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When is gray-box modeling advantageous
for virtual flow metering?
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Abstract: Integration of physics and machine learning in virtual flow metering applications is
known as gray-box modeling. The combination is believed to enhance multiphase flow rate
predictions. However, the superiority of gray-box models is yet to be demonstrated in the
literature. This article examines scenarios where a gray-box model is expected to outperform
physics-based and data-driven models. The experiments are conducted with synthetic data
where properties of the underlying data generating process are controlled. The results show that
a gray-box model yields increased prediction accuracy over a physics-based model in the presence
of process-model mismatch, and improvements over a data-driven model when the amount of
available data is small. On the other hand, gray-box and data-driven models are similarly
influenced by noisy measurements. Lastly, the results indicate that a gray-box approach may
be advantageous in nonstationary process conditions. Unfortunately, model selection prior to
training is challenging, and overhead on gray-box model development and testing is unavoidable.
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1. INTRODUCTION

Gray-box modeling is a methodology that integrates
physics-based modeling with machine learning techniques
in process model development (Willard et al., 2020). The
gray-box models are placed on a gray-scale dependent on
the degree of integration, ranging from physics-based to
data-driven models. A common perception is that physics-
based models require little data in development and are
more robust to noisy measurement than data-driven mod-
els. This perception arguably stems from the high ex-
trapolation capabilities demonstrated by many physics-
based models (Oerter, 2006). Nevertheless, complex physi-
cal phenomena can be challenging to model in detail using
first principles, and simplifications are generally necessary
for suitability in real-time control and optimization appli-
cations (Roscher et al., 2020). Simplifications reduce the
model capacity and thereby the ability to capture complex
physical behavior. Therefore, physics-based models often
have a bias, or process-model mismatch (Hastie et al.,
2009).

In contrast, many data-driven models have a large ca-
pacity, typically reducing model bias. Furthermore, some
data-driven models are computationally cheap to evaluate
and are therefore suitable for real-time applications. More-
over, they commonly have lower development and mainte-
nance costs compared to physics-based models (Solle et al.,
2016). On the other side, due to the inherent bias-variance
trade-off (Hastie et al., 2009), a large capacity often results
in high variance. High variance causes data-driven models
to struggle with extrapolation to future process conditions
and to yield low performance in the small data regime
(Roscher et al., 2020). Gray-box modeling is expected to

leverage the complementary and advantageous properties
of physics and data to minimize both bias and variance.
In other words, create a model that achieves high perfor-
mance in the presence of process-model mismatch, little or
noisy data, which extrapolates well to previously unseen
process conditions and is computationally efficient. Gray-
box modeling is similar to introducing strong priors in a
data-driven model. In image classification using convolu-
tions neural networks, strong priors in terms of parameter
sharing resulted in state-of-the-art performance (Hastie
et al., 2009).

One application where accurate process models are of
high importance is in virtual flow meters (VFMs): a soft-
sensor able to predict the multiphase flow rate in real-
time at convenient locations in a petroleum asset (Toskey,
2012). The standard practice in the industry today is
physics-based models, and several commercial simulators
exist (Amin, 2015). In later years, data-driven VFM
models have demonstrated high performance (AL-Qutami
et al., 2017a,b,c, 2018; Bikmukhametov and Jäschke, 2019;
Grimstad et al., 2021). On the other hand, due to the
inherently complex multiphase flow rate characteristics
and that the available data typically resides in the small
data regime (Grimstad et al., 2021), gray-box VFMs
have gained increasing attention, see (Bikmukhametov and
Jäschke, 2020; Hotvedt et al., 2020, 2021, 2022) and refer-
ences therein. However, superior performance over physics-
based or data-driven models has yet to be demonstrated.
This article contributes in this direction by investigating
four scenarios where a gray-box approach is believed to
excel over non-gray-box alternatives. These are formulated
as four hypotheses:

When is gray-box modeling advantageous
for virtual flow metering?
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Grimstad et al., 2021). On the other hand, due to the
inherently complex multiphase flow rate characteristics
and that the available data typically resides in the small
data regime (Grimstad et al., 2021), gray-box VFMs
have gained increasing attention, see (Bikmukhametov and
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1. INTRODUCTION

