet (Central Norway).
The key outcomes of the study suggest that global covering
data sets should be assimilated in coarse model domains when
available, while the intermediate and local data sets can be
assimilated if they are covering areas of specific interest, and
can be omitted otherwise.

Index Terms—Ocean modeling, Data assimilation, Multiscale
observational systems

I. INTRODUCTION

In a time of unprecedented focus on the ocean, monitoring
and forecasting of the aquatic environment are becoming
increasingly important in order to understand the impact that
human activities such as fisheries, aquaculture and shipping
have on the environment. Commonly, studies of this kind
make use of ocean models of varying complexity and spatio-
temporal resolution, as well as local or global observations of
the ocean state. Ocean models are usually subject to errors,
either by simplifications in the mathematical description of real
processes, or by uncertainties in relevant model parameters and
inputs [1]. Additionally, also ocean observations are suscepti-
ble to measurement errors. Combined, the ocean models and
observations form a synergistic toolbox for a more correct and
reliable estimate of the ocean state. The combination is usually
done by methods for data assimilation and, in this study, the
Ensemble Kalman Filter (EnKF) is used for model corrections
[2].

Today, ocean studies making use of data assimilation tech-
niques benefit from an increasingly large pool of available
measurement, including both global coverage data sets from
organizations such as the Copernicus Marine Environmental

Monitoring Service (CMEMS), and local coverage sets ob-
tained through sporadic field campaigns [3]. In this article,
the authors investigate the effect of assimilating ocean obser-
vations of different spatial coverage into ocean model domains
of varying spatial and temporal resolution. The objective is to
determine how to design an ocean observing system given an
area of interest and available multiscale operational assets.

The observation data used in this study is a combination
of publicly available data sets from CMEMS and Met Office
Hadley Centre for Climate Science and Services [4]–[7], in
addition to data from an ocean observation field campaign
conducted by the Norwegian University of Science and Tech-
nology (NTNU) in April, 2022, in the semi-enclosed sea
named Frohavet (Central Norway). The purpose of the field
campaign was to conduct an initial test of the “observational
pyramid”, which is an observation system consisting of a small
satellite, aerial drones, Autonomous Surface Vehicles (ASVs)
and Autonomous Underwater Vehicles (AUVs), together with
ground proofing from biologists [8]. In other words, a tool
to study an ocean phenomenon on all spatial and temporal
scales at the same time. When conducting such large-scale
field campaigns with multiscale operational assets making het-
erogeneous measurements of the same physical or biological
quantity, an understanding of when and where to assimilate the
different observations into the ocean model for state estimation
and model correction is necessary, and is therefore the purpose
of this study. Similar work on observation systems for the
ocean can be found in [9]–[13].

The manuscript is organized as follows. In Section II an
overview of the theory and methods is given. First, the
ocean model SINMOD is presented along with the three
computational domains of interest. Then, a presentation of
the EnKF equations as well as considerations taken when
implementing the filter is provided. Three sources of ocean
measurements are available: the sea surface temperature (SST)
observation product from CMEMS [4]–[6], the EN4 quality
controlled ocean data product [7], and the SST measurement
provided by the AutoNaut wave-propelled ASV [14]. Finally,
the assimilation setup of the various computational domains,
with or without data assimilation, is shown. In Section III the



results from the various simulations are presented, while a
discussion of the data and of the consequences of assimilating
data at different scales is provided in Section IV. Section V
lists some concluding remarks from this work.

II. THEORY AND METHOD

A. SINMOD ocean model

The model in this study is a physical-chemical-biological
model of the Arctic Ocean and the Norwegian Sea based
on the primitive Navier-Stokes equations. The model uses z-
coordinates vertically, and a regular horizontal grid based on
the polar stereographic projection [15], [16]. It operates in a
nested set-up such that the model domains covering the largest
scales run with lower spatial and temporal resolution and pro-
vides boundary conditions for model domains covering smaller
scales with higher spatial and temporal resolution. The model
domains of interest in this study are shown in Figures 1a to 1c
which are the GIN domain, Nor4km domain and Mids domain
with 20 km, 4 km, 800m horizontal resolution respectively.
The red rectangle in Fig. 1a and 1b indicates the boundaries
for Nor4km and Mids respectively.
Each instance of the model is parallelized using OpenMP
[17], and a Message Passing Interface (MPI) [18] is used to
facilitate communication between each ensemble member and
the process which executes the EnKF calculations. This allows
the EnKF and each ensemble member to run on different
computing nodes with relatively low overhead.
For this specific study, the biology calculations are not acti-
vated.

