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A B S T R A C T   

As autonomous ships become more viable, appropriate risk indicators are increasingly needed. In the existing 
literature, few works are related to developing such risk indicators. Existing indicators are general and not 
focused on a specific autonomous vessel, let alone an actual operating ship. To bridge this research gap, this 
article proposes a methodology for identifying risk indicators based on a Bayesian belief network (BBN). The 
methodology is applied to hazardous event “losing navigational control” of a trial-operating autonomous pas
senger ferry. The risk indicators developed cover technical equipment, remote supervisors’ capacity, and envi
ronmental conditions. The probability of losing navigational control is calculated considering the states of the 
risk indicators, which contributes to risk monitoring of the system during operation. Further, strong wind, the 
state of battery health, end-to-end delay, and packet-loss rate have been identified as critical risk indicators. 
These should preferably be presented in a shore control center to human operators and provide a basis for de
cision support, and for defining operational procedures for safe takeover and shared autonomy. The findings can 
further improve practitioners’ understanding, monitoring, analysis, and management of the risk of loss of 
navigational control of autonomous ships, which is crucial to prevent collisions.   

1. Introduction 

Risk analysis of autonomous ships is an increasingly popular research 
topic (e.g.,Zhou et al. (2020); Zhang et al. (2020)). One of the main tools 
for risk monitoring is risk and safety indicators. Researchers employ risk 
and safety indicators for various purposes, such as calculating the per
formance of a ship’s hull and propeller (Oliveira et al., 2020), calcu
lating real-time ship-conflict probability (Zhang et al., 2022b), and 
improving the safety of merchant’s vessels (Gil et al., 2022). 

Risk indicators (RIs) differ from safety indicators. The former are 
measurable variables of risk-influencing factors (RIFs) related to a risk 
model. This means that changes in the risk level and indicators should 
also be reflected in changes in a risk model (Øien et al., 2011). In 
contrast, the latter measures to what extent safety is present (Thieme 
and Utne, 2017). 

Øien (2001) proposed a framework to establish organizational RIs. 
Later, Vinnem (2010) proposed RIs for major hazards on offshore in
stallations, including major hazard precursor data and barrier perfor
mance data. Zhen et al. (2019) adopted a systematic risk-based approach 
to developing some major hazard RIs to monitor, measure, and predict 

the national risk levels in the offshore petroleum industry. 
There exist limited research publications on the use of safety and risk 

indicators for autonomous ships. Thieme and Utne (2017) studied and 
applied safety indicators of autonomous marine systems to an autono
mous underwater vehicle. Wróbel et al. (2021) performed a literature 
review on the use of leading safety indicators in Maritime Autonomous 
Surface Ships (MASS) and concluded that more research is needed not 
only to establish general indicators but also to explore the role of in
dicators within a specific system of an autonomous vessel. Zhang et al. 
(2022a) adopted a machine learning method incorporating safety in
dicators to evaluate the ship grounding risk. 

Fan et al. (2020) conducted an extensive literature review of RIFs for 
MASS, covering human, ship, environmental, and technology factors 
during four operation phases. Li et al. (2021) proposed a concept named 
Rule-aware Time-varying Conflict Risk (R-TCR) for ship collision 
avoidance. These works can contribute to the development of risk 
indicators. 

Furthermore, there is no literature about the RIs of losing naviga
tional control of autonomous ships. Hence, to bridge this gap, this article 
proposes a methodology for identifying risk indicators based on a BBN. 
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The application of the methodology is related to the loss of navigational 
control over an autonomous ship. The BBN presented in this article is 
further work and extension from Guo et al. (2021). The objective of the 
present article is to develop RIs connected to the BBN that can be 
updated during the operation of autonomous ships. Subsequently, it 
could be used by human supervisors in a shore control center as a 
risk-monitoring tool for any autonomous ships. The RIs can also provide 
useful information for developing operational limits and thresholds 
related to the safe takeover and shared control of the autonomous ship. 

In the present work, the states of the RIs can be continuously 
monitored, thus giving early warnings of potential risks. Therefore, the 
RIs work as a proactive risk monitoring tool. The use of a BBN also 
makes it possible to quantify and trend the risk profile. The technical 
equipment components and layout are based on the pilot—namely, the 
autonomous all-electric passenger ferry named MilliAmpere developed 
by the Autoferry project1 at the Norwegian University of Science and 
Technology (NTNU). In addition, there is a shore control center (SCC) 
with a remote supervisor monitoring the ferry (Veitch et al., 2021). RIs 
can provide useful information to the human supervisor about the cur
rent risk level in operation. 