Gray-box modeling is a methodology that integrates
physics-based modeling with machine learning techniques
in process model development (Willard et al., 2020). The
gray-box models are placed on a gray-scale dependent on
the degree of integration, ranging from physics-based to
data-driven models. A common perception is that physics-
based models require little data in development and are
more robust to noisy measurement than data-driven mod-
els. This perception arguably stems from the high ex-
trapolation capabilities demonstrated by many physics-
based models (Oerter, 2006). Nevertheless, complex physi-
cal phenomena can be challenging to model in detail using
first principles, and simplifications are generally necessary
for suitability in real-time control and optimization appli-
cations (Roscher et al., 2020). Simplifications reduce the
model capacity and thereby the ability to capture complex
physical behavior. Therefore, physics-based models often
have a bias, or process-model mismatch (Hastie et al.,
2009).

In contrast, many data-driven models have a large ca-
pacity, typically reducing model bias. Furthermore, some
data-driven models are computationally cheap to evaluate
and are therefore suitable for real-time applications. More-
over, they commonly have lower development and mainte-
nance costs compared to physics-based models (Solle et al.,
2016). On the other side, due to the inherent bias-variance
trade-off (Hastie et al., 2009), a large capacity often results
in high variance. High variance causes data-driven models
to struggle with extrapolation to future process conditions
and to yield low performance in the small data regime
(Roscher et al., 2020). Gray-box modeling is expected to

leverage the complementary and advantageous properties
of physics and data to minimize both bias and variance.
In other words, create a model that achieves high perfor-
mance in the presence of process-model mismatch, little or
noisy data, which extrapolates well to previously unseen
process conditions and is computationally efficient. Gray-
box modeling is similar to introducing strong priors in a
data-driven model. In image classification using convolu-
tions neural networks, strong priors in terms of parameter
sharing resulted in state-of-the-art performance (Hastie
et al., 2009).

One application where accurate process models are of
high importance is in virtual flow meters (VFMs): a soft-
sensor able to predict the multiphase flow rate in real-
time at convenient locations in a petroleum asset (Toskey,
2012). The standard practice in the industry today is
physics-based models, and several commercial simulators
exist (Amin, 2015). In later years, data-driven VFM
models have demonstrated high performance (AL-Qutami
et al., 2017a,b,c, 2018; Bikmukhametov and Jäschke, 2019;
Grimstad et al., 2021). On the other hand, due to the
inherently complex multiphase flow rate characteristics
and that the available data typically resides in the small
data regime (Grimstad et al., 2021), gray-box VFMs
have gained increasing attention, see (Bikmukhametov and
Jäschke, 2020; Hotvedt et al., 2020, 2021, 2022) and refer-
ences therein. However, superior performance over physics-
based or data-driven models has yet to be demonstrated.
This article contributes in this direction by investigating
four scenarios where a gray-box approach is believed to
excel over non-gray-box alternatives. These are formulated
as four hypotheses:

When is gray-box modeling advantageous
for virtual flow metering?
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1. INTRODUCTION

Gray-box modeling is a methodology that integrates
physics-based modeling with machine learning techniques
in process model development (Willard et al., 2020). The
gray-box models are placed on a gray-scale dependent on
the degree of integration, ranging from physics-based to
data-driven models. A common perception is that physics-
based models require little data in development and are
more robust to noisy measurement than data-driven mod-
els. This perception arguably stems from the high ex-
trapolation capabilities demonstrated by many physics-
based models (Oerter, 2006). Nevertheless, complex physi-
cal phenomena can be challenging to model in detail using
first principles, and simplifications are generally necessary
for suitability in real-time control and optimization appli-
cations (Roscher et al., 2020). Simplifications reduce the
model capacity and thereby the ability to capture complex
physical behavior. Therefore, physics-based models often
have a bias, or process-model mismatch (Hastie et al.,
2009).