B. Ensemble Kalman Filter formulation

In this study, the Ensemble Kalman Filter (EnKF) is used
to assimilate temperature measurements into the SINMOD
ocean model described in Section II-A. An ensemble of model
simulations is run in parallel to represent the error statistics of
the ocean state and, in particular, the temperature state. The
method is proven to handle strong nonlinear dynamics and
large state vectors which is the case for ocean models such as
SINMOD [2], [19].

1) Equations: The implementation of the EnKF follows the
formulation presented in [2], [20]–[22] with a minor difference
in the representation of the measurement error introduced by
[23].

The forecast ensemble consisting of N ensemble members,
each containing n state variables, can be written as the n×N
matrix

Xf = [x1, . . . , xN ], (1)

where the column vectors are the state vectors xi of dimension
n. The ensemble mean is defined to be

E(Xf ) =
1

N

N∑
k=1

xk =
1

N
(XeN×1)e1×N , (2)

with dimension n×n. The vector e, whose entries are all ones,
is introduced as it is closer in terms of notation to how the

averaging is implemented numerically. The ensemble spread
is defined as

θ = Xf − E(Xf ) = X − 1

N
(XeN×1)e1×N (3)

giving the ensemble covariance matrix

Ψ =
θθT

N − 1
. (4)

Measurements are organized in a vector, d, with a size equal
to the number of measurements, m × 1. The corresponding
measurement error covariance matrix, R, is of size m × m.
Independent random perturbations are drawn from a normal
distribution with expectation 0 and variance corresponding to
the values in R. These perturbations are added to N instances
of the measurement vector d to form a measurement matrix
D with size m×N such that

D = [d1, . . . , dN ], dj = d+ vj , vj ∼ N(0, R) (5)

where vj are the independent random perturbations with
standard deviation corresponding to the uncertainty of each
measurement. The analysis step is then given by

Xa = X +ΨHT (HΨHT +R)−1(D −HXf ), (6)

where H is the observation matrix with rows indicating the
linear combination of state variables corresponding to each
measurement.

To avoid computing Φ directly which is impractical for state
vectors with millions of variables, equation (6) can be rewritten
to

Xa = Xf +
1

N − 1
θ(Hθ)TP−1(D −HXf ), (7)

where

P =
1

N − 1
Hθ(Hθ)T +R, (8)

Hθ = HXf − 1

N
((HXf )eN×1)e1×N (9)

2) Sequential setup: Depending on the number of available
measurements in each assimilation cycle, and on how the
memory is distributed to each rank on the computing nodes,
the observation matrix H of size m×n may become too large
to be stored in memory. For certain simulations in this study,
H can be as large as 72GB. To handle these large matrices
the available measurements are split into P batches and the
assimilation cycle is run sequentially P times in a loop. Table
I lists the different simulations and whether the assimilation
cycle is implemented sequentially or not.
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Fig. 1. Computational model domain with depth fields for GIN with a horizontal resolution of 20 km, shown in Fig. 1a, Nor4km with a horizontal resolution
of 4 km, shown in Fig. 1b and Mids with a horizontal resolution of 800m, shown in Fig. 1c. The red rectangular box in the first two domains indicates the
sub-domain boundaries. The orange points in 1b indicate the location of the measurements in the EN4 data set for the time period January, 2021 to May,
2022. The orange line in Fig. 1c indicates the path covered by the AutoNaut in April, 2022.

3) Localization: The ensemble undersampling is due to
finite ensemble size and causes spurious long-range cross-
correlations between state variables. This in turn leads to
a nonphysical and erratic analysis update of the ensemble
members [19], [24], [25]. The long-range correlations can
be dampened by vertical and horizontal covariance localiza-
tion which is implemented as a Schur product of a quasi-
Guassian, isotropic, distance-dependent localization function
(the Gaspari-Cohn function [26]), and the covariance terms in
the analysis step, as shown in Equations (10) and (11):

ρh ◦ ρv ◦ θ(Hθ)T , (10)

ρh ◦ ρv ◦Hθ(Hθ)T , (11)

where the Gaspari-Cohn matrix ρ is

ρh,v(d, c) =

−1

4
(|d|/c)5 + 1

2
(|d|/c)4 + 5

8
(|d|/c)3

−5

3
(|d|/c)2 + 1,

0 ≤ |d| ≤ c,

1

12
(|d|/c)5 − 1

2
(|d|/c)4 + 5

8
(|d|/c)3

+
5

3
(|d|/c)2 − 5(|d|/c) + 4− 2

3
c/|d|,

c ≤ |d| ≤ 2c,

0, 2c ≤ |d|
(12)

where d is the spatial distance between two state variables,
and c =

√
10/3 ∗ L, where L is the localisation radius.