The autonomy level (AL) of this autonomous ferry is AL-4, which 
means "human in the loop: operator/supervisory—decisions and action 
are performed autonomously with human supervision" and that "high 
impact decisions are implemented in a way to allow human operators to 
intercede and over-ride them" (Lloyd’s Register, 2016). For the Milli
Ampere ferry, if the autonomous control system turns abnormal under 
supervision in the SCC, the remote supervisors can intervene and take 
control of the ferry. 

The contributions and novelties of this work lie in the proposed 
methodology for the development of risk indicators from a BBN and the 
application to quantitative risk monitoring of an autonomous ferry. The 
results both estimate the probability of losing navigational control and 
reveal the most critical risk indicators. Even though the application in 
the article is focused on an autonomous passenger ferry, the method
ology is expected to be useful for autonomous ships in general. 

The rest of this paper is organized as follows: the risk analysis model 
and the concepts of RIFs and RIs are discussed in Section 2. Section 3 
presents the application of the proposed model to an autonomous ferry. 
In Section 4, the results are briefly discussed. Section 5 offers conclu
sions and implications. 

2. The proposed methodology 

This present article proposes a methodology to incorporate RIs in a 
BBN risk model and identify critical RIs. Fig. 1 shows the steps of the 
methodology. 

2.1. Step 1: Develop the risk model (BBN) 

The first step in developing a BBN model involves a causal analysis of 
the specific risks included in the scope of work. Preliminary hazard 
analysis (PHA) or similar types of risk analyses (see, e.g., Yang and Utne 
(2022)), and review of literature can contribute the development of 
BBN. The root nodes, intermediate nodes, the pivot node, and their 
logical relationships constitute the BBN, which is the foundation for 
identifying RI. 

2.2. Step 2: Identify risk indicators 

The next step entails identifying risk indicators, which requires 
introducing the concepts of RIFs and risk indicators. As defined by Øien 
(2001), an RIF is "an aspect (…) of a system or an activity that affects the 
risk level of this system or activity." An RI is defined as "a 

measurable/operation variable that can be used to describe the condi
tion of a broader phenomenon or aspect of reality" (Øien, 2001). 

RIs are used to measure RIFs. In the proposed BBN model, a root node 
is considered either an RIF or a direct RI. If the root nodes are RIFs, then 
the corresponding RIs need to be defined based on information from the 
literature, system knowledge and communications with experts. For 
example, precipitation is a risk factor and also a direct RI that is 
measurable. In contrast, the operation crew is an RIF, and some RIs 
cover the level of area-specific knowledge, the number of years of site- 
specific expertise, etc. (Haugen et al., 2012). 

RIs are measurable and have different states. In the proposed 
methodology, the states of RIs are divided into to or three general cat
egories. These categories are high, medium, and low and acceptable and 
unacceptable. 

2.3. Step 3: Estimate pivot node probability 

The third step involves estimating the probability of the pivot node. 
After identifying the RIs and their states, the prior probability distri
butions of the states should then be estimated according to available 
known data or expert opinions if data is unavailable. Subsequently, the 
pivot node probability can be calculated from the BBN. This provides a 
reference risk value. 

2.4. Step 4: Identify critical risk indicators 

The proposed method contributes to online risk monitoring by the 
supervisors in the remote-control center. Since numerous data sources 
exist, such as information from sensors, identifying which information 
to display on the remote-control screen so as not to overload supervisors 
remains a challenge in the design of remote-control centers (Veitch 
et al., 2021). 

In step 4, the method identifies the critical RIs, i.e., what risk-related 
information should be prioritized for display on a remote-control center. 
To identify the most useful RIs, the evidence of the state of each RI is set, 
and the pivot node probability will then be updated. Specifically, the 
state of the worst performance of every RI is assumed. The resulting 
pivot probability with the most significant increase indicates the most 
useful RIs. 

2.5. Step 5: Inference analysis 

In this step, the inference analysis is conducted, which entails setting 
the state of the pivot node to be true and performing a backward 
probability updating analysis on the BBN. The updated probabilities of 
root nodes and RIs reveal the main causes of a top event, i.e., what led to 
the occurrence of the pivot node. This can also be used to determine 
intervals and thresholds of the RI, i.e., operational limits and when risk 
mitigation is needed from human operators involved in the risk 
monitoring. 