In contrast, many data-driven models have a large ca-
pacity, typically reducing model bias. Furthermore, some
data-driven models are computationally cheap to evaluate
and are therefore suitable for real-time applications. More-
over, they commonly have lower development and mainte-
nance costs compared to physics-based models (Solle et al.,
2016). On the other side, due to the inherent bias-variance
trade-off (Hastie et al., 2009), a large capacity often results
in high variance. High variance causes data-driven models
to struggle with extrapolation to future process conditions
and to yield low performance in the small data regime
(Roscher et al., 2020). Gray-box modeling is expected to

leverage the complementary and advantageous properties
of physics and data to minimize both bias and variance.
In other words, create a model that achieves high perfor-
mance in the presence of process-model mismatch, little or
noisy data, which extrapolates well to previously unseen
process conditions and is computationally efficient. Gray-
box modeling is similar to introducing strong priors in a
data-driven model. In image classification using convolu-
tions neural networks, strong priors in terms of parameter
sharing resulted in state-of-the-art performance (Hastie
et al., 2009).

One application where accurate process models are of
high importance is in virtual flow meters (VFMs): a soft-
sensor able to predict the multiphase flow rate in real-
time at convenient locations in a petroleum asset (Toskey,
2012). The standard practice in the industry today is
physics-based models, and several commercial simulators
exist (Amin, 2015). In later years, data-driven VFM
models have demonstrated high performance (AL-Qutami
et al., 2017a,b,c, 2018; Bikmukhametov and Jäschke, 2019;
Grimstad et al., 2021). On the other hand, due to the
inherently complex multiphase flow rate characteristics
and that the available data typically resides in the small
data regime (Grimstad et al., 2021), gray-box VFMs
have gained increasing attention, see (Bikmukhametov and
Jäschke, 2020; Hotvedt et al., 2020, 2021, 2022) and refer-
ences therein. However, superior performance over physics-
based or data-driven models has yet to be demonstrated.
This article contributes in this direction by investigating
four scenarios where a gray-box approach is believed to
excel over non-gray-box alternatives. These are formulated
as four hypotheses:

Hypothesis 1 Under mismatch between a physics-based
VFM and the process, a gray-box VFM developed from
the physics-based VFM achieves higher performance.

Hypothesis 2 With little available data, a gray-box VFM
obtains higher performance than a data-driven VFM.

Hypothesis 3 Increasing the noise level on the data, a
gray-box VFM is less influenced than a data-driven VFM.

Hypothesis 4 In nonstationary conditions, a gray-box
VFM yields higher performance than a data-driven VFM.

In Hypothesis 1, the increased capacity of the gray-box
compared to the physics-based model is believed to be
significant. In Hypothesis 1-3, the decreased capacity of
the gray-box compared to the data-driven model is be-
lieved to be decisive. In real life, available process data
can have several uncontrolled characteristics, for instance,
faulty sensor measurements. Such characteristics make it
challenging to examine and conclude on the hypotheses as
it is difficult to deduce whether a poor model performance
results from the modeling technique or the available data.
This has been experienced in previous work with gray-
box VFMs (Hotvedt et al., 2022). Therefore, in this work,
synthetic data designed to explore the hypotheses are
generated by a simulator of a petroleum production choke.
In several idealized experiments, the properties of gray-box
production choke models are compared to physics-based
and data-driven models. Hopefully, the results obtained
can act as a guide to when gray-box modeling is likely to
be advantageous, also in practical applications.

2. THE SIMULATOR

The simulator is a physics-based petroleum production
choke valve model. A typical production choke along
with available measurements is illustrated in Fig. 1. The

Fig. 1. Illustration of the production choke valve and
typically available measurements.

multiphase mass flow rate (a mixture of oil, gas, and
water) ṁ through the choke restriction is calculated using
an advanced version of the Sachdeva model (Sachdeva
et al., 1986), where slip effects, allowing the gas and liquid
phases to move with unequal velocity, are included in the
model. The slip model is taken from (Alsafran and Kelkar,
2009). The model requires measurements of the pressure
upstream (p1) and downstream (p2) of the choke valve, the
upstream temperature (T1), the choke opening (u), and the
mass fractions of the phasic fluids η = (ηoil, ηgas, ηwat).
The mass fractions are assumed to sum to one. The
volumetric multiphase flow rate q = qoil + qgas + qwat can
be obtained from the ṁ using the η and fluid densities ρ
at standard conditions (SC) (ISO, 1996):

qi =
ηiṁ

ρi,SC
, i ∈ {oil, gas,wat}. (1)

In the simulator, an area function relates the choke open-
ing to the effective flow area through the choke A(u).