This smoothly dampens any covariance structures outside of
a preset localization distance which depends on the horizontal
and vertical resolution in the model of interest.

4) System noise: In this work, the system noise is modeled
by adding spatially coherent perturbations to the atmospheric
wind velocity field, [27], in the hourly ERA5 data set from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). This data set covers the Earth on a 30 km grid

and includes 137 vertical layers from the surface and up to
80 km [28]. The wind velocity field is interpolated to fit the
horizontal resolution of the different model domains in the
ocean model.
The perturbations are generated every time a new wind field
is indexed by the ocean model to be used as atmospheric
forcing and are computed by taking the difference of the wind
velocity field at two randomly selected dates within a time
span of one year and scaling the difference with a temporal
autocorrelation factor, γ. The perturbation is aggregated over
time but dampened with a factor µ. The zonal, τx, and
meridional, τy , wind field components applied to ensemble
member i at time tk are then given by

τ ix,y(tk) = τ ix,y(tk) + µδτ ix,y(tk) (13a)

δτ ix,y(tk) = fδτ ix,y(tk−1) + γ{τx,y[tik1]− τx,y[t
i
k2]} (13b)

where the perturbation amplitude is set to µ = 0.2 and the
temporal autocorrelation is set to γ =

√
1− (f2), where f =

0.98. tik1 and tik2 are two randomly selected dates.
5) Simplifications: The EnKF offers no guarantees of the

maximum or minimum values of a posteriori estimates, even
for directly observed states. To ensure that the analysis up-
date is within physically accepted limits, any updates to the
temperature are limited to the interval [−1.8◦C, 35◦C], where
the lowest value represents the freezing temperature of saline
water.

C. Measurement data

In this work, three sources of observations are used and
assimilated at different spatial and temporal scales.

1) CMEMS SST product: The observation data set covering
the largest spatial scales is a sea surface temperature obser-
vation product from the Copernicus Marine Environmental
Monitoring Service (CMEMS) [4]–[6]. The data set consists
of daily global ocean maps of the foundation SST using both
in-situ and satellite data from both infrared and microwave
radiometers, provided by the Group for High-Resolution Sea



Surface Temperature (GHRSST) project. The operational setup
is run by the UK’s Met Office. Its horizontal grid resolution is
0.05◦ × 0.05◦ which transforms to a 5.53 km horizontal reso-
lution along the latitudinal axis, and a longitudinal horizontal
resolution dependent on the latitude. The horizontal resolution
at the southernmost point in Norway corresponds to 1.21 km,
whereas the northernmost point in Norway corresponds to
1.81 km.

For this study, only every third day of observations is
assimilated into the largest model domain with spatial res-
olution 20 km in the time interval January 2020 to May 2022.
The uncertainty of the SST observation product was set to
∆T = 0.02◦C.

2) EN4 quality controlled ocean data: The observation
data set EN4 is assimilated into the intermediate scale model
with a resolution of 4 km. EN4 consists of data from a
number of ocean profiling instruments that provide temper-
ature and salinity measurements [7]. Its primary source is
the World Ocean Database 2009 (WOD09) National Oceanic
and Atmospheric Administration (NOAA) and the National
Centers for Environmental Information (NCEI). Additionally,
a subsection of the data set provided by the Arctic Synoptic
Basin Wide Oceanography (ASBO) project is included to
improve arctic coverage. Moreover, the Global Temperature
and Salinity Profile Program (GTSPP) and Argo data from
the Argo global data assembly centers (GDACs) are included.
Together, these sources are processed and quality controlled
to form the EN4 quality-controlled ocean data which are
distributed on a monthly basis about two months after they
are collected.

