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Abstract—This paper considers a simplified microgrid derived
from the CIGRE benchmark, and investigates the impact of
harmonic loading of the distribution transformer on its reliability.
As a means to alleviate the considerable impact of harmonics on
the distribution transformer, a harmonic compensation scheme
using the distributed generator inverter has been tested and found
to be an efficient way of mitigating the reduced reliability of the
transformer caused by harmonic loads.

I. INTRODUCTION

One of the main challenges of low-voltage microgrids

is related to the significant share of unbalanced and non-

linear loads leading to distorted voltages [1], [2]. As a re-

sponse to this issue, harmonic and unbalance compensation

by distributed generators (DGs) has been deemed an attractive

option for microgrids [1]. In recent years, several schemes for

achieving power quality improvement using DGs have been

proposed [1], [3]–[7]. The schemes typically adjust voltage

and/or current references at harmonic frequencies, and track

these by means of a resonant controller.

In [8], [9] the impact of the operational reliability of power

electronics on a benchmark microgrid has been investigated,

and failure rates of inverters were found to increase as a

result of unbalanced compensation. Interestingly, harmonic

compensation does not seem to affect the capacitor or power

electronic switches in the inverter.

According to [10], the failure rate of a typical distribution

transformer elsewhere is as high as 12 − 17% compared

to the 2 − 3% (probability of failure during one year of

operation) in developed countries. This causes not only a

massive amount of financial costs, but also unreliability in

terms of energy supplied to customers. There are many reasons

for transformer failures: mechanical stress, transients, and

thermal stress. Among the thermal factors causing damage

to the transformer, the important ones are the operation of

nonlinear load and the ambient temperature.

Among distribution transformer failures, insulation failures

caused by overheating are the most common [10]. One reason

for overheating and a source of de-rating of the transformer is

non linear currents and voltages imposed on the transformer.

In [11], [12], harmonics are considered to hugely impact

the temperature and life of transformers. In [13], dynamic

rating of distribution transformers has been investigated and

found that the lifetime and reliability of transformers are

highly dependent on the temperature factor. In [14], the Finite

Element Method-based modeling has been used to evaluate the

impact of harmonic unbalanced loads, and it was found that

harmonic loads would greatly increase the temperature at the

same RMS current. In [15], a significant impact of harmonic

loads was found on the temperature of transformer windings,

resulting in degradation of insulation, and reduced lifetime

and reliability. In [16], the ambient temperature and the

temperature variations caused by loading have been found to

considerably lower the lifetime and reliability of transformers;

applying demand response has been recommended to mitigate

such a situation.

The CIGRE benchmark micro grid in [17] is an LV trans-

mission network suitable for load flow studies as well as

detailed dynamic simulations and stability studies. The bench-

mark system contains unbalanced loads as well as distributed

generation from batteries, solar- and wind power.

The rest of this paper is organised as follows: Section II

gives a short summary of relevant definitions and standards.

Section III introduces the transformer temperature model and

the transformer reliability evaluation. Section IV describes the

system used in the case study, together with its individual

components. Section V presents the results of the case study,

and finally section VI concludes the paper.

II. POWER QUALITY, DEFINITIONS AND RELIABILITY

According to the IEEE 519 standard [18], the Total Demand

Distortion (TDD) limit is 5−20% for odd harmonics depend-

ing on the relationship between the short circuit current ISC

at the Point of Common Coupling (PCC) and the maximum

demand load current IL of the system ( Isc
IL

< 20− Isc
IL

> 1000);

the even harmonics limit is 25% of this.

The maximum Total Voltage Harmonic Distortion (THDv)

limit is THDv = 8% for low voltage networks (VLL < 1kV ).

The IEEE 1547 standard [19] is also valid for microgrid

systems. The TDD is defined as;

TDD =

√

I2rms,system − I21,system

IL
(1)

Where Irms,system is the rms current, Irms,1 is the funda-

mental current and IL is the rated load demand current of the

system.

Reliability is the ability of an item to perform a required

function under stated conditions for a stated period of time

[20]. In reliability studies, failure rates of a component can

significantly affect the system-wide reliability [20], [21].



In addition to standards IEEE 1547 [19] and IEEE 519

[18], standards from the references [12] and [22] have been

extensively used in the sections to follow.