This function will mimic an equal percentage valve, where
an equal increment in u results in an equal percentage
changed area. The simulator, or process, is referred to as
P and defined by the notation:

y = f(x;φ) + ε ∈ R, (2)

where the model output is y = q, f is the first
principle equations, the input measurements are x =
(p1, p2, T1, u, ηoil, ηwat) ∈ R6, and φ are constant model
parameters. Noise is added to q by sampling ε from a prob-
ability distribution, for instance, a Gaussian distribution.

3. DATASET GENERATION

Process P in Section 2 is used to generate three different
datasets Dk = {(xt, yt)}Nk

t=1, k = {1, 2, 3}. The index
t reflects time. The datasets are designed to investigate
the hypotheses in Section 1. The sequence of observations
in each dataset is sampled from the joint probability
distribution of P: pt(x, y) = pt(y |x)pt(x), where pt(x) is
the marginal distribution of the inputs and the output yt
follow the conditional distribution pt(y |x) expressed with
(2). Notice, P is allowed to be nonstationary resulting in
pt1(x, y) �= pt2(x, y) for t1 �= t2.

Dataset D1 is generated as a best-case scenario to fairly
examine Hypothesis 1-3 in Section 1. Firstly, the process is
assumed stationary: pt1(x, y) = pt2(x, y)∀t. Secondly, the
x are independently drawn. This is idealized as measure-
ments in real data are often strongly correlated (Hotvedt
et al., 2022). Thirdly, a large range of common process
conditions through the lifetime of a petroleum well is
covered by sampling the inputs from:

p1 ∼ U(30, 70) bar,
p2 ∼ N (22, 0.5) bar,

T1 ∼ N (50, 2) ◦C

u ∼ U(0, 100) %,

ηoil ∼ U(0, 80) %,

ηwat ∼ U(0, 20) %.

(3)

for any t. The p1, u, ηoil, and ηwat are sampled from
wide uniform distributions as they commonly vary much,
whereas p2 and T1 vary little, which is mimicked by
drawing from narrow normal distributions. To ensure
a sufficient dataset size N1 = 10000 observations are
sampled. Lastly, only normally distributed noise ε ∼
N (0, σ2

ε) is considered. The included noise levels are
σε ∈ {1, 2, 3, 4, 5, 10}, yielding a coefficient of variation
of σε/µ ∈ {0.02, 0.05, 0.07, 0.1, 0.12, 0.24}, where µ is the
mean of the noise-free flow rate measurements. Normally
distributed noise is an idealized case as measurement sen-
sors may comprise different noise types. However, it is
interesting to investigate how the models are influenced by
increasing level of idealized noise before introducing noise
of higher complexity. The dataset is randomly separated
into a training and a test dataset with N1,test = 2000.
From the training dataset, 20% are randomly extracted as
a validation dataset.

The D2 and D3 mimics two typical real case scenarios
where the process is nonstationary. In this study, only
virtual drift is simulated, meaning that nonstationarity
is caused by the marginal distribution pt(x) shifting in
time while the conditional distribution pt(y | x) stays
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Fig. 2. Illustration of the dataset mimicking typical behav-
ior when the reservoir is depleted with time.

constant (Ditzler et al., 2015). Virtual drift is commonly
seen for a petroleum asset. For instance, in time with the
reservoir being depleted, the pressure in the reservoir and
the upstream part of the choke decreases. If the petroleum
asset is producing on plateau, process engineers increase
the choke opening to maintain high production rates (Jahn
et al., 2008). Real drift, which is the opposite of virtual
drift, is typically a consequence of substantial mechanical
wear of equipment with time. It is believed that real drift is
less prominent than virtual drift in a petroleum asset and
is the reason why real drift is not simulated in this study.
In both datasets, N2 = N3 = 5000 noise-free observations
are sampled. The datasets are split into training and
test according to time with N2,test = N3,test = 2000.
Hence, the models will be used to predict future process
responses. The validation dataset consists of the 600 latter
training observations ordered by time. Dataset D2 mimics
the depleting reservoir as described above. This scenario
is illustrated in Figure 2. The p1 is decreased in time
using an exponential function, whereas the choke opening
is increased in steps of 2.5%. The remaining variables
are kept constant for any t: p2 = 22 bar, T1 = 50◦C,
ηoil = 85%, and ηwat = 2%. Dataset D3 mimics a scenario
where the gas-to-oil ratio (GOR) increases with time. This
phenomenon typically occurs when the reservoir pressure
drops below the bubble point pressure such that the gas
dissolved in the oil starts to escape (Jahn et al., 2008). Fig.
3 illustrates the resulting flow rate q and the mass fractions
of oil ηoil (green) and gas ηgas (orange) when the GOR is
linearly increased from 200 to 1000. The p1 is the same
as for D2 illustrated in Fig. 2. The remaining variables are
kept constant for any t: p2 = 22 bar, T1 = 50◦C, u = 100%,
and ηwat = 2%.