The depths at which the profiles provide measurements vary
with location and time, and do not exactly match the fixed
depth layers of the ocean model. To account for this, the
vertical profile measurements are interpolated to the ocean
model depth layers using a cubic spline interpolation. Further-
more, the deepest measurement of every profile is removed
to increase the interpolation accuracy. For this study, every
available profile within the Nor4km model domain, indicated
by orange dots in Fig. 1b, has been assimilated at simulation
time in the time interval July 2021 to May 2022, which
amounted to roughly one profile observation per hour. The
measurement error was set to ∆T = 0.002◦ according to [29].

3) The AutoNaut: a wave-propelled USV: The AutoNaut1

is a commercially available surface vehicle produced and
supplied with a proprietary control and communication system
[30]. The data used in this work were collected by a 5 meter
long version of the AutoNaut in which payload control, nav-
igation and communication systems are developed by NTNU
with a publicly available hardware and software architecture2

based on the DUNE unified navigation environment [31], as
described in [32].
The AutoNaut USV carries an innovative propulsion system
that relies on sea surface waves to produce forward thrust,

1http://www.autonautusv.com
2http://autonaut.itk.ntnu.no/doku.php

making it suitable for sustained operations at sea without
human assistance. The ground speed of the vehicle is mainly
determined by waves and normally reaches 0.5 to 3 knots,
although drifting forces generated by winds and sea currents
may under certain circumstances degrade speed and impact
navigation performance [33]. The USV’s heading is governed
by an electric stern rudder powered by an onboard battery
bank. A set of three solar panels supplying up to 300 W allows
continuous energy harvesting and recharging of the battery
bank, extending vehicle autonomy to several weeks. Unlike
common robotic marine platforms, the AutoNaut is there-
fore less constrained by the energy limitations that normally
affect propulsion and payload usage, ensuring long-duration
autonomous missions.
The uncertainties of the AutoNaut temperature measurements
were set to ∆T = 0.005◦C.

D. Assimilation tree

A series of simulations are run in a tree branching setup
as shown in Fig. 2, where model domains with coarse spatial
resolution generate boundary conditions for model domains
with finer spatial resolution. The propagation of boundaries
is indicated by arrows. Gray blocks indicate free-running
models with no assimilated measurements, whereas green
blocks indicate models with assimilation of measurements. An
overview of the model domains, the horizontal resolution, the
corresponding assimilated measurement, and the simulation
time period is presented in Table I. In order to effectively
describe the individual simulations the following naming
convention is used. Consider the horizontal axis in Fig. 2,
showing the same models with different boundary conditions
and available measurements. Two levels are available for GIN,
three levels for Nor4km, and four levels for Mids, where the
last levels for all models have data assimilation enabled. The
level associated with each simulation will be referred to as L1
to L4 and added to the name of the model, e.g., the Nor4km
simulation without data assimilation of the EN4 data set, that
uses boundary conditions from the GIN simulation with data
assimilation of the SST observation product from CMEMS,
will be named Nor4km-L2.

III. RESULTS

A. Large scales

Two simulations are run for the GIN model covering the
largest spatial scales of 20 km horizontal resolution. One in
a free-run setup with no measurements, and the other with
assimilation of the SST observation product from CMEMS
(see Section II-C1). A series of plots is presented in Fig.
3, each showing the difference in SST between the free-
run simulation (GIN-L1) and the data assimilated simulation
(GIN-L2), at different time steps. The time steps are February
26, 2021, June 25, 2021 and March 29, 2022 in Fig. 3a, 3b
and 3c respectively. The red color in the figures indicates a
warmer SST in the free-run simulation. The warmer bias in the
free-run simulation can be seen for the winter and spring time
steps in the North Sea, Norwegian Sea and the Barents Sea.



TABLE I
SIMULATIONS WITH THE CORRESPONDING ASSIMILATION SETUP.

Model Horizontal resolution Measurements Time period Batching Vertical localisation Horizontal localisation
GIN-L1 20 km - January 2020 - May 2022 - - -
GIN-L2 20 km CMEMS SST product January 2020 - May 2022 Yes 100m 80 km

Nor4km-L1 4 km - July 2021 - May 2022 - - -
Nor4km-L2 4 km - July 2021 - May 2022 - - -
Nor4km-L3 4 km EN4 July 2021 - May 2022 No 50m 8km

Mids-L1 800m - January 2022 - May 2022 - - -
Mids-L2 800m - January 2022 - May 2022 - - -
Mids-L3 800m - January 2022 - May 2022 - - -
Mids-L4 800m Autonaut March 2022 - May 2022 No 20m 1km

20 km

4 km

800 m

4 km

800 m

4 km

800 m

20 km

800 m

Fig. 2. Branching assimilation setup for the three model domains, indicated
with their respective horizontal resolution, with three different sources of
measurements: the SST observation product represented by a satellite, the
EN4 data set represented by an ARGO floater, and lastly the AutoNaut. Gray
boxes indicate simulations without data assimilation. Green boxes indicate
simulations with data assimilation. The black arrows indicate the direction of
propagation of boundary or measurement information.