III. TRANSFORMER RELIABILITY AND LIFE

A. Transformer temperature model

According to [23], the contribution of power losses from

non-linear currents can be evaluated through an equivalent

power frequency current Ieq in p.u.:

Ieq =

√

PLL,H

PLL

(2)

where PLL is the power losses from the rated frequency and

PLL,H is the power losses caused by harmonic frequencies.

PLL and PLL,H can be found as follows [23], [24]:

PLL = POL + PEC + PSL (3)

and

PLL = POL,H + PEC,H + PSL,H (4)

where POL is the ohmic losses, PEC the eddy current

losses, PSL the magnetic flux stray losses; subscript H in-

dicates the harmonic losses.

POL,H = POL

N
∑

h=1

I2h (5)

PEC,H = PEC

N
∑

h=1

h2I2h (6)

PSL,H = PSL

N
∑

h=1

h0.8I2h (7)

The distribution of stray losses between eddy current and

magnetic stray losses depends on transformer construction and

type, but is typically 50/50 for a typical ONAN transformer

[22].

Furthermore, curve fitting based on measurements of 7500

transformers in [22] shows that the total load loss, PLL,R at

rated conditions, SR, as well as the ratio between I2R and

stray losses PS,R can be estimated by:

PLL,R = 0.045PR
0.7656 (8)

POL,R = 1.0264P 0.9435
LL,R (9)

PSL = 0.0308P 1.4824
LL,R (10)

The hot-spot temperature of a transformer can be estimated

as [12]:

ΘH = ΘA +∆ΘTO +∆ΘH (11)

∆ΘTO = (∆ΘTO,U −∆ΘTO,i)
(

1− exp

{

−t

ρTO

}

)

(12)

+∆ΘTO,i

∆ΘH = (∆ΘH,U −∆ΘH,i)
(

1− exp

{

−t

ρW

}

)

+∆ΘH,i

(13)

∆ΘTO,U = ∆ΘTO,R(
k2uR+ 1

R+ 1
)n (14)

∆ΘTO,i = ∆ΘTO,R(
k2iR+ 1

R+ 1
)n (15)

∆ΘH,U = ∆ΘH,Rk
2m
u (16)

∆ΘH,i = ∆ΘH,Rk
2m
i (17)

where ΘH is the hot-spot temperature, ∆ΘTO is the top

oil temperature change, ∆ΘH is the hot spot temperature

change, R is the ratio of no-load loss to load loss at rated

conditions, k is the ratio of load to rated load in pu, and m

and n are constants dependent on the transformer type and

cooling system.

Assuming k = ki = ku and that ΘA, n, m, R, ∆ΘH,R and

∆ΘTO,R are constant (in steady state), will yield a further

simplified expression [25]:

ΘH = ΘA +∆ΘTO,R(
k2R+ 1

R+ 1
)n +∆ΘH,Rk

2m (18)

B. Transformer lifetime and failure rate

The transformer insulation life time can be estimated as:

[23], [25], [26]:

Lt = C exp

(

B

θH + 273

)

(19)

The transformer failure rate is given by [26]:

λ(t) =
β

C exp
(

B
θH+273

)





t

C exp
(

B
θH+273

)





β−1

(20)

Suppose an expected, rated lifetime Lr is known at a

specific hotspot temperature ΦH,r. If for simplicity’s sake it

is assumed that an average set of conditions is causing an

average hotspot temperature, then an equivalent running time,

t′ can thus be expressed as [26]:

t′ =
∑

∆te

(

15000
ΘH,Lt

+273−
15000

θH,Lt
(t)+273

)

(21)



A weibull distribution of the failure rate can thus be given

as:

λ(t) = λ (t′) =
β

Lr

(

t′

Lr

)β−1

(22)

In [26], rated life time Lr at rated temperature ΦH,r = 85
is approximated to 11000 days (264k h). Shape parameter β
is found to be 6.6973.

C. Validation of temperature model

The simplified temperature model in section III-A has

been used to replicate and compare the results from other

more advanced models, as well as with experimental results

found in literature where sufficient information regarding the

transformers under investigation is given.

The proposed simplified method in [12] yields an error

of 3.37% when a 36 kW transformer is fed with a 1 pu

fundamental current with THD of 43.4%.