4. MODELS

Five production choke models have been developed: two
physics-based, one data-driven, and two gray-box models.
The models will be described briefly below. More details
can be found in Hotvedt et al. (2022). The first physics-
based model is the Sachdeva model, referred to as M, and
defined by the short notation

ŷM = fM(x;φM) ∈ R, (4)

Fig. 3. Illustration of the dataset mimicking typical be-
havior when the gas-to-oil ratio increases. The mass
fractions of oil and gas are the green and orange curve,
respectively.

The true area function is kept unknown, and a linear rela-
tionship is utilized instead. Among the φM is the discharge
coefficient, which is a multiplicative calibration factor used
to change the magnitude of the area function. In industrial
VFMs, additional calibration factors exist to change the
shape of the function. Here, these are excluded to restrict
the capacity of M, enforcing a significant mismatch be-
tween P and M.

The second physics-based model is the advanced Sachdeva
model used for P, described in Section 2, referred to as
M�. That is, the physical equations of the model are equal
to the simulator, and the true area function is known.
However, the true values of φ in P are kept unknown from
M� and φM� must be estimated from data. M� is defined
by

ŷM� = f(x;φM�) ∈ R. (5)

Hence, any process-model mismatch will be a consequence
of parameter deviation away from the true values and not
structural mismatches as for the M.

The data-driven model is a fully connected, feed-forward
neural network and is selected due to its large capacity.
The model D is defined by

ŷD = fD(x;φD) ∈ R, (6)

where φD = {(W1, b1), . . . (WL, bL)} are the weights and
biases in the neural network on each layer l = 1, ..., L. The
rectified linear unit is used as activation function.

The two different gray-box models are based on the M. The
first is an error model where a data-driven model attempts
to capture additive mismatches between P and M. This
model is referred to as H-E:

ŷH-E = fH-E(x;φH-E)

= fM(x;φM) + fD(x;φD) ∈ R. (7)

The second hybrid model addresses the unknown area
function of P by multiplying the initial linear function
of the M with a neural network: A = AM × AD. Hence,
both the magnitude and shape of the area function may
be adjusted. This model is referred to as H-A:

ŷH-A = fH-A(x;φH-A) = fM(x, AD;φM) ∈ R
AD = fD(x;φD) ∈ R. (8)
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The true area function is kept unknown, and a linear rela-
tionship is utilized instead. Among the φM is the discharge
coefficient, which is a multiplicative calibration factor used
to change the magnitude of the area function. In industrial
VFMs, additional calibration factors exist to change the
shape of the function. Here, these are excluded to restrict
the capacity of M, enforcing a significant mismatch be-
tween P and M.

The second physics-based model is the advanced Sachdeva
model used for P, described in Section 2, referred to as
M�. That is, the physical equations of the model are equal
to the simulator, and the true area function is known.
However, the true values of φ in P are kept unknown from
M� and φM� must be estimated from data. M� is defined
by

ŷM� = f(x;φM�) ∈ R. (5)

Hence, any process-model mismatch will be a consequence
of parameter deviation away from the true values and not
structural mismatches as for the M.

The data-driven model is a fully connected, feed-forward
neural network and is selected due to its large capacity.
The model D is defined by

ŷD = fD(x;φD) ∈ R, (6)

where φD = {(W1, b1), . . . (WL, bL)} are the weights and
biases in the neural network on each layer l = 1, ..., L. The
rectified linear unit is used as activation function.