3. Case study 

The following section demonstrates an application of RI develop
ment to an autonomous ferry named MilliAmpere in the Autoferry proj
ect. The equipment included in the model was based on the setup of 
MilliAmpere. The autonomous ferry will operate in the Trondheim Canal, 
connecting two riverbanks. The AL of the ferry was assumed to be AL-4, 
as mentioned above. 

3.1. Steps 1 and 2: Develop a risk model (BBN) and identify risk 
indicators 

This risk model for losing navigational control over an autonomous 
ferry in Fig. 2 is based on the BBN model proposed by Guo et al. (2021), 
extended with RIs. Losing navigational control can only be caused by the 1 https://www.ntnu.edu/autoferry. 
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simultaneous failures of both the autonomous and the remote-control, 
which both are affected by the state of the propulsion system. 

Normally, the autonomous control system keeps the ferry on track. 
However, if the autonomous control turns abnormal under supervision, 
the remote supervisors can intervene and take control of the ferry to 
avoid losing navigational control. Therefore, both failures of autono
mous and remote control will lead to the loss of losing navigational 
control of the autonomous ferry. The failure of the autonomous control 
is due to the failures of obstacle detection and the decision and pro
pulsion systems. The failures of these systems are caused by the failures 
of sensors, batteries, thrusters, computers, etc., as represented by the 
parent nodes. The ’failure’ here means the complete failures, e.g., the 
power is lost, or the obstacle detection fails, leading to the loss of 
navigational control. The failure of remote control can be caused by 

either the failure of communication system or human intervention 
failures. 

The green nodes in the BBN represent the RIs developed in this 
article. The RIs are developed by searching the respective literature and 
communication with experts to find what affect the performance of the 
radar, lidar, batteries, etc. It should be clarified that in this case study, 
the RIs only refer to the measurement variables of the RIFs presented 
here, which mainly cover technical and environmental factors. The RIs 
concerned with the ship domain are out of the scope of this work. 

The detailed introduction of various RIs appears in the following 
subsections. 

3.1.1. Risk indicators for valve-regulated lead-acid batteries 
The state of health (SOH) of valve-regulated lead-acid (VRLA) 

Fig. 1. The methodology for identifying risk indicators of a BBN.  

Fig. 2. The BBN model of losing navigational control of an autonomous ship with risk indicators (extended from Guo et al. (2021)).  
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batteries is defined as the ratio between the theoretical maximum 
amount of charge of the aged batteries and that of new batteries. The 
SOH reflects the times of discharging and charging of the batteries when 
they still supply adequate power (Shahriari and Farrokhi, 2013). As 
shown by Shahriari and Farrokhi (2013), SOH can be dynamically 
estimated based on a fuzzy system by measuring three indicators: the 
state of charge (SOC), the battery power (Q), and the open-circuit 
voltage (VOC) while the battery is discharging or charging. 

In applications, these three indicators can be continuously measured 
to calculate the SOH of batteries based on the method proposed by 
Shahriari and Farrokhi (2013). The SOH can be classified into three 
categories: high, medium, and low. Technical experts in the autonomous 
ship group decide if the current SOH of VRLA batteries is acceptable for 
the safe operation of the ship. 

3.1.2. Risk indicators for communication systems 
As exhibited by Zormatai and Kargathara (2018), packet-loss rate 

and end-to-end delay are two measurements of a 4G wireless network. 
These two RIs can also be applied to a 5G communication network. As 
Yasar and Zola (2022) put it, ’a packet means a basic unit of data that is 
grouped together and transferred over a computer network.’ Packet-loss 
rate is thus the ratio of lost data to the total transmitted data (Zormatai 
and Kargathara, 2018). End-to-end delay is the time a packet takes to 
travel across a network from the source to the destination (Zormatai and 
Kargathara, 2018). It is the sum of the transmission, propagation, pro
cessing, and queuing delays (Zormatai and Kargathara, 2018). The 
lower packet-loss rate and end-to-end delay are, the more reliable the 
communication system is. 

The packet-loss rate can be classified into two categories: acceptable 
(the packet-loss rate is lower than the threshold rate, e.g., 20% (this 
value is an initial assumption and should be later adjusted) such that 
remote supervisors receive adequate data from sensors to manipulate 
maneuvers of the autonomous ship) and unacceptable (the packet-loss 
rate is higher than the threshold rate such that remote supervisors do 
not receive enough data to manipulate maneuvers). 