Similarly, the Icelandic Sea and the Baffin Bay in Greenland
are generally colder in the free-run simulation for the same
time steps.

B. Intermediate scales

Three simulations are run for the Nor4km model covering
the intermediate spatial scales of 4 km horizontal resolution:
Nor4km-L1, Nor4km-L2 and Nor4km-L3, where the last sim-
ulation includes data assimilation of the EN4 data set presented
in Section II-C2. Fig. 4 shows the difference in SST between
the three simulation setups at the time April 12, 2022. The SST
difference between Nor4km-L1 and Nor4km-L2 is presented
in Fig. 4a. A clear temperature bias is seen in shallow waters,
e.g., in the North Sea and between Scotland and Iceland,
indicating that information from the SST observation product

assimilated in GIN-L2 propagates to Nor4km-L2 via the
boundary conditions. However, for parts of the Norwegian and
Greenland Sea with greater depths (2000m and below), the
temperature bias is not present.

The SST difference between Nor4km-L1 and Nor4km-L3
is presented in Fig. 4b. Here, the same warm temperature
bias is seen for shallower parts of the ocean. However, the
deeper parts are now also altered compared to the free-run
model, but with a varying warm/cold bias. This is seen more
clearly in Fig. 4c showing the difference between Nor4km-
L2 and Nor4km-L3. Corrections to the Nor4km-L3 simulation
are taking place in the deeper regions due to the EN4 profile
measurements. The corrections are insignificant outside of this
deep-water area.

C. Small scales

For the domain covering the smallest spatial scales of
800m horizontal resolution, four simulations are run: Mids-
L1, Mids-L2, Mids-L3 and Mids-L4, where Mids-L4 assim-
ilates measurements from the AutoNaut (see Section II-C3).
A subdomain of Mids including Frohavet is investigated. The
SST difference between Mids-L1 and Mids-L2, Mids-L1 and
L3 and Mids-L1 and Mids-L4 are represented in Figures 5a
to 5c. Moreover, the position of the assimilated AutoNaut
measurements in the Mids-L4 simulation for a one-hour time
interval before and after the analysis step is indicated by the
orange line in Fig. 5c. All three comparison plots show the
warm bias from Mids-L1. Additionally, a significant local
correction is seen in the areas surrounding the AutoNaut
measurements.

Fig. 6a and 6b present time series of the surface temperature
for all Mids simulations at two locations. While the former
is far from the shore with deeper waters, the latter is in
the AutoNaut’s operational area in shallower waters. Both
time series are for the simulation period January, 2022 to
May, 2022. The time series for both the deep and shallow
points show a similar temperature trend where the Mids-L1
and Mids-L2 simulations are overlapping in value. Not until
March does Mids-L1 deviate from the other three simulations,
and at that point, Mids-L1 is seen to hold higher surface
temperature values primarily for the deep point far away from
the coast for the remainder of the simulation time, and for
the time period March, 2022 to April, 2022 for the shallow
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(b) June 25, 2021
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(c) March 29, 2022

Fig. 3. Comparison plots at three different time steps showing the difference between the free-run GIN-L1 simulation and the GIN-L2 simulation with
assimilation of the SST observation product. The time steps are indicated in the sub-captions of each figure.
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Fig. 4. Three comparison plots of the Nor4km simulations at the time step April 12, 2022. Fig. 4a shows the difference between Nor4km-L1 and Nor4km-L2.
Fig.4b shows the difference between Nor4km-L1 and Nor4km-L3, and lastly, Fig. 4c shows the difference between Nor4km-L2 and Nor4km-L3.

point. For the simulations Mids-L2, Mids-L3 and Mids-L4,
the values follow the same trend, all deviating from the
free-run simulation.