The error in the temperature rise caused by a nonlinear load

with THD = 3.82%, compared to [11], yielded an error of

5.94%.

The estimation of the temperature in 3 experimental mea-

surements in [11] yielded an error of 0.7− 1.4% compared to

measurements performed, although without harmonics present.

The transformer used was a 25 MVA, 66/11 kV, ONAF-cooled

transformer.

IV. SYSTEM DESCRIPTION

A. The microgrid
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Fig. 1: CIGRE LV network: A) full system, B) lumped system

Figure 1 shows the microgrid benchmark proposed by [17]

and the resulting lumped network. The microgrid is connected

to the main grid through the switch LVS1. The microgrid is

considered as connected to the main grid at all times in this

study to investigate the transformer loading.

The line segment lengths in the lumped system are chosen

so that the distance between the lumped load and the grid is

equal to the mean distance per kVA of the original network.

In the same manner, the length between the lumped load and

DG is equal to the mean distance per kVA between DG3 and

all the loads in the original system. The lumped system will

thus have one DG connected where DG3 is connected in the

original system.

Furthermore, the transformer parameters and the grid pa-

rameters as well as the the line parameters and the grounding

scheme are taken from the CIGRE benchmark for distributed

generation [17].

The lines are considered to be underground cables and the

X/R ratio of line impedances set according to [17]. The grid

parameters can be seen in Table II.

B. Inverter and converter model

The connected DG is represented as a 3-phase inverter

connected to a constant DC source through a DC-DC dual

active bridge (DAB) converter interfaced through a DC-link

as shown in Fig. 2.

DAB converter
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N

Filter
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Fig. 2: Schematic diagram of lumped system with considered

components.

The inverter in Fig. 1 is a 3-leg 3-phase inverter controlled

with a constant active and reactive power reference. [27]. The

voltage reference is tracked using cascaded voltage and current

controllers, where the outer loop controls the voltage across

the capacitor CF , and the inner loop controls the current

flowing through LF1. Both control loops were devised in the

dq frame utilizing PI controllers with appropriate decoupling

terms [28]. In addition to the mentioned voltage controller,

resonant controllers are added in parallel to the PI controller

to reduce the steady state error at harmonic frequencies. In the

dq frame the 2nd, 6th and 12th harmonics are included. The

resulting voltage controller transfer function is thus given by:

Cv(s) = kpv +
kiv
s

+
∑

h=2,6,12

2Khωcs

s2 + 2ωcs+ (hω1)2
(23)



TABLE I: The transformer parameters
SR[kV A] ∆ΘTO ∆ΘH Θa ΘH,R [m, n] R LR[d]
110 35◦C 30◦C 30 85 [0.8, 0.8] 5 11000

where kpv and kpi are the PI proportional and integral gains,

respectively, Kh is the resonance gain corresponding to the

harmonic h, ωc is the resonant controller width and ω1 is the

angular fundamental frequency.

The distributed generator supplies a constant active power

and reactive power of 30kW and 15kV Ar respectively in all

cases.

The dual active bridge (DAB) converters are widely used

in the energy storage equipment and the distributed power

systems [29]. The converter is controlled using an output

voltage closed loop controller [29].

C. Loads

The load is split up into a linear load and a nonlinear load.

The linear load is modelled as a constant power load. The

nonlinear load is represented as a 3 phase diode rectifier.

Loads have power factor of 0.85 and a total apparent power

consumption of 55.6kV A as according to [17] and initialized

using Simulink-based unbalanced load flow calculation. The

algorithm uses a Newton-Raphson method and is in [30], and

compared to IEEE radial distribution subcommittee’s solution

to 13 and 34 Node Test Feeders [31], and found to be accurate.

Five different load cases are constructed with percentages of

total load drawn from the nonlinear load of 10%, 20%, 30%,

40% and 50%.

D. The transformer

The transformer used in the CIGRE benchmark [17] has 20

kV - 0.4 kV ratio and Zeq = 0.0032 + j0.0128 at a rated

apparent power of Srated = 500kV A. In the original system

another feeder of 200 kVA is connected so the transformer is

in loaded at about 50% of rated apparent power.