The two different gray-box models are based on the M. The
first is an error model where a data-driven model attempts
to capture additive mismatches between P and M. This
model is referred to as H-E:

ŷH-E = fH-E(x;φH-E)

= fM(x;φM) + fD(x;φD) ∈ R. (7)

The second hybrid model addresses the unknown area
function of P by multiplying the initial linear function
of the M with a neural network: A = AM × AD. Hence,
both the magnitude and shape of the area function may
be adjusted. This model is referred to as H-A:

ŷH-A = fH-A(x;φH-A) = fM(x, AD;φM) ∈ R
AD = fD(x;φD) ∈ R. (8)

As the neural network in H-A is multiplied with a small
value (AM), the capacity of the H-A is likely smaller than
the capacity of H-E. This can be argued by acknowledging
that large outputs from the network in H-A will be less
influential on the flow rate predictions than a large output
from the network in H-E.

For all models i ∈ {M�,M,H-A,H-E,D}, the parameters
are estimated using maximum a posteriori (MAP) estima-
tion:

φ̂i = argmax
φ

p(φi | Dk)

= argmin
φ

[ Nk∑
t=1

1

σ2
ε

(yt − ŷi,t)
2

+

m∑
j=1

1

σ2
i,j

(φi,j − µi,ji)
2
]
.

(9)

where m is the number of parameters. The priors on the
parameters are assumed normal φi,j ∼ N (µi,j , σ

2
i,j). The

optimization problem is solved using stochastic, iterative,
gradient-based optimization with the optimizer Adam
(Kingma and Ba, 2015) and early stopping. Details of the
training algorithm are given in Hotvedt et al. (2022).

5. CASE STUDY

Four experiments (Exp. 1-4) have been conducted to
answer the four hypotheses in Section 1. Below, each
experiment will be described, and the results visualized.
Due to stochasticity, the experiments are run several times,
called trials. The results of the trials will be visualized in
figures with the median (p50) as a solid line and a shaded
area to indicate the lower (p25) and upper (p75) quantiles.

5.1 Exp. 1 - decreasing dataset size

Description This experiment examines the performance
of the models to a decreasing training dataset size. Dataset
D1 is used for this purpose using the noise-free measure-
ments. The considered training data lengths are N ∈
{2, 4, 8, 20, 40, 80, 800, 4000, 8000}. The training data is
randomly extracted from D1 in each trial.

Results The model performance in terms of the mean
absolute error (MAE) is visualized as a function of N in
Fig. 4.

5.2 Exp. 2 - increasing noise level

Description This experiment investigates the robustness
of the models to an increasing noise level. The models will
be trained using dataset D1 and the output measurements
with the different noise levels σε.

Results Fig. 5 shows the relative error as a function
of the coefficient of variation σε/µ. The relative error is
calculated by dividing the MAE obtained at one noise
level by the MAE obtained with noise-free measurements.
The MAE is calculated using the noise-free q as the true
value. A relative error larger than 1.0 means the model
performance has decreased.

Fig. 4. The mean absolute error as a function of the
training set size.

Fig. 5. The relative error as a function of the coefficient of
variation for the models.

5.3 Exp. 3 - the depleting reservoir

Description Dataset D2 is used to analyze the model
performances in the nonstationary case of a depleting
reservoir.

Results The absolute value of the prediction error (AE)
in time is visualized for the different models in Fig. 6. The
black, dotted line separates training and test data. Table
1 gives the validation and test MAE for the models.

Table 1. The validation and test mean absolute
error in Exp. 3.

M� M H-A H-E D

MAEv 0.1 18.8 2.2 1.3 2.5
MAEt 1.0 24.7 4.3 2.5 2.8

5.4 Exp. 4 - increasing gas-to-oil ratio

Description Dataset D3 is used to analyze the model
performance in the nonstationary case of an increasing
GOR.

Results Fig. 7 shows the absolute error in time separated
into training and test data. Table 2 gives the validation and
test MAE.
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Fig. 6. The absolute error of the model predictions as a
function of time for Exp. 3.

Table 2. The validation and test mean absolute
error in Exp. 4.

M� M H-A H-E D

MAEv 0.2 2.0 3.0 4.9 6.9
MAEt 0.3 1.6 3.4 9.0 12.7

Fig. 7. The absolute error of the model predictions as a
function of time in Exp. 4.