Fig. 6c and 6d show a time series of both SST values and
the root mean square error (RMSE) of the simulated SST and
that measured by the AutoNaut. The spatial location for each
time point is varying according to the position of the AutoNaut
such that the values are taken from the model grid cells closest
to the ASV’s location at the time. In Fig. 6c, the orange line
indicates the vehicle’s measurements. The small bias in the
SST which was seen for the shallow point in Fig. 6b for the
time period March, 2022 to early April, 2022, is also seen in
Fig. 6c. However, the Mids-L4 simulation which assimilates
the AutoNaut data is seen to follow the local observations more
closely. Eventually, all four simulations follow the temperature
trend measured by the ASV. The order of magnitude of the
deviations from simulated SST and measured SST seen in
Fig. 6d show the same result, that the Mids-L4 simulation is
closest in value to the local measurements. Note that there is a
small period for which the vehicle did not collect temperature
measurements (April 7, 2022 to April 11, 2022) and in this
time period the RMSE for Mids-L4 increased.

IV. DISCUSSION

A. Technical aspects of the EnKF implementation

The EnKF framework utilized in this study is the first
version of this scale to be implemented for the SINMOD ocean
model and some technical considerations should be discussed
to facilitate improvement for future versions.

The amount of computational resources required to run
the EnKF framework varies drastically from case to case,
depending on how many measurements are to be assimilated
for each time step. The Nor4km-L3 and Mids-L4 which
assimilates a number of measurements on the order of O(1)−
O(100), the assimilation step takes only a couple of seconds.
However, for the GIN-L2 simulation, which assimilates the
SST observation product for every wet surface cell which
accounts to approximately 28000 measurements assimilated
into 687000 state variables, the assimilation step takes close
to 15 minutes. This is not much if the framework is to be
utilized in an operational setup where new large-scale satellite
measurements only become available every couple of hours
and the simulation is only meant to forecast a couple of days
in advance. However, for longer simulations spanning years,
a subset of the measurements would be enough to correct the
model by allowing further correction of the other state vari-
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Fig. 5. Three comparison plots for a subdomain of the Mids simulations at the time step April 6, 2022. Fig. 5a shows the difference between Mids-L1 and
Mids-L2. Fig. 5b shows the difference between Mids-L1 and Mids-L3, and Fig. 5c shows the difference between Mids-L1 and Mids-L4. The orange line in
Fig. 5c indicates the position of the AutoNaut in a one-hour time interval before and after the time of the displayed temperature field.

ables through the covariance structure and localization length.
On the other hand, GIN requires relatively few CPU cycles to
simulate and its main computational cost is associated with the
assimilation step. For Nor4km, the model domain is smaller
in spatial scale, but the amount of state variables is roughly
13 times more than in the GIN model, meaning its main
computational cost is associated with running the model itself
and not the assimilation step. To summarize the computational
footprint of this study, a total of 90’000 CPU hours were used
to develop and run the 9 simulations outlined in Fig. 2.

Due to a limited computational budget, the number of
ensemble members varied from 23 to 29 for each of the
simulations GIN-L2, Nor4km-L3 and Mids-L4. As explained
in Section II-B3, the small ensemble size may cause spurious
cross-correlations across large distances, and this was observed
especially in regions close to the ice edge, where the edge
moved in and out of neighboring wet cells, causing a large
variance in the temperature. Localization prevented the update
of state variables due to long-range correlations. However, the
choice of horizontal localization radius should, for the Mids-
L4 simulation, be chosen larger than the one presented in
Table I. This would likely cause a more distinct and lasting
update for a larger region in the local area, and not only in the
very close proximity of the AutoNaut. Although, increasing
the radius too much would reintroduce the spurious cross-
correlations. In that case, the simulations would benefit more
from increasing the number of operational assets producing
observations and increasing the ensemble size, as the local-
ization radius should then be chosen not only based on the
covariance structure but also on the available assets in the
area. The same reasoning applies to Nor4km-L3. However,
that simulation and assimilated measurement are designed to
cover a larger spatial scale than the Mids-L4 simulation, and
the localization radius should be increased in any case.

On the topic of system noise, as explained in Section II-B4,
only the perturbations on the atmospheric forcing were applied
to model the total system noise. For state variables near
the top surface layers, this worked fairly well. However, for
deeper layers, the ensemble spread was limited. After some

initial spin-up, the deeper state variables still experienced a
covariance with a magnitude surpassing the uncertainty in the
available measurements, allowing for model corrections on
the deeper layers as well. An alternative would be to add
perturbations to other elements of the model, for instance,
parameters related to vertical and horizontal mixing or direct
perturbation of the state variables [27].