Assuming an ONAN cooled liquid transformer and basing

its parameters from similarly rated transformers [22], [26],

[32] as well as calculations from equations (8)-(10), the

parameters assumed can be seen in Table I. Since these

parameters are assumed based on similarly rated transformers,

they will not represent one real transformer, but still provide

valuable insight into what to expect from such systems given

the conditions under investigation in this paper.

E. Case study

The cases considered in this study investigate the impact on

transformer reliability due to harmonic current drawn from the

loads in the microgrid. The cases will also consider the case

of supplying harmonic compensation through the inverter of

the DG. The loading condition of the transformer will also be

considered as this will hugely impact the reliability. This study

will consider an average set of conditions, and the failure rates

for the different cases will assume the conditions of the case

as constant through time. While in a real system, conditions

will change continuously, this simplification will still provide

insight into how much such conditions can affect the reliability

TABLE II: The CIGRE benchmark case
Grid voltage Grid SC Grid R/X Grounding
Line-line power ratio resistance

400 V 5 MVA 5 80 Ω
Total load, Load power DG active DG reactive
SL factor power, PDG power, QDG

55.6 kVA 0.85 30 kW 15 kVAr

of the transformer, especially since they are not considered at

all in most studies.

As such, the system will be simulated dynamically until

steady state is reached for all conditions to obtain the temper-

ature in the transformer according to section III-A. The aging

failure rates will then be calculated according to section III-B

assuming these conditions to be the average through all time.

The parameters in Tables I and II will be kept constant

through all cases, but the percentage of load drawn from the

nonlinear load will be varied from 10−50%, the control system

of the inverter will consider both the case of no harmonic

compensation as well as with harmonic compensation, and

the apparent power rating of the transformer will be adjusted

so the apparent load drawn corresponds to 50 − 90% of the

transformer rating.

Cases 1.1-5.1 thus consider a percentage of nonlinear load

of 10%, 20%, 30%, 40%, and 50%, respectively, without har-

monic compensation from the inverter. Cases 1.2-5.2 consider

a percentage of nonlinear load of 10%, 20%, 30%, 40%,

and 50%, respectively, with harmonic compensation from the

inverter.

Furthermore, in the cases of harmonic compensation the

voltage controller according to equation 23 is implemented in

the voltage controller of the inverter.

V. RESULTS

Figure 3 shows the current wave forms of cases 1.1, 1.5, 2.1

and 2.5, and Fig. 4 shows the Fast Fourier Transform (FFT)

of all the cases.
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In Fig. 5, the total harmonic distortion of the current drawn

from the transformer and the voltage of the transformer both

with and without harmonic compensation are shown. From this

figure it is clear that that both the voltage and current THD

are considerably reduced by using the harmonic compensation

on the inverter. In all the cases the exact required amount of

active and reactive power is supplied by the inverter.
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As can be seen in Fig. 6, the hot-spot temperature in the

transformer is heavily affected by both the loading of the

transformer as well as the amount of harmonics drawn from

the loads. It is also apparent that the temperature increase as a

function of harmonic content is higher the more heavily loaded

the transformer is.
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The failure rate of the transformer for 50% loading and 70%
loading can be seen in Fig. 7 and Fig. 8, respectively. Several

observations can be made from the results.

It is clear that the closer to the rated loading the transformer

is loaded, the faster the failure rate increases and the shorter its

lifetime. This is to be expected and is consistent with results

from literature.

The effect of harmonic content on the failure rate and thus

the reliability of the transformer is considerable, as are the

improvements in reliability due to harmonic compensation

from the inverter even early in the transformer lifetime. With

30% nonlinear load penetration current THD is about 10%
with compensation and 25% without compensation. For the

case of a 70% loaded transformer, after 5 years of operation

for the 30% nonlinear load penetration, the failure rate is 20

times higher without compensation compared to the same case

with compensation.
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VI. CONCLUSIONS

Although often not considered in most reliability studies,

the effect of harmonics on the transformer reliability is con-

siderable. Not considering this effect can lead to misleading

estimations of the microgrid reliability.

In a microgrid, the negative effects of harmonics on the

transformer reliability can to a large extent be mitigated by

implementing a harmonic compensation scheme in the inverter

which is interfacing the DGs present in a microgrid.
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