6. DISCUSSION

Firstly, notice from Fig. 4 that for large dataset sizes,
only M yields a high process-model mismatch. For M�,
this was expected as there are no structural mismatches
between M� and P. For the other models, the negligible
MAE indicates a sufficient capacity. Observe, only a few
observations (N > 80) were required for the D and Hs to
obtain negligible MAE, which suggests that the process is
simple to learn. With real-life, complex processes, a higher
number of observations would likely be required to remove
the bias. Secondly, Fig. 4 shows that the error increases the
most for the D when the dataset size decreases, followed
by H-E and H-A. This implies that the D has the largest
variance, followed by H-E and H-A, and adapts the most to
the training data, thus, decreasing the generalizability to
the unobserved test data. Fig. 5 shows that the M and M�

are robust against an increasing noise level, whereas the
Hs and D are not. This confirms that the Hs and D have

a larger variance. On the other hand, Fig. 5 shows that
the Hs barely achieve a better performance than the D.
Moreover, it seems that the H-E has a lower variance than
the H-A, which is conflicting with the results in Fig. 4.
However, H-E is designed to capture additive mismatches,
which is the only considered noise influence and may
explain the slightly better performance.

The results from Exp. 1-2 indicates that gray-box mod-
els may yield lower variance than a data-driven model
and reduce bias in physics-based models with structural
process-model mismatches. Therefore, in nonstationary
conditions, the expectation is that the Hs will perform
better than the D and the M. Figs. 6-7 and Tables 1-2 do
show that at least one H performs better than the D in
both experiments and that it is advantageous with an H
when the process-model mismatch of the M is large as in
Exp. 3. The large mismatch in Exp. 3 is a consequence
of the available measurements of u making the assumed
linear shape of the area function in M of greater influence
than in Exp. 4 where u = 100% ∀t. It should be noted,
the U-shaped curve of the M on the training data in
Fig. 6 is due to the objective function in (9), and the
performance on the test data can likely be improved by
weighing the recent observations the most. On the other
hand, in Exp. 3, the performance of the D is comparable
with the Hs. In Exp. 4, the discrepancy in performance
between the Hs is large, where the H-A and H-E yield
good and poor performance, respectively. Ideally, the best
model could be deduced a priori to training by examining
known process-model mismatches and the capacity of the
models. Nevertheless, this showed nontrivial even for these
idealized experiments. For instance, in Exp. 3, the H-A
was expected to perform best as it targets the discrepancy
between the linear and true area function. Nevertheless, H-
E yields the best performance, closely followed by the D.
Therefore, model selection must be performed posterior to
training using the performance on the validation dataset.
Accordingly, the importance of extracting the validation
dataset representatively increases, for instance, by time for
nonstationary processes. Positively, the results in Tables
1-2 indicate that the errors on the validation data are
illustrative for the model performances on the test data as
the best model yields the lowest error in both experiments.
A disadvantage is the increase of overhead on model de-
velopment and testing. The observant reader notices that
the model performances in Figs. 6-7 decrease with time.
This is a typical scenario for steady-state modeling in
nonstationary conditions. Utilization of learning methods
for frequent model updating would likely improve the long-
term performances. Such approaches could also handle the
existence of both virtual and real drift.

7. CONCLUDING REMARKS

Overall, the results in this research show that a gray-box
approach to VFM can reduce both model bias and variance
compared to a physics-based and data-driven approach, re-
spectively. From the results and discussions, Hypotheses 1
and 2 from Section 1 are confirmed. However, the gray-box
and data-driven models have comparable performances for
an increasing data noise level and Hypothesis 3 cannot be
confirmed. The results from experiments in nonstationary
conditions showed that a gray-box model can improve the
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Fig. 6. The absolute error of the model predictions as a
function of time for Exp. 3.

Table 2. The validation and test mean absolute
error in Exp. 4.

M� M H-A H-E D

MAEv 0.2 2.0 3.0 4.9 6.9
MAEt 0.3 1.6 3.4 9.0 12.7

Fig. 7. The absolute error of the model predictions as a
function of time in Exp. 4.