B. Systematic bias

There are clear deviations from the free-run simulations
GIN-L1, Nor4km and Mids-L1, which are used as bench
marks for most of the comparison results in Section III, and
in the corresponding simulations which directly assimilates
measurements or indirectly through boundary conditions. Even
though the deviations in Nor4km and Mids are seen to be
warmer in the free-run models, it is not necessarily true for
all time steps through a full year simulation. The GIN model is
analyzed for three different time steps and compared to GIN-
L2, some areas, specifically the Baffin bay and regions around
Greenland are seen to be colder at all times. However, the
majority of the computational domain is warmer during winter
times and colder in the summer. This indicates that there is
no constant systematic bias which can easily be corrected for
throughout the model.

Another remark is that the measurements assimilated into
GIN-L1 is the foundation SST, i.e., the surface temperature
free of diurnal temperature variability. It is defined to be the
temperature at the first time of the day when the heat gain
from the solar radiation absorption exceeds the heat loss at
the sea surface, meaning that the measurement will give a
cold temperature relative to other times of the day. The time
of assimilation is set to midnight which doesn’t necessarily
exactly fit the time of the measurement, and may cause a
model correction which is generally colder than it should be.

As presented in Section III-B, the deviations from free-run
simulation and assimilated simulation for the Nor4km model
seemingly varies with depth, which is an effect not seen in
the GIN-L2 simulation. For the GIN-L2 simulation, the deep-
water areas receive updates directly from the measurements,
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Fig. 6. Four time series of the temperature field in the Mids simulations at the varying location. Fig. 6a shows the time series of a point in relatively deep
waters in the Mids domain, i.e., the point (200, 350) in the coordinate system seen in Fig. 1c. Fig. 6b shows the time series of the same simulation, but for
a point closer to the operational area of the AutoNaut, i.e., (380, 138). Fig. 6c shows a time series where the temperature is evaluated in the cell closest to
the position of the ASV in each time step. Fig. 6d shows the time series of the RMSE of the simulated temperature at the ASV’s location and the AutoNaut
measurements.

both in the surface layer, and in the lower layers within
the vertical localisation radius. For the Nor4km-L2, the same
area only receives this cooling effect through the boundary
conditions, and an increased vertical mixing may neglect the
effect altogether making the warm bias less persistent for
Nor4km-L2 in the deeper areas than in the shallower areas
compared to the GIN-L2 simulation. Once the EN4 data set
is assimilated, with a high measurement density in the deeper
areas, the same area which didn’t experience corrections in
Nor4km-L2, gets corrections in Nor4km-L3. These are seen
to be of both cold and warm character in Fig. 4c and don’t
show a clear trend other than the corrections being larger for
deeper waters than for shallow water. Note that the effect from
GIN on the boundaries of Nor4km is mainly felt in the area

drawn by the line from the North sea going westwards passing
through the Celtic sea and Icelandic sea to Greenland. The rest
of the boundaries are mainly covered by land or ice.

The warm bias close to shore during winter or spring is
notable in all three model domains. Interestingly, neither the
large scale corrections in GIN-L2 or the intermediate scale
corrections in Nor4km-L3 are capable of providing an accurate
temperature field in very local regions in the Mids model.
The deviation from the free-run model seen in Mids-L2 and
Mids-L3 indicates that the assimilation of the SST observation
product in the coarse large scale model has an impact on
even the smaller scales, and the assimilation of the EN4 data
in the intermediate scales are close to negligible. Once the
local asset data from the AutoNaut is included in Mids-L4,



a large correction is seen on all time steps it is operating,
surpassing the correction from the largest scales, indicating
that local assets in high resolved domains are necessary to
build a complete picture of the ocean state when investigating
local phenomena.

C. Effect of assimilating at different scales

As indicated in the previous sections, the choice of when
and where to assimilate available measurements in model
domains of different horizontal resolution, will affect the
simulations to varying degree. The largest impact on all non-
free-run simulations in this study is seen from the large scale
covering SST observation product. Its effect is best seen in
figure 6a where all simulations subject to the assimilated SST
observation product is seen to deviate from the free-run model,
while the simulations covering other measurements are all seen
to be following each other, suggesting that the coarser data
set contribute on all scales to make a good foundation for
assimilation at smaller scales.