The end-to-end delay can also be classified into the same two cate
gories. An acceptable delay is smaller than the threshold delay—e.g., 
0.1 s (this value is an initial assumption and should be later adjusted)— 
such that remote supervisors have adequate time to manipulate ma
neuvers of the autonomous ship, and an unacceptable delay is higher 
than the threshold delay such that remote supervisors do not have 
enough time to manipulate maneuvers. 

3.1.3. Risk indicators for radar 
Gao and Chu (2017) identified that the health of radar antennas can 

be evaluated by the radar-detection range and antenna side-lobe level. A 
faulty radar TR module will lead to a decrease in these two character
istics. Therefore, the radar-detection range and antenna side-lobe level 
were chosen as RIs for radar. 

Gao and Chu (2017) adopted the D-S evidence theory to fuse the 
decrease trend of side-lobe level and detection range to conclude 
whether the radar health status is normal, minor, approaching, deteri
oration, and serious. This article simplifies the health states of radar by 
classifying them as high, medium, and low. 

3.1.4. Risk indicators for lidar 
The ferry has integrated light detection and ranging (lidar) to facil

itate autonomous navigation. The literature regarding reliability anal
ysis of lidar is limited. Among the few relevant works, Strasser et al. 
(2020) introduced a novel SOH-monitoring system focusing on the 
operation temperature for lidar. Strasser et al. (2020) emphasized that 
the failure in-time (FIT) rate of semi-conductors such as lidar is highly 
relevant to the operation temperature. By measuring the current tem
perature of the lidar with a temperature sensor and comparing it with a 
histogram temperature profile, the estimated FIT rate can be derived. 
Therefore, the operation temperature was selected as an RI for lidar. 

This risk indicator is categorized as acceptable and unacceptable. 

3.1.5. Risk indicator for remote supervisors’ intervention 
There are many factors that could impact the remote supervisors, e. 

g., the machine-human interface, machine-style movements of the ship, 
reliability of MASS, and visibility constraints Yoshida et al. (2021). 
However, these are not fully covered in this paper as it is an extensive 
topic. This should be subject, however, to further analysis in a separate 
study. However, since the scope of this work mainly focuses on the risk 
associated with the autonomous system, the risks concerning RCC and 
the remote supervisors are not fully covered. Therefore, only the remote 
supervisors’ experience in supervising or operating autonomous ships 
remotely is chosen as a RI for remote supervisors’ intervention. Ac
cording to Thieme (2014), the experience can be categorized into three 
states low, medium, and high, with probabilities of 0.667, 0.250, and 
0.083 respectively. 

3.1.6. Risk indicators for environmental conditions 
The precipitation per hour and the instantaneous wind speed (gusts’ 

speed) comprise the RIs for environmental conditions. Large precipita
tion (more than 7.6 mm/h) can influence the performances of cameras, 
lidars, and the communication system. Wind speed is classified into 
acceptable if lower than or equal to 10 m/s and unacceptable if more 
than 10 m/s, according to the operation limit of the small autonomous 
ferry. 

3.2. Step 3: Estimate pivot-node probability 

In this case, the pivot node is losing navigational control. Before each 
autonomous ship’s departure, a risk assessment should be conducted 
using RIs to determine the level of risk inherent in allowing the ship to 
sail. The risk indicators with the respective initial probability distribu
tions are presented in Table 1. These prior probabilities are obtained 
from expert judgment based on knowledge from and interactions with 
participants in the Autoferry project, the literature, and the meteoro
logical data. Taking the state SOH VRLA batteries as an example, the 
prior probability distributions of high SOH, medium SOH, and low SOH 
are first assumed to be 0.990, 0.009, and 0.001 respectively. These 
numbers are based on the belief that the SOH of the batteries onboard 
the newly operated autonomous ferry is most probably high, less likely 
to be medium, and unlikely to be low. Those prior probability numbers 

Table 1 
Initial probability distributions of risk indicators for an autonomous ferry.  

Risk Indicator Prior Probability Distributions of States of the 
Risk Indicators (Per Passage) 

Source 

High 
(Acceptable/ 
No) 

Medium Low 
(Unacceptable/ 
Yes) 

State of health 0.990 0.009 0.001 Expert 
judgment 

Packet-loss rate 0.999  0.001 Expert 
judgment 

End-to-end delay 0.999  0.001 Expert 
judgment 

Health status of 
radar combining 
radar-detective 
range and 
antenna side- 
lobe level 

0.990 0.009 0.001 Expert 
judgment 

Operation 
temperature 

0.999  0.001 Expert 
judgment 

Remote 
supervisor’s 
experience 

0.667 0.250 0.083 Thieme 
and Utne 
(2017) 

Wind 0.9998  0.0002 Yr (2020) 
Large precipitation 0.9999  0.0001 Yr (2020)  
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can be updated if more information on the batteries (e.g., precursors, i. 
e., the actual low SOH occurrence per 1000 passages) is available. 

Once the initial probability distributions of RIs are established, the 
quantification of conditional probability tables (CPT) should be done to 
reflect the influence of RIs on RIFs (in the BBN). The CPTs are quantified 
based on manufacture data, the literature, the preliminary hazard 
analysis workshop, and expert judgment. These can afterwards be 
updated as soon as the autonomous ferry is operating, and more pre
cursors occur and are recorded. The CPTs are shown in Tables 2–7. For 
example, Table 2 shows that, if the RI health status of radar is in medium 
or low states, then the failure probability of the radar increases from 
1.96e-5, as in the high state, to 0.196 and to 0.784, respectively. 

3.3. Step 4: Identify critical risk indicators 

By setting the state of the RI health status of radar as low and then 
updating the BBN, the radar’s failure probability becomes 0.39, which is 
a substantial increase. However, since other sensors have very low 
probabilities of failure and are unaffected by radar, the failure proba
bility of obstacle detection has not changed much. As a result, the 
probability of losing navigational control of the autonomous ferry re
mains unchanged at 4.6e-5. Similarly, if the state of the RI operation 
temperature of lidar is abnormal, the resulting probability of losing 
navigational control remains unchanged at 4.6e-5. To conclude, these 
two RIs—health status of radar and operation temperature of 
lidar—have little influence on the risk of losing navigational control of 
the autonomous ferry. The reason is that any of the four types of sen
sors—radar, lidar, optical camera, and IR camera—can provide suffi
cient information for obstacle detection. Therefore, one single failure of 
any sensor will not directly lead to the failure of obstacle detection or the 
loss of navigational control, so the probability of losing navigational 
control is largely unaffected by the states of the indicators for radar or 
lidar. Consequently, these two indicators are not prioritized in the risk 
monitoring. 

By setting large precipitation to present (’yes’), the probability of 
losing navigational control of the autonomous ferry slightly increases, 
from 4.6e-5 to 4.9e-5. This is due to large precipitation not only 
increasing the failure probabilities of lidar and IR and optical cameras 
but, more importantly, impairing the communication system with the 
SCC. The communication system’s increased failure probability in
creases the failure probability of remote control from 0.24 to 0.27. 
Consequently, the probability of losing navigational control also 
increases. 

Table 2 
CPT for failure of radar (based on Zrnic et al. (2007) and expert judgment).  

Health Status of Radar High Medium Low 

Fail 1.96e-05 0.196 0.784 
Work 0.99998 0.804 0.216  

Table 3 
CPT for failure of lidar (based on manufacture data and expert judgment).  

Large Precipitation Yes No 

Operation Temperature Normal Abnormal Normal Abnormal 

Fail 0.0625 0.5 6.25e-14 0.25 
Work 0.9375 0.5 0.9999 0.75  

Table 4 
CPT for battery pack (based on Adams et al. (2004) and expert judgment).  

State of Health Low Medium High 

Fail 0.8 0.2 2e-07 
Work 0.2 0.8 0.9999998  
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The results are substantial after setting evidence that there is strong 
wind. The failure probability of the propulsion system goes to 0.03. The 
failure probability of autonomous control and the probability of losing 
navigational control both jump to 0.03, around 500 times greater than 
before. 

Weather clearly affects the probability of losing navigational control, 
and therefore, especially wind speed, should be monitored closely by the 
SCC. 

Assuming that the SOH of the battery is low, the probability of losing 
navigational control rises from 4.6e-5 to 2.2e-4, around 4.8 times larger 
than before. Therefore, the SOH of the battery is a vital indicator and 
should be prioritized in the SCC’s monitoring. 

By setting either the state of the end-to-end delay or packet-loss rate 
as low, the probability of losing navigation control of the autonomous 
ferry both rises from 4.6e-5 to 1.2e-4, a more than double increase. 
Consequently, the SCC should emphasize both RIs in their monitoring. 

Finally, setting the remote supervisors’ experience to low, the 
probability of the node losing navigational control rises from 4.6e-5 to 
8.6e-5, an 87% increase. 

3.4. Step 5: Inference analysis 

This section relays the inference analysis wherein the state of the 
node losing navigational control is set as ’yes.’ In the GeNIe software, 
the probabilities of the intermediate and root nodes are updated auto
matically. Fig. 3 shows the results. Different RI colors reflect to what 
extent the updated probabilities of states that lead to the loss of navi
gational control (low, unacceptable, etc.) deviate from the original 
probabilities. Red, orange, yellow, and green mean extreme, large, 
medium, and small deviations, respectively. Specifically, red means the 
updated probabilities have an increase of more than 100 times, orange a 
double increase or more, yellow a 50%–90% increase, and green ones an 
increase of less than 1%. 

It should be clarified that, due to the limited presentation of numbers 
in the bar chart, many nodes appear as 0% in some states. This does not 
mean the occurrence probabilities are 0 but that they are smaller than 
0.005. Such small probabilities and some key RIs are summarized in 
Tables 7–12. 

Table 6 
CPT for remote supervisors’ intervention (based on Williams (2015) and expert 
judgment).  

Remote Supervisors’ Experience High Medium Low 

Fail 0.16 0.32 0.64 
Work 0.84 0.68 0.36  

Table 7 
Updated probability of health status of 
radar (inference analysis).  

High 0.990 

Medium 0.009 
Low 0.001  

Table 8 
Updated probability of large 
precipitation.  

Yes 8.8e-5 

No 0.9999  

Fig. 3. Inference analysis of losing navigational control.  

Table 9 
Updated probability of strong wind.  

Strong 0.10 

Not Strong 0.90  

Table 10 
Updated probability of state of health of 
batteries.  

High 0.86 

Medium 0.10 
Low 0.04  
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4. Discussions 

4.1. Probability of losing navigational control while monitoring risk 
indicators 

By applying the initial probability distributions of RIs for an auton
omous ferry in Table 1 to the nodes in the BBN, the occurrence proba
bilities of failure of autonomous control, failure of remote control, and 
losing navigational control are obtained. These numbers, along with the 
respective probabilities from Guo et al. (2021) in which no RIs are 
considered, are compared with and presented in Table 13. The failure 
probability of autonomous control while considering RIs is similar to 
that without RIs. Also, the probability of losing navigational control is 
close to but slightly larger than the corresponding result from Guo et al. 
(2021). 

This is because, in this article, the performance of safety barriers 
(RIFs) is not considered perfect as the manufacturers, or the literature 
would suggest. In contrast, RIs have been used, which affect the prob
abilities of RIFs, as the conditional probability tables show. For example, 
in Guo et al. (2021), the failure probability of radar is 1.96e-5. But, in 
this article, considering the possibilities of different states of RIFs, as 
represented by RIs, the failure probability of radar is 2.57e-3, approxi
mately 131 times as large. This will lead to the increased failure prob
abilities of RIFs and subsequently increases the failure probability of 
autonomous control and eventually the probability of losing naviga
tional control. 

4.2. Critical risk indicators and inference analysis 

As demonstrated in the findings in section 3.3, the strong wind, SOH 
of batteries, end-to-end delay, and packet-loss rate are useful RIs for the 
loss of navigational control of the autonomous ferry. 

The inference analysis results shown in Fig. 3 and Table 7–Table 12 
indicate that strong wind is the RI with the highest contribution to losing 
navigational control. SOH of batteries, end-to-end delay, and packet-loss 
rate are also all large contributors, with more than double increase in 
occurrence probabilities for each. Remote supervisors’ experience is a 

medium contributing RI, with a 50%–90% increase. In contrast, health 
status of radar, operation temperature of lidar, and large precipitation 
show minimal changes. These findings reinforce those from Section 3.3, 
cross-confirming which RIs should be prioritized in risk monitoring. 

The results from the inference analysis also potentially show 
thresholds of the RI, i.e., the difference in their probabilities when the 
pivot node is set to true (losing navigational control is set to “yes”) and 
untrue (losing navigational control is set to “no”). Such information may 
be used to determine the operational limits of the autonomous ferry, and 
when risk mitigation and/or the human operator in the SCC needs to 
take over control. The current BBN has a limited number of states and 
nodes, but further work should explore the model, its states and CPTs, 
and how inference analysis could contribute to decision support for the 
operators. 

4.3. Sensitivity analysis 

Since there are uncertainties associated with the prior probabilities 
of the risk indicators, a sensitivity analysis is performed in GeNIe. As 
Fig. 4 shows, the state of health of batteries in battery bank A or B being 
high are both the most sensitive nodes. A 10% decrease in the proba
bility of either node both increases the probability of losing navigational 
control from 5.3e-5 to 1.2e-4 about a 127% increase. Such significant 
change indicates that the uncertainties associated with the prior prob
abilities of these two risk indicators should be paid more attention to 
than other indicators. 

4.4. Advantages of deriving risk indicators from a BBN 

In traditional BBNs, the failure of one unit of a system is usually 
represented by one single node with one single probability number. This 
representation does not incorporate the changes in the nodes’ conditions 
over time. This article overcomes this limitation by identifying RIs of the 
RIFs in a BBN to achieve more effective risk monitoring of the 
performance. 

4.5. Limitations 

At first, only the most relevant RIs were integrated in the BBN model, 
meaning one or two indicators for each RIF. Besides, uncertainties exist 
in the probabilities of the RIs. The probabilities are adopted from the 
literature or expert judgement, which has not been validated since the 
RIs have not been practically applied to the autonomous ferry yet. 

A trial period of the autonomous passenger ferry MilliAmpere 2 across 
the canal in Trondheim was performed from 21 September until mid- 
October 2022 (Haugen, 2022). Noticeably, a safety supervisor was on
board the MilliAmpere 2 in case of unexpected circumstances during this 
trial period. MilliAmpere 2 may operate regularly from next summer. 
Therefore, more data can become available to validate this work. 

Last but not least, when introducing the RIs for the remote supervi
sors’ intervention failure, only remote supervisors’ experience is 
considered. Other factors, such as the machine-human interface, should 
be further investigated in the future work. 

5. Conclusions 

In this paper, a method of deriving risk indicators from a BBN risk 
model is proposed. It is applied to identifying RIs of an autonomous 
ferry, which an SCC can use to monitor the ferry’s operation. The 
measurement and monitoring of the states of risk indicators provide a 
tool for proactive performance monitoring of the autonomous ship. 
Some key conclusions are listed as follows: 

• Risk monitoring of an autonomous ferry is facilitated using risk in
dicators in the BBN by applying the proposed methodology. The risk 
indicators can contribute to information which may be used as a 

Table 11 
Updated probability of end-to-end delay.  

Acceptable 0.998 

Unacceptable 0.002  

Table 12 
Updated probability of remote supervisors’ 
experience.  

High 0.566 

Medium 0.288 
Low 0.146  

Table 13 
Comparison of the occurrence probabilities for the accident scenarios for June 
2019 at the Trondheim Canal with and without risk indicators.  

Node Probability per passage 
(considering risk indicators with 
prior probabilities of states) 

Probability per passage 
(without risk 
indicators) 

Failure of 
autonomous 
control 

1.3•10− 4 1.2•10− 4 

Failure of remote 
control 

0.24 0.16 

Losing 
navigational 
control 

5.3•10− 5 3.8•10− 5  
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basis for developing operational procedures for the safe takeover of 
the human operator.  

• The most significant risk indicators have been identified: strong 
wind, batteries’ SOH, end-to-end delay, and packet-loss rate. These 
risk indicators influence the risk level most during the operation of 
the autonomous ferry and should be closely monitored. The infer
ence analysis may contribute to identifying the operational limits 
and thresholds for risk mitigation is necessary to perform, and/or 
when the human operator in the SCC should take over control. More 
work, however, is necessary to explore this aspect of the BBN, in 
particular with respect to its states and CPTs.  

• The limitations of this work are related to the non-measurable RIFs 
and human-related risk indicators which have not been included due 
to the scope of this research. Furthermore, there is lack of empirical 
measurements of the input data for the risk indicators because the 
ferry has not yet been regularly operated. Therefore, the probability 
numbers, and inference analysis have yet to be validated. This can be 
solved in future work, particularly by testing the model and col
lecting sensor and experience data on the real ferry when it becomes 
in service. 
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