6. DISCUSSION

Firstly, notice from Fig. 4 that for large dataset sizes,
only M yields a high process-model mismatch. For M�,
this was expected as there are no structural mismatches
between M� and P. For the other models, the negligible
MAE indicates a sufficient capacity. Observe, only a few
observations (N > 80) were required for the D and Hs to
obtain negligible MAE, which suggests that the process is
simple to learn. With real-life, complex processes, a higher
number of observations would likely be required to remove
the bias. Secondly, Fig. 4 shows that the error increases the
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by H-E and H-A. This implies that the D has the largest
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the unobserved test data. Fig. 5 shows that the M and M�

are robust against an increasing noise level, whereas the
Hs and D are not. This confirms that the Hs and D have

a larger variance. On the other hand, Fig. 5 shows that
the Hs barely achieve a better performance than the D.
Moreover, it seems that the H-E has a lower variance than
the H-A, which is conflicting with the results in Fig. 4.
However, H-E is designed to capture additive mismatches,
which is the only considered noise influence and may
explain the slightly better performance.

The results from Exp. 1-2 indicates that gray-box mod-
els may yield lower variance than a data-driven model
and reduce bias in physics-based models with structural
process-model mismatches. Therefore, in nonstationary
conditions, the expectation is that the Hs will perform
better than the D and the M. Figs. 6-7 and Tables 1-2 do
show that at least one H performs better than the D in
both experiments and that it is advantageous with an H
when the process-model mismatch of the M is large as in
Exp. 3. The large mismatch in Exp. 3 is a consequence
of the available measurements of u making the assumed
linear shape of the area function in M of greater influence
than in Exp. 4 where u = 100% ∀t. It should be noted,
the U-shaped curve of the M on the training data in
Fig. 6 is due to the objective function in (9), and the
performance on the test data can likely be improved by
weighing the recent observations the most. On the other
hand, in Exp. 3, the performance of the D is comparable
with the Hs. In Exp. 4, the discrepancy in performance
between the Hs is large, where the H-A and H-E yield
good and poor performance, respectively. Ideally, the best
model could be deduced a priori to training by examining
known process-model mismatches and the capacity of the
models. Nevertheless, this showed nontrivial even for these
idealized experiments. For instance, in Exp. 3, the H-A
was expected to perform best as it targets the discrepancy
between the linear and true area function. Nevertheless, H-
E yields the best performance, closely followed by the D.
Therefore, model selection must be performed posterior to
training using the performance on the validation dataset.
Accordingly, the importance of extracting the validation
dataset representatively increases, for instance, by time for
nonstationary processes. Positively, the results in Tables
1-2 indicate that the errors on the validation data are
illustrative for the model performances on the test data as
the best model yields the lowest error in both experiments.
A disadvantage is the increase of overhead on model de-
velopment and testing. The observant reader notices that
the model performances in Figs. 6-7 decrease with time.
This is a typical scenario for steady-state modeling in
nonstationary conditions. Utilization of learning methods
for frequent model updating would likely improve the long-
term performances. Such approaches could also handle the
existence of both virtual and real drift.

7. CONCLUDING REMARKS

Overall, the results in this research show that a gray-box
approach to VFM can reduce both model bias and variance
compared to a physics-based and data-driven approach, re-
spectively. From the results and discussions, Hypotheses 1
and 2 from Section 1 are confirmed. However, the gray-box
and data-driven models have comparable performances for
an increasing data noise level and Hypothesis 3 cannot be
confirmed. The results from experiments in nonstationary
conditions showed that a gray-box model can improve the

performance of a data-driven model, hence, confirming Hy-
pothesis 4. Moreover, the gray-box model can significantly
improve the performance of a physics-based model under
large process-model mismatches. On the other hand, the
results also show that it is challenging to determine prior
to model training which model yields the best performance
in different scenarios, and overhead on model development
and testing is unavoidable.

Certainly, the hypotheses were only investigated on syn-
thetic data and generalization to real life is challenging. In
real life, there may be other undesired and unknown char-
acteristics of the process complicating model development,
for instance, increasingly complex and rare physical phe-
nomena or heteroscedastic measurement noise. Moreover,
this work only considers two scenarios of nonstationary
process behavior, although possible scenarios are numer-
ous. Additionally, other gray-box model variants may yield
different results in different scenarios. Nevertheless, the
results from this work indicate that gray-box modeling is
advantageous for virtual flow metering in certain scenarios
and can hopefully act as a guide in modeling real processes.
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