The effect of the intermediate scale measurements, the
EN4 data set, is insignificant on a large scale compared to
assimilation of the SST product. However, as presented in
Section III-B it contributes with large corrections for the deep
water areas, as the data set is of three-dimensional character
and provides measurements not only on the surface layer, but
also in the deeper layers. Nonetheless, the effects of these
corrections are close to negligible on the boundary of the
Mids domain. For studies of areas closer to the location of
the observing instruments in the EN4 data set, the corrections
would be more relevant. Note that the location of the majority
of the measurements in the EN4 data set is far away from
boundary for the Mids domain. If the measurements were
closer they might have influenced the simulations in the
smaller domain to a larger extent.

Assimilating the ASV measurements in the Mids domain
would not likely yield a different result if the EN4 data set was
assimilated or not in the Nor4km domain. However, removing
the SST observation product from the GIN model would
definitely make a difference on the Mids simulations. Recall
that red colors in the comparison plots are to be interpreted
as the free-run simulation being warmer than simulations
with assimilation. As seen in Section III-C, the cooling effect
caused by the ASV measurements for this specific time step
and area would not likely be as lasting if not the boundaries to
the model domain was not already corrected for the systematic
bias from the coarser domains. The simulated temperature in
the cells surrounding the ASV measurement would likely be
warmer, and the cooling effect would rapidly be mixed and
diminished into the neighbouring warm cells.

D. Recommendations

Based on the findings in this study, some general points can
be made on the design of observational systems with mul-
tiscale heterogeneous measurements together with an ocean
model corrected with an EnKF framework.

A specific location of interest as well as the spatial reso-
lution should be chosen before the design of the simulations
with assimilation take place. Basing the recommendations on
observational systems with models and measurements similar
to those used in this study, an area of interest studied by coarse
models such as the GIN model, subject to either warm or cold
temperature bias would benefit from large scale corrections
from low resolved global covering data sets such as the SST
observation product from CMEMS. The otherwise simplified
GIN simulation will be corrected to provide a better foundation
for further analysis in the coarse computational domain. Other
measurements on this scale are not tested in this study, but
are not expected to have a significant impact on the coarse
simulations as both the spatial and temporal resolution is of
such greater extent than simulations like, e.g., the Nor4km
model.

For studies in areas of intermediate length scales such as
the Nor4km simulation, the initial assimilation of the global
covering data set in the boundary domain, GIN, should be
present in any case. Moreover, if the studies are conducted on
shallow water areas in this domain, the results of this paper
don’t suggest any benefit from assimilating new measurements
on this scale. However, if the studies are conducted on
phenomena on greater depths, assimilation of vertical profile
measurements such as the EN4 data sets will impact the
result greatly. A decision on whether or not to assimilate
global covering data sets such as satellite measurements into
this intermediate length scale domain will depend on the
computational efficiency of running the model with or without
assimilation. For the case of a reanalysis study, adding more
measurements to the intermediate scales is likely to increase
accuracy of the simulations. However, for an operational set-
up the relative cost vs accuracy gain can be too high, and
assimilating large scale measurements in the coarser model
domains may be sufficient.

Furthermore, if the studies of interest concern very local
areas such as the subdomain of Mids presented in fig 5,
assimilation of measurements from local operative assets will
likely only be useful if these assets operate in close proximity
to the point of interest and the regions surrounding it, or if
the simulation time is long enough for the effect to propagate
throughout the computational domain. If the assets are oper-
ating far away from the area of interest, they are not likely to
have a significant effect on the simulation in this area.

V. CONCLUSION

In this work the Ensemble Kalman Filter was implemented
for the SINMOD ocean model and used to assimilate data
from three different sources into model domains with varying
spatial resolution. The results of this study suggests that ocean
models as part of observational systems for the ocean should
assimilate observations of global coverage into the coarsest
model domains whenever available to reduce propagation of
systematic bias in nested sub domains. Assimilation of mea-
surements at greater depths or of local extent can be omitted
unless the measurements cover regions in close proximity to



the investigated phenomena of interest.
An increased ensemble size as well as a more optimally
chosen localization radius would enhance the presented re-
sults. However, the discussion on the effect of assimilating
heterogeneous measurements at different spatial scales would
likely be unchanged.
Investigation of how variables not included in the state space,
e.g. biological variables, are influenced by assimilation of
measurements at varying spatial scales will be left for future
work